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Abstract
In this paper, we prove some Milne type inequalities for interval-valued functions and, along
with it, we explore some connections with other inequalities. More precisely, using the
Aumann integral and theKulisch–Miranker order and including-order on the space of real and
compact intervals, we establish some Milne type inequalities for interval-valued functions.
Also, using different orders, we obtain some connections with Chebyshev, Cauchy–Schwarz,
and Hölder inequality. Finally, some new ideas and results based on submodular measures
are explored as well as some examples and applications are presented for illustrating our
results.

Keywords Integral inequalities · Interval-valued functions · Milne’s inequality · Interval
orders

Mathematics Subject Classification 65G40 · 26D15

1 Introduction

The importance of the study of set-valued analysis from a theoretical point of view as well
as from their application is well known (Aubin and Cellina 1984; Aubin and Franskowska
2000). Also, many advances in set-valued analysis have beenmotivated by control theory and
dynamical games and, in addition, optimal control theory and mathematical programming
were a motivating force behind set-valued analysis since the 60s (Aubin and Franskowska
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arturoflores.academico@gmail.com

H. Román-Flores
hroman@uta.cl

V. Ayala
vayala@uta.cl

1 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile

2 Departamento de Matemática, Universidad de Tarapacá, Casilla 7D, Arica, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-021-01500-y&domain=pdf


130 Page 2 of 15 H. Román-Flores et al.

1990). Interval analysis is a particular case and it was introduced as an attempt to handle
interval uncertainty that appears in many mathematical or computer models of some deter-
ministic real-world phenomena. The first monograph dealingwith interval analysis was given
by Moore (1966). Moore is recognized as the first to use intervals in computational mathe-
matics, now called numerical analysis. He also extended and implemented the arithmetic of
intervals to computers. One of his major achievements was to show that Taylor series meth-
ods for solving differential equations not only are more tractable, but also more accurate (see
Moore 1979, 1985; Moore et al. 2009) .

Several generalizations of classical integral inequalities were obtained in the recent years
by the authors (Agahi et al. 2011; Agahi 2020; Flores-Franulič and Román-Flores 2007;
Flores-Franulič et al. 2008, 2009; Román-Flores and Chalco-Cano 2006; Román-Flores
et al. 2007a, b, 2008a, b, 2013, 2018, 2020), in the context of non-additive measures and
Sugeno’s integral. Additionally, also see the following related references: (Pap 1995) and
(Wang and Klir 2009) which also contain some aplications to non-deterministic problems.

On the other hand, several integral inequalities involving functions and their integrals and
derivatives have been extended by the authors to the interval and/or fuzzy-interval context,
including Minkowski, Radon and Beckenbach inequalities (Román-Flores et al. 2018; Costa
and Román-Flores 2017), Ostrowski’s inequality (Chalco-Cano et al. 2012), Gauss. Opial
and Wirtinger-type inequalities (Costa and Román-Flores 2019a; Costa et al. 2019b, 2020)
respectively, among others.

In general, any integral inequality can be a very powerful tool for applications and, in
particular, when we think an integral operators as a predictive tool, then an integral inequality
can be very important in measuring, computing errors, and delineating such processes. In
most cases, when we want to model a real problems, it is necessary to know the dynamics
given by a certain real function f , and the problem is that this function f is difficult to know
explicitly due to phenomena of uncertainty. However, if we knows its ranges of minimum
and maximum variation, then we can approximate it by an interval function. In that way,
interval-valued functions (or fuzzy-interval-valued functions) may provide an alternative
choice in the modeling of real problems with uncertainty, along with the Aumann integral
for interval-valued functions (the natural associated expectation) and the knowledge and
management of Aumann integral inequalities, could be a power tool for measuring and
quantify the uncertainty involved in the modeling processes.

Finally, one of themost important thingswewant to highlight is that, in the interval context,
the Milne integral inequality is related to other relevant inequalities through different partial
orders on the class of compact-convex intervals.

This work generalizes Milne’s inequality for interval-valued functions and, also, some
connection with other classical inequalities and interval orders are explored.

2 Preliminaries and basic results

2.1 Interval operations

Let R be the one-dimensional Euclidean space, and considerKC the family of all non-empty
compact convex subsets of R, that is

KC = {[a, b] | a, b ∈ R and a ≤ b}. (1)
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The Hausdorff metric on KC is defined by

H(A, B) = max {d(A, B), d(B, A)} , (2)

where d(A, B) = max
a∈A

d(a, B) and d(a, B) = min
b∈B

d(a, b) = min
b∈B

|a − b|.
Remark 1 An equivalent form for the Hausdorff metric defined in (2) is:

M
([

a, a
]
,
[
b, b

]) = max
{∣∣a − b

∣
∣ ,

∣
∣a − b

∣
∣} ,

which is also known as the Moore metric on the space of intervals (Moore et al. 2009, eq.
(6.3), pp. 52).

It is well known that (KC , H) is a complete metric space (see Aubin and Cellina 1984).
If A ∈ KC , then we define the norm of A as ‖A‖ = H (A, 0).
The Minkowski sum and scalar multiplication are defined on KC by means

A + B = {a + b | a ∈ A, b ∈ B} and λA = {λa | a ∈ A}. (3)

Also, if A = [a, a] and B = [b, b] are two compact intervals, then we define the difference

A − B = [
a − b, a − b

]
, (4)

the product

A · B = [
min

{
ab, ab, ab, ab

}
, max

{
ab, ab, ab, ab

}]
, (5)

and the division

A

B
=

[
min

{
a

b
,

a

b
,

a

b
,

a

b

}
, max

{
a

b
,

a

b
,

a

b
,

a

b

}]
, (6)

whenever 0 /∈ B.
An order relation “≤ ” is defined on KC as follows (Kulisch and Miranker 1981):

[a, a] ≤ [b, b] ⇔ a ≤ b and a ≤ b . (7)

Remark 2 We note that if [a, b], [c, d] and [x, y] are intervals with positive endpoints, then
[a, b] ≥ [x, y] ⇔ [a, b]

[c, d] ≥ [x, y]
[c, d] (8)

[c, d] ≤ [x, y] ⇔ [a, b]
[c, d] ≥ [a, b]

[x, y] . (9)

If f (x) is a monotone and continuous function over an interval X = [a, b], we can define

f (X) = f ([a, b]) = [min { f (a), f (b)} , max { f (a), f (b)}]. (10)

Example 1 a) If f (x) = xr , r > 0, and 0 ≤ a ≤ b, then

f ([a, b]) = [a, b]r = [
ar , br ] . (11)

b) If g(x) = ex , then the “exponential” of an interval [a, b] is defined as
g ([a, b]) = e[a,b] =

[
ea, eb

]
. (12)

For more details on interval operations and interval analysis, see (Markov 1979;Moore 1966;
Rokne 2001).
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2.2 Integral of interval-valued functions

If T = [a, b] is a closed interval and F : T → KC is an interval-valued function, then we
will denote

F(t) = [ f (t), f (t)],
where f (t) ≤ f (t), ∀t ∈ T . The functions f and f are called the lower and the upper
(endpoint) functions of F , respectively. For interval-valued functions, it is clear that F :
T → KC is continuous at t0 ∈ T if

limt→t0 F(t) = F(t0), (13)

where the limit is taken in the metric space (KC , H). Consequently, F is continuous at t0 ∈ T
if and only if its endpoint functions f and f are continuous functions at t0 ∈ T . We denote
by C ([a, b],KC ) the family of all continuous interval-valued functions.

Definition 1 Let M be the class of all Lebesgue measurable sets of T , and then

(a) the function f : T → R is measurable if and only if

f −1(C) ∈ M
for all closed subset C of R;

(b) the interval-valued function F : T → KC is measurable if and only if

Fω(C) = {t ∈ T | F(t) ∩ C 
= ∅} ∈ M, ∀ C ⊆ R, C closed;
(c) also, if F : T → KC is an interval-valued function and f : T → R, then we say that f

is a selector (or selection) of F if and only if f (t) ∈ F(t) for all t ∈ T . In this case if,
additionally f is a measurable function, then we say that f is a measurable selector of
F . Finally, an integrable selector of F is a measurable selector of F for which there is∫

T f (t).

Definition 2 (Aubin and Cellina 1984) Let F : T → KC be an interval-valued function. The
integral (Aumann integral) of F over T = [a, b] is defined as

∫ b

a
F(t)dt =

{∫ b

a
f (t)dt | f ∈ S(F)

}
, (14)

where S(F) is the set of all integrable selectors of F , that is

S(F) = { f : T → R | f integrable and f (t) ∈ F(t) f or all t ∈ T } .

If S(F) 
= ∅, then the integral exists and F is said to be integrable (Aumann integrable).

Note that if F is integrable, then it has a measurable selector which is integrable and, conse-
quently, S(F) 
= ∅.

Also, in the above definition, the integral symbols
∫ b

a F(t)dt and/or
∫ b

a f (t)dt denote the
integral with respect to the Lebesgue measure.

Definition 3 We say that a mapping F : T → KC is integrally bounded if there exists a
positive integrable function g : T → R, such that ‖F(t)‖ ≤ g(t), for all t ∈ T .

Theorem 1 (Aubin and Cellina 1984) Let F : T → KC be a measurable and integrally
bounded interval-valued function. Then, it is integrable and

∫ b
a F(t)dt ∈ KC .
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Corollary 1 (Aubin and Cellina 1984) A continuous interval-valued function F : T → KC

is integrable.

The Aumann integral satisfies the following properties.

Proposition 1 (Aubin and Cellina 1984) Let F, G : T → KC be two measurable and
integrally bounded interval-valued functions. Then,
(i)

∫ t2
t1

(F(t) + G(t)) dt = ∫ t2
t1

F(t)dt + ∫ t2
t1

G(t)dt , a ≤ t1 ≤ t2 ≤ b

(ii)
∫ t2

t1
F(t)dt = ∫ τ

t1
F(t)dt + ∫ t2

τ
F(t)dt , a ≤ t1 ≤ τ ≤ t2 ≤ b.

Theorem 2 (Aubin and Franskowska 1990) Let F : T → KC be a measurable and inte-
grally bounded interval-valued functionm such that F(t) = [ f (t), f (t)]. Then, f and f are
integrable functions and

∫ t2

t1
F(t)dt =

[∫ t2

t1
f (t)dt ,

∫ t2

t1
f (t)dt

]
. (15)

Remark 3 Above Theorem 2 is a direct consecuence of two relevant results:

a) (Aumann 1965, Theorem 1, pp. 2)
∫

T F(t)dt is convex.
b) (Aumann 1965, Theorem 4, pp. 2) If F is closed valued, then

∫
T F(t)dt is com-

pact. In fact, because f , f ∈ S(F) then, by convexity of
∫

T F(t)dt , we obtain

[∫T f (t)dt,
∫

T f (t)dt] ⊆ ∫
T F(t)dt .

On the other hand, if f ∈ S(F), then f (t) ≤ f (t) ≤ f (t), for all t ∈ T , which implies
that

∫

T
f (t)dt ∈

[∫

T
f (t)dt,

∫

T
f (t)dt

]
,

and, consequently,
∫

T F(t)dt ⊆ [∫T f (t)dt,
∫

T f (t)dt]. Therefore, equality (15) in The-
orem 2 holds.

In the sequel, we will use the notation
∫

E F(x)dx or
∫

E Fdμ if necessary.

3 Interval Milne’s inequality

A problem in astrophysics, specifically the stellar absorption, and through a paper by
Rosseland (norwegian astrophycisist) on this subject written in 1924, Edward Arthur Milne
established the following interesting integral inequality in 1925:

Theorem 3 (Milne 1925)

∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
( f (x) + g(x)) dx ≤

∫ b

a
f (x)dx

∫ b

a
g(x)dx, (16)

and this inequality holds for all positive and integrable functions f , g on [a, b].
Now, using above theorem and properties of interval integration, we can prove the following
interval version of Milne’s inequality:
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Theorem 4 (Interval Milne’s inequality) If F, G : [a, b] → KC are two integrable interval-
valued functions, with F = [ f , f ], G = [g, g], f (x), g(x) > 0, then

∫ b

a

FG

F + G
dμ

∫ b

a
(F + G) dμ ≤

[∫ b

a
f dμ

∫ b

a
gdμ,

∫ b

a

f g

f + g
dμ

∫ b

a
( f + g)dμ

]

.

(17)

Proof Using basic properties of sum, product, and division of interval operations, and apply-
ing Theorem 3, we have

∫ b

a

FG

F + G
dμ

∫ b

a
(F + G) dμ

=
∫ b

a

[( f g)(x), ( f g)(x)]
[( f + g)(x), ( f + g)(x)]dx ×

∫ b

a
[( f + g)(x), ( f + g)(x)]dx

=
[∫ b

a

f (x)g(x)

f (x) + g(x)
dx,

∫ b

a

f (x)g(x)

f (x) + g(x)
dx

]

×
[∫ b

a
f (x) + g(x)dx,

∫ b

a
f (x) + g(x)dx

]

=
[∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
f (x) + g(x)dx,

∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
f (x) + g(x)dx

]

≤
[∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
f (x) + g(x)dx,

∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
f (x) + g(x)dx

]

≤
[∫ b

a
f (x)dx

∫ b

a
g(x)dx,

∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
f (x) + g(x)dx

]

, (18)

and the proof is completed. �
The next result says us that interval integral inequality in Theorem 4 implies the classical
Milne’s inequality (16).

Corollary 2 Let f , g : [a, b] → R be two integrable real positive functions and consider
F, G : [a, b] → KC two integrable interval-valued functions, such that F = [ f , f ] and
G = [g, g]. Then

∫ b

a

FG

F + G
dμ

∫ b

a
(F + G) dμ ≤

[∫ b

a
f dμ

∫ b

a
gdμ,

∫ b

a
f dμ

∫ b

a
gdμ

]
. (19)

Proof By hypothesis, we have f = f = f and g = g = g; therefore, replacing in (18) and
using Theorem 16, we have

∫ b

a

FG

F + G
dμ

∫ b

a
(F + G) dμ

≤
[∫ b

a
f (x)dx

∫ b

a
g(x)dx,

∫ b

a

f (x)g(x)

f (x) + g(x)
dx

∫ b

a
f (x) + g(x)dx

]

=
[∫ b

a
f dμ

∫ b

a
gdμ,

∫ b

a

f g

f + g
dμ

∫ b

a
( f + g)dμ

]

≤
[∫ b

a
f dμ

∫ b

a
gdμ,

∫ b

a
f dμ

∫ b

a
gdμ

]

(20)

recapturing Milne’s inequality in both components, and completing the proof. �
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Remark 4 Moore (1979) explore some order relations on intervals and, in particular, mention
the order defined by inclusion “�” as a partial order on the class of compact intervals. More
precisely, if [al , ar ], [bl , br ] are two closed intervals, then

[al , ar ] � [bl , br ] i f f bl ≤ al and ar ≤ br

or, equivalently

[al , ar ] � [bl , br ] i f f [al , ar ] ⊆ [bl , br ] .

Now, we know that, in general, in the same conditions of Theorem 4, the inequality
∫ b

a

FG

F + G
dμ

∫ b

a
(F + G) dμ ≤

[∫ b

a
f dμ

∫ b

a
gdμ,

∫ b

a
f dμ

∫ b

a
gdμ

]
(21)

is not verified; however, in this case, the following inequality:
∫ b

a

FG

F + G
dμ

∫ b

a
(F + G) dμ �

[∫ b

a
f dμ

∫ b

a
gdμ,

∫ b

a
f dμ

∫ b

a
gdμ

]
(22)

holds.

4 Exploring other connections

In this section, we will explore some connections between Milne’s inequality and other
classical inequalities such as Chebyshev’s and Cauchy–Schwarz inequality in the intervalar
setting.

First, we recall that in the classical context, one of the more general versions for Cheby-
shev’s inequality is the following (where, for simplicity, this result is presented on the interval
[0,1]):

Theorem 5 (Girotto and Holder 2011) If f , g : [0, 1] → R be two Lebesgue integrable real
comonotone functions, then

∫ 1

0
f gdμ ≥

∫ 1

0
f dμ

∫ 1

0
gdμ . (23)

We recall that functions f , g : X → R are said to be comonotone if for all x, y ∈ X

( f (x) − f (y)) (g(x) − g(y)) ≥ 0.

With respect to comonotone functions, an useful result is the following (Chateauneuf et al.
1997):

Proposition 2 If f and g are comonotone on [a, b], then the family

{ f , g, f + g, φ( f , g)} ,

for any nondecreasing (in both variables) numerical function φ, is also a family of comono-
tone functions on [a, b].
Example 2 In particular, in above proposition, we can take φ(x, y) = λx +ηy with λ, η ≥ 0,
or φ(x, y) = xy

x+y .
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Theorem 6 (Interval Chebyshev’s inequality) Consider F, G : [0, 1] → KC two integrable
interval-valued functions, with F = [ f , f ], G = [g, g] and f , g ≥ 0. If f , g comonotonic

and f comonotonic with g, then

∫ 1

0
FGdμ ≥

∫ 1

0
Fdμ

∫ 1

0
Gdμ. (24)

Proof Using basic properties of interval operations, Theorem 2 and Theorem 5, and hypoth-
esis, we have

∫ 1

0
FGdμ =

∫ 1

0
[ f , f ][g, g]dμ

=
∫ 1

0
[ f g, f g]dμ

= [
∫ 1

0
f gdμ,

∫ 1

0
f gdμ]

≥ [
∫ 1

0
f dμ

∫ 1

0
gdμ,

∫ 1

0
f dμ

∫ 1

0
gdμ]

= [
∫ 1

0
f dμ,

∫ 1

0
f dμ][

∫ 1

0
gdμ,

∫ 1

0
gdμ]

=
∫ 1

0
Fdμ

∫ 1

0
Gdμ

completing the proof. �

The following is a version of the Chebyshev’s inequality which is more stronger than (23):

Theorem 7 (Mitrinović et al. 1993) Let f , g, p : [0, 1] → R be three Lebesgue integrable
real functions. If f is comonotone with g and p ≥ 0, then

∫ 1

0
f gpdμ

∫ 1

0
pdμ ≥

∫ 1

0
f pdμ

∫ 1

0
gpdμ . (25)

Now, we can extend this last inequality to the interval context in the following form:

Theorem 8 (Interval Chebyshev’s inequality) Consider F, G.P : [0, 1] → KC three
integrable interval-valued functions, with F = [ f , f ], G = [g, g], P = [p, p], and

f (x), g, p ≥ 0. If f , g is comonotonic and f , g are comonotone functions, then

∫ 1

0
FG Pdμ

∫ 1

0
Pdμ ≥

∫ 1

0
F Pdμ

∫ 1

0
G Pdμ. (26)
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Proof Using basic properties of interval operations, Aumann integral, and Theorem 7, we
have

∫ 1

0
FG Pdμ

∫ 1

0
Pdμ =

∫ 1

0
[ f g p, f g p]dμ

∫ 1

0
[p, p]dμ

=
[∫ 1

0
f g pdμ,

∫ 1

0
f g pdμ

] [∫ 1

0
pdμ,

∫ 1

0
pdμ

]

=
[∫ 1

0
f g pdμ

∫ 1

0
pdμ,

∫ 1

0
f g pdμ

∫ 1

0
pdμ

]

≥
[∫ 1

0
f pdμ

∫ 1

0
g pdμ,

∫ 1

0
f pdμ

∫ 1

0
g pdμ

]
,

=
∫ 1

0
F Pdμ

∫ 1

0
G Pdμ ,

completing the proof. �
On the other hand, the classical Cauchy–Schwarz inequality (Agahi 2020) establishes

that:

Theorem 9 (C-S inequality) Let f , g : [0, 1] → R two Lebesgue integrable and positive
functions, and then

∫ 1

0
f gdμ ≤

(∫ 1

0
f 2dμ

) 1
2
(∫ 1

0
g2dμ

) 1
2

. (27)

Also, the extension of this inequality is the following.

Theorem 10 (Hölder’s inequality) Let f , g : [0, 1] → R be two Lebesgue integrable and
positive functions. If p, q are positive real numbers, such that 1

p + 1
q = 1, then

∫ 1

0
f gdμ ≤

(∫ 1

0
f pdμ

) 1
p
(∫ 1

0
gqdμ

) 1
q

. (28)

It is well known thatMilne’s inequality has connectionwithCauchy–Schwarz andChebyshev
inequality. In fact, the following result is an interesting combination of these inequalities.

Theorem 11 Let f , g : [0, 1] → R be two Lebesgue integrable and positive function. Fur-
thermore, if f , g are comonotone functions, then the followng inequality:

(∫ 1

0

√
f gdμ

)2

≤
∫ 1

0

f g

f + g
dμ

∫ 1

0
( f + g) dμ ≤

∫ 1

0
f dμ

∫ 1

0
gdμ ≤

∫ 1

0
f gdμ

(29)

holds.

Proof First inequality is the Cauchy–Schwarz’s inequality, central inequality corresponds to
Milne’s inequality and the last one is the Chebyshev’s inequality. �
Now, we would like to extend Theorem 11 to the intervalar context; however, the following
example shows that central inequality is not true in the setting of interval-valued functions.
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Example 3 Consider the interval functions F, G : [0, 1] → KC , with F(x) = [
x2, x

]
and

G(x) = [1, x + 1]. Then

a)

∫ 1

0

FG

F + G
dμ

∫ 1

0
(F + G) dμ

=
∫ 1

0

[
x2

2x + 1
,

x2 + x

x2 + 1

]
dx

∫ 1

0

[
x2 + 1, 2x + 1

]
dx

=
[

x2

4
− x

4
+ 1

8
ln(2x + 1)

∣
∣
∣
1

0
,

ln(x2 + 1)

2
− arctan(x) + x

∣
∣
∣
1

0

] [
4

3
, 2

]

=
[
1

8
ln3,

Ln2

2
− π

4
+ 1

] [
4

3
, 2

]

=
[
1

6
ln3, ln2 − π

2
+ 2

]

≈ [0.18310, 1.12235] .

On the other hand

b)

∫ 1

0
Fdμ

∫ 1

0
Gdμ =

[
1

3
,
1

2

] [
1,

3

2

]
=

[
1

3
,
3

4

]
.

Thus, from a) and b), we can conclude that

∫ 1

0

FG

F + G
dμ

∫ 1

0
(F + G) dμ �

∫ 1

0
Fdμ

∫ 1

0
Gdμ,

and, consequently, central inequality in Theorem 29 is not necessarily true for interval-valued
functions.

Moreover, because
∫ 1

0
FGdμ =

∫ 1

0

[
x2, x2 + x

]
dx =

[
1

3
,
5

6

]
,

then by a), we have

∫ 1

0

FG

F + G
dμ

∫ 1

0
(F + G) dμ �

∫ 1

0
FGdμ.

However, in this case, following Remark 4, we obtain

∫ 1

0

FG

F + G
dμ

∫ 1

0
(F + G) dμ �

∫ 1

0
FGdμ.

Thus, from Remark 4 and Example 3, we can see that integral inequalities are very sensitive
to the order we are considering.

To finalize this section, we will show Hölder’s inequality for interval-valued functions,
and then, as a corollary, Cauchy–Schwarz’s inequality will be obtained.

Theorem 12 (Interval Hölder’s inequality) If F, G : [a, b] → KC are two integrable
interval-valued functions, with F = [ f , f ], G = [g, g], f (x), g(x) > 0. If p, q are positive
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real numbers, such that 1
p + 1

q = 1, then

(∫ 1

0
F pdμ

) 1
p
(∫ 1

0
Gqdμ

) 1
q

≥
∫ 1

0
FGdμ. (30)

Proof Because “()p” and “()
1
p ” are increasing functions (see Example 1) and using Theorem

10, then we have
(∫ 1

0
F pdμ

) 1
p

(∫ 1

0
Gqdμ

) 1
q

=
(∫ 1

0
[ f , f ]pdμ

) 1
p

(∫ 1

0
[g, g]qdμ

) 1
q

=
(∫ 1

0
[ f p, f

p]dμ
) 1

p
(∫ 1

0
[gq , gq ]dμ

) 1
q

=
([∫ 1

0
f pdμ,

∫ 1

0
f

p
dμ

]) 1
p

([∫ 1

0
gqdμ,

∫ 1

0
gqdμ

]) 1
q

=
⎡

⎢
⎣

(∫ 1

0
f pdμ

) 1
p

,

(∫ 1

0
f

p
dμ

) 1
p

⎤

⎥
⎦

⎡

⎢
⎣

(∫ 1

0
gqdμ

) 1
q

,

(∫ 1

0
gqdμ

) 1
q

⎤

⎥
⎦

=
⎡

⎢
⎣

(∫ 1

0
f pdμ

) 1
p

(∫ 1

0
gqdμ

) 1
q

,

(∫ 1

0
f

p
dμ

) 1
p

(∫ 1

0
gqdμ

) 1
q

⎤

⎥
⎦

≥
[

(

∫ 1

0
f gdμ,

∫ 1

0
f gdμ

]

=
∫ 1

0
FGdμ .

�
Now, as a corollary of the above Theorem 12, we have the following.

Corollary 3 (Interval Cauchy–Schwarz’s inequality) If F, G : [a, b] → KC are two inte-
grable interval-valued functions, with F = [ f , f ], G = [g, g], f (x), g(x) > 0. Then

(∫ 1

0
F2dμ

) 1
2
(∫ 1

0
G2dμ

) 1
2

≥
∫ 1

0
FGdμ. (31)

Remark 5 Very recently, Agahi (2020) has shown a nice result for Choquet integral, where
it refines the Hölder inequality as follows.

Theorem 13 (Agahi 2020) Let p and q be positive real numbers. such that 1
p + 1

q = 1. Let
(Ω,Σ, ν) be a monotone measure space and Z , W be two non-negative functions. such that
Z p and W q are Choquet integrable. Assume one of the following conditions being valid:

(1) ν is submodular and continuous from below;
(2) Z , W are comonotonic and ν is continuous from below. Then, the following Hölder

inequality:

(
(C)

∫
Z pdν

) 1
p
(

(C)

∫
W qdν

) 1
q ≥ (C)

∫

Z
Wdν (32)

holds.

123



130 Page 12 of 15 H. Román-Flores et al.

We recall that a set-function ν is submodular (or concave) if

ν(A ∪ B) + ν(A ∩ B) ≤ ν(A) + ν(B).

Now, analogously to the above theorem, we can extend this result to the interval context as
follows.

Theorem 14 (Submodular-Comonotonic-Interval Hölder inequality) Let p and q be positive
real numbers, such that 1

p + 1
q = 1. Let (Ω,Σ, ν) be a monotone measure space and

F = [ f , f ], G = [g, g] : Ω → KC be two non-negative functions, such that F p and Gq

are Choquet integrable. Assume one of the following conditions being valid:

(1) ν is submodular and continuous from below;
(2) f comonotonic with g, and f comonotonic with g, and ν is continuous from below.

Then, the following Hölder inequality

(
(C)

∫
F pdν

) 1
p
(

(C)

∫
Gqdν

) 1
q ≥ (C)

∫
FGdν (33)

holds.

As a corollary, taking p = q = 2, in the same above Theorem 13, we obtain the interval
Cauchy–Schwarz inequality for submodular measures.

Corollary 4 (Submodular-Comonotonic-Interval C–S inequality) Let (Ω,Σ, ν) be a mono-
tone measure space and F = [ f , f ], G = [g, g] : Ω → KC be two non-negative functions,

such that F2 and G2 are Choquet integrable. Assume one of the following conditions being
valid:

(1) ν is submodular and continuous from below;
(2) f comonotonic with g, and f comonotonic with g (i.e., comonotonic in first and second

components), and ν is continuous from below.
Then, the following C–S inequality:

(
(C)

∫
F2dν

) 1
2
(

(C)

∫
G2dν

) 1
2 ≥ (C)

∫
FGdν (34)

holds.

The following example shows that C–S inequality is verified by comonotonic property of
functions (although without submodularity of measure).

Example 4 Let ν be the distorted Lebesguemeasure with ν = μ2 onΩ = [0, 1], and consider
F = [

x2, x
]
and

[
x4, x3

]
. We will check that C–S inequality is verified, although we know

that ν is a monotone and lower continuous measure, but it is not a submodular measure
(Agahi 2020).

On one hand, a straightforward calculus shows that

(C)
∫ 1
0 ( f )2dν = (C)

∫ 1
0 (1 − √

α)2dα = 1
6 ;

(C)
∫ 1
0 ( f )2dν = (C)

∫ 1
0 (1 − α)2dα = 1

3 .

Thus
(

(C)

∫ 1

0
F2dν

) 1
2

=
([

1

6
,
1

3

]) 1
2 =

[
1√
6
,

1√
3

]
. (35)
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Analogously

(C)
∫ 1
0 (g)2dν = (C)

∫ 1
0 (1 − 4

√
α)2dα = 1

15 ;
(C)

∫ 1
0 (g)2dν = (C)

∫ 1
0 (1 − 3

√
α])2dα = 1

10 .

Thus

(
(C)

∫ 1

0
G2dν

) 1
2

=
([

1

15
,
1

10

]) 1
2 =

[
1√
15

,
1√
10

]
. (36)

Finally

(C)

∫ 1

0
FGdν =

[
(C)

∫ 1

0

(
1 − 6

√
α
)2

dα, (C)

∫ 1

0

(
1 − 4

√
α
)2

dα

]
=

[
1

28
,
1

15

]
, (37)

and, consequently, from (35), (36), and (37), we obtain

(
(C)

∫ 1

0
F2dν

) 1
2
(

(C)

∫ 1

0
G2dν

) 1
2

=
[

1√
6
,

1√
3

] [
1√
15

,
1√
10

]

=
[

1√
90

,
1√
30

]

≥ (C)

∫ 1

0
FGdν ,

and interval C–S inequality (34) is verified.

To finalize, in the following example, we want to show that for Cauchy–Schwarz inequality
to be valid, it is sufficient to have the submodularity property of the measure (and without
necessarily having the comonotonic condition).

Example 5 Let μ be the Lebesgue measure on [0, 1] and consider F, G : [0, 1] → KC

defined by F = [
x,

√
x
]
and G = [ x

2 , 1 − x
2

]
. We note that μ is a monotone, continuous

from below and submodular measure, whereas F and G are not comonotonic in the second
component. However, we will see that C–S is also verified.

In fact, a simple calculus shows that

(
(C)

∫ 1

0
F2dμ

) 1
2

=
[∫ 1

0

(
1 − √

α
)
dα,

∫ 1

0
(1 − α) dα

] 1
2

=
[

1√
3
,

1√
2

]
, (38)

and

(
(C)

∫ 1

0
G2dμ

) 1
2

=
[∫ 1

0

(
1 − √

α
)
dα,

∫ 1

0

(
1 − √

α
)
dα

] 1
2

=
[

1√
12

,

√
7√
12

]

. (39)

On the other hand, for calculating the integral of FG, due to continuity of functions and
addivity of μ, then Choquet integral coincides whit Lebesgue integral (Denneberg 1994).
Thus, after a simple calculus, we obtain

(C)

∫ 1

0
FGdμ =

[∫ 1

0

x2

2
dx,

∫ 1

0

√
x(1 − x

2
)dx

]
=

[
1

6
.
7

15

]
, (40)
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and, consequently, from (38), (39), and (40), we obtain

(
(C)

∫ 1

0
F2dμ

) 1
2
(

(C)

∫ 1

0
G2dμ

) 1
2

=
[

1√
3
,

1√
2

][
1√
12

,

√
7√
12

]

≥
[
1

6
,
7

15

]
= (C)

∫ 1

0
FGdμ,

and interval C–S inequality (34) is verified.

5 Conclusion

In general, any integral inequality can be a very powerful tool for applications and, in particu-
lar, considering an integral operator as a predictive tool, then an integral inequality can be very
important in measuring, computing errors, and delineating such processes. Interval-valued
functions (or fuzzy-interval-valued functions) may provide a good alternative for including
the uncertainty into the prediction processes. If, in addition, we consider the Aumann integral
for interval-valued function as the natural associated expectation, we have a strong model
for handle and quantify the uncertainty. Using this arguments as a basis, we use the Aumann
integral and the Kulisch–Miranker order on the space of the real and compact intervals, for
demonstrate the Milne’s integral inequality for interval-valued functions. Furthermore, we
explore other partial-order relationships in the class of compact interval to establish, with the
order defined by inclusion, the corresponding version ofMilne’s inequality.On the other hand,
we established the connections between Milne, Chebyshev, Hölder, and Cauchy–Schwarz
inequalities in the interval scope. With this, we are contributing to the generalization of the
various classical integral inequalities made in the last time, specifically to the set-valued con-
text. To finalyze this work, we show a new version of Hölder and C–S inequality based on
submodular measures and comonotone functions, topics that we want to deep in our next arti-
cles in preparation. In addition, for clarity of the results achieved, examples and applications
are shown.
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