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Abstract
In this work, we introduce a numerical method for solving nonlinear fractional system of
Lane–Emden type equations. The proposed technique is based onDickson operational matrix
of a fractional derivative. First, we deduce the Dickson operational matrix of the fractional
derivative using Dickson polynomial, and then, the obtained matrix is unitized to convert the
fractional Lane–Emden system with its initial conditions into a system of nonlinear alge-
braic equations. This system of algebraic equations can be solved numerically via Newton’s
iteration method. An error estimate of the proposed method is derived. Numerical examples
are provided to demonstrate the validity, applicability, and accuracy of the new technique.

Keywords Dickson polynomials · Caputo differential operator · Spectral collocation
method · Nonlinear system of Lane-Emden type in the fractional-order · Operational matrix

Mathematics Subject Classification 41A30 · 65L05 · 65L70

1 Introduction

The branch of fractional-order calculus has achieved noteworthy notoriety and attention dur-
ing the past 4 decades or so, due chiefly to its expressed applications in numerous apparently
various andwidespread fields such as physics, mechanics, medicine, chemistry, and engineer-
ing (Gürbüz andSezer 2017;Kilbas et al. 2006; Parand andPirkhedri 2010;Qureshi andYusuf
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2019; Sun et al. 2018). It does really contribute several possibly useful tools for modeling
many natural phenomena such as the differential, integral equations, and integro-differential
equations (Nagy and El-Sayed 2019; Odibat and Momani 2009; Pinto and Carvalho 2015;
Sweilam et al. 2016). Also, for description of some phenomena accurately, we need for a
system of linear/nonlinear fractional-order differential equations (Naik et al. 2020; Parand
et al. 2010). The Lane–Emden systems of differential equations appear in the modeling
of several problems in physical and chemical, such as pattern creation, population growth,
chemical reactions, and so on (Flockerzi and Sundmacher 2011; Hao et al. 2018; Muatjetjeja
and Khalique 2010). For solving the modeled problems analytically, especially the systems,
there is many complexity; therefore, the numerical methods are appropriate in these cases.
One of these methods is the spectral method which have many importance and popularity
for solving many problems (Abd-Elhameed et al. 2016; Babolian et al. 2015). The opera-
tional matrix is one of these methods and it is used also for many applications (Ameen et al.
2021; Bhrawy et al. 2015; Irfan et al. 2014; Nagy et al. 2018; Öztürk and Gülsu 2017; Zaky
et al. 2017; Zaky 2019). The main goal of this work is propose the numerical solution of the
following fractional-order nonlinear system of the Lane–Emden type:

Dαx(t) + k1
t
Dα−1x(t) + f1 (x(t), y(t)) = 0,

Dα y(t) + k2
t
Dα−1y(t) + f2 (x(t), y(t)) = 0,

(1)

with the initial conditions:

x(0) = x0, y(0) = y0, x
′(0) = x1, y′(0) = y1, (2)

where t > 0, k1, k2 are given constants, the fractional parameter α is the fractional-order
derivative defined in the Captuo sense, 1 < α ≤ 2, f1 (x(t), y(t)) , f2 (x(t), y(t)) are given
nonlinear functions, and x0, y0, x1, y1 are known initial conditions of the system.

To the best of our knowledge, the operational matrix of fractional derivatives based on
Dickon’s polynomials has not previously been implemented in the literature. Moreover, the
desired system has not been studied either. In case α = 2, system (1) becomes the classical
Lane–Emden system that has been studied in some articles [see (Rach et al. 2014; Wazwaz
et al. 2013)].

Outline of the article: In Sect. 2, some necessary mathematical relations and definitions of
the fractional calculus will be presented. In Sect. 3, Dickson polynomial operational matrix
(DPOM) will be investigated in addition to converting the nonlinear system of Lane–Emden
type of the fractional order into a system of algebraic equations via the DPOM. In Sect. 4, we
discuss the error estimate of the proposed technique. In Sect. 5, some numerical examples
will be provided. In Sect. 6, some concluding remarks are listed.

2 Preliminaries

In this section, we introduce some mathematical tools which are essential for subsequential
our work. These benefits instrument in brief from fractional calculus and Dickson polyno-
mials.
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2.1 Notations from fractional calculus

Definition 2.1 Nagy and El-Sayed (2019) The fractional derivative of order α in Caputo
sense, Dα , is defined by:

Dα f (t) = 1

�(k − α)

∫ t

0
f (k)(x)(t − x)k−(α+1)dx, α > 0, t > 0, (3)

where k − 1 < α ≤ k, k ∈ N.

The linear property of the Caputo operator holds as follows:

Dα(λ1 h(t) + λ2 g(t)) = λ1 D
αh(t) + λ2 D

αg(t), ∀ λ1, λ2 ∈ R. (4)

Using the definition 2.1 to claim the following explicitly fractionl derivatives:

DαK = 0, K is a constant. (5)

Dαtm =
⎧⎨
⎩
0, m ∈ {0, 1, 2, . . . , �α� − 1},

�(m+1)
�(m+1−α)

tm−α, m ∈ N ∧ m ≥ �α� ,

(6)

where the value of the function �α� is the smallest integer ≥ α.

2.2 Dickson polynomials

The Dickson polynomials are considered as important tool for obtaining the approximate
solutions for differential equations of the integro-differential equations. In this work, we will
use it for solving a system of fractional-order Lane–Emden type equations. Hence, some
definitions and properties are given as follows:

The Dickson polynomial of the first kind, Dn(t, a), can be generated using the following
recurrence relation:

Dn(t, a) = t Dn−1(t, a) − a Dn−2(t, a), n ≥ 2, a ∈ (0,∞), −∞ < t < ∞, (7)

with the starting functions D0(t, a) = 2, D1(t, a) = t . Using Eq. 7, we can obtain all n ≥ 2
polynomials. Moreover, we can obtain its analytical expansion as the following:

Definition 2.2 Dn(t, a) of degree n ≥ 1 in the indeterminate t with the parameter a ∈ (0,∞)

is defined as:

Dn(t, a) =
� n
2 �∑

i=0

(−a)i
n �(n − i)

�(i + 1) �(n − 2i + 1)
tn−2i . (8)

Here, the value of �n/2� is the largest integer ≤ n/2.
Also, Dn(t, a) satisfy the orthogonality relation: (Dominici 2017)

〈 Dn(t, a), Dm(t, a) 〉 =
∫ 2

√
a

−2
√
a

Dn(t, a)Dm(t, a)√
4a − t2

dt =

⎧⎪⎨
⎪⎩
0, n �= m,

4π, n = m = 0,

2πan, n = m �= 0.

(9)
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Remark 2.1 In general, the first kind Dickson polynomials are considered as a generalization
of some defined polynomials such as the first kind Chebyshev polynomials 2Tn( t2 ) which
obtained at a = 1. Also, if a = −1, then we obtain the Lucas (w)-polynomials Ln(t) and
the Pell–Lucas polynomials Qn(

t
2 ). Moreover, if a = 2, the Fermat–Lucas polynomials

FLn(
t
3 ) are obtained. Furthermore, these polynomials can be used for solving a large class

of the fractional-order differential equations.

For more details of the first kind Dickson polynomials, see Kürkçü et al. (2016) and Wang
and Yucas (2012).

3 Function approximation and operational matrix of Dickson
polynomials

This section is divided into three sections: the first section provides the desired solution as a
power expansion of the Dickson polynomials. The second is related to the operational matrix
instructions of Dn(t, a) in Caputo’s fractional derivative sense,while the third investigates the
application of the operational matrix on the system given in Eq. (1) and its initial conditions
given in Eq. (2).

3.1 Function approximation

Consider the solution for the system given in terms of Dickson polynomials as follows:

x(t) =
∞∑
i=0

ci Di (t, a),

y(t) =
∞∑
i=0

hi Di (t, a),

(10)

where ci and hi are the unknown coefficients of the power series expansion. Taking the first
(n + 1) terms of Eq. (10):

xn(t) =
n∑

i=0

ci Di (t, a) = CTφ(t, a),

yn(t) =
n∑

i=0

hi Di (t, a) = HTφ(t, a),

(11)

where:

φ(t, a) = [D0(t, a), D1(t, a), . . . , Dn(t, a)]T , (12)

and the coefficient vectors C and H for the approximate solutions xn(t) and yn(t), are given,
respectively, as follows:

C = [c0, c1, . . . , cn]T ,

H = [h0, h1, . . . , hn]T .

Now, if we assume that:

R(t) = [2, t, t2, . . . , tn]T , (13)
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then, φ(t, a) can be expressed as:

φ(t, a) = B R(t), (14)

where B is the square matrix of order n + 1 obtained as:

B =

⎛
⎜⎜⎜⎜⎜⎝

b0,0 0 0 0 . . . 0
b1,0 b1,1 0 0 . . . 0
b2,0 b2,1 b2,2 0 . . . 0
...

...
...

...
...

...

bn,0 bn,1 bn,2 . . . bn−1,n bn,n

⎞
⎟⎟⎟⎟⎟⎠

,

and whose elements are given by:

(bk, j )0≤k, j≤n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, k = j,

(−a)
k
2 , j = 0, k > j, k even,

(−a)
k− j
2

k �
(
k+ j
2

)

�
(
k− j
2 +1

)
�( j+1)

, j �= 0, k > j, k + j even,

0, otherwise.

(15)

If n = 5, then B is given by:

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0

−a 0 1 0 0 0
0 −3a 0 1 0 0
a2 0 −4a 0 1 0
0 5a2 0 −5a 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, using Eq. (14), we claim:

R(t) = B−1 φ(t, a). (16)

3.2 Operational matrices based on Dikcson polynomials

In this part, our target is derive the operational matrix ofDαφ(t, a).

To do that, since φ(t, a) = B R(t), then we obtain:

Dαφ(t, a) = Dα(B R(t)) = B Dα[2, t, t2, . . . , tn]T . (17)

Using the Caputo relation given in Eq. (6), one can find:

Dαφ(t, a) = B

[
0,

�(2)

�(2 − α)
t1−α,

�(3)

�(3 − α)
t2−α, . . . ,

� (n + 1)

� (n + 1 − α)
tn−α

]T

= B

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 0 0 . . . 0
0 0 �(3)

�(3−α)
t−α . . . 0

...
...

...
...

...

0 0 0 . . .
�(n+1)

�(n+1−α)
t−α

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

2
t
t2

...

tn

⎤
⎥⎥⎥⎥⎥⎦

= B Gα(t) R(t),

(18)
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where:

Gα(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 0 0 . . . 0
0 0 �(3)

�(3−α)
t−α . . . 0

...
...

...
...

...

0 0 0 . . .
�(n+1)

�(n+1−α)
t−α

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

Using Eq. (16), we have:

Dαφ(t, a) = B Gα(t) B−1 φ(t, a), (20)

where B Gα(t) B−1 is the fractional-order operational matrix, B Gα−1(t) B−1, ofDαφ(t, a)

in terms of Dickson polynomials.
By the same way, we can obtain the operational matrix, B Gα−1(t) B−1, ofDα−1φ(t, a),

where Gα−1(t) is given by:

Gα−1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 �(2)

�(2−(α−1)) t
−(α−1) 0 . . . 0

0 0 �(3)
�(3−(α−1)) t

−(α−1) . . . 0
...

...
...

...
...

0 0 0 . . .
�(n+1)

�(n+1−(α−1)) t
−(α−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(21)

3.3 Applied the operational matrix on the Lane–Emden system

In this subsection, we show how to apply the operational matrix of the fractional-order that
is investigated in Sect. 3.2 and the approximate solution given in (11) to solve the given
fractional Lane–Emden system. If we use Eqs. (11) and (20), then we can rewrite Eqs. (1)
and (2) as follows:

CT B Gα(t) B−1φ(t, a) + k1
t

CT B Gα−1(t) B−1φ(t, a)

+ f1
(
CT B Gα(t) B−1φ(t, a), HT B Gα(t) B−1φ(t, a)

)
= 0,

HT B Gα(t) B−1φ(t, a) + k2
t

HT B Gα−1(t) B−1φ(t, a)

+ f2
(
CT B Gα(t) B−1φ(t, a), HT B Gα(t) B−1φ(t, a)

)
= 0. (22)

CT φ(0, a) = x0,

HT φ(0, a) = y0,

CT E B−1φ(0, a) = x1,

HT E B−1φ(0, a) = y1, (23)

where E is (n + 1) × (n + 1) square matrix obtained from the first derivative of the Dickson
polynomials Dφ(t, a) = E R(t).

Applying this technique leads to a system of nonlinear algebraic equations in 2n + 2
unknown coefficients. Now, let us define the collocation points ts = L + (M−L

n

)
s, t ∈

[L, M], s = 1, 2, . . . , n − 1. To solve this system, we first collocate Eq. (22) at the points ts
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and then use Eq. (23). This establishes a system of 2n + 2 equations which can be solved to
obtain the coefficient vectors C and H . Hence, we can use any nonlinear technique such as
Newton’s iteration to obtain the approximate solutions x(t) and y(t).

4 Error estimate

Theorem 4.1 Let u ∈ C∞[−1, 1] and un(t) be the best square approximation of u(t) defined
by un(t) = ∑n

i=0 ci Di (t, 1/4), and then, we have:

‖u − un‖w ≤ Mn

(n + 1)!
√

π,

where:

Mn = max
t∈[−1,1]

∣∣∣u(n+1)(t)
∣∣∣ .

Proof By expanding the function u(t) using Taylor expansion, we obtain:

u(t) = u(0) + tu′(0) + . . . + tn

n!u
(n)(0) + tn+1

(n + 1)!u
(n+1)(ξ), (24)

where ξ ∈] − 1, 1[. Assume:

ũn(t) = u(0) + tu′(0) + . . . + tn

n!u
(n)(0), (25)

then:

|u(t) − ũn(t)| =
∣∣∣∣ tn+1

(n + 1)!u
(n+1)(ξ)

∣∣∣∣ ≤ Mn

(n + 1)! . (26)

Since un(t) is the best square approximation of u(t) and according to Eq. 9, we can claim:

‖u − un‖2w ≤ ‖u − ũn‖2w =
∫ 1

−1
ω(t)[u(t) − ũn(t)]2dt

=
∫ 1

−1
ω(t)

[
Mn

(n + 1)!
]2

dt .

(27)

Since, ω(t) = 1√
1−t2

, then:

‖u − un‖2w ≤
[

Mn

(n + 1)!
]2 ∫ 1

−1

1√
1 − t2

dt

=
[

Mn

(n + 1)!
]2

· π.

(28)

Hence, by taking the square roots of both sides, the proof is complete. ��

Now, if we consider the solution of the system (1) is (x(t), y(t)),∀t ∈ [ε, 1], 0 < ε < 1,
then we have (x(t), y(t)) ∈ C∞[ε, 1]. Using Borel’s theorem in Narasimhan (1985), there
exists (x̂(t), ŷ(t)) ∈ C∞[−1, 1] an extension of (x(t), y(t)). By applying Theorem 4.1, we
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have:

‖x̂ − xn‖w ≤ Un

(n + 1)! · √
π,

‖ŷ − yn‖w ≤ Vn
(n + 1)! · √

π,

where Un = maxt∈[−1,1]
∣∣x̂ (n+1)(t)

∣∣ and Vn = maxt∈[−1,1]
∣∣ŷ(n+1)(t)

∣∣ .

5 Numerical examples

In what follows, we present two numerical examples to show the applicability and accuracy
of the proposed method.

Example 5.1 Consider the following nonlinear fractional Lane–Emden systems of the form:

Dαx(t) + 1

t
Dα−1x(t) − y3(t)(x2(t) + 1) = 0

Dα y(t) + 3

t
Dα−1y(t) + y5(t)(x2(t) + 3) = 0,

(29)

with the initial conditions:

x(0) = 1, y(0) = 1, x ′(0) = 0, y′(0) = 0. (30)

In case α = 2, the exact solution of Example 5.1 is given by x(t) = √
1 + t2 and y(t) =

1√
1+t2

(see Wazwaz et al. (2013)).

Using the presented method in this paper with a = 1/4, and n = 6, we obtain approximate
solutions at different values of α. Figure 1 illustrates how α affects on the behavior of the
solutions. From the curves obtained in Fig. 1, we observe that the numerical solutions for
various values of α = 1.9, 1.7, 1.5 converge to the exact solution for the classical case, i.e.,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

t

x(
t)

Exact (α = 2)
α = 1.9
α = 1.7
α = 1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

y(
t)

Exact (α = 2)
α = 1.9
α = 1.7
α = 1.5

Fig. 1 The behavior of the approximate solutions using the proposed method for various values of α and the
exact solution for the classical type for Example 5.1
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Table 2 Comparison between the absolute error for our results and the results obtained in Öztürk (2019) for
Example 5.1 in the classical case

t Ex in Öztürk (2019) Ey in Öztürk (2019) Eours
x Eours

y
n = 4 n = 6 n = 4 n = 6 n = 4 n = 6 n = 4 n = 6

0.2 5.09e−4 6.42e−6 8.87e−4 4.67e−6 2.32e−4 4.59e−7 4.15e−4 7.62e−6

0.4 6.28e−4 2.20e−6 2.27e−4 4.05e−5 3.04e−5 4.75e−6 6.26e−4 1.33e−5

0.6 2.77e−4 6.11e−6 1.00e−4 1.85e−6 2.78e−4 2.72e−6 1.45e−3 2.11e−6

0.8 2.72e−4 4.71e−6 6.92e−4 3.27e−5 4.91e−5 2.26e−6 2.65e−4 1.36e−5

1 6.44e−4 5.56e−6 2.62e−4 1.34e−7 4.86e−4 1.61e−6 7.06e−4 9.78e−7
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Fig. 2 The behavior of the approximate solutions using the proposed method for various values of α and the
exact solution for the classical type for Example 5.2

α = 2. In Table 1, to show the accuracy of the proposed method, we have computed the
absolute error between the exact and approximate solution, Ex and Ey , for the classical case
with different values n. Moreover, in Table 2, we have compared the results obtained by our
technique with those obtained in Öztürk (2019).

Example 5.2 Consider the following nonlinear fractional Lane–Emden systems of the form:

Dαx(t) + 8

t
Dα−1x(t) + 18x(t) − 4x(t) ln(y(t)) = 0

Dα y(t) + 4

t
Dα−1y(t) + 4y(t) ln(x(t)) − 10y(t) = 0,

(31)

with the initial conditions:

x(0) = 1, y(0) = 1, x ′(0) = 0, y′(0) = 0. (32)

In case α = 2, the exact solution of Example 5.2 is given by x(t) = e−t2 and y(t) = et
2
[see

(Wazwaz et al. 2013)].

Numerical solutions of the proposed method at n = 6 and different values of α together
with the exact solution of the classical case are displayed in Fig. 2. It is obvious that the
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approximate solution approaches the exact solution of the classical case as α approaches 2.
Tables 2 and 3 show the absolute error for the solutions x(t) and y(t) with different values
of n for the classical case. From Examples 5.1 and 5.2, we can conclude that the introduced
method can successfully solve the suggested problems and is easy to implement.

6 Conclusions

Throughout this article, we solved the nonlinear system of Lane–Eden type of fractional
order. The proposed method is based on Dickson polynomials. These polynomials are used
for constructing the operational matrix of the fractional derivative in Caputo sense. The
investigated matrix is used to convert the studied system into a system of algebraic equations.
The error estimate of the suggested method is given. Some numerical examples are given
to clarify the validity and accuracy of the proposed method for both fractional and classical
cases. All results are computed via the MATLAB software.
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