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Abstract
In this article, first integral method [Ref. : Feng. Z., Journal of Physics A: Mathematical
and General, 35(2002), 343–349] is used to find exact solutions of some nonlinear partial
differential equations. It is applied to find exact solutions to a variant Boussinesq equation, the
extendedmodifedKorteweg-deVries equation and theKudryashov–Sinel’shchikov equation.
The properties of solutions are then discussed and plotted by using suitable values of the
parameters involved. Shock wave-like solutions for variant Boussinesq and extended mKdv
equations are found. For the Kudryashov–Sinel’shchikov equation one singular and two
exponential solutions are obtained.

Keywords Variant Boussinesq equation · Extended mK-dV equation ·
Kudryashov–Sinel’shchikov equation · First integral method · Exact solutions

Mathematics Subject Classification 13P25 · 35A25 · 35C07 · 35Q51 · 35Q53

1 Introduction:

Recently, study of nonlinear partial differential equations (NPDE) has got paramount impor-
tance to get physical and mathematical insights for problems related to diverse disciplines,
such as, fluid and plasma dynamics, astrophysics, mathematical biology, nonlinear optics,
chemistry etc.Many analytical techniques have been developed and the use of suitable numer-
ical methods significantly enriches the solution procedure for them.Obtaining exact solutions
gives an advantage in studying these equations. But till now there is no general method to
solve NPDEs as well as for a higher order linear PDEs. Numerous methods such as tanh
method (Malfliet and Hereman 1996), homogeneous balance method (Wang et al. 1996,
Maitra et al. 2019), G ′/G expansion method (Manafian and Lakestani 2017), Lie symmetry
analysis method (Hydon 2000), sine-cosine method (Wazwaz 2004), Kudryashov method
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(Kudryashov 2000), new version of Kudryashov and exponential methods (Hosseini et al.
2020), expα and Jacobi elliptic function method (Hosseini et al. 2020), extended mapping
method (Ma et al. 2012) etc are used to obtain exact solutions of NPDEs. The first integral
method is one of the effective methods which was first proposed by Zhaosheng Feng in the
article (Feng 2002), based on the theory of commutative algebra. This method is widely
used to find analytic solutions of NPDEs. Raslan used this method in (Raslan 2008) to find
exact solutions of Fisher equation and modified equal width equation. Taghizadeh et al. con-
sturcted exact solutions of the modified KdV-KP equation and Burgers-KP equation by using
this first integral method in (Taghizadeh et al. 2011). Exact solutions of the Eckhaus equation
(Taghizadeh et al. 2012) and nonlinear Schrödinger equation (Taghizadeh et al. 2011) are
also obtained by Taghizadeh et al. by using this method. Hosseini et al. applied this method
to obtain exact solutions of KdV system, Kaup-Boussinesq system and Wu-Zhang system in
(Hosseini et al. 2012).

In this article, we use the first integral method to obtain exact solutions of some remarkable
NPDEs- a variant Boussinesq equation, the extended modifed Korteweg-de Vries(K-dV)
equation and the Kudryashov–Sinel’shchikov equation.

A variant Boussinesq equation is given by

Ht + (Hu)x + uxxx = 0,

ut + Hx + uux = 0.

In his article, (Sachs 1988) Robert L. Sachs showed the integrability of this system; he
expressed it in bilinear form and constructed infinite number of rational solutions. Solitary
wave solutions for this system were found by Wang in (Wang 1995). Hirota showed that this
integrable system is related to firstmodifiedKP equation (Hirota 1985). Jabbari et al. obtained
approximate solution of the Variant Boussinesq equation by the HAM and Homotopy Padé
technique (Jabbari et al. 2014).

The extended modified K-dV equation is given by

ut + a1uxxx + a2ux + a3uux + a4u
2ux = 0.

For different values of the parameters a1, a2, a3, a4 this equation gives different types of K-
dV equations which are so important to describe many physical models in different branches
of science, e.g. to describe dust acoustic solitary waves in plasmas, dust ion-acoustic waves
in Saturn’s F-ring and in the supernova shells etc (Drazin and Johnson 1989).

This equation is now called as Gardener equation. It is integrable by inverse scattering
transform and has infinitely many conservation laws. Gardener equation models deep ocean
waves and is an extension of KdV equation which models shallow water waves (Daoui et al.
2014). Hanze Liu and Jibin Li obtained some exact solutions using Lie symmetry analysis
and dynamical systems approach (Liu and Li 2010). Generalised Gardener equation

ut + (p + qun + ru2n)ux + uxxx = 0.

has been considered by Lu et al. (Lu and Liu 2010).
In 2009 Kudryashov and Sinel’shchikov derived the following equation (Kudryashov and

Sinel’shchikov 2010), known as Kudryashov-Sinel’shchikov equation:

ut + αuux + uxxx − (uuxx )x − βuxuxx = 0.

It describes nonlinear pressure waves in a mixture of liquid and gas bubbles and can be
considered as a generalization of the KdV and BKdV equations. In He et al. (2013) Y. He et
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al. found exact solutions of this equation by G ′/G expansion method. This equation is also
studied in the articles (Randruut 2011, Ryabov 2010).

The rest of this article is arranged as follows: in Sect. 2, the method of finding exact solu-
tions using first integral of differential equations is discussed. Using this method some exact
solutions of the variantBoussinesq systemgiven in (8), (9) and of the extendedmodifiedK-dV
equation are obtained in Sects. 3, 4 respectively. And that for the Kudryashov–Sinel’shchikov
equation is given in Sect. 5. Ultimately in Sect. 6 we draw the conclusion of this work.

2 The first integral method

Definition (Goriely 2001) Consider a system of differential equations that are of class Ck

with k > 0 on an open set U of Kn

dXi

dξ
= fi (X1(ξ), X2(ξ), ..., Xn(ξ)), i = 1, 2, ..., n. (1)

Then a C1 function Q : U → K is said to be a time independent first integral of (1) if

dQ

dξ
= ∂Q

∂X1
.
dX1

dξ
+ ... + dQ

dXn
.
dXn

dξ
= 0

on the solutions Xi = Xi (ξ) of (1).
In the first integral method at first we reduce a given PDE

F(u, ux , ut , uxx , ...) = 0 (2)

to an ordinary differential equation(ODE)

G

(
f (ξ),

d f

dξ
,
d2 f

dξ2
, ...

)
= 0 (3)

by using the transformation u(x, t) → f (ξ) where ξ = kx − ωt . Then we introduce new
dependent variables X(ξ) = f (ξ) and Y (ξ) = d f

dξ . Thus (3) reduces to a system of ODEs

dX

dξ
= Y , (4)

dY

dξ
= P(X , Y ). (5)

From the theory of integrability of ordinary differential equations (ODE) we know that if one
can found two first integrals of the system of ODEs (4), (5) under the same conditions then
the general solution of (4), (5) can be obtained explicitly Goriely (2001). But unfortunately
there is no systematic theory for finding a first integral of a plane autonomous system.
Using Hilbert-Nullstellensatz theorem of commutative algebra Zhaosheng Feng obtained
the following division theorem (Feng 2002), applying which a polynomial first integral (if
exists) can be obtained systematically.

Division Theorem: If p(w, z), q(w, z) are polynomials inC[w, z] and p(w, z) is irreducible
in C[w, z] and q(w, z) vanishes at all zero points of p(w, z), then there exists a polynomial
g(w, z) in C[w, z] such that q(w, z) = g(w, z)p(w, z).

Now let us try to find a first integral of (4), (5) in the form Q(X , Y ) = �m
i=0ai (X).Y i , an

irreducible polynomial in C[X , Y ] such that
Q(X(ξ), Y (ξ)) = �m

i=0ai (X(ξ)).Y (ξ)i = 0 (6)
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where X = X(ξ), Y = Y (ξ) are nontrivial solutions of (4), (5). The polynomials ai (X) of
X are relatively prime in C[X , Y ] and am(X) is not identically zero.

dQ
dξ is also a polynomial in X , Y and Q[X(ξ), Y (ξ)] = 0 give

[
dQ
dξ

]
(4),(5)

= 0, which

shows that (6) is a first integral of (4), (5).
By division theorem there exists polynomial g(X) + h(X)Y such that

dQ

dξ
= (g(X) + h(X)Y )Q(X , Y ) = (g(X) + h(X)Y )�m

i=0ai (X).Y i . (7)

Now comparing the coefficients of different powers of Y from both sides of (7) we get a
system of algebraic equations, solving which we find ai (X)s and then Y from (6). Putting
this value of Y in (4) and integrating we obtain exact solution of (2) as

u(x, t) = f (ξ) = X(ξ) = X(kx − ωt).

3 Variant Boussinesq equation

A variant Boussinesq equation is given by

Ht + (Hu)x + uxxx = 0, (8)

ut + Hx + uux = 0. (9)

where u = u(x, t), H = H(x, t); the suffixes indicate the partial derivatives with respect to
the corresponding independent variables. Physically this is a model for water waves where
H(x, t) describes the total depth and u(x, t) is velocity. By using the transformation ξ =
kx − ωt , Eqs. (8), (9) respectively become

−ωH ′ + k(Hu)′ + k3u′′′ = 0, (10)

−ωu′ + kH ′ + kuu′ = 0

⇒ H = ω

k
u − 1

2
u2. (11)

Using (11) in (10) and integrating once (taking integration constant 0) we get,

− ω2

k
u + 3ω

2
u2 − k

2
u3 + k3u′′ = 0. (12)

Now we reduce (12) to the following system by the new dependent variables X(ξ), Y (ξ),
defined by X(ξ) = u(ξ), Y (ξ) = u′(ξ),

dX

dξ
= Y , (13)

dY

dξ
= 1

k3

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)
. (14)

Here, we want to find a polynomial first integral of (13), (14) in the form of an irreducible
polynomial Q(X , Y ) = �m

i=0ai (X)Y i = 0, where X(ξ), Y (ξ) are nontrivial solutions of
(13), (14). Q(X , Y ) is a first integral of (13), (14). We consider the following two cases:
Case 1: m=1
In this case

Q(X , Y ) = a0(X) + a1(X)Y = 0, a1(X) �= 0. (15)
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By division theorem there exist polynomials g(X), h(X) such that

dQ

dξ
= (g(X) + h(X)Y )(a0(X) + a1(X)Y )

⇒ ȧ0(X)Y + ȧ1(X)Y 2 + 1

k3
a1(X)

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)

= (g(X) + h(X)Y ) (a0(X) + a1(X)Y ) . (16)

Equating the coefficients of different powers of Y from (16) we obtain a system of equations.
The coefficient of Y 2 gives

ȧ1(X) = h(X)a1(X). (17)

Since a1(X) is a polynomial in X then (17) shows that

h(X) = 0, a1(X) = constant = 1(say). (18)

Then the coefficients of Y and Y free terms in (17) are respectively:

ȧ0(X) = g(X), (19)

1

k3
a1(X)

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)
= g(X)a0(X). (20)

Comparing the degrees of g(X), a0(X) from (19) and (20), we get deg g(x) = 1 only and
deg a0(X) = 2.
So, we choose g(X) = c0 + c1X and a0(X) = d0 + d1X + d2X2, where ci , di are constants
to be determined. Using these forms of g(X), a0(X) in (19) and (20) we get a system of
algebraic equations, solving which we obtain

a0(X) = ∓
(

1

2k
X2 − ω

k2
X

)
. (21)

Thus we obtain a first integral of (13) and (14) in the form

∓
(

1

2k
X2 − ω

k2
X

)
+ Y = 0

⇒ Y = ±
(

1

2k
X2 − ω

k2
X

)
. (22)

Then from (13) we obtain exact solutions of (8) and (9) as follows:

u(x, t) = u(ξ) = X(ξ) = 2ω

eω(kx−ωt)/k2 + k
, H(x, t) = ω

k
u − 1

2
u2 = 2ω2eω(kx−ωt)/k2

k(eω(kx−ωt)/k2 + k)2
;
(23)

and

u(x, t) = 2ωeω(kx−ωt)/k2

1 + keω(kx−ωt)/k2
, H(x, t) = 2ω2eω(kx−ωt)/k2

k(1 + keω(kx−ωt)/k2)2
. (24)

The solution u(x, t) in (24) represents shock wave in Fig. 1, whereas H(x, t) gives a periodic
like wave in Fig. 2. Shock pattern for u(x, t) indicates the sudden changes in the velocity.
Fig. 2. shows that the water depth changes almost periodically.

Now we consider the case for m=2
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Fig. 1 Plot of u(x, t) given in (24) with ω = k = 1
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Fig. 2 Plot of H(x, t) given in (24) with ω = k = 1
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Case 2: m=2
Here

Q(X , Y ) = a0(X) + a1(X)Y + a2(X)Y 2 = 0, a2(X) �= 0. (25)

By division theorem there exist polynomials g(X), h(X) such that

dQ

dξ
= (g(X) + h(X)Y )(a0(X) + a1(X)Y + a2(X)Y 2)

⇒ ȧ0(X)Y + ȧ1(X)Y 2 + 1

k3
a1(X)

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)
+ ȧ2(X)Y 3

+ 2

k3
a2(X)Y

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)

= (g(X) + h(X)Y )(a0(X) + a1(X)Y + a2(X)Y 2).

(26)

Equating the coefficients of different powers of Y from both sides of (26) we obtain the
following system of equations:

ȧ2(X) = h(X)a2(X), (27)

ȧ1(X) = g(X)a2(X) + h(X)a1(X), (28)

ȧ0(X) + 2

k3
a2(X)

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)
= g(X)a1(X) + h(X)a0(X), (29)

1

k3
a1(X)

(
ω2

k
X − 3ω

2
X2 + k

2
X3

)
= g(X)a0(X). (30)

Since a2(X) is a polynomial in X then from (27) we get

h(X) = 0, a2(X) = constant = 1(say). (31)

Then from (28), (29), (30) we find that deg g(X) = 1, deg a1(X) = 2, deg a0(X) = 4. Let
us take

g(X) = b0 + b1X , a1(X) = c0 + c1X + c2X
2,

a0(X) = d0 + d1X + d2X
2 + d3X

3 + d4X
4, (32)

where bi , ci , di are constants to be determined. Using (32) in (28)–(30) and solving we obtain
the following two cases:

c0 = 0, c1 = ±2ω

k2
, c2 = ∓1

k
(33)

and in both of these cases

d0 = 0, d1 = 0, d2 = ω2

k4
, d3 = − ω

k3
, d4 = 1

4k2
. (34)

Thus we get the values of a0(X), a1(X), a2(X), using which from (25) we obtain two values
of Y . We put these values of Y in (13) and after integration get two exact solutions of (8) and
(9) which are same as (23) and (24).
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4 Extendedmodified KdV equation

The extended modified K-dV equation is given by

ut + a1uxxx + a2ux + a3uux + a4u
2ux = 0, (35)

where u = u(x, t) and a1, a2, a3, a4 are real parameters. For a1 = a3 = 1, a2 = a4 = 0
the Eq. (35) represents the K-dV equation ut + uux + uxxx = 0 and when a1 = −1, a3 =
−6, a2 = a4 = 0 (35) reduces to the classical K-dV equation ut − 6uux − uxxx = 0.
When a1 = 1, a4 = 6, a2 = a3 = 0 then (35) gives the celebrated mK-dV equation
ut + 6u2ux + uxxx = 0.

We reduce the PDE (35) to the following ODE by using the transformation u(x, t) =
f (ξ), ξ = kx − ωt and integrating once (taking integration constant 0):

a1k
3 f ′′(ξ) − ω f (ξ) + a2k f (ξ) + a3

k

2
{ f (ξ)}2 + a4

k

3
{ f (ξ)}3 = 0. (36)

We obtain a system of ODEs from (36) by introducing two new dependent variables X(ξ) =
f (ξ), Y (ξ) = f ′(ξ):

dX

dξ
= Y , (37)

dY

dξ
= 1

a1k3

{
(ω − a2k)X − a3k

2
X2 − a4k

3
X3

}
. (38)

Let X(ξ), Y (ξ) be nontrivial solutions of (37), (38). We wish to find a first integral of the
above system in the form Q(X , Y ) = �m

i=0bi (X)Y i = 0, an irreducible polynomial in X , Y .
Here we consider the following two cases for m:
Case 1: m=1 Here Q(X , Y ) = b0(X) + b1(X)Y . By division theorem there exists a poly-
nomial g(X) + h(X)Y such that

dQ

dξ
= (g(X) + h(X)Y )(b0(X) + b1(X)Y )

⇒ ḃ0(X)Y + ḃ1(X)Y 2 + 1

a1k3
b1(X)

{
(ω − a2k)X − a3k

2
X2 − a4k

3
X3

}

= (g(X) + h(X)Y )(b0(X) + b1(X)Y ). (39)

Equating the coefficients of different powers of Y from both sides of (39) we get the following
system of equations:

ḃ1(X) = h(X)b1(X), (40)

ḃ0(X) = h(X)b0(X) + g(X)b1(X), (41)
1

a1k3
b1(X)

{
(ω − a2k)X − a3k

2
X2 − a4k

3
X3

}
= g(X)b0(X). (42)

As b1(X) is a polynomial in X , from (40) we get h(X) = 0, b1(X) = constant = 0(say).
Then from (41), (42) we get deg g(X) = 1 only and deg b0(X) = 2. Let us suppose

g(X) = c0 + c1X , b0(X) = d0 + d1X + d2X
2. (43)

We use these values of g(X), b0(X) in (41), (42). We equate the coefficients of different
powers of X from both sides of the resulting equations. We thus obtain a system of algebraic
equations, solving which we find the values of the constants ci , di .
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We obtain b0(X) = ±
(
a3

√
− 1

6a1a4k2
X −

√
− a4

6a1k2
X2

)
.

From the first integral b0(X) + b1(X)Y = 0, we get

Y = −b0(X) = ±
(
a3

√
− 1

6a1a4k2
X −

√
− a4
6a1k2

X2

)
. (44)

Then from (37), after integration we obtain exact solutions of (35) as:

u(x, t) = f (ξ) = X(ξ) =
a3

√
− 1

a1a4k2√
− a4

a1k2
− exp

(
∓a3

√
− 1

6a1a4

(
x − (a2 − a23

6a4
)t

)) . (45)

Case 2: m=2 Here we wish to find a first integral of (37), (38) in the form

Q(X , Y ) = b0(X) + b1(X)Y + b2(X)Y 2 = 0 (46)

where X(ξ), Y (ξ) are solutions of (37), (38). By division theorem there exists polynomial
g(X) + h(X)Y satisfying

dQ

dξ
= (g(X) + h(X)Y )(b0(X) + b1(X)Y + b2(X)Y 2)

⇒ ḃ0(X)Y + ḃ1(X)Y 2 + 1

a1k3
b1(X)

{
(ω − a2k)X − a3k

2
X2 − a4k

3
X3

}
+ ḃ2(X)Y 3

+ 2

a1k3
b2(X)Y

{
(ω − a2k)X − a3k

2
X2 − a4k

3
X3

}

= (g(X) + h(X)Y )(b0(X) + b1(X)Y + b2(X)Y 2). (47)

Calculating the coefficients of Y from both sides of (47), in a similar fashion as in the previous
cases, we obtain that

b0(X) = a33k − 6a2a3a4k + 6a3a4ω

3a1a24k
3

X + ω − a2k

a1k3
X2 − a3

3a1k2
X3 − a4

6a1k2
X4, (48)

b1(X) = a23k + 6a4(ω − a2k)√
6a1(−a4)

3
2 k2

+
√

2
3a3√−a4a1k

X −
√

− 2a4
3√

a1k
X2, (49)

b2(X) = 1. (50)

Now using (48)-(50) in (46) with the particular values a1 = a2 = a3 = 1, a4 = −1 and
ω = 7k

6 we get

Y = ± (X − 1)X√
6k

, (51)

Accordingly from (37) we obtain exact solutions of (35) as

u(x, t) = f (ξ) = X(ξ) = 1

1 + exp
(
±(x − 7

6 t)/
√
6
) , (52)

which show shock like waves in the Figs. 3 and 4.
In general for arbitrary values of a1, a2, a3 and a4 = −1 we find the exact solution

u(x, t) = a3
1 + exp

(
a3(x − 1

6 (6a2 + a23)t)/
√
6a1

) . (53)
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Fig. 3 Plot of u(x, t) given in (52) with − sign

Fig. 4 Plot of u(x, t) given in (52) with + sign
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5 Kudryashov–Sinel’shchikov equation

ut + αuux + uxxx − (uuxx )x − βuxuxx = 0, (54)

where u = u(x, t) and α, β are real parameters. Under the transformation u(x, t) =
f (ξ), ξ = kx − ct equation (54) reduces to (integrating once and taking integration constant
0)

− c f (ξ) + αk

2
( f (ξ))2 + k3 f ′′(ξ) − k3 f (ξ) f ′′(ξ) − βk3

2

(
f ′(ξ)

)2 = 0. (55)

By introducing new dependent variables X(ξ) = f (ξ), Y (ξ) = f ′(ξ) (55) reduces to the
following system:

dX

dξ
= Y , (56)

dY

dξ
=

βk3

2 Y 2 + cX − αk
2 X2

k3(1 − X)
. (57)

To reduce the right hand side of (57) to a polynomial form we use the substitution

dξ = k3(1 − X)dz. (58)

Then (56), (57) become

dX

dz
= dX

dξ

dξ

dz
= k3(1 − X)Y , (59)

dY

dz
= dY

dξ

dξ

dz
= βk3

2
Y 2 + cX − αk

2
X2. (60)

Then we proceed in a similar fashion as in the earlier cases and obtain the following exact
solutions of (54):

u(x, t) = 2

1 − exp
{±√

α(x − αt)
} , (wi th β = −4) (61)

u(x, t) = − 2

β
+ exp

{
±

√
α

2 + β

(
x + α

β
t

)}
, (wi th β �= −2, 0) (62)

u(x, t) = exp

{
±

√
α

2 + β

(
x − α

2 + β
t

)}
, (wi th β �= −2). (63)

(61), (62), (63) represent solution of (54) with some particular values of the parameter β

indicated in the parenthesis. The solutions (61) show that the pressure wave governed by
(54) does not change much but has a singularity along x = αt , where α is constant. However
solutions (62), (63) show exponential blow up or decay for u(x, t) at ∞ or −∞.

6 Conclusion

Because of its simple computational procedure the first integral method is widely applicable
to solve PDEs with polynomial first integral. Moreover, this method is less complicated
compared to some other methods (e.g. homogeneous balance method, Lie symmetry method
etc) for finding exact solutions of nonlinear PDEs. In this work, the first integral method
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Fig. 5 Plot of u(x, t) given in (61) with + sign and α = 1

Fig. 6 Plot of u(x, t) given in (61) with − sign and α = 1
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Fig. 7 Plot of u(x, t) given in (62) with + sign and α = 1, β = 1

Fig. 8 Plot of u(x, t) given in (62) with − sign and α = 1, β = 1
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Fig. 9 Plot of u(x, t) given in (63) with + sign and α = 1, β = 1

Fig. 10 Plot of u(x, t) given in (63) with − sign and α = 1, β = 1
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has been applied successfully to obtain the exact solutions of the above equations. The
obtained solutions are checked by using the Mathematica software and then plotted using
some particular values of the parameters used in the corresponding equation. For variant
Boussinesq system shock wave-like soutions for u(x, t) are obtained here, whereas solitary
wave solutions were found by Wang in (Wang 1995). Shock wave-like solutions are also
found for the extended mK-dV equation. For the Kudryashov–Sinel’shchikov equation, the
solution (61) has singularity along x = αt , where α is constant. The other solutions for this
system exponentially blow up or decay at ∞ or −∞.
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