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Abstract

In this paper, we propose the fuzzy Shehu transform method (FSTM) using Zadeh’s decom-
position theorem and fuzzy Riemann integral of real-valued functions on finite intervals. As
an alternative to standard fuzzy Laplace transform and the fuzzy Sumudu integral transform,
we established some potential useful (new or known) properties of the FSTM and validate
their applications. Furthermore, the FSTM is coupled with the well-known homotopy anal-
ysis method to obtain the approximate and exact solutions of fuzzy differential equations of
integer and non-integer order derivatives. The convergence analysis and the error analysis of
the suggested technique are provided and supported by graphical solutions. Comparison of
the numerical simulations of exact and approximate solutions of two fuzzy fractional par-
tial differential equations are tabulated to further justify the reliability and efficiency of the
proposed method.

Keywords Fuzzy differential equations of integer and non-integer order derivatives - Fuzzy
Shehu transform method - Caputo gH-derivative - Homotopy analysis transform algorithm -
Numeric-symbolic computation

Mathematics Subject Classification 34A07 - 35R11 - 35R13 - 44A10

1 Introduction

The basic idea of non-integer order calculus which is believed to be a generalization of
traditional calculus has attracted a considerable interest in modeling real physical phenomena
(Akinyemi and lyiola 2020a,b; Belgacem et al. 2019; Bokharia et al. 2020; Senol et al.
2019a; Maitama and Zhao 2019c; Akinyemi et al. 2021). However, when a real physical
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phenomena possess uncertain behavior, it is very difficult to accurately capture its reliable
solution using the well-known fractional calculus. This motivated Agarwal et al. to first
introduced the concept of fractional differential equations with uncertainty which is based on
fuzzy set theory (Agarwal et al. 2010). In 1965, the theory of fuzzy set, fuzzy mathematics,
and the fuzzy logic was first introduced by Azerbaijan mathematics Lotfi Aliasker Zadeh
(1965). In the same year, L-relation Salii (1965) was presented, which is more general in
a theoretical context and applies to decision-making (Kuzmin 1982; Khana et al. 2019a, b;
Yen and Langari 1995), clustering (Bezdek 1978), and the linguistic (Zadeh 1975; Langari
1992). Puri and Ralescu introduced the notion of fuzzy random variables and the expectation
of a fuzzy random variables (see Puri and Ralescu 1986). Recently, the fuzzy set theory has
attracted a lot attention in the field of computer science (Khana et al. 2020a,b), engineering
(Khana et al. 2020c; Fatihu et al. 2017), pure and applied mathematics (Gong and Hao 2018),
and medical diagosis (Khana et al. 2020d). The fuzzy risk analysis and similarity measure
of sequence of fuzzy numbers are discussed in Khana et al. (2020e), Zararsiz (2015). In
the fuzzy literature, the basic idea of the fuzzy derivative was first proposed by Chang
and Zadeh (1972). Fuzzy fractional differential equations were derived by replacing the
classical bivalent sets called crisp sets with the fuzzy quantities to described imprecision
and uncertainty behavior (Zureigat et al. 2019). A recent review of the non-integer order
derivatives can found in Machado et al. (2011), Tarasov (2011), de Oliveira et al. (2014),
Valerio et al. (2013). In 2020, the analytical and numerical solutions of one-dimensional
fuzzy fractional partial differential equations were successfully constructed using the fuzzy
Laplace transform (Shah et al. 2020). Due to the great freedom of non-integer order operator,
the fuzzy fractional partial differential equations have been used to model more complex
phenomena with uncertainty behavior (Kahraman et al. 2020).

The concept of non-integer order differential equations with uncertainty was extended to
definitions of H-differentiability by Allahviranloo et al. (2012), Salahshour et al. (2012). In
finance, fuzzy sets were applied to study the European option pricing models (Appadoo and
Thavaneswaran 2013). Dubois et al. (2004) discussed the fuzzy or possibility of measures of
uncertainty based on probability transformations. In recent years, due to the importance of
fuzzy differential equations in physical science and engineering, many analytical and numer-
ical techniques, such as the Runge—Kutta method (Akbarzadeh and Mohseni 2011), the
Adomian decomposition method (Chakraverty et al. 2012), and the homotopy analysis trans-
form method (Salah et al. 2013), the variational iteration method (Jafari et al. 2012), have been
proposed and efficiently applied to many applications in the literature. In Bede and Gal (2005),
introduced the weak and strong generalized differentiability of a fuzzy-number-valued func-
tion. In 2014, Allahviranhoo et al. studied the concept of Caputo generalized Hukuhara
derivative (Allahviranloo et al. 2014). Recently, Senol et al. (2019b) developed a perturbation-
iteration algorithm using the Caputo derivative under generalized Hukuhara difference.

In this work, using the recently proposed Shehu transform in fuzzy context (Maitama
and Zhao 2019a,b), we introduce a suitable iterative algorithm for solving fuzzy fractional
models. The algorithm is a combination of the homotopy analysis method (Liao 1995) which
was firstdevised by Liao in 1992 and the FSTM which is a generalization of the fuzzy Laplace
transform (Allahviranloo and Ahmadi 2010) and the fuzzy Sumudu transform (Jafari and
Razvarz 2019). Applications are provided to justify the efficiency and the simplicity of the
proposed iterative algorithm.

Other sections of this article are organized as follows. In the Sect. 2, we provide some
notations of the fuzzy calculus used in this paper. In the Sect. 3, we discussed the absolute
error analysis and convergence of the method. In the Sect. 4, applications of the proposed
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method are presented. The results and discussion section is presented in the Sect. 5, and
finally, in the Sect. 6, we give the conclusion of this article.

2 Preliminaries notations and fuzzy calculus

Definition 1 The function f : § — E,J € Ris called a fuzzy function and the B-level set
of f is represented by the function f (¢, 8) = [f(t, B, f, /3)] , VB € [0, 1]. Besides, a
fuzzy function always has a domain and fuzzy range. Thus,a function f : E — FE is also a
fuzzy function (see Salahshour et al. 2012).

Definition 2 (Senol et al. 2019b) Let v : A — [0, 1], be a membership function, where A is
a nonempty fuzzy subset defined as {(¢, v(¢)) : t € A}, of A x [0, 1]. Let set E be the family
of all such fuzzy sets, where v € R x [0, 1].

Suppose v satisfies the following conditions.

1. Vty € R, the membership function v is normal and v(ty) = 1(crispvalue).

2. V1o, yo € Rand x € [0, 1], the membership function v is convex and satisfies v[xt 4 (1 —
x)y] = min{v (), v(y)}.

3. The set {t € R, v(t) > 0} is called closure of v and denoted v® which is compact.

4. The membership function v is upper semi continuous.

If the conditions mentioned above are satisfied, then the function v is called a fuzzy number.
Based on the principle of Zadeh’s extension of addition on E, we obtain:

(v 4+ w)(t) = supminfv(y), w(t — y)}, t € R, (1)
yeR

and the scalar multiplication is:

v(t/p), B >0,

0, =0, @

BOV@) = {
where 0 € E (Salahshour et al. 2012).

According to Puri and Ralescu (1986), the Hausdorff distance between fuzzy numbers in
thesetd : E x E — [0, +o0] is defined by:

d(v, w) = sup max{[v(B) —w(B)l, [v(B) —w(B)I} 3
rel0,1]
where v = (v(B), v(B)), w = (w(B), w(B)) C R was applied in Bede and Gal (2005).
Based on this definition, it is obvious to see that d is a metric in [E and satisfied the following
properties:

e dvdw,gdw)=dWv,q), Yv,w,q € E.

e dvdw,qgde) <d(v,w)+dw,e), Yv,w,q,e € E.
e d(BOV, O W) =|Bldv,w), VB e R, v,w € E.

e (d,E) is a complete metric space.

The following definition of differentiability was first introduced by Bede and Gal (2005)

Definition 3 Let A : (a,b) — Eand ¢y € (a, b). Then, we say that A is strongly generalized
differentiability at 7 if there exists an element A’(fp) € E, such that for all ¢ > 0 sufficiently
small, then:
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. A+ O AM) . Al) © Al — )
m——————=Ilim—-

1 = A (19). 4
4“1\0 ¢ ¢N\O ¢ () @
or
2.
lim w = lim w = A (t). 5)
N0 =< ENO -
or
3.
lim w = lim w = A(t9). (6)
N0 e N0 —¢
or
4,
lim Alt)) © Alto +¢) — lim Alto) © Alto — &) = A (t). (7

N0 - £\O ¢
The definition of second-order derivative under generalized H-differentiability is defined
as Najeeb et al. (2015)

Definition4 Let A : (a,b) — Eand g € (a, b). Then, we say that A is strongly generalized
differentiability of the second-order derivative at 1y if there exists an element A” (¢y) € E,
such that for all ¢ > 0 sufficiently small, then:

1.
lim Ao +8)© AN () _ lim A)© A0 —¢) _ A (t0). )
N0 ¢ ¢\O ¢
or
2.
lim N e N +8) _ lim Ao~ O AN (M) _ A (t0). ©)
N0 —< N0 -
or
3.
lim A+ ent) _ lim Ao - e At _ A (t0). (10)
N0 e £\0 —¢
or
4,
lim A1) © Ao +¢) _ lim A)© Ao —¢) _ A (t0). an

N0 - N0 ¢

Definition 5 (Salahshour et al. 2012) Let v, w € E. Suppose there exists u € [E, such that
v = w + u, and then, u is called H-difference of v and w and is denoted by v © w and
v+ (—D)w # v © w, where the notation © denotes H-difference.

Definition 6 (Allahviranloo et al. 2014) The gH-difference u of two fuzzy numbers v, w € R
is defined as:

_ Hv=w+u,
v OgHw =1t = {or (fD)w=v+ (—u. 12
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Definition 7 The fuzzy time-fractional diffusion equation is defined as: Zureigat et al. (2019)

W:a(g)w +b(s), 0<g <, t>0, (13)

with boundary and initial conditions:
(5,00 = f, 5(0,1) =g, 9(,0) =2, (14)
where v(g, t) represents v(g, 0) and v(c, 0) (the lower and upper functional derivatives),
o gz(n% D) denotes the non-integer order fuzzy functional derivative of order «, azg(ggz’t) is the

fuzzy partial Hukuhara derivative with respect to ¢, v(g, 0), v(0, ), and v(I, 0) represents
the initial and boundary conditions.

In general, Eq. (13) can be re-written as upper and lower bound equations as Zureigat et al.
(2019):

e Upper bound equation:

{ TR = () S +b()

(15)
v(s,0,8) = f(ﬁ) v(0,1) = g(B), v(,0) = z(B).

e Lower bound equation:
U — a() HE + b() 16)
v(5,0) = f(B), v(0.1) =g(B), v(,0) =z(B).

Let C[a, b] be the space of all continuous fuzzy-valued function on the interval [a, b],
and let L™[a, b] be the space of all Lebesgue integrable fuzzy-valued function on the interval
[a, b] C R, and then, we have the following definition.

Definition 8 (Allahviranloo et al. 2014) Let assume ) = f® & C%[a,b] N L [a, b].
Then, the fuzzy gH-fractional Caputo differentiability of fuzzy-valued function f is defined
as:

(D" F) O =227 0 (1) @)
= - ! ~ o / (-0 o (1) @, (17)

wheren — 1 <% <n, neN, t > a.

Besides, by virtue of Theorem 1 and any arbitrary fixed r € [0, 1] Eq. (16) can be written as
the following relation:

(D7 1) 0 = [ (D7 F) (1), (D7 1) 0.1 as)

( HCD”f) (t.r) = #/t (t — 7)1 (f“’)) (z.r)dt, r e [0,1] (19)
g SRy AT o

where:

and
(;H[Dﬁ f) (t r) o — /t(l - T)n 1 (f( )> (T r)dT r e [0 1 I (20)
’ n—1u a , , , )

In the next definition, we define a Laplace-type integral transform called the Shehu trans-
form (Maitama and Zhao 2019a,b) in fuzzy context.
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Definition 9 Let f be continuous fuzzy-valued function and suppose that exp ( _Tpt) o f()

is a improper fuzzy Riemann-integrable on the interval [0, co), and then, fooo exp (%pt) ©)

f (t)dz is called the fuzzy Shehu transform and is defined over the set of functions:

A= lf(t) 3N, ¢, >0, f(t)‘ <Nexp(%), if r € (—=1) x [0, oo)],

as

S[f(t)] — F(p,q) = /0 exp (%’U) o f(yds, p >0, g>0. @1

Remark 1 InEq. (21), f satisfied the cases of the decreasing diameter ( f ) and the increasing

diameter ( f ) of a fuzzy function f. When the variable ¢ = 1, the fuzzy Shehu transform
converges to well-known fuzzy Laplace transform.

By virtue of Theorem 1 in Salahshour et al. (2012), we have:

/oo exp <;pt> o f(rydr = </oo exp <;pt> f(t; r)dt, /00 exp (;pt) f; r)dt) . (22)
0 q 0 q - 0 q

Moreover, using the classical Shehu transform (Maitama and Zhao 2019a,b), we get:

s[ra:n]= foooexp (%”r) £t r)dt and
S[Fw:n] = /Ooo exp (%r) 7 rdr. (23)
Then, we have the following relations:
s[7w]=(s[sen].s[Fan))
= (E(p.9). F(p.0))- (24)
2.1 Basic properties of the fuzzy Shehu transform

Theorem 1 (Derivative operator). Suppose F™(t) be an integrable fuzzy-valued function,
and f(t) is the primitive of f™(t) on [0, 00), and then:

n n—1 n—(k+1)
S| Fm :(3) os|fn|e <£> o f®0). 25
[Fmw]=(7) es[i] >(; F®0) (25)
Some few terms of Eq. (25) are:
s|[fo]=Cerpgefo. 26)
2
S [f”(t)] = (g) OF(p,q9)© S ® f0) e f0). 27)

3 2
S I:];m(t)] _ (g) OF(p,q) 6 <§) ©) f(O) o g ©) f’(O) S] f//(O), (28)

Proof Let r € [0, 1] be arbitrary, and then, we deduce:
n n—1 n—(k+1)
~ p ~
(3> os[fn]e Yy (7) © 7D ©)
q =0 q
@ Springer f bMA
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n—1 n—(k+1)
= ((;’) S[f@:n] - Z( ) O,

k=0
n n—1 n—(k+1)
P . 4 ® Q.
(q) s[sa:n] ];)(q) O r)). (29)
By Theorem 1, we have:
n—1 n—(k+1)
(B) oS [f(t)] <) Z < ) o f(k)(o)
q
= (s[/™w@n].s [f'”(t; n]). (30)

where (S [f(")(t; r)] S [i(”) (t; r)]) are, respectively, defined in Eq. (23).
Using induction hypothesis, Eq. (25) holds for n = k, and then, using Eq. (26), we get:

s[70wy]=Ces[fPn]e fP0

» » k—1 P\ _
2o [(q) os[fn]e Z (q) © f(’)(O)} e f® )

q
k+1 k—i
-(2) es[iv]e 3 (2) oo, G
q —\q
Thus, Eq. (25) is true when n = k + 1. This complete the proof. O

To demonstrate the assertion of Theorem 1, we consider the following second-order fuzzy
initial value problem (see Khastan et al. 2009; Najeeb et al. 2015):

ﬁ//(t) = ;07 {O = (/3 - 17 1 - 5)3
v0; ) =(B-1.1-p), (32)
VOB =B -1,1-p).

Let us consider the four cases of strongly generalized H-differentiability given in
Definition 4

Case I: Suppose 0(t) and v’(7) in Eq. (32) are (1)-differentiable. Then, computing the fuzzy

Shehu transform, we get:

2

P oslim]e 5 030070 = "4 (33)

Then, for any fixed 8 € [0, 1], we obtain the following B-cuts representations of the lower
and upper bound equations as:

2

P slu: p)] - guo; B) — v (0: p) = %;o, (34)
and

2
Zstae Bl - Lo; g - 570 ) = 1o (35)
q q p
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After simplifying Egs. (34) and (35), we get:
2
v p) =" (1) v(0: p) +57! (%) V(0: ) +57! (q—
p p p

2 3
B(r; p) =S~ <1> 5(0; B) + 87! (%) ' (0; p) + 87! (‘%) %. (37)
p p p-

3
3

) %0, (36)

Finally, we obtain the expected results of Case I as:

v =@B-D(1+1+%),

) , (38)
i =0-p(1+1+%

Case II: Suppose ©(7) is (1)-differentiable and ¥'(7) is (2)-differentiable in Eq.(32). Then,
applying the fuzzy Shehu transform, we deduce:
2

Lo -i0e (—;’—2) os[in] = Lo, (39)

For any fixed g € [0, 1], we get the following S-cuts representations of the lower and upper
bound equations as:

2
L ovo v pe (—%) OS[u: B = L, (40)
q q p
2
-2 o508 -v0:p6 (—%) OS[i(: B = Lg. (1)
q q p

After simplifying and inverting the transform, we obtain the following results:

v p=@-D(1+7-5),

42)
6(r;ﬂ):(1—ﬂ)(1+r—’2—2).

Case III: Suppose 0(7) is (2)-differentiable and ¥’ () is (1)-differentiable in Eq. (32). Then,
computing the fuzzy Shehu transform, we get:

2
~Poimeine (—p—z) oS[i(m]= Lo, (43)
q q P

Then, for any fixed g € [0, 1], we obtain the following B-cuts representations of the lower
and upper bound equations as:

p p? q
~y ov0:pev0: 86 (—q—2> OS[u: B = ;Co, (44)
2
—s ©5(0; B) 07 (0; f) © (—%) O S[i(r: B)] = %Cw (45)

After some algebraic simplifications, we obtain the following results:

vwp=@-D(1-7-%),

5(r;ﬂ):(1_5)<1_t_%2). (46)
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Finally, Case I'V: Suppose ©(t) and 9’(t) are (2)-differentiable in Eq. (32). Then, taking the
fuzzy Shehu transform, we have:

2
~Tmeloin+Z os[im] = L. (47)
q q P

For any fixed g € [0, 1], we obtain the following B-cuts representations of the lower and
upper bound equations as:

p P’ q
VPO L ou0:p) + 7 08[uwH] =k, 48)
2
—70:p) o g © 5(0; B) + 57 O S[i(r: f)] = %;o. (49)

After some algebraic manipulations, the following results are obtain:

v =B-D(1-1+%),

_ 2 (50)
i =>0=-p(l-1+%5

In the next theorem, we prove the convolution theorem of the fuzzy Shehu transform.

Theorem 2 (Convolution theorem). Suppose f(t) and g(t) be integrable Jfuzzy-valued func-
tions, and let F(p, q) and G(p, q) be the fuzzy Shehu transform of the functions f(t) and
g(1), respectively, and then:

s[(F+p0]=Fp.0060.9, (51)

where the convolution of f * g is:
r r
| Foosu—ou= [ fo-oozom. (52)

Proof Based on Egs. (22), (51) and Eq. (52), we deduce:

r . o0 —pt b ~
S —)d = —_— — d
[/0 FO 08t -0 c} /0 exp( ; )@(/O Fo o ;)) ¢

Interchanging the order and the limit of the integration, we have:

t ~ o0 ~ o0
SUO f(§)®§(t—<:)d§]=/0 (f@)@/ exp( :)@ga—;)dr) ‘.
¢

Setting ¢ =t — ¢, we get:

/ exp ( ) © & — £)dt = / exp (— W+ 4h)p) © 3(9)dd
e q 0 q
q 0 q

=exp< “’)@G(p 0.

Hence:

U f(C)Og(t—C)di] f f(;“)@exp( qg)GG(p q)d¢
@ Springer f DMAC
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— G(p.q) @/0 F(©) @ exp (%pg) d
=F(p,q) ©G(p,q); (53)

thus, the proof is complete. O

To illustrate the assertion of Theorem 1, let us consider the following fuzzy Volterra
integral equation of the second kind of the form:

v(r) = (14,2 = B) O exp(=27) + / sin(z — ¢) © v(O)d¢. (54)
0
Applying Theorem 2 on Eq. (54) yields:
S[o(m)] =S[+B.2 - B) ©®exp(—21)] + S[sin(r)] © S [3(1)]. (55)

Then, for any fixed 8 € [0, 1], we obtain the following S-cuts representations of the lower
and upper bound equations as:

S{u(z: 1+ 8)] =S[( + B) ©exp(—21)] + S[sin()] © S [u(z; B)], (56)
and
S[o(t;2— Bl =S[(2 — B) ©exp(—27)] + S[sin(1)] © S[v(z; B)]. (57)
After simplifying the above equations, we get:
2
g i 4 4 >4
u(; ) = (1+ H)S ( Lits+ 4(p+2q)>
11 5
=(1+78) <_Z + 37 + 1 exp(—Zr)) . (58)

and

2
A 59
vE ) =2 =P <4p+2p2+4<p+2q>>

1 1 5
=2-58) (_Z + E‘C + 1 exp(—Z‘L')) . 59)

In the following theorem, we prove the fuzzy Shehu transform of Caputo generalize
Hukuhara derivative 4 HCD? f (1), (see Allahviranloo et al. 2014 and the references therein).

Theorem 3 Let HCD}9 f (t) be an integrable fuzzy-valued function, and f(t) is the primitive

of gHCD? f (1) on [0, 00), and then, the Caputo fractional derivative operator of order ¥
holds:

o n—1 —k—1
cp? 7] = (P 7 P F(k)
S|} F)] = (q) os[fo] eé(g) oMo, ©0
n—1<v <1

Proof Applying Definition 9 and Theorem 2, we deduce:

" f (1)
a-rn

dr

CHo Fro 1 /t o1
gHth(t)_F(n—z?)Q O(I T) ©
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1 -
- (n) n—9—1
_F(n—z?)@f ot .

Then, by Definition 9 and Theorem 1, we get:

S I:gHCD?];(f)] = ﬁ oS I:fn_ﬂ_l O] f(”)(l)]

N } n—1 p\ Pk ”
(;) OS[f(t)]@é(q) o f® ).

Finally, by the virtue of Theorem 1 in Salahshour et al. (2012) and any arbitrary fixed
r € [0, 1], we have:

9 n—1 ¥ —(k+1)
(3> os[fn]ey (3> © F90)
q o \4
v n—1 ¥ —(k+1)
= ((f]’) SNGHIEDS <§> FP0;n,

k=0

¥ n—1 ¥ —(k+1)
(2) ] £(2) " o).

k=0

The proof ends. O

The generalization of the fuzzy Laplace transform (Allahviranloo and Ahmadi 2010) and
the fuzzy Sumudu transform (Jafari and Razvarz 2019) is verified in the following theorems.

Theorem4 Let F(p, q) and F(p) be the fuzzy Shehu transform and the fuzzy Laplace trans-
Sform of the function f(t) € A, and then:

F(p.q)=F (f) . 61)

Proof The proof follows directly from Eq.(22) and Definition 3.1 in Allahviranloo and
Ahmadi (2010). O

Theorem 5 Let F(p, q) and G(q) be the fuzzy Shehu transform and the fuzzy Sumudu trans-
form of the function f(t) € A, and then:

Fp.p=Lo0cG (2) . (62)
4 pr
Proof Letr € [0, 1]. Setting ¢ = gt in Eq. (22), we deduce:

Fipogp =2 @/ exp (=) @ F(Loyde
)4 0 )4

_ <2f em(—{)[(g{;r) d;,@/ exp(—;)f'(@;;r> d;)
pJo p pJo p
:<zg(z),2@<z>>zigc<i>. (63)
P P 14 14 P 14

[}
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The inverse fuzzy Shehu transform is defined in the next theorem.

Theorem 6 (Inverse fuzzy Shehu transform). Let the function f(t) € A and F(p, q) be the
fuzzy Shehu transform of the function f(t), and then, its inverse transform S~ is given by:

“YF(p, @)= f(0), forall t >0. (64)

Equivalently, the complex inverse fuzzy Shehu transform is:

1 V+ip 1
f(t)_ lim —@/ f®exp< )@F(p q)dp. (65)
B—o0 27i v—ip 4 q

The basic idea of the proposed algorithm is illustrated in the following section.

3 Algorithm of HASTM

Consider the fuzzy fractional partial differential equation:

3’0, )~ 3%0(s, 1) -
% :a(g)%—i—b(g), seR, 0<g¢<1, t>0, v €(0,1], (66)
where al’gt# is the Caputo gH-derivative.

Operating the fuzzy Shehu transform on Eq. (66), we have:

370(c, 1) a2v(g, 1) .
S[T} [ (o =2 }=S[b(;>]. (67)

Using Theorem 3, we have:

s m—1 ¥—k—1
p 5 _ P 500, ) — 796,07 _ o[
(2) slocnn-X (%) 0.0 -s]a0 55" | =s[60).

k=0
(68)
Equivalently:
¥ m—1 9 —k—1 2
92
S[i(e. 0] = (1) > <E> 500, 1) — (1) ( [ © ”(g ’)} +S[b(g)}>
p i \4 p
(69)

In this case, the nonlinear operator is:

g ¥ m—1 p 9 —k—1
N[@(;,r;x>]=5[¢<g,r;x)]—(;) <7> 70,1

(3 (s i)

where L € [0, 1], ¢(g, t; 1) represent a real-valued function, and 1 € [0, 1] denotes an
auxiliary parameter. The homotopy of Eq. (66) is:

(1 =S [@(s,1: 1) = Bo(s, D] = EXH(s, HNTG(s, D], (71
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where S, H(g, t), denotes the fuzzy Shehu transform and the auxiliary function, respectively.
A € [0, 1] denotes the embedding parameter and £ # O represent the auxiliary parameter
(non-zero convergent control parameter). Finally, vg(¢, t) is the initial approximation of
v(g, t), and ¢(c, t; A) represent the unknown function to be computed later.

The most significant advantage of the algorithm is the freedom to control the series solutions,
select the auxiliary parameter, and the initial guess, respectively. When A = 1, and A = 0 in
Eq. (71), the following conditions hold:

(5. 1;0) =vo(s, 1), and @(g,t:1) = v(g,1). (72)

Then, the solution ¢(g, t; A) changes from the guess vp(s, t) to the solution v(g, t) as A
varies from O to 1. Thanks to Taylor series expanding of ¢ (g, t; A) with respect to A which
help us to get:

+00
Pls.t: ) =To(c. )+ Y Im(s. HA", (73)

m=1

where:

(74)

- 1 3" p(c, t; A)
(s, 1) = |: .
A=0

'm+1) aAm
Choosing a suitable auxiliary parameter, initial guess, auxiliary linear operator, and the aux-
iliary function, Eq. (73) converge at A = 1, and:

+o0
F(s, 1) =To(s, )+ Y Im(s, 1) (75)

m=1
Besides, we obtain the governing equation from the zero deformation Eq.(71) based on
Eq.(75).  _
The vectors v, are defined as:

O = (00(5, 1), D1(S, 1), D2(5. 1), ..., Tu(s, D)}, (76)

Then, differentiating Eq.(71) m-times with respect to A and choosing A = 0, and dividing
by ['(m + 1), yields the M""-order deformation equation:

S[om (5. 1) = xmim—1(5, )] = EH(S, )R (D1, 5, 1), (77)
where:
5 10N G, 15 )]
Rm (Um—lv S, t) = |:F(m) ak(mfl) o ’ (78)
and
0 m<l1
Xm:{l m > 1. (79)
Taking the inverse fuzzy Shehu transform of Eq. (77), we deduce:
Bn(61) = B 1 (6, 1) + 87" [§H(6, DR G161 (80)
where R,, (1:1,",1, ¢, t) is defined as:
= aﬂf) —1(§7 t) ~ 825 —l(gv t) ~
R @1, 6.1) = === = (o) magz — (= xmb(s). (8D
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Solving Eq.(80) for m > 1, using any mathematical software (Mathematica, Maple, or
Matlab), we obtain the series solution:

M
(s, 1) =To(s, ) + Y, Bm(s, 1), (82)

m=0

which converge with the help of &.
Finally, the upper and lower bound solutions of Eq. (66) are given by:

+o00
05, ) =Y (s, 1), (83)
m=0
and

+00
v(e =Y v, 0, (84)
m=0
respectively.
The following theorems discuss the convergence analysis and error analysis of the original
problem [Eq. (66)] based on the procedure of the method.

Theorem 7 Convergence analysis. Suppose the series of Eq.(82) converges to y(c,t) as
M — oo, where vy, (g, t) is computed using Eq.(77) and the conditions of Egs.(71) and
(78). Then, ¢ (g, t) must be the exact solution of the original problem (Eq. (60)).

Proof Let the series:

+00
Z (5. 1) =To(s. 1)+ Im(s. 1) = p(s. 1). (85)
m=0 m=1

Then, we deduce lim s, ngzl Um (g, t) = 0. From Eq. (77), we have:

B M M
Jim | EH(e, 1) mZ_l R (Om-1. 6. t)} = Jim [2 S [ (<, ) = AmIm-1 (s, r)]}

=S hm va(g, 1) — hm ZXmUm l(gat)]

L ml

=S| lim Zl (s, ,)] =0,
m=

Using the linearity property of Eq.(71) and the fact that H(g, t) # 0, & # 0, we get:

M
Jim Zl Ry(@m-1,6,1) = 0. (86)

Similarly, according to Eq. (81), we get:

" Opi(s, 1) . 0% m1(s, 1) -
A}glszm(vm g0 = lim Z[ O b e (1= xm)b(s)

m=1 ml
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3’ U 9? M M N
= 37 i, L o160 =855 Jim Dm0 = fim (1= xmb(s)
m=1 m=1 m=1
3 opo1(s, ) B Om1(s 1) :
=T a(g)T = (I = xm)b(s) =0. 87)
Finally, Eq.(87) above proved that ¢ (g, ) satisfies the result of the original problem
[Eq. (66)]. m]

Theorem 8 Let X be a Banach space and let v, (7, t) and v, (s, t) be in X. Suppose A €
(0, 1), then the series solution (v, (g, t)}o_ which is defined from ano:o vm(c, t) converges
to the solution of Eq. (77) whenever Uy, (¢, t) < AVpy—1(g, 1) Y m > N, that is for any given
& > 0, there exists a positive number N, such that ||Up4,(c, )| <& Vm,n > N.

Proof Let us first define a sequence of partial sum {S,, (¢, 1)} as:

So(s, 1) = vo(s, 1)

Si(s, 1) = vo(s, 1) + 01(s, 1)

Sa(s, 1) = vo(s, 1) + v1(s, 1) + v2(5, 1)

S3(s, 1) = vo(s, 1) + v1(s, 1) + v2(s, 1) + U3(5, 1)

Sm(s,t) = vo(g, t) +01(s, 1) +V2(s, 1) +03(5, 1) + -+ + Uy (s, 1).

We only need to show that S, (g, t) is a Cauchy sequence in X. To prove the claim, since
A € (0, 1), the following inequality holds:

1Sn11(5: 1) = Su(, DIl = 1m11 (s, DIl < Ao (5, D < A [Dm1 (5, D]

< A3 Opn-2(s, Dl < A* [[Bm—3(s, DIl < --- < A" |To (s, )]l - (88)
Then, for any m,n € N, n > m, we obtain:

1Sm (5, 1) = Su(. Ol = 1Tmtn (5, O = 1(Sm(5. 1) — Sm-1(5. 1))
+ (Sn-1(5.1) = Sn—2(5. 1)) + (Sm-2(5. 1) — Su-3(. 1))
oo (S (6 ) = Su(e O = 1Sm (5. 1) — Su—i (5. Dl
F1Sm-1(5, 1) = Su=2(5. D + Sm-2(5. 1) — Sw-3(s, D)l
o 18u1(5, 1) = Su(s, DI < A™ [[To(s. DI + A" 1 To(s, Dl
+A" 2 T (s, ) + A" o, Ol + - -+ A" [T (s, )|

m—n

= lio(s, DIl ———A""". (89)
Choosing ¢ = (l—Am*")lx'l[J\rl||ﬁo(g,t)||’ since A € (0,1), 1 > 1 — A™™" and vp(s, ) is
bounded, we obtain:

10m+n(s, O <& Vn,m > N. (90)
or
M G (s. 1) = 0. o1
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o0

Thus, the sequence {S; (s, 1)};,_, is a Cauchy sequence in X'. This completes the proof. O

Theorem 9 Error estimate. Let Z{:o Vi (¢, t) be finite and v(c, t) be its approximate solu-
tion. Suppose A > 0, such that ||Vi41(s, )| < Allvi(s, )|, A € (0, 1), for Vi, then the
maximum absolute error is:

Jj+1

/ A
(s, 1) — vi(s, )| <
(s, 1) gvmg N=1%

lvo(s, DIl 92)

Proof Let the series Z{:O Ui (c, 1) < 00, and then:

J o
B, )=y bils, 0| = | Y s, 0
i=0 i=j+1

o0 o0
< > ol = Y Ao 0l < lTo(s. O AT T+ A+ AT +--+)
i=j+1 i=j+1
Jj+1
1—A

=

lvo(s, DIl -
The proof is complete. O

Test examples were provided in the next section to justify the efficiency and high accuracy
of the algorithm.

4 Applications of the HASTM

In this section, we illustrate the efficiency of the proposed analytical technique to fuzzy
time-fractional models.

Example 1 Consider the following one-dimensional fuzzy fractional partial differential equa-
tion:

3’0(s, 1) 1 ,9%(s, 1)
Tzigv,geR,O<§<l,t>0,l?€(0,1], (93)
with initial condition and boundary conditions:

(5. 0) =k(B)g*, 5(0.1)=(1,0)=0, 0<¢ <1, (94)
where k(B) = (kB), k(B)=@B—-1,1=p), Bel0,1].

Applying the procedure of the HASTM presented in section 3, when H (s, t) = 1, we get
the following approximations:

o(s, 13 B) = ¢*k(B)

- P T N A

(6.t B) = KB s

] - l‘ﬁ 5 g- 29
D25, 15 ) = —5 6 + DSkB) g TE RO sy
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and so on.
Setting & = —1, the series solutions of Eq.(93) are:

v(g, t; B) = vo(s, t; B) +01(s, t; B) + v2(s, t; B) + -
my

+00 ¢
)z
=ck _—. 95
S (,3)2 Tmd + 1) 95)
m=0
Hence, the upper and lower bounds solutions of Eq. (93) are given by:

e Upper bound solution:

+00 mo
- 2_
5 B) =c¢k _—. 96
(s, 1 8) =¢ (ﬁ)ZNmMD (96)
m=0
e Lower bound solution:
+00 mo
2
1 B) =c¢k _—. 97
(s, 15 B) g,(ﬁ)Zr(m“]) 97)
m=0
Moreover, when ¢ = 1 in Egs. (96) and (97), we get the following exact solutions:
e Upper bound solution:
3(s.1: B) = k(B)s exp (1) . (98)
e Lower bound solution:
(s, 1) =k(B)s exp (1) . (99)

The numerical simulations of the exact and approximate solutions behavior are given in
Tables 1 and 2 respectively.

Example 2 Consider the following one-dimensional fuzzy time-fractional partial differential
equation:

"0(s, 1) | dv(g, ) 9%0(s. 1)
ar? dc  °  dc?

,ceR, 0<g¢c<1,t>0, v €(,1], (100)

with initial condition and boundary conditions:
0(c. 0) = k(B)exp (—5), 0(0,1) =(1,1) =0, 0 < ¢ <1, (101)

where ¢ is constant and /2(5) = (k(ﬁ), lg(ﬂ)) = (0.85+0.158, 1.50 —0.58), B €
[0, 1].

Employing the procedure of the HASTM discussed in Sect. 3, when H(g, t) = 1, we get the
following iterations:

o(s, t; B) = k(B) exp (—¢)

D1(s, 15 B) = —Ek(B)(¢ + 1) exp (—¢)

v

r@w-+1
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5 D
U2(s, 15 B) = —E(E + Dk(B)(C + Dexp(—¢) NCEE
29
27 2 —) —
+&5%k(B)(& + D7 exp(—¢) T2+ D)

and so on.
Taking & = —1, the series solutions of Eq. (100) are:

v(s, t; B) = vo(s, t; B) +v1(s, t; B) + v2(s, t; B) + - - -
=k(B)exp(—¢) Ep [(¢ + De"]. (102)

Hence, the upper and lower bounds solutions of Eq. (100) are given by:

e Upper bound solution:

(s, 15 B) = k(B)exp (—¢) Ey [(¢ + l)lﬂ]- (103)
e Lower bound solution:
v(s. 1 B) =k(B)exp(—¢) Ey [(¢ + 1)t0]~ (104)

When ¥ = 1inEgs.(103) and (104), we successfully obtain the following exact solutions:

e Upper bound solution:

(s, 1; B) = k(B)exp (—s) exp (¢ + 1)1). (105)
e Lower bound solution:
v(s,t; B) = k(B)exp(—¢)exp ((¢ + D). (106)

The numerical simulations of the exact and approximate solutions behavior are presented
in Tables 3 and 4 respectively.

5 Results and discussion

In this section, we discuss the efficiency and accuracy of the results obtained using the
proposed technique and compare it with the results of the existing methods.

Figure 1: The numerical simulations of the upper and lower bounds solutions of Eq. (93)
are given at varying values of ¥. In Fig. 1a, the exact solutions of Egs. (96) and (97) when
9 =1, B € [0,1], and r € [0, 1] are provided. In Fig. 1b, the 2D surface solutions of
Eq.(93) when ¢ = 1 (exact solutions) are illustrated. In Fig. Ic, the 10?"-order approximate
solutions of the upper and lower bound solutions of Eq. (93) when ¢ = 0.5, g € [0, 1], and
r € [0, 1] areillustrated. In Fig. 1d, the 10 -order approximate solutions of Egs. (96) and (97)
when 9 = 0.75, B € [0, 1], and r € [0, 1] are given. In Fig. le, the upper and lower bound
approximate solutions of Eq.(93) when m = 10, 9 = 0.85, g € [0, 1], and r € [0, 1] are
presented. In Fig. 1f, the 10" -order approximations of v(¢, ) and v(g, t) when ¥ = 0.95
are depicted. From the analytical and the numerical solutions of Eq. (93) using the HASTM,
it is clear that both the exact and the approximate solutions fully satisfied the fuzzy number
properties. The graphical solutions show a clear triangular fuzzy number shape. Moreover,
the exact and approximate solutions of the HASTM are in good agreement with ADM and
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V(s t)
o
"

—— Upper bound 6=1

-2r ~—— Lower bound 6=1
L . . . . .
Il Upper bound 6=1 0.0 02 0.4 0.6 0.8 1.0
<
[l Lower bound 6=1
(a) (b)
] (s solution 6=0.5 ] 7. solution 6=0.75
I v(sb solution 6=0.5 I v(c solution 6-0.75

] 7 solution 6=0.85 ] 7. solution 6=0.95
n v(¢ 1) solution 6=0.85 n V(g t) solution 6=0.95

1.x10°

5.x 10710

(g) Absolute error of E (¥, 1)) (h) Absolute error of Eo(v(s, 1))

Fig. 1 Numerical simulations
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HPM when the non-zero convergence control parameter & = —1. Besides, the numerical
comparison of the exact and the approximate solutions of Eq. (93)at¢ = 0.45, t = 0.7, & =
—1, —1.5 and different ©#'s are presented in Tables 1 and Table 2, respectively. In Fig. 1g,
the upper bound absolute error E10(v(s, 1)) = [Vexs.(S, 1) — Vappr.(s, 1)1, is provided. In
Fig. 1(h), the absolute error E1o(v(s, 1)) = |,y (5, 1) — yappr.(g, t)| is illustrated. The
series solutions of Egs. (96) and (97) are in excellent agreement with the results found in
Salah et al. (2013), Zureigat et al. (2019).

Figure 2: The numerical simulations of Eq.(100) are given at varying values of . In
Fig. 2a, the exact solutions of Eq.(100) when ¥ = 1, ¢ = 0.001, B € [0, 1], and r € [0, 1]
are provided. In Fig. 2b, the 2D surface solutions’ behavior of Eq.(100) when ¢ =1, ¢ =
0.001 is illustrated. In Fig. 2c, the 10™-order approximate solutions behavior of Egs. (103)
and (104) when ¢+ = 0.5, ¢ = 0.001, B € [0, 1], and r € [0, 1] are illustrated. In Fig. 2d,
the 10" -order approximate solutions of the upper and lower bound solutions of Eq.(100)
when ¢ = 0.75, ¢ = 0.001, g € [0, 1], and r € [0, 1] are given. In Fig. 2e, the upper and
lower bound approximate solutions of Eq. (100) whenm = 10, ¢ = 0.85, ¢ =0.001, B €
[0, 1], and r € [0, 1] are provided. In Fig. 2f, the 10""-order approximations of (¢, ) and
v(g, t) when 9 = 0.95, ¢ = 0.001 are depicted. The graphical solutions of Eq. (100) satisfy
the fuzzy number properties and triangular fuzzy number shape. Besides, the obtained results
are in excellent agreement with HPM and ADM when the non-zero convergence control
parameter & = —1. Moreover, the numerical comparison of the exact and the approximate
solutions of Eq.(100) at ¢ = 0.45, t+ = 0.045, ¢ = 0.001, & = —1, —1.5 and different
s are presented in Tables 3 and Table 4, respectively. In Fig. 2g, the upper bound absolute
error E19(0(g, 1)) = [Vexs.(S, 1) — Uappr.(, 1)[, is provided. In Fig. 2(h), the absolute error
E10(w(s, 1) = v, (5. 1) — yappr_(g, t)| is illustrated. The results of Egs.(103) and (104)
are in complete agreement with the results found in Salah et al. (2013), Zureigat et al. (2019).

At this stage, we highlight the important feature or advantage of the proposed iterative
method before we list the limitations or disadvantage of the suggested technique in the
conclusion section. The proposed iterative method have the following feature advantage

e Unlike the implicit finite difference method where discretization of space, time, and
fractional derivatives are necessary, the HASTM can be used directly to linear and non-
linear fuzzy fractional differential equations without any discretization of space, time,
and fractional order derivatives.

e Unlike the perturbation techniques where perturbation parameter plays a significant role,
the proposed HASTM does not require any small or large perturbation parameter which
is not available in many fuzzy models of integer and non-integer order derivatives.

e Using the numerical methods, we can only get a very good approximations. However,
the series solutions of the HASTM lead to approximate or exact solution which give us
chance to further analyze the error estimate of any given problem.

e The proposed fuzzy Shehu transform can easily be coupled with the well-known Adomian
decomposition method, and the homotopy perturbation method to solve more complex
fuzzy differential equations of fractional and non-fractional order derivatives.

e The convergence of the series solutions of the suggested HASTM can algebraically be
control using the initial approximation, the deformation equation, the auxiliary function,
and the non-zero convergence control parameter.

e When the non-zero convergence control parameter & = —1, the HASTM reduces to
Adomian Decomposition Method and the Homotopy Perturbation Method as a special
case.
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Fig.2 Numerical simulations

@ Springer f DMAC



86 Page 26 of 30 S. Maitama, W. Zhao

6 Conclusion

We proposed an efficient iterative technique called the HASTM based on homotopy anal-
ysis technique and the fuzzy Shehu integral transform for solving integer and non-integer
order fuzzy differential equations. The fuzzy Shehu transform is defined on fuzzy environ-
ment based on zadeh’s decomposition theorem via fuzzy Riemann integrals of real-valued
functions on finite intervals. The proposed iterative technique is applied directly without
discretization of variables, transformations, or linearization. Besides, it reduces the volume
of computations and errors. The fractional derivative is computed using Caputo generalized
Hukuhara derivative. We discussed the convergence analysis of the proposed technique, and
proved many interesting properties of the suggested technique. Examples of integer and
non-integer order fuzzy differential equations are provided to validate the efficiency of the
method. The graphical solutions of the exact and the approximate solutions are also illus-
trated. Furthermore, it was found that the proposed HASTM converges to ADM and HPM
when the non-zero convergence control parameter § = —1 as a special case. Based on the
procedure and findings using the HASTM, it proved to be highly efficient. We conclude that
the basic idea can easily be extended to related problems in physical science and engineering
models. However, the proposed HASTM has the following limitations.

e The HASTM cannot be applied to some discontinuous fuzzy differential equations, since
the fuzzy Shehu transform is defined based on zadeh’s decomposition theorem and fuzzy
Riemann integral of real-valued functions on finite intervals.

e The proposed HASTM does not provide a unique solution (it provides us with two
solutions which sometime become an advantage to choose the best result for a given
model).

e Since the HASTM is an iterative method, it is only applicable to fuzzy differential equa-
tions with the initial and boundary conditions.

Moreover, in the future, to analyze the solutions of a more complex discontinuous fuzzy
differential equations, one may define fuzzy Shehu transform based on Henstock integrals
on infinite intervals (Henstock 1963; Gong and Wang 2012) which is a fuzzy integral in the
sense of Lebesgue.
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12071261, 12001539, 11831010, 11871068), the Science Challenge Project (TZ2018001), and the National
Key Basic Research Program (2018 YFA0703903). The first author also acknowledges the financial support
of China Scholarship Council (CSC) (2017GXZ025381).

Appendix

In this section, we proof some basic properties of fuzzy Shehu transform.

Property 1 Linearity property. Suppose f (t) and g(t) be continuous fuzzy-valued functions,
and ¥ and B be constants, and then:

s[rofneposn|=vos[in]eposfzn]. (107)
Proof Let r € [0, 1] be arbitrary fixed. Then, using Eq. (21), we have:

s[poinesorn]
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=/ @O f()®pOFD) Oexp (%pr) dr
0
=f 9O f() O exp <_—pt) dt@/ B O &) Oexp <;pt> dr
0 q 0 q
- (19@/ F) @exp (_—pt> dt) ® (/3@/ (1) © exp <;pt> dt)
0 q 0 q
=vo ([ en () s [ () fesna)
=00 exp| —1t | f(¢t; r)dt, exp t) f(t;r)de
0 q - 0 q
(oo (5 [ o (5e) i)
[47:X0) exp | —1t ) g(t; r)de, exp g(t; r)dt
0 q - 0 q

=v0S[fn]esos[zn].
The proof is complete. O

Property 2 Scaling property. Let ¥ be an arbitrary constant and f (Ut) be an integrable
fuzzy-valued functions, and then:

s{ron]=1r (2.0

Proof Using the Definition 9 of fuzzy Shehu transform, we obtain:

s[f'(m)] Z/OOoeXp< ; )of(m)dz (109)

Letr € [0, 1]. Substituting ¢ = ¥t and dt = %{ in Eq. (109) yields:

o] = Lo [Fen( ) 0 foa = Lo [Ten( ) o f
s[fon] = 5@/0 exp(q—) o f©)dt = 5 @/0 exp( 5 ) o f ()

1 o0
256/0 exp< 5 )@f(qt)dt
= <l exp< )f(qt rydt, — /00 exp< >f(qt r)dt)

s 0

1 14
=<5 ( ) (19 )) *QF(ﬁ’q)
This complete the proof. O

Property 3 Exponential shifting property. Let the f (t) be a continuous fuzzy-valued function
on [0, 00) and ¥ be an arbitrary constant, and then:

S[GXP(ﬁt)Gf(t)] (p.q)=F(p—17q.9). (110)

Proof.
From Eq. (21), we get:

s[fo]ev.o=q0 fo exp (—p1) © f(gndr. (i

Then, for any fixed r € [0, 1], we have:

S[exp(ﬂt)Qf(t)] (1%61)2/(; eXP(Wl‘))@ttXp( p )@f(t)dt
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- 9 ; 00 -
/(; < (p— q)> O f(dr =gq @/0 exp (—(p — vq)t) © f(gt)dt

=< exp (—(p — 9q)1) f(qt; r)dt/ eXp(—(p—l?q)t)f(qt;r)dt>
=(F(p—99,9), F(p —9q.9)) =S[fO1(p—¥q) = F(p —9q,q). (112)

Property 4 Multiple shift property. Let f (t) be a continuous fuzzy-valued function on [0, 00)
and S [f(t)] (p,q) = F(p, q), and then:

(113)

S [r" o) f(t)] P.q)=(=q@)"©

Proof.
Applying Eq.(21) and Leibniz’s rule, we obtain:

iF(p, q) = i/ exp <_—pt> ® f(t)dt = / i <exp <_—pt>> © f(t)dt
dp dp Jo q 0o 0p q

- _lf exp (lm) Ote fHdt =S [r © f(r)] . q)
0 q

q
d
=—q®dfF(p,q) (for n=1). (114)
4
Besides, to generalize the result of Eq. (114), we assume Eq. (113) holds for n = k, and then:
[e¢) —nt 5 dk
/ exp <—p) ot o fndt = (—9)f 0 < F(p. ). (115)
0 q dp
Thus:
d 00 —pt . B ‘ dkt1
— exp| — | OO f(Hdt = (=¢)" © ——5F(p.9). (116)
dp Jo q dp**

Thanks to Leibniz’s rule which help us to get:

@ <>oexp<_—’”>@r"@f(r)dr:/oo 9 (xp( Pt >)®z o fndt
dp Jo q o dp q
1 00 _ 1 Akl
=—f®/ exp O o fidt = (~)F © — Fpog).  (117)
q 0 61 dp

The above result yields:

00 —pt o B . lan
/ exp (—) Ot o fdr = (" O S F(p.g). (118)
0 q dp
Finally, Eq.(117) validates the result of Eq.(113) holds for n = k + 1. The proof is
complete. O
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