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Abstract
In this paper, we study the indirect stability of Timoshenko system with local or global
Kelvin–Voigt damping, under fully Dirichlet or mixed boundary conditions. Unlike Zhao et
al. (Acta Mathematica Sinica Engl Ser 21(3):655–666, 2004), Tian and Zhang (Mathematik
und Physik 68(1), 2017), and Liu and Zhang (SIAM J Control Optim 56(6):3919–3947,
2018), in this paper, we consider the Timoshenko system with only one locally or globally
distributed Kelvin–Voigt damping D [see System (1.1)]. Indeed, we prove that the energy of
the system decays polynomially of type t−1 and that this decay rate is in some sense optimal.
The method is based on the frequency domain approach combining with multiplier method.

Keywords Timoshenko beam · Kelvin–Voigt damping · Semigroup · Stability

Mathematics Subject Classification 35B35 · 35B40 · 93D20

1 Introduction

In this paper, we study the indirect stability of a one-dimensional Timoshenko system with
only one local or global Kelvin–Voigt damping. This system consists of two coupled hyper-
bolic equations:

ρ1utt − k1 (ux + y)x = 0, (x, t) ∈ (0, L) × R+,

ρ2ytt − (k2yx + Dyxt )x + k1 (ux + y) = 0, (x, t) ∈ (0, L) × R+.
(1.1)
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System (1.1) is subject to the following initial conditions:

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ (0, L),

y(x, 0) = y0(x), yt (x, 0) = y1(x), x ∈ (0, L),
(1.2)

in addition to the following boundary conditions:

u(0, t) = y(0, t) = u(L, t) = y(L, t) = 0, t ∈ R+, (1.3)

or
u(0, t) = yx (0, t) = u(L, t) = yx (L, t) = 0, t ∈ R+. (1.4)

Here, the coefficients ρ1, ρ2, k1, and k2 are strictly positive constant numbers. The function
D ∈ L∞(0, L), such that D(x) ≥ 0, ∀x ∈ [0, L]. We assume that there exist D0 > 0,
α, β ∈ R, 0 ≤ α < β ≤ L, such that:

D ∈ C ([α, β]) and D(x) ≥ D0 > 0 ∀ x ∈ (α, β). (H)

The hypothesis (H) means that the control D can be locally near the boundary (see Fig. 1a,
b), or locally internal (see Fig. 2a), or globally (see Fig. 2b). Indeed, in the case when D is
local damping (i.e., α �= 0 or β �= L), we see that D is not necessary continuous over (0, L)

(see Figs. 1a, b and 2a).
The Timoshenko system is usually considered in describing the transverse vibration of a

beam and ignoring damping effects of any nature. Indeed, we have the following model, see
in Timoshenko (1921): {

ρϕt t = (K (ϕx − ψ))x
Iρψt t = (E Iψx )x − K (ϕx − ψ) ,

where ϕ is the transverse displacement of the beam andψ is the rotation angle of the filament
of the beam. The coefficients ρ, Iρ, E, I , and K are, respectively, the density (the mass per

(a) (b)

Fig. 1 The control is locally near the boundary

(a) (b)

Fig. 2 The control is locally internal or globally
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unit length), the polar moment of inertia of a cross section, Young’s modulus of elasticity,
the moment of inertia of a cross section, and the shear modulus, respectively.

The stabilization of the Timoshenko system with different kinds of damping has been
studied in number of publications. For the internal stabilization, Raposo et al. (2005) showed
that the Timoshenko system with two internal distributed dissipation is exponentially stable.
Messaoudi and Mustafa (2008) extended the results to nonlinear feedback laws. Soufyane
and Whebe (2003) showed that Timoshenko system with one internal distributed dissipation
law is exponentially stable if and only if the wave propagation speeds are equal (i.e., k1/ρ1 =
ρ2/k2); otherwise, only the strong stability holds. Indeed, Muñoz Rivera and Racke (2008)
they improved the results of Soufyane andWhebe (2003), where an exponential decay of the
solution of the system has been established, allowing the coefficient of the feedback to bewith
an indefinite sign. Wehbe and Youssef (2009) proved that the Timoshenko system with one
locally distributed viscous feedback is exponentially stable if and only if thewave propagation
speeds are equal (i.e., k1/ρ1 = ρ2/k2); otherwise, only the polynomial stability holds. Tebou
in Tebou (2015) showed that the Timoshenko beam with same feedback control in both
equations is exponentially stable. The stability of the Timoshenko system with thermoelastic
dissipation has been studied in Sare andRacke (2009), Júnior et al. (2013), Fatori et al. (2014),
and Hao and Wei (2018). The stability of Timoshenko system with memory type has been
studied in Ammar-Khodja et al. (2003), Sare and Racke (2009), Guesmia and Messaoudi
(2009), Messaoudi and Said-Houari (2009), and Abdallah et al. (2018). For the boundary
stabilization of the Timoshenko beam, Kim and Renardy (1987) showed that the Timoshenko
beam under two boundary controls is exponentially stable. Ammar-Khodja et al. (2007)
studied the decay rate of the energy of the nonuniform Timoshenko beam with two boundary
controls acting in the rotation-angle equation. In fact, under the equal speedwave propagation
condition, they established exponential decay results up to an unknown finite-dimensional
space of initial data. In addition, they showed that the equal speedwave propagation condition
is necessary for the exponential stability. However, in the case of non-equal speed, no decay
rate has been discussed. This result has been recently improved by Wehbe et al. in Bassam
et al. (2015); i.e., the authors in Bassam et al. (2015) proved nonuniform stability and an
optimal polynomial energy decay rate of the Timoshenko system with only one dissipation
law on the boundary. In addition to the previously cited papers, we mention Akil et al.
(2019) and Benaissa and Benazzouz (2017) for the stability of the Timoshenko system with
fractional damping on the boundary. For the stabilization of the Timoshenko beam with
nonlinear term, we mention Muñoz Rivera and Racke (2002), Alabau-Boussouira (2004),
Araruna and Zuazua (2008), Messaoudi and Mustafa (2008), Cavalcanti et al. (2013), and
Hao and Wei (2018).

Kelvin–Voigt material is a viscoelastic structure having properties of both elasticity and
viscosity. There are a number of publications concerning the stabilization of wave equation
with global or local Kelvin–Voigt damping. For the global case, the authors in Huang (1988)
and Liu et al. (1998) proved the analyticity and the exponential stability of the semigroup.
When the Kelvin–Voigt damping is localized on an interval of the string, the regularity
and stability of the solution depend on the properties of the damping coefficient. Notably, the
system is more effectively controlled by the local Kelvin–Voigt damping when the coefficient
changesmore smoothly near the interface (see Liu and Liu 1998; Renardy 2004; Zhang 2010;
Liu and Zhang 2016; Liu et al. 2017).

Last but not least, in addition to the previously cited papers, the stability of the Timoshenko
system with Kelvin–Voigt damping has been studied in few papers. Zhao et al. in Zhao et al.
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(2004) considered the Timoshenko system with local distributed Kelvin–Voigt damping:

ρ1utt − [k1 (ux + y)x + D1(uxt − yt )
]
x = 0, (x, t) ∈ (0, L) × R+,

ρ2ytt − (k2yx + D2yxt )x + k1 (ux + y)x + D1(uxt − yt ) = 0, (x, t) ∈ (0, L) × R+.

(1.5)
They proved that the energy of the System (1.5) subject to Dirichlet–Neumann boundary
conditions has an exponential decay rate when coefficient functions D1, D2 ∈ C1,1([0, L])
and satisfy D1 ≤ cD2(c > 0). Tian and Zhang (2017) considered the Timoshenko System
(1.5) under fully Dirichlet boundary conditions with locally or globally distributed Kelvin–
Voigt dampingwhen coefficient functions D1, D2 ∈ C([0, L]). First, when theKelvin–Voigt
damping is globally distributed, they showed that the Timoshenko System (1.5) under fully
Dirichlet boundary conditions is analytic. Next, for their system with local Kelvin–Voigt
damping, they analyzed the exponential and polynomial stability according to the properties
of coefficient functions D1, D2. Liu and Zhang (2018); on (−1, 1) × R+, they considered
the Timoshenko System (1.5) under fully Dirichlet boundary conditions, such that Di ∈
L∞(−1, 1), Di (x) = 0 for ∈ x ∈ [−1, 0], Di (x) > 0 is continuous for x ∈ [0, 1], for
i = 1, 2. Also, they assumed that there exist positive constants k1, k2 and nonnegative
constants α1, α2, such that limx→0+ Di (x)/xαi = ki for i = 1, 2. They analyzed the
exponential and polynomial stability according to the properties of coefficient functions
D1, D2. From the above, we conclude that the number of dampings and its localization play
a crucial role in the stabilization of the system. Indeed and to say practically, more than one
damping can be either impossible or expensive. Also, we cannot always specify the damping
region.Due to the previous restrictions,weweremotivated to study the stabilization of System
(1.1) generally. Thus, in this paper, unlike Zhao et al. (2004), Tian and Zhang (2017) and Liu
and Zhang (2018), we consider the Timoshenko system with only one locally (distributed in
any subinterval of the domain) or globally distributed Kelvin–Voigt damping D [see System
(1.1)]. Under hypothesis (H),we show that the energy of the Timoshenko System (1.1) subject
to initial state (1.2) to either the boundary conditions (1.3) or (1.4) has a polynomial decay
rate of type t−1 and that this decay rate is in some sense optimal.

This paper is organized as follows: In Sect. 2, first, we show that the Timoshenko System
(1.1) subject to initial state (1.2) to either the boundary conditions (1.3) or (1.4) can reformu-
late into an evolution equation and we deduce the well-posedness property of the problem by
the semigroup approach. Second, using a criteria of Arendt and Batty (1988), we show that
our system is strongly stable. In Sect. 3, we prove the polynomial energy decay rate of type
t−1 for the System (1.1)–(1.2) to either the boundary conditions (1.3) or (1.4). In Sect. 4, we
prove that the energy decay rate of type t−1 is in some sense optimal.

2 Well-posedness and strong stability

2.1 Well-posedness of the problem

In this part, under condition (H), using a semigroup approach, we establish well-posedness
result for the Timoshenko System (1.1)–(1.2) to either the boundary conditions (1.3) or (1.4).
The energy of solutions of the System (1.1) subject to initial state (1.2) to either the boundary
conditions (1.3) or (1.4) is defined by:

E (t) = 1

2

∫ L

0

(
ρ1 |ut |2 + ρ2 |yt |2 + k1 |ux + y|2 + k2 |yx |2

)
dx.
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Let (u, y) be a regular solution for the System (1.1). Multiplying the first and the second
equation of (1.1) by ut and yt , respectively, then using the boundary conditions (1.3) or (1.4),
we get:

E ′ (t) = −
∫ L

0
D(x) |yxt |2 dx ≤ 0.

Thus, System (1.1) subject to initial state (1.2) to either the boundary conditions (1.3) or
(1.4) is dissipative in the sense that its energy is non-increasing with respect to the time t .
Let us define the energy spaces H1 and H2 by:

H1 = H1
0 (0, L) × L2 (0, L) × H1

0 (0, L) × L2 (0, L)

and
H2 = H1

0 (0, L) × L2 (0, L) × H1∗ (0, L) × L2 (0, L) ,

such that:

H1∗ (0, L) =
{
f ∈ H1(0, L) |

∫ L

0
f dx = 0

}
.

It is easy to check that the space H1∗ is Hilbert spaces over C equipped with the norm:

‖u‖2H1∗ (0,L)
= ‖ux‖2 ,

where ‖ · ‖ denotes the usual norm of L2 (0, L). Both energy spacesH1 andH2 are equipped
with the inner product defined by:

〈U ,�〉H j
= ρ1

∫ L

0
vϕ dx+ρ2

∫ L

0
zθ dx+ k1

∫ L

0
(ux + y) (φx + ψ) dx+ k2

∫ L

0
yxψx dx

for all U = (u, v, y, z) and � = (φ, ϕ,ψ, θ) in H j , j = 1, 2. We use ‖U‖H j to denote the
corresponding norms. We now define the following unbounded linear operators A j in H j

by:

D (A1) = {U = (u, v, y, z) ∈ H1 | v, z ∈ H1
0 (0, L), u ∈ H2 (0, L) ,

(k2yx + Dzx )x ∈ L2 (0, L)
}
,

D (A2) =
{
U = (u, v, y, z) ∈ H2 | v ∈ H1

0 (0, L), z ∈ H1∗ (0, L), u ∈ H2 (0, L) ,

(k2yx + Dzx )x ∈ L2 (0, L) , yx (0) = yx (L) = 0

}

and for j = 1, 2 :

A jU =
(

v,
k1
ρ1

(ux + y)x , z,
1

ρ2
(k2yx + Dzx )x − k1

ρ2
(ux + y)

)
,

∀ U = (u, v, y, z) ∈ D
(A j
)
.

If U = (u, ut , y, yt ) is the state of System (1.1)–(1.2) to either the boundary conditions
(1.3) or (1.4), then the Timoshenko system is transformed into a first order evolution equation
on the Hilbert space H j : {

Ut (x, t) = A jU (x, t),
U (x, 0) = U0(x),

(2.1)

where:
U0 (x) = (u0(x), u1(x), y0(x), y1(x)) .
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Proposition 2.1 Under hypothesis (H), for j = 1, 2, the unbounded linear operator A j is
m-dissipative in the energy space H j .

Proof Let j = 1, 2, for U = (u, v, y, z) ∈ D
(A j
)
, one has:

� 〈A jU ,U
〉
H j

= −
∫ L

0
D(x) |zx |2 dx ≤ 0,

which implies thatA j is dissipative under hypothesis (H). Here, � is used to denote the real
part of a complex number. We next prove the maximality of A j . For F = ( f1, f2, f3, f4) ∈
H j , we prove the existence of U = (u, v, y, z) ∈ D(A j ), unique solution of the equation:

−A jU = F .

Equivalently, one must consider the system given by:

−v = f1, (2.2)

−k1(ux + y)x = ρ1 f2, (2.3)

−z = f3, (2.4)

− (k2yx + Dzx )x + k1(ux + y) = ρ2 f4, (2.5)

with the boundary conditions:

u(0) = u(L) = v(0) = v(L) = 0 and

{
y(0) = y(L) = z(0) = z(L) = 0, for j = 1,
yx (0) = yx (L) = 0, for j = 2.

(2.6)
Using the fact that F ∈ H j , we get that (v, z) ∈ V j (0, L), where V1(0, L) = H1

0 (0, L) ×
H1
0 (0, L) and V2(0, L) = H1

0 (0, L) × H1∗ (0, L). Now, let (ϕ, ψ) ∈ V j (0, L), multiplying
Eqs. (2.3) and (2.5) by ϕ andψ , respectively, integrating in (0, L), taking the sum, then using
Eq. (2.4) and the boundary condition (2.6), we get:∫ L

0

(
k1 (ux + y) (ϕx + ψ) + k2yxψx

)
dx =

∫ L

0

(
ρ1 f1ϕ̄ + ρ2 f4ψ̄ + D ( f3)x ψx

)
dx,

∀ (ϕ, ψ) ∈ V j (0, L). (2.7)

The left-hand side of (2.7) is a bilinear continuous coercive form on V j (0, L) × V j (0, L),
and the right-hand side of (2.7) is a linear continuous form on V j (0, L). Then, using Lax–
Milligram theorem [see in Pazy (1983)], we deduce that there exists (u, y) ∈ V j (0, L)

unique solution of the variational Problem (2.7). Thus, using (2.2), (2.4), and classical reg-
ularity arguments, we conclude that −A jU = F admits a unique solution U ∈ D

(A j
)
and

consequently 0 ∈ ρ(A j ), where ρ
(A j
)
denotes the resolvent set of A j . Then, A j is closed

and consequently ρ
(A j
)
is open set ofC [see Theorem 6.7 in Kato (1995)]. Hence, we easily

get λ ∈ ρ
(A j
)
for sufficiently small λ > 0. This, together with the dissipativeness of A j ,

implies that D
(A j
)
is dense in H j and that A j is m-dissipative in H j [see Theorems 4.5,

4.6 in Pazy (1983)]. Thus, the proof is complete. ��
Thanks to Lumer–Phillips theorem [see Liu and Zheng 1999; Pazy 1983], we deduce that

A j generates a C0-semigroup of contraction etA j inH j , and therefore, Problem (2.1) is well
posed. Then, we have the following result.

Theorem 2.2 Under hypothesis (H), for j = 1, 2, for anyU0 ∈ H j , the Problem (2.1) admits
a unique weak solution U (x, t) = etA j U0(x), such that U ∈ C

(
R+;H j

)
. Moreover, if

U0 ∈ D
(A j
)
, then U ∈ C

(
R+; D (A j

)) ∩ C1
(
R+;H j

)
. ��

123



Stabilization of the Timoshenko system with Kelvin–Voigt damping Page 7 of 37 297

Before starting the main results of this work, we introduce here the notions of stability
that we encounter in this work.

Definition 2.3 Let A : D(A) ⊂ H → H generate a C0−semigroup of contractions
(
et A
)
t≥0

on H . The C0-semigroup
(
et A
)
t≥0 is said to be:

1. strongly stable if:
lim

t→+∞ ‖et Ax0‖H = 0, ∀ x0 ∈ H ;

2. exponentially (or uniformly) stable if there exist two positive constants M and ε such
that

‖et Ax0‖H ≤ Me−εt‖x0‖H , ∀ t > 0, ∀ x0 ∈ H ;
3. polynomially stable if there exists two positive constants C and α, such that:

‖et Ax0‖H ≤ Ct−α‖Ax0‖H , ∀ t > 0, ∀ x0 ∈ D (A) .

In that case, one says that solutions of (2.1) decay at a rate t−α . The C0-semigroup(
et A
)
t≥0 is said to be polynomially stable with optimal decay rate t−α (with α > 0) if it

is polynomially stable with decay rate t−α and, for any ε > 0 small enough, there exists
solutions of (2.1) which do not decay at a rate t−(α+ε). ��

We now look for necessary conditions to show the strong stability of the C0-semigroup(
et A
)
t≥0. We will rely on the following result obtained by Arendt and Batty in Arendt and

Batty (1988).

Theorem 2.4 (Arendt and Batty (1988)) Assume that A is the generator of a C0−semigroup
of contractions

(
et A
)
t≥0 on a Hilbert space H. If A has no pure imaginary eigenvalues and

σ (A) ∩ iR is countable, where σ (A) denotes the spectrum of A, then the C0-semigroup(
et A
)
t≥0 is strongly stable. ��

Our subsequent findings on polynomial stability will rely on the following result from
Borichev and Tomilov (2010), Liu and Rao (2005), Batty and Duyckaerts (2008), which
gives necessary and sufficient conditions for a semigroup to be polynomially stable. For this
aim, we recall the following standard result [see Borichev and Tomilov 2010; Liu and Rao
2005; Batty and Duyckaerts 2008 for part (i) and Huang (1985); Prüss (1984) for part (ii)].

Theorem 2.5 Let A : D(A) ⊂ H → H generate a C0−semigroup of contractions
(
et A
)
t≥0

on H. Assume that iλ ∈ ρ(A), ∀ λ ∈ R. Then, the C0-semigroup
(
et A
)
t≥0 is:

(i) Polynomially stable of order 1
�
(� > 0) if and only if:

lim sup
λ∈R, |λ|→∞

|λ|−�
∥∥(iλI − A)−1

∥∥L(H)
< +∞.

(ii) Exponentially stable if and only if:

lim sup
λ∈R, |λ|→∞

∥∥(iλI − A)−1
∥∥L(H)

< +∞.

��
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2.2 Strong stability

In this part, we use general criteria of Arendt-B-atty in Arendt and Batty (1988) [see Theo-
rem 2.4] to show the strong stability of the C0-semigroup etA j associated to the Timoshenko
System (2.1). Our main result is the following theorem.

Theorem 2.6 Assume that (H) is true. Then, for j = 1, 2, the C0−semigroup etA j is strongly
stable in H j ; i.e., for all U0 ∈ H j , the solution of (2.1) satisfies:

lim
t→+∞

∥∥etA j U0
∥∥H j

= 0.

The argument for Theorem 2.6 relies on the subsequent lemmas.

Lemma 2.7 Under hypothesis (H), for j = 1, 2, one has:

ker
(
iλI − A j

) = {0}, ∀λ ∈ R.

Proof For j = 1, 2, from Proposition 2.1, we deduce that 0 ∈ ρ
(A j
)
. We still need to show

the result for λ ∈ R
∗. Suppose that there exists a real number λ �= 0 and U = (u, v, y, z) ∈

D
(A j
)
, such that:

A jU = iλU .

Equivalently, we have: ⎧⎪⎪⎨
⎪⎪⎩

v = iλu,

k1(ux + y)x = iρ1λv,

z = iλy,
(k2yx + Dzx )x − k1(ux + y) = iρ2λz.

(2.8)

First, a straightforward computation gives:

0 = � 〈iλU ,U 〉H j
= � 〈A jU ,U

〉
H j

= −
∫ L

0
D(x) |zx |2 dx;

using hypothesis (H), we deduce that:

Dzx = 0 in (0, L) and zx = 0 in (α, β). (2.9)

Inserting (2.9) in (2.8), we get:

u = yx = 0, in (α, β), (2.10)

k1uxx + ρ1λ
2u + k1yx = 0, in (0, L), (2.11)

−k1ux + k2yxx + (ρ2λ2 − k1
)
y = 0, in (0, L), (2.12)

with the following boundary conditions:

u(0) = u(L) = y(0) = y(L) = 0, if j = 1 or

u(0) = u(L) = yx (0) = yx (L) = 0, if j = 2. (2.13)

In fact, System (2.11)–(2.13) admit a unique solution (u, y) ∈ C2((0, L)). From (2.10) and
by the uniqueness of solutions, we get:

u = yx = 0, in (0, L). (2.14)

1. If j = 1, from (2.14) and the fact that y(0) = 0, we get u = y = 0 in (0, L), and hence,
U = 0. In this case, the proof is complete.

123
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2. If j = 2, from (2.14) and the fact that y ∈ H1∗ (0, L) (i .e.,
∫ L
0 ydx = 0), we get

u = y = 0 in (0, L); therefore, U = 0. Thus, the proof is complete.

��
Lemma 2.8 Under hypothesis (H), for j = 1, 2, for all λ ∈ R, then iλI − A j is surjective.

Proof Let F = ( f1, f2, f3, f4) ∈ H j , and we look for U = (u, v, y, z) ∈ D(A j ) solution
of:

(iλU − A j )U = F .

Equivalently, we have:

v = iλu − f1, (2.15)

z = iλy − f3, (2.16)

λ2u + k1
ρ1

(ux + y)x = F1, (2.17)

λ2y + ρ2
−1 [(k2 + iλD) yx ]x − k1

ρ2
(ux + y) = F2, (2.18)

with the boundary conditions:

u(0) = u(L) = v(0) = v(L) = 0 and

{
y(0) = y(L) = z(0) = z(L) = 0, for j = 1,
yx (0) = yx (L) = 0, for j = 2,

(2.19)
such that: {

F1 = − f2 − iλ f1 ∈ L2(0, L),

F2 = − f4 − iλ f3 + ρ2
−1 (D ( f3)x

)
x ∈ H−1(0, L).

We define the operator L j by:

L jU =
(

− k1
ρ1

(ux + y)x ,−ρ−1
2 [(k2 + iλD) yx ]x + k1

ρ2
(ux + y)

)
,

∀ U = (u, y) ∈ V j (0, L),

where:

V1(0, L) = H1
0 (0, L) × H1

0 (0, L) and V2(0, L) = H1
0 (0, L) × H1∗ (0, L).

Using Lax–Milgram theorem, it is easy to show that L j is an isomorphism from V j (0, L)

onto (H−1 (0, L))2. Let U = (u, y) and F = (−F1,−F2), and then, we transform System
(2.17)–(2.18) into the following form:

U − λ2L−1
j U = L−1F . (2.20)

Using the compactness embeddings from L2(0, L) into H−1(0, L) and from H1
0 (0, L) into

L2(0, L), and from H1
L(0, L) into L2(0, L), we deduce that the operator L−1

j is compact

from L2(0, L)× L2(0, L) into L2(0, L)× L2(0, L). Consequently, by Fredholm alternative,

proving the existence of U solution of (2.20) reduces to proving ker
(
I − λ2L−1

j

)
= 0.

Indeed, if (ϕ, ψ) ∈ ker(I − λ2L−1
j ), then we have λ2 (ϕ, ψ) − L j (ϕ, ψ) = 0. It follows

that: ⎧⎪⎨
⎪⎩

λ2ϕ + k1
ρ1

(ϕx + ψ)x = 0,

λ2ψ + ρ2
−1 [(k2 + iλD) ψx ]x − k1

ρ2
(ϕx + ψ) = 0,

(2.21)
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with the following boundary conditions:

ϕ(0) = ϕ(L) = ψ(0) = ψ(L) = 0, if j = 1 or

ϕ(0) = ϕ(L) = ψx (0) = ψx (L) = 0, if j = 2. (2.22)

It is now easy to see that if (ϕ, ψ) is a solution of System (2.21)–(2.22), then the vector V
defined by:

V = (ϕ, iλϕ,ψ, iλψ)

belongs to D(A j ) and iλV −A j V = 0. Therefore, V ∈ ker
(
iλI − A j

)
. Using Lemma 2.7,

we get V = 0, and so:
ker(I − λ2L−1

j ) = {0}.
Thanks to Fredholm alternative, Eq. (2.20) admits a unique solution (u, v) ∈ V j (0, L). Thus,
using (2.15), (2.17) and a classical regularity arguments, we conclude that

(
iλ − A j

)
U = F

admits a unique solution U ∈ D
(A j
)
. Thus, the proof is complete. ��

We are now in a position to conclude the proof of Theorem 2.6.

Proof of Theorem 2.6 Using Lemma 2.7, we directly deduce that A j ha non pure imaginary
eigenvalues. According to Lemmas 2.7, 2.8 and with the help of the closed graph theorem
of Banach, we deduce that σ(A j ) ∩ iR = {∅}. Thus, we get the conclusion by applying
Theorem 2.4 of Arendt and Batty. ��

3 Polynomial stability

In this section, we use the frequency domain approach method to show the polynomial
stability of

(
etA j

)
t≥0 associated with the Timoshenko System (2.1). We prove the following

theorem.

Theorem 3.1 Under hypothesis (H), for j = 1, 2, there exists C > 0, such that for every
U0 ∈ D

(A j
)
, we have:

E (t) ≤ C

t
‖U0‖2D(A j)

, t > 0. (3.1)

Since iR ⊆ ρ
(A j
)
, then for the proof of Theorem 3.1, according to Theorem 2.5, we

need to prove that:

sup
λ∈R

∥∥∥(iλI − A j
)−1
∥∥∥L(H j )

= O
(
λ2
)
. (3.2)

We will argue by contradiction. Therefore, suppose that there exists {(λn,Un = (un, vn, yn,
zn))}n≥1 ⊂ R × D

(A j
)
, with λn > 1 and:

λn → +∞, ‖Un‖H j = 1, (3.3)

such that:
λ2n
(
iλnUn − A jUn

) = ( f1,n, f2,n, f3,n, f4,n
)→ 0 in H j . (3.4)

Equivalently, we have:

iλnun − vn = λ−2
n f1,n → 0 in H1

0 (0, L), (3.5)

iλnvn − k1
ρ1

((un)x + yn)x = λ−2
n f2,n → 0 in L2(0, L), (3.6)
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iλn yn − zn = λ−2
n f3,n → 0 in W j (0, L), (3.7)

iλnzn − k2
ρ2

(
(yn)x + D

k2
(zn)x

)
x

+ k1
ρ2

((un)x + yn) = λ−2
n f4,n → 0 in L2(0, L),(3.8)

where:

W j (0, L) =
{
H1
0 (0, L), if j = 1,

H1∗ (0, L), if j = 2.

In the following, we will check the condition (3.2) by finding a contradiction with (3.3)
such as ‖Un‖H j

= o(1). For clarity, we divide the proof into several lemmas. From now on,
for simplicity, we drop the index n.

Lemma 3.2 Under hypothesis (H), for j = 1, 2, the solution U = (u, v, y, z) ∈ D(A j ) of
System (3.5)–(3.8) satisfies the following asymptotic behavior estimates:

∫ L

0
D(x) |zx |2 dx = o

(
λ−2) ,

∫ β

α

|zx |2 dx = o
(
λ−2) , (3.9)

∫ β

α

|yx |2 dx = o
(
λ−4) . (3.10)

Proof First, taking the inner product of (3.4) with U in H j , then using the fact that U is
uniformly bounded in H j , we get:

∫ L

0
D(x) |zx |2 dx = −λ−2�

(〈
λ2A jU ,U

〉
H j

)

= λ−2�
(〈

λ2
(
iλU − A jU

)
,U
〉
H j

)
= o

(
λ−2) ;

hence, we get the first asymptotic estimate of (3.9). Next, using hypothesis (H) and the first
asymptotic estimate of (3.9), we get the second asymptotic estimate of (3.9). Finally, from
(3.4), (3.7), and (3.9), we get the asymptotic estimate of (3.10). Thus, the proof is complete.

��
Let g ∈ C1 ([α, β]), such that:

g(β) = −g(α) = 1, max
x∈[α,β] |g(x)| = cg and max

x∈[α,β] |g
′(x)| = cg′ ,

where cg and cg′ are strictly positive constant numbers.

Remark 3.3 It is easy to see the existence of g(x). For example, we can take g(x) =
cos
(

(β−x)π
β−α

)
to get g(β) = −g(α) = 1, g ∈ C1([α, β]), |g(x)| ≤ 1 and |g′(x)| ≤ π

β−α
.

Also, we can take:

g(x) = x2 − (β + α − 2 (β − α)−1) x + α β − (β + α) (β − α)−1 .

��
Lemma 3.4 Under hypothesis (H), for j = 1, 2, the solution U = (u, v, y, z) ∈ D(A j ) of
System (3.5)–(3.8) satisfies the following asymptotic behavior estimates:

|z(β)|2 + |z(α)|2 ≤
(

ρ2λ
1
2

2k2
+ 2 cg′

)∫ β

α

|z|2 dx + o
(
λ− 5

2

)
, (3.11)
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∣∣∣∣
(
yx + D(x)

k2
zx

)
(α)

∣∣∣∣
2

+
∣∣∣∣
(
yx + D(x)

k2
zx

)
(β)

∣∣∣∣
2

≤ ρ2λ
3
2

2k2

∫ β

α

|z|2dx + o
(
λ−1) .

(3.12)

Proof The proof is divided into two steps.
Step 1. In this step, we prove the asymptotic behavior estimate of (3.11). For this aim, first,
from (3.7), we have:

zx = iλyx − λ−2 ( f3)x in L2(α, β). (3.13)

Multiplying (3.13) by 2 gz and integrating over (α, β), and then taking the real part, we get:
∫ β

α

g(x) (|z|2)x dx = �
{
2iλ
∫ β

α

g(x) yx zdx

}
− �

{
2λ−2

∫ β

α

g(x) ( f3)x zdx

}
;

using by parts integration in the left-hand side of above equation, we get:

[
g(x) |z|2]β

α
=
∫ β

α

g′(x) |z|2 dx+�
{
2iλ
∫ β

α

g(x) yx zdx

}
−�

{
2λ−2

∫ β

α

g(x) ( f3)x zdx

}
.

Consequently, we have:

|z(β)|2 + |z(α)|2 ≤ cg′
∫ β

α

|z|2 dx + 2λ cg

∫ β

α

|yx | |z| dx + 2λ−2 cg

∫ β

α

|( f3)x | |z| dx.
(3.14)

On the other hand, we have:

2λ cg|yx ||z| ≤ ρ2λ
1
2 |z|2

2k2
+ 2k2λ

3
2 c2g

ρ2
|yx |2 and 2λ−2|( f3)x ||z| ≤ cg′ |z|2+ c2g λ−4

cg′
|( f3)x |2.

Inserting the above equation in (3.14), then using (3.10) and the fact that ( f3)x → 0 in
L2(α, β), we get:

|z(β)|2 + |z(α)|2 ≤
(

ρ2λ
1
2

2k2
+ 2 cg′

)∫ β

α

|z|2 dx + o
(
λ− 5

2

)
;

hence, we get (3.11).
Step 2. In this step, we prove the following asymptotic behavior estimate of (3.12). For this

aim, first, multiplying (3.8) by − 2ρ2
k2

g
(
yx + D(x)

k2
zx
)
and integrating over (α, β), and then

taking the real part, we get:

∫ β

α

g(x)

(∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣
2
)
x

dx = 2ρ2λ

k2
�
{
i
∫ β

α

g(x)z

(
yx + D(x)

k2
zx

)
dx

}

+2k1
k2

�
{∫ β

α

g(x) (ux + y)

(
yx + D(x)

k2
zx

)
dx

}

−2ρ2λ−2

k2
�
{∫ β

α

g(x) f4

(
yx + D(x)

k2
zx

)
dx

}
;

using by parts integration in the left-hand side of above equation, we get:
[
g(x)

∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣
2
]β

α

=
∫ β

α

g′(x)
∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣
2

dx
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+2ρ2λ

k2
�
{
i
∫ β

α

g(x)z

(
yx + D(x)

k2
zx

)
dx

}

+2k1
k2

�
{∫ β

α

g(x) (ux + y)

(
yx + D(x)

k2
zx

)
dx

}

−2ρ2λ−2

k2
�
{∫ β

α

g(x) f4

(
yx + D(x)

k2
zx

)
dx

}
.

Consequently, we have:
∣∣∣∣
(
yx + D(x)

k2
zx

)
(α)

∣∣∣∣
2

+
∣∣∣∣
(
yx + D(x)

k2
zx

)
(β)

∣∣∣∣
2

≤ 2ρ2 cgλ

k2

∫ β

α

|z|
∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣ dx

cg′
∫ β

α

∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣
2

dx + 2k1 cg
k2

∫ β

α

|ux + y|
∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣ dx
+2ρ2 cgλ−2

k2

∫ β

α

| f4|
∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣ dx.
Now, using Cauchy–Schwarz inequality, and Eqs. (3.9)–(3.10), the fact that f4 → 0 in
L2(α, β), and the fact that ux + y is uniformly bounded in L2(α, β) in the right-hand side
of above equation, we get:

∣∣∣∣
(
yx + D(x)

k2
zx

)
(α)

∣∣∣∣
2

+
∣∣∣∣
(
yx + D(x)

k2
zx

)
(β)

∣∣∣∣
2

≤ 2ρ2 cgλ

k2

∫ β

α

|z|
∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣ dx + o
(
λ−1) . (3.15)

On the other hand, we have:

2ρ2 cgλ

k2
|z|
∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣ ≤ ρ2λ
3
2

2k2
|z|2 + 2ρ2λ

1
2 c2g

k2

∣∣∣∣yx + D(x)

k2
zx

∣∣∣∣
2

.

Inserting the above equation in (3.15), and then using Eqs. (3.9)–(3.10), we get:

∣∣∣∣
(
yx + D(x)

k2
zx

)
(α)

∣∣∣∣
2

+
∣∣∣∣
(
yx + D(x)

k2
zx

)
(β)

∣∣∣∣
2

≤ ρ2λ
3
2

2k2

∫ β

α

|z|2dx + o
(
λ−1) ;

hence, we get (3.12). Thus, the proof is complete. ��
Lemma 3.5 Under hypothesis (H), for j = 1, 2, the solution U = (u, v, y, z) ∈ D(A j ) of
System (3.5)–(3.8) satisfies the following asymptotic behavior estimates:

|ux (α) + y(α)|2 = O (1) , |ux (β) + y(β)|2 = O (1) . (3.16)

|u(α)|2 = O
(
λ−2) , |u(β)|2 = O

(
λ−2) , (3.17)

|v(α)|2 = O (1) , |v(β)|2 = O (1) . (3.18)

Proof Multiplying Eq. (3.6) by − 2ρ1
k1

g (ux + y) and integrating over (α, β), and then taking

the real part and using the fact that ux + y is uniformly bounded in L2(α, β), f2 → 0 in
L2(α, β), we get:

∫ β

α

g(x)
(|ux + y|2)x dx − 2ρ1λ

k1
�
{
i
∫ β

α

g(x)ux v dx

}
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= 2ρ1λ

k1
�
{
i
∫ β

α

g(x)y v dx

}
+ o

(
λ−2) . (3.19)

Now, we divided the proof into two steps.
Step 1. In this step, we prove the asymptotic behavior estimates of (3.16)–(3.17). First, from
(3.5), we have:

−iλ v = λ2u + iλ−1 f1.

Inserting the above equation in the second term in left of (3.19), and then using the fact that
ux is uniformly bounded in L2(α, β) and f1 → 0 in L2(α, β), we get:∫ β

α

g(x)
(|ux + y|2)x dx + ρ1λ

2

k1

∫ β

α

g(x)
(|u|2)x dx

= −2ρ1λ2

k1
�
{∫ β

α

g(x) u ydx

}
+ o

(
λ−1) .

Using by parts integration and the fact that g(β) = −g(α) = 1 in the above equation, we
get:

|ux (β) + y(β)|2 + ρ1λ
2

k1
|u(β)|2 + |ux (α) + y(α)|2 + ρ1λ

2

k1
|u(α)|2

=
∫ β

α

g′(x) |ux + y|2 dx

+ρ1λ
2

k1

∫ β

α

g′(x) |u|2 dx − 2ρ1λ2

k1
�
{∫ β

α

g(x) u ydx

}
+ o

(
λ−1) ;

consequently:

|ux (β) + y(β)|2 + ρ1λ
2

k1
|u(β)|2 + |ux (α) + y(α)|2

+ρ1λ
2

k1
|u(α)|2 ≤ cg′

∫ β

α

|ux + y|2 dx

+ρ1 cg′λ2

k1

∫ β

α

|u|2 dx + 2ρ1 cgλ2

k1

∫ β

α

|u| |y| dx + o
(
λ−1) .

Next, since λ u, λ y and ux + y are uniformly bounded, then from the above equation, we
get (3.16) and (3.17).
Step 2. In this step, we prove the asymptotic behavior estimates of (3.18). First, from (3.5),
we have:

−iλux = vx − λ−2( f 1)x .

Inserting the above equation in the second term in left of (3.19), and then using the fact that
v is uniformly bounded in L2(α, β) and ( f1)x → 0 in L2(α, β), we get:∫ β

α

g(x)
(|ux + y|2)x dx + ρ1

k1

∫ β

α

g(x)
(|v|2)x dx

= −2ρ1λ2

k1
�
{∫ β

α

g(x) u ydx

}
+ o

(
λ−1) .

Similar to step 1, using by parts integration and the fact that g(β) = −g(α) = 1 in the
above equation, and then using the fact that v, λ u, λ y and ux + y are uniformly bounded
in L2(α, β), we get (3.18). Thus, the proof is complete. ��
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Lemma 3.6 Under hypothesis (H), for j = 1, 2, and for λ large enough, the solution
U = (u, v, y, z) ∈ D(A j ) of System (3.5)–(3.8) satisfies the following asymptotic behavior
estimates:∫ β

α

|z|2 dx = o
(
λ− 5

2

)
,

∫ β

α

|y|2 dx = o
(
λ− 9

2

)
, (3.20)

∣∣∣∣
(
yx + D(x)

k2
zx

)
(α)

∣∣∣∣
2

= o
(
λ−1) ,

∣∣∣∣
(
yx + D(x)

k2
zx

)
(β)

∣∣∣∣
2

= o
(
λ−1) . (3.21)

Proof The proof is divided into two steps.
Step 1. In this step, we prove the following asymptotic behavior estimate:

∣∣∣∣ ik1ρ2λ

∫ β

α

(ux + y) z dx

∣∣∣∣ ≤
(
1

4
+ k2cg′

ρ2λ
1
2

+ k1
ρ2λ2

)∫ β

α

|z|2 dx + o
(
λ−3) . (3.22)

For this aim, first, we have:∣∣∣∣ ik1ρ2λ

∫ β

α

(ux + y) z dx

∣∣∣∣ ≤
∣∣∣∣ ik1ρ2λ

∫ β

α

yz dx

∣∣∣∣+
∣∣∣∣ ik1ρ2λ

∫ β

α

ux z dx

∣∣∣∣ . (3.23)

Now, from (3.7) and using the fact that f3 → 0 in L2(α, β) and z is uniformly bounded in
L2(α, β), we get: ∣∣∣∣ ik1ρ2λ

∫ β

α

yz dx

∣∣∣∣ ≤ k1
ρ2λ2

∫ β

α

|z|2dx + o
(
λ−4) . (3.24)

Next, by using by parts integration, we get:∣∣∣∣ ik1ρ2λ

∫ β

α

ux z dx

∣∣∣∣ =
∣∣∣∣− ik1

ρ2λ

∫ β

α

uzx dx + ik1
ρ2λ

u(β)z(β) − ik1
ρ2λ

u(α)z(α)

∣∣∣∣ ;
consequently:∣∣∣∣ ik1ρ2λ

∫ β

α

ux z dx

∣∣∣∣ ≤ k1
ρ2λ

∫ β

α

|u| |zx | dx + k1
ρ2λ

(|u(β)| |z(β)| + |u(α)| |z(α)|) . (3.25)

On the other hand, we have:

k1
ρ2λ

(|u(β)| |z(β)| + |u(α)| |z(α)|) ≤ k21

2k2ρ2λ
3
2

(|u(α)|2 + |u(β)|2)

+ k2

2ρ2λ
1
2

(|z(α)|2 + |z(β)|2) .
Inserting (3.11) and (3.17) in the above equation, we get:

k1
ρ2λ

(|u(β)| |z(β)| + |u(α)| |z(α)|) ≤
(
1

4
+ k2cg′

ρ2λ
1
2

)∫ β

α

|z|2 dx + o
(
λ−3) .

Substituting the above equation in (3.25), and then using (3.9) and the fact that λu is bounded
in L2(α, β), we get:

∣∣∣∣ ik1ρ2λ

∫ β

α

ux z dx

∣∣∣∣ ≤
(
1

4
+ k2cg′

ρ2λ
1
2

)∫ β

α

|z|2 dx + o
(
λ−3) .

Finally, inserting the above equation and Eq. (3.24) in (3.23), we get (3.22).
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Step 2. In this step, we prove the asymptotic behavior estimates of (3.20)–(3.21). For this
aim, first, multiplying (3.8) by −iλ−1ρ−1

2 z and integrating over (α, β), and then taking the
real part, we get:

∫ β

α

|z|2 dx = − k2
ρ2λ

�
{
i
∫ β

α

(
yx + D

k2
zx

)
x
z dx

}

+ k1
ρ2λ

�
{
i
∫ β

α

(ux + y) z dx

}
− λ−3�

{
i
∫ β

α

f4z dx

}
;

consequently:

∫ β

α

|z|2 dx ≤ k2
ρ2λ

∣∣∣∣
∫ β

α

(
yx + D

k2
zx

)
x
z dx

∣∣∣∣
+
∣∣∣∣ ik1ρ2λ

∫ β

α

(ux + y) z dx

∣∣∣∣+ λ−3
∫ β

α

| f4| |z| dx. (3.26)

From the fact that z is uniformly bounded in L2(α, β) and f5 → 0 in L2(α, β), we get:

λ−3
∫ β

α

| f4| |z| dx = o
(
λ−3) . (3.27)

Inserting (3.22) and (3.27) in (3.26), we get:

∫ β

α

|z|2 dx ≤ k2
ρ2λ

∣∣∣∣
∫ β

α

(
yx + D

k2
zx

)
x
z dx

∣∣∣∣
+
(
1

4
+ k2cg′

ρ2λ
1
2

+ k1
ρ2λ2

)∫ β

α

|z|2 dx + o
(
λ−3) . (3.28)

Now, using by parts integration and (3.9)–(3.10), we get:

∣∣∣∣
∫ β

α

(
yx + D

k2
zx

)
x
z dx

∣∣∣∣ =
∣∣∣∣∣
[(

yx + D

k2
zx

)
z

]β

α

−
∫ β

α

(
yx + D

k2
zx

)
zx dx

∣∣∣∣∣
≤
∣∣∣∣
(
yx + D

k2
zx

)
(β)

∣∣∣∣ |z(β)| +
∣∣∣∣
(
yx + D

k2
zx

)
(α)

∣∣∣∣ |z(α)| +
∫ β

α

∣∣∣∣yx + D

k2
zx

∣∣∣∣ |zx | dx
≤
∣∣∣∣
(
yx + D

k2
zx

)
(β)

∣∣∣∣ |z(β)| +
∣∣∣∣
(
yx + D

k2
zx

)
(α)

∣∣∣∣ |z(α)| + o
(
λ−2) . (3.29)

Inserting (3.29) in (3.28), we get:
(
3

4
− k2cg′

ρ2λ
1
2

− k1
ρ2λ2

)∫ β

α

|z|2 dx

≤ k2
ρ2λ

(∣∣∣∣
(
yx + D

k2
zx

)
(β)

∣∣∣∣ |z(β)| +
∣∣∣∣
(
yx + D

k2
zx

)
(α)

∣∣∣∣ |z(α)|
)

+ o
(
λ−3) .

(3.30)

Now, for ζ = β or ζ = α, we have:

k2
ρ2λ

∣∣∣∣
(
yx + D

k2
zx

)
(ζ )

∣∣∣∣ |z(ζ )| ≤ k2 λ− 1
2

2ρ2
|z(ζ )|2 + k2 λ− 3

2

2ρ2

∣∣∣∣
(
yx + D

k2
zx

)
(ζ )

∣∣∣∣
2

.
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Inserting the above equation in (3.30), we get:(
3

4
− k2cg′

ρ2λ
1
2

− k1
ρ2λ2

)∫ β

α

|z|2 dx

≤ k2 λ− 3
2

2ρ2

(∣∣∣∣
(
yx + D

k2
zx

)
(α)

∣∣∣∣
2

+
∣∣∣∣
(
yx + D

k2
zx

)
(β)

∣∣∣∣
2
)

+k2 λ− 1
2

2ρ2

(|z(α)|2 + |z(β)|2)+ o
(
λ−3) .

Substituting Eqs. (3.11) and (3.12) in the above inequality, we obtain:(
3

4
− k2cg′

ρ2λ
1
2

− k1
ρ2λ2

)∫ β

α

|z|2 dx ≤
(
1

2
+ k2 cg′

ρ2λ
1
2

)∫ β

α

|z|2 dx + o
(
λ− 5

2

)
;

consequently: (
1

4
− 2k2cg′

ρ2λ
1
2

− k1
ρ2λ2

)∫ β

α

|z|2 dx ≤ o
(
λ− 5

2

)
,

since λ → +∞, for λ large enough, we get:

0 <

(
1

4
− 2k2cg′

ρ2λ
1
2

− k1
ρ2λ2

)∫ β

α

|z|2 dx ≤ o
(
λ− 5

2

)
;

hence, we get the first asymptotic estimate of (3.20). Then, inserting the first asymptotic
estimate of (3.20) in (3.7), we get the second asymptotic estimate of (3.20). Finally, inserting
(3.20) in (3.12), we get (3.21). Thus, the proof is complete. ��
Lemma 3.7 Under hypothesis (H), for j = 1, 2, and for λ large enough, the solution
U = (u, v, y, z) ∈ D(A j ) of System (3.5)–(3.8) satisfies the following asymptotic behavior
estimates: ∫ β

α

|ux |2 dx = o (1) and
∫ β

α

|v|2 dx = o (1) . (3.31)

Proof The proof is divided into two steps.
Step 1. In this step, we prove the first asymptotic behavior estimate of (3.31). First, multi-
plying Eq. (3.8) by ρ2

k1
(ux + y) and integrating over (α, β), we get:

∫ β

α

|ux + y|2 dx − k2
k1

∫ β

α

(
yx + D

k2
zx

)
x
(ux + y) dx

= − iρ2λ

k1

∫ β

α

z (ux + y) dx + ρ2

k1λ2

∫ β

α

f4 (ux + y) dx;

using by parts integration in the second term in the left-hand side of above equation, we get:

∫ β

α

|ux + y|2 dx + k2
k1

∫ β

α

(
yx + D

k2
zx

)
(ux + y)x dx = k2

k1

[(
yx + D

k2
zx

)
(ux + y)

]β

α

− iρ2λ

k1

∫ β

α

z (ux + y) dx + ρ2

k1λ2

∫ β

α

f4 (ux + y) dx.

(3.32)
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Next, multiplying Eq. (3.6) by ρ1k2
k21

(
yx + D

k2
zx
)
and integrating over (α, β), and then using

the fact that f2 → 0 in L2(0, L) and Eqs. (3.9)–(3.10), we get:

−k2
k1

∫ β

α

(
yx + D

k2
zx

)
(ux + y)x dx = − iρ1k2 λ

k21

∫ β

α

v

(
yx + D

k2
zx

)
dx

+ρ1k2
k21λ

2

∫ β

α

f2

(
yx + D

k2
zx

)
dx;

consequently:

−k2
k1

∫ β

α

(
yx + D

k2
zx

)
(ux + y)x dx = iρ1k2 λ

k21

∫ β

α

v

(
yx + D

k2
zx

)
dx

+ρ1k2
k21λ

2

∫ β

α

f 2

(
yx + D

k2
zx

)
dx. (3.33)

Adding (3.32) and (3.33), we obtain:

∫ β

α

|ux + y|2 dx = − iρ2λ

k1

∫ β

α

z (ux + y) dx + k2
k1

[(
yx + D

k2
zx

)
(ux + y)

]β

α

+ iρ1k2 λ

k21

∫ β

α

v

(
yx + D

k2
zx

)
dx + ρ2

k1λ2

∫ β

α

f4 (ux + y) dx

+ρ1k2
k21λ

2

∫ β

α

f 2

(
yx + D

k2
zx

)
dx;

therefore:∫ β

α

|ux + y|2 dx ≤ ρ2λ

k1

∫ β

α

|z| |ux + y| dx + k2
k1

∣∣∣∣
(
yx + D

k2
zx

)
(β)

∣∣∣∣ |ux (β) + y(β)|

+k2
k1

∣∣∣∣
(
yx + D

k2
zx

)
(α)

∣∣∣∣ |ux (α) + y(α)| + ρ1k2 λ

k21

∫ β

α

|v|
∣∣∣∣yx + D

k2
zx

∣∣∣∣ dx

+ ρ2

k1λ2

∫ β

α

| f4| |ux + y| dx + ρ1k2
k21λ

2

∫ β

α

| f2|
∣∣∣∣yx + D

k2
zx

∣∣∣∣ dx. (3.34)

From (3.4), (3.9), (3.10), (3.16), (3.20), (3.21), and the fact that v, ux + y are uniformly
bounded in L2(α, β), we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣
(
yx + D

k2
zx

)
(β)

∣∣∣∣ |ux (β) + y(β)| = o
(
λ− 1

2

)
,∣∣∣∣

(
yx + D

k2
zx

)
(α)

∣∣∣∣ |ux (α) + y(α)| = o
(
λ− 1

2

)
,

λ

∫ β

α

|z| |ux + y| dx = o
(
λ− 1

4

)
, λ

∫ β

α

|v|
∣∣∣∣yx + D

k2
zx

∣∣∣∣ dx = o(1),

λ−2
∫ β

α

| f4| |ux + y| dx = o
(
λ−2) , λ−2

∫ β

α

| f2|
∣∣∣∣yx + D

k2
zx

∣∣∣∣ dx = o
(
λ−3).

Inserting the above equation in (3.34), we get:
∫ β

α

|ux + y|2 dx = o(1).

123



Stabilization of the Timoshenko system with Kelvin–Voigt damping Page 19 of 37 297

From the above equation and (3.20), we get the first asymptotic estimate of (3.31).
Step 2. In this step, we prove the second asymptotic behavior estimate of (3.31). Multiplying
(3.6) by −iλ−1v and integrating over (α, β), and then taking the real part, we get:

∫ β

α

|v|2 dx = − k1
ρ1λ

�
{
i
∫ β

α

(ux + y)xv dx

}
− λ−3�

{
i
∫ β

α

f2v dx

}
;

using by parts integration in the second term in the right-hand side of above equation, we
get:

∫ β

α

|v|2 dx = k1
ρ1λ

�
{
i
∫ β

α

(ux + y) vxdx

}

− k1
ρ1λ

� {i [(ux + y)v]βα
}− λ−3�

{
i
∫ β

α

f2v dx

}
.

Consequently, we obtain:
∫ β

α

|v|2 dx ≤ k1
ρ1λ

∫ β

α

|ux + y| |vx | dx

+ k1
ρ1λ

(|ux (β) + y(β)||v(β)| + |ux (α) + y(α)|v(α)|)

+λ−3
∫ β

α

| f2| |v| dx.

Finally, from (3.16), (3.18), (3.20), the first asymptotic behavior estimate of (3.31), the fact
that λ−1vx , v are uniformly bounded in L2(α, β), and the fact that f2 → 0 in L2(α, β), we
get the second asymptotic behavior estimate of (3.20). Thus, the proof is complete. ��
Lemma 3.8 Under hypothesis (H), for j = 1, 2, the solution U = (u, v, y, z) ∈ D(A j ) of
System (3.5)–(3.8) satisfies the following asymptotic behavior estimate:

‖U‖H j = o (1) , over (0, L) .

Proof First, under hypothesis (H), for j = 1, 2, and forλ large enough, fromLemmas 3.5, 3.6
and 3.7, we deduce that:

‖U‖H j = o (1) , over (α, β) . (3.35)

Now, let φ ∈ H1
0 (0, L) be a given function. We proceed the proof in two steps.

Step 1.Multiplying Eq. (3.6) by 2ρ1φux and integrating over (0, L), and then using the fact
that ux is bounded in L2(0, L), f2 → 0 in L2(0, L), and φ(0) = φ(L) = 0 to get:

�
{
2iρ1λ

∫ L

0
φvuxdx

}
+ k1

∫ L

0
φ′|ux |2dx − �

{
2k1

∫ L

0
φux yxdx

}
= o(λ−2). (3.36)

From (3.5), we have:
iλux = −vx − λ−2( f 1)x .

Inserting the above equation in (3.36), then using the fact that ( f1)x → 0 in L2(0, L), and
the fact that v is bounded in L2(0, L), we get:

ρ1

∫ L

0
φ′|v|2dx + k1

∫ L

0
φ′|ux |2dx − �

{
2k1

∫ L

0
φux yxdx

}
= o(λ−2). (3.37)
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Similarly, multiplying Eq. (3.8) by 2ρ2φ
(
yx + D

k1
zx
)
and integrating over (0, L), and then

using by parts integration and φ(0) = φ(L) = 0 to get:

�
{
2iρ2λ

∫ L

0
φzyxdx

}
+ k2

∫ L

0
φ′
∣∣∣∣yx + D

k2
zx

∣∣∣∣
2

dx + �
{
2k1

∫ L

0
φyxuxdx

}

= −λ−1�
{
2k1

∫ L

0
φλyyxdx

}
− �

{
2iρ2
k1

λ

∫ L

0
D(x)φzzxdx

}

−�
{
2
∫ L

0
D(x)φzxuxdx

}

−�
{
2
∫ L

0
D(x)φzx ydx

}
+ �

{
2ρ2λ

−2
∫ L

0
φ f4yxdx

}

+�
{
2ρ2
k1

λ−2
∫ L

0
D(x)φ f4zxdx

}
. (3.38)

For all bounded h ∈ L2(0, L), using Cauchy–Schwarz inequality, the first estimation of
(3.9), and the fact that D ∈ L∞(0, L), we obtain:

�
{∫ L

0
D(x)hzxdx

}

≤
(

sup
x∈(0,L)

D1/2(x)

)(∫ L

0
D(x)|zx |2dx

)1/2 (∫ L

0
|h|2dx

)1/2
= o(λ−1). (3.39)

From (3.38) and using (3.39), the fact that z, λy, yx are bounded in L2(0, L), the fact that
f4 → 0 in L2(0, L), we get:

�
{
2iρ2λ

∫ L

0
φzyxdx

}
+ k2

∫ L

0
φ′
∣∣∣∣yx + D

k2
zx

∣∣∣∣
2

dx + �
{
2k1

∫ L

0
φyxuxdx

}
= o(1).

(3.40)
On the other hand, from (3.7), we have:

iλyx = −zx − λ−2( f 3)x .

Inserting the above equation in (3.40), then using the fact that ( f3)x → 0 in L2(0, L), and
the fact that z is bounded in L2(0, L), we get:

ρ2

∫ L

0
φ′|z|2dx + k2

∫ L

0
φ′
∣∣∣∣yx + D

k2
zx

∣∣∣∣
2

dx + �
{
2k1

∫ L

0
φyxuxdx

}
= o(1). (3.41)

Adding (3.37) and (3.41), we get:
∫ L

0
φ′
(

ρ1|v|2 + ρ2|z|2 + k1|ux |2 + k2

∣∣∣∣yx + D

k2
zx

∣∣∣∣
2
)
dx = o(1). (3.42)

Step 2. Let ε > 0, such that α + ε < β and define the cut-off function ς1 in C1 ([0, L]) by:

0 ≤ ς1 ≤ 1, ς1 = 1 on [0, α] and ς1 = 0 on [α + ε, L] .

Take φ = xς1 in (3.42), and then use the fact that ‖U‖H j
= o (1) on (α, β) (i.e., (3.35)), the

fact that α < α + ε < β, and (3.9)–(3.10), we get:
∫ α

0

(
ρ1|v|2 + ρ2|z|2 + k1|ux |2 + k2

∣∣∣∣yx + D

k2
zx

∣∣∣∣
2
)
dx = o(1). (3.43)
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Moreover, using Cauchy–Schwarz inequality, the first estimation of (3.9), the fact that D ∈
L∞(0, L), and (3.43), we get:

∫ α

0
|yx |2dx ≤ 2

∫ α

0

∣∣∣∣yx + D

k2
zx

∣∣∣∣
2

dx + 2

k22

∫ α

0
D(x)2 |zx |2 dx,

≤ 2
∫ α

0

∣∣∣∣yx + D

k2
zx

∣∣∣∣
2

dx + 2
(
supx∈(0,α) D(x)

)
k22

∫ α

0
D(x) |zx |2 dx,

= o(1).

(3.44)

Using (3.43) and (3.44), we get:

‖U‖H j
= o (1) on (0, α).

Similarly, by symmetry, we can prove that: ‖U‖H j
= o (1) on (β, L) and therefore:

‖U‖H j
= o (1) on (0, L).

Thus, the proof is complete. ��
Proof of Theorem 3.1 Under hypothesis (H), for j = 1, 2, from Lemma 3.8, we have
‖U‖H j = o (1) , over (0, L), which contradicts (3.3). This implies that:

sup
λ∈R

∥∥∥(iλI d − A j
)−1
∥∥∥L(H j)

= O
(
λ2
)
.

The result follows from Theorem 2.5 part (i). ��
Remark 3.9 From Lemmas 3.5, 3.6 and 3.7, we deduce that ‖U‖H j = o (1) , over (α, β) .

After that in Lemma3.8,we have chosen a particular functionφ ∈ H1
0 (0, L), to get ‖U‖H j =

o (1) , on (0, L) . We note that while proving theses lemmas, we have not used the boundary
conditions of u and y. Therefore, we conclude that our study is at the same time valid for
fully Dirichlet and mixed boundary conditions. ��

It is very important to ask the question about the optimality of (3.1). In the next section,
we will prove that the decay rate (3.1) is optimal in some cases.

4 Upper bound estimation of the polynomial decay rate

In this section, our goal is to show that energy of the Timoshenko System (1.1)–(1.2) with
Dirichlet–Neumann boundary conditions (1.4) has the optimal polynomial decay rate of type
t−1.

4.1 Optimal polynomial decay rate ofA2 with global Kelvin–Voigt damping

In this part, we show that the energy of the Timoshenko System (1.1)–(1.2) with global
Kelvin–Voigt damping, and with Dirichlet–Neumann boundary conditions (1.4) has the opti-
mal polynomial decay rate of type t−1. For this aim, assume that:

D(x) = D0 > 0, ∀x ∈ (0, L), (H1)

where D0 is a strictly positive constant number. We prove the following theorem.
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Theorem 4.1 Under hypothesis (H1), for all initial data U0 ∈ D (A2) and for all t > 0, the
energy decay rate in (3.1) is optimal, i.e., for ε > 0 (small enough), we cannot expect the

energy decay rate t−
2

2−ε .

Proof Following to Borichev and Tomilov (2010) [see Theorem 2.4 part (i)], it suffices
to show the existence of sequences (λn)n ⊂ R with λn → +∞, (Un)n ⊂ D (A2), and
(Fn)n ⊂ H2, such that (iλn I − A2)Un = Fn is bounded inH2 and λ−2+ε

n ‖Un‖H2 → +∞.
Set:

Fn =
(
0, sin

(nπx

L

)
, 0, 0

)
, Un =

(
An sin

(nπx

L

)
, iλn An sin

(nπx

L

)
,

Bn cos
(nπx

L

)
, iλn Bn cos

(nπx

L

))

and

λn = nπ

L

√
k1
ρ1

, An = − inπD0

k1 L

√
ρ1

k1
+ k2
k1

(
ρ2

k2
− ρ1

k1

)
− ρ1L2

k1π2n2
, Bn = ρ1L

k1nπ
. (4.1)

Clearly that Un ∈ D (A2) , and Fn is bounded in H2. Let us show that:

(iλn I − A2)Un = Fn .

Detailing (iλn I − A2)Un , we get:

(iλn I − A2)Un =
(
0,C1,n sin

(nπx

L

)
, 0,C2,n cos

(nπx

L

))
,

where:

C1,n =
(
k1
ρ1

(nπ

L

)2 − λ2n

)
An + k1nπ

ρ1L
Bn, C2,n = nπk1

ρ2L
An

+
(

−λ2n + k1
ρ2

+ k2 + iλnD0

ρ2

(nπ

L

)2)
Bn . (4.2)

Inserting (4.1) in (4.2), we get:

C1,n = 1 and C2,n = 0;
hence, we obtain:

(iλn I − A2)Un =
(
0, sin

(nπx

L

)
, 0, 0

)
= Fn .

Now, we have:

‖Un‖2H2
≥ ρ1

∫ L

0

∣∣∣iλn An sin
(nπx

L

)∣∣∣2 dx = ρ1 L λ2n

2
|An |2 ∼ λ4n .

Therefore, for ε > 0 (small enough), we have:

λ−2+ε
n ‖Un‖H2 ∼ λε

n → +∞.

Finally, following to Borichev and Tomilov (2010) [see Theorem 2.4 part (i)], we cannot

expect the energy decay rate t−
2

2−ε . ��
Note that Theorem 4.1 also implies that our system is non-uniformly stable.
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Remark 4.2 In fact, when the Kelvin–Voigt damping is global (i.e., under hypothesis (H1)),
if mixed Dirichlet–Neumann boundary conditions (1.4) are considered in System (1.1)–(1.2)
instead of fully Dirichlet boundary conditions (1.3), then the decay rate (3.1) is optimal
[see Theorem 4.1]. Indeed, the idea is to find a sequence of (λn)n ⊂ R with λn → +∞
and a sequence of vectors (Un)n ⊂ D (A2), such that (iλn I − A2)Un is bounded in H2

and λ−2+ε
n ‖Un‖H2 → +∞ for ε > 0 (small enough). In the case of Dirichlet–Neumann

boundary condition, this approach worked well because of the fact that all eigenmodes are
separable, i.e., the system operator can be decomposed to a block-diagonal form according
to the frequency when the state variables are expanded into Fourier series. However, in the
case of fully Dirichlet boundary conditions, this approach has no success in the literature to
our knowledge, and the problem is still open. ��

4.2 Optimal polynomial decay rate ofA2 with local Kelvin–Voigt damping

In this part, under the equal speed wave propagation condition (i.e., ρ1
k1

= ρ2
k2
), we use the

classical method developed by Littman and Markus in Littman and Markus (1988) [see
also Curtain and Zwart (1995)], to show that the Timoshenko System (1.1)–(1.2) with local
Kelvin–Voigt damping, and with Dirichlet–Neumann boundary conditions (1.4) is not expo-
nentially stable. Also, we will prove the optimality of estimation (3.1). For this aim, assume
that:

ρ1

k1
= ρ2

k2
and D(x) =

{
0, 0 < x ≤ α,

D0 α < x ≤ L,

where D0 ∈ R
+∗ and α ∈ (0, L). For simplicity and without loss of generality, in this part,

we take ρ1
k1

= 1, D0 = k2, L = 1, and α = 1
2 , and hence, the above hypothesis becomes:

ρ1

k1
= ρ2

k2
= 1 and D(x) =

{
0, 0 < x ≤ 1

2 ,

k2
1
2 < x ≤ 1.

(H2)

Our first result in this part is the following theorem.

Theorem 4.3 Under hypothesis (H2). The semigroup generated by the operator A2 is not
exponentially stable in the energy space H2.

For the proof of Theorem 4.3, we recall the following definitions: the growth bound ω0 (A2)

and the spectral bound s (A2) of A2 are defined, respectively, as:

ω0(A2) = lim
t→∞

log
∥∥etA2

∥∥L(H2)

t
and s (A2) = sup {� (λ) : λ ∈ σ (A2)} .

From the Hille–Yoside theorem [see also Theorem 2.1.6 and Lemma 2.1.11 in Curtain and
Zwart (1995)], one has that:

s (A2) ≤ ω0 (A2) .

By the previous results, one clearly has that s (A2) ≤ 0 and the theorem would follow if
equality holds in the previous inequality. It therefore amounts to show the existence of a
sequence of eigenvalues of A2 whose real parts tend to zero.
Since A2 is dissipative, we fix α0 > 0 small enough and we study the asymptotic behavior
of the eigenvalues λ of A2 in the strip:

S = {λ ∈ C : −α0 ≤ �(λ) ≤ 0} .
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First, we determine the characteristic equation satisfied by the eigenvalues of A2. For this
aim, let λ ∈ C

∗ be an eigenvalue ofA2 and letU = (u, λu, y, λy) ∈ D(A2) be an associated
eigenvector. Then, the eigenvalue problem is given by:

λ2u − uxx − yx = 0, x ∈ (0, 1), (4.3)

c2ux + (λ2 + c2
)
y −

(
1 + D

k2
λ

)
yxx = 0, x ∈ (0, 1), (4.4)

with the boundary conditions:

u(0) = yx (0) = u(1) = yx (1) = 0, (4.5)

where c =
√
k1k

−1
2 . We define:

{
u−(x) := u(x), y−(x) := y(x), x ∈ (0, 1/2),
u+(x) := u(x), y+(x) := y(x), x ∈ [1/2, 1).

Thus, System (4.3)–(4.5) become:

λ2u− − u−
xx − y−

x = 0, x ∈ (0, 1/2), (4.6)

c2u−
x + (λ2 + c2

)
y− − y−

xx = 0, x ∈ (0, 1/2), (4.7)

λ2u+ − u+
xx − y+

x = 0, x ∈ [1/2, 1), (4.8)

c2u+
x + (λ2 + c2

)
y+ − (1 + λ) y+

xx = 0, x ∈ [1/2, 1), (4.9)

with the boundary conditions:

u−(0) = y−
x (0) = 0, (4.10)

u+(1) = y+
x (1) = 0, (4.11)

and the continuity conditions:

u−(1/2) = u+(1/2), u−
x (1/2) = u+

x (1/2), y−(1/2) = y+(1/2),

y−
x (1/2) = (1 + λ) y+

x (1/2). (4.12)

To proceed, we set the following notation. Here and below, in the case where z is a non zero
non-real number, we define (and denote) by

√
z the square root of z, i.e., the unique complex

number with positive real part whose square is equal to z. Our aim is to study the asymptotic
behavior of the large eigenvalues λ ofA2 in S. By taking λ large enough, the general solution
of System (4.6)–(4.7) with boundary condition (4.10) is given by:⎧⎨

⎩
u−(x) = α1 sinh(r1x) + α2 sinh(r2x),

y−(x) = α1
λ2 − r21

r1
cosh(r1x) + α2

λ2 − r22
r2

cosh(r2x),

and the general solution of Eqs. (4.8)–(4.9) with boundary condition (4.11) is given by:⎧⎨
⎩
u+(x) = β1 sinh(s1(1 − x)) + β2 sinh(s2(1 − x)),

y+(x) = −β1
λ2 − s21

s1
cosh(s1(1 − x)) − β2

λ2 − s22
s2

cosh(s2(1 − x)),

where α1, α2, β1, β2 ∈ C:

r1 = λ

√
1 + ic

λ
, r2 = λ

√
1 − ic

λ
(4.13)
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and

s1 =

√√√√√λ + λ2

2

(
1 +

√
1 − 4c2

λ3
− 4c2

λ4

)

1 + 1
λ

, s2 =

√√√√√λ + λ2

2

(
1 −

√
1 − 4c2

λ3
− 4c2

λ4

)

1 + 1
λ

.

(4.14)
The boundary conditions in (4.12) can be expressed by:

M (α1, α2, β1, β2)
� = 0,

such that:

M =

⎛
⎜⎜⎝

sinh
( r1
2

)
sinh

( r2
2

) − sinh
( s1
2

) − sinh
( s2
2

)
r1

i c λ2
cosh

( r1
2

) r2
i c λ2

cosh
( r2
2

) s1
i c λ2

cosh
( s1
2

) s2
i c λ2

cosh
( s2
2

)
r21 sinh

( r1
2

)
r22 sinh

( r2
2

) (
λ3 − (λ + 1)s21

)
sinh

( s1
2

) (
λ3 − (λ + 1)s22

)
sinh

( s2
2

)
r−1
1 cosh

( r1
2

)
r−1
2 cosh

( r2
2

)
s−1
1 cosh

( s1
2

)
s−1
2 cosh

( s2
2

)

⎞
⎟⎟⎠ .

Denoting the determinant of a matrix M by det(M), consequently, System (4.6)–(4.12)
admits a non trivial solution if and only if det (M) = 0. Using Gaussian elimination,

det (M) = 0 is equivalent to det
(
M̃
)

= 0, where M̃ is given by:

M̃ =

⎛
⎜⎜⎝

sinh
( r1
2

)
sinh

( r2
2

) − sinh
( s1
2

) −1 − e−s2
r1

i c λ2
cosh

( r1
2

) r2
i c λ2

cosh
( r2
2

) s1
i c λ2

cosh
( s1
2

) s2
i c λ2

(
1 + e−s2

)
r21 sinh

( r1
2

)
r22 sinh

( r2
2

) (
λ3 − (λ + 1)s21

)
sinh

( s1
2

) (
λ3 − (λ + 1)s22

) (
1 − e−s2

)
r−1
1 cosh

( r1
2

)
r−1
2 cosh

( r2
2

)
s−1
1 cosh

( s1
2

)
s−1
2

(
1 + e−s2

)

⎞
⎟⎟⎠ .

One gets that:

det
(
M̃
)

= g1 cosh
(r1
2

)
cosh

(r2
2

)
sinh

( s1
2

)
+ g2 sinh

(r1
2

)
cosh

(r2
2

)
cosh

( s1
2

)

+g3 cosh
(r1
2

)
sinh

(r2
2

)
cosh

( s1
2

)
+ g4 sinh

(r1
2

)
sinh

(r2
2

)
cosh

( s1
2

)

+g5 cosh
(r1
2

)
sinh

(r2
2

)
sinh

( s1
2

)
+ g6 sinh

(r1
2

)
cosh

(r2
2

)
sinh

( s1
2

)
(

− g1 cosh
(r1
2

)
cosh

(r2
2

)
sinh

( s1
2

)
− g2 sinh

(r1
2

)
cosh

(r2
2

)
cosh

( s1
2

)

−g3 cosh
(r1
2

)
sinh

(r2
2

)
cosh

( s1
2

)
+ g4 sinh

(r1
2

)
sinh

(r2
2

)
cosh

( s1
2

)

+g5 cosh
(r1
2

)
sinh

(r2
2

)
sinh

( s1
2

)
+ g6 sinh

(r1
2

)
cosh

(r2
2

)
sinh

( s1
2

))
e−s2 ,(4.15)

such that:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 = (λ + 1)
(
r21 − r22

) (
s21 − s22

)
i c r1r2λ2

, g2 =
(
r22 − s21

) (
(λ + 1) s22 − λ3 − r21

)
i c s1r2λ2

,

g3 = −
(
r21 − s21

) (
(λ + 1) s22 − λ3 − r22

)
i c r1s1λ2

, g4 =
(
r21 − r22

) (
s21 − s22

)
i c s1s2λ2

,

g5 =
(
r21 − s22

) (
(λ + 1) s21 − λ3 − r22

)
i c s2r1λ2

, g6 = −
(
r22 − s22

) (
(λ + 1) s21 − λ3 − r21

)
i c r2s2λ2

.

(4.16)

Proposition 4.4 Under hypothesis (H2), there exist n0 ∈ N sufficiently large and two
sequences

(
λ1,n
)
|n|≥n0

and
(
λ2,n
)
|n|≥n0

of simple roots of det(M̃) (that are also simple eigen-
values of A2) satisfying the following asymptotic behavior:
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Case 1. If there exist no integers κ ∈ N, such that c = 2κπ (i.e., sin
( c
4

) �= 0 and cos
( c
4

) �= 0),
then:

λ1,n = 2inπ − 2 (1 − i sign(n)) sin
( c
4

)2
(
3 + cos

( c
2

))√
π |n| + O

(
n−1) , (4.17)

λ2,n = 2inπ + π i + i arccos
(
cos
( c
4

))
− (1 − i sign(n)) cos

( c
4

)2
(
1 + cos

( c
4

)2)√
π |n|

+ O
(
n−1) .(4.18)

Case 2. If there exists κ0 ∈ N, such that c = 2 (2κ0 + 1) π , (i.e., cos
( c
4

) = 0), then:

λ1,n = 2inπ − 1 − i sign(n)√
π |n| + O

(
n−1) , (4.19)

λ2,n = 2inπ + 3π i

2
+ i c2

32πn
− (8 + i(3π − 2)) c2

128π2n2
+ O

(
|n|−5/2

)
. (4.20)

Case 3. If there exists κ1 ∈ N, such that c = 4κ1π , (i.e., sin
( c
4

) = 0), then:

λ1,n = 2inπ + i c2

32πn
− c2

16π2n2
+ O

(
|n|−5/2

)
, (4.21)

λ2,n = 2inπ + π i + i c2

32πn
− (4 + iπ) c2

64π2n2
+ O

(
|n|−5/2

)
. (4.22)

Here, sign is used to denote the sign function or signum function.

The argument for Proposition 4.4 relies on the subsequent lemmas.

Lemma 4.5 Under hypothesis (H2), let λ be a large eigenvalue of A2, and then, λ is large
root of the following asymptotic equation:

F(λ) := f0(λ) + f1(λ)

λ1/2
+ f2(λ)

8λ
+ f3(λ)

8λ3/2
+ f4(λ)

128λ2
+ f5(λ)

128λ5/2
+ O

(
λ−3) = 0, (4.23)

where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(λ) = sinh

(
3λ

2

)
+ sinh

(
λ

2

)
cos
( c
2

)
,

f1(λ) = cosh

(
3λ

2

)
− cosh

(
λ

2

)
cos
( c
2

)
,

f2(λ) = c2 cosh

(
3λ

2

)
− 4c cosh

(
λ

2

)
sin
( c
2

)
,

f3(λ) = c2 sinh

(
3λ

2

)
− 4 cosh

(
3λ

2

)
+ 12c sinh

(
λ

2

)
sin
( c
2

)
+ 4 cosh

(
λ

2

)
cos
( c
2

)
,

f4(λ) = c2
(
c2 − 56

)
sinh

(
3λ

2

)
− 32c2 cosh

(
3λ

2

)

+8c2
(
c sin

( c
2

)
− 8 cos

( c
2

)
+ 1
)
sinh

(
λ

2

)

−32c
(
8 sin

( c
2

)
+ c cos

( c
2

))
cos
( c
2

)
,

f5(λ) = −40c2 sinh

(
3λ

2

)
+
(
c4 − 88c2 + 48

)
cosh

(
3λ

2

)

+32c
(
5 sin

( c
2

)
+ c cos

( c
2

))
sinh

(
λ

2

)

−
(
8c3 sin

( c
2

)
− 16(4c2 − 3) cos

( c
2

)
− 24c2

)
cos
( c
2

)
.

(4.24)
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Proof Let λ be a large eigenvalue of A2, and then, λ is root of det
(
M̃
)
. In this lemma,

we furnish an asymptotic development of the function det
(
M̃
)
for large λ. First, using the

asymptotic expansion in (4.13) and (4.14), we get:⎧⎪⎨
⎪⎩
r1 = λ + i c

2
+ c2

8λ
− i c3

16λ2
+ O

(
λ−3) , r2 = λ − i c

2
+ c2

8λ
+ i c3

16λ2
+ O

(
λ−3) ,

s1 = λ − c2

2λ2
+ O

(
λ−5
)

, s2 = λ1/2 − 1

2λ1/2
+ 4c2 + 3

8λ3/2
+ O

(
λ−5/2

)
.

(4.25)
Inserting (4.25) in (4.16), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = 2 − c2

λ2
+ O

(
λ−3

)
, g2 = 1 + i c

2λ
− (3c − 16i) c

8λ2
+ O

(
λ−3

)
,

g3 = 1 − i c

2λ
− (3c + 16i) c

8λ2
+ O

(
λ−3

)
, g4 = 2λ1/2 − 1

λ3/2
− 4c2 − 3

4λ5/2
+ O

(
λ−7/2

)
,

g5 = λ1/2 − 1 − 3i c

2λ3/2
− 7c2 − 3 − 10i c

8λ5/2
+ O

(
λ−7/2

)
,

g6 = λ1/2 − 1 + 3i c

2λ3/2
− 7c2 − 3 + 10i c

8λ5/2
+ O

(
λ−7/2

)
.

(4.26)
Substituting (4.26) in (4.15), and then using the fact that real part of λ is bounded in S, we
get:

det
(
M̃
)

= sinh (L1) + sinh (L2) cosh (L3) + cosh (L1) − cosh (L2) cosh (L3)

λ1/2

+ i c cosh (L2) sinh (L3)

2λ
− cosh (L1) − cosh (L2) cosh (L3) + 3i c sinh (L2) sinh (L3)

2λ3/2

− 7c2 sinh (L1) + 8c2 sinh (L2) cosh (L3) − 32i c cosh (L2) sinh (L3) − c2 sinh (L4)

16λ3/2

− (11c2 − 6) cosh (L1) − (8c2 − 6) cosh (L2) cosh (L3) + 20i c sinh (L2) sinh (L3) − 3c2 cosh (L4)

16λ5/2

+
(
sinh (L1) + sinh (L2) cosh (L3) + O

(
λ−1/2

))
e−s2 + O

(
λ−3

)
,

(4.27)
where:

L1 = r1 + r2 + s1
2

, L2 = s1
2

, L3 = r1 − r2
2

, L4 = r1 + r2 − s1
2

.

Next, from (4.25) and using the fact that real part of λ is bounded S, we get:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinh (L1) = sinh

(
3λ

2

)
+ c2 cosh

( 3λ
2

)
8λ

+ c2
(
c2 sinh

( 3λ
2

)− 32 cosh
( 3λ
2

))
128λ2

+ O
(
λ−3) ,

cosh (L1) = cosh

(
3λ

2

)
+ c2 sinh

( 3λ
2

)
8λ

+ c2
(
c2 cosh

( 3λ
2

)− 32 sinh
( 3λ
2

))
128λ2

+ O
(
λ−3) ,

sinh (L2) = sinh

(
λ

2

)
− c2 cosh

(
λ
2

)
4λ2

+ O
(
λ−4) ,

cosh (L2) = cosh

(
λ

2

)
− c2 sinh

(
λ
2

)
4λ2

+ O
(
λ−4) ,

sinh (L3) = i sin
( c
2

)
− i c3 cos

( c
2

)
16λ2

+ O
(
λ−3) ,

cosh (L3) = cos
( c
2

)
+ c3 cos

( c
2

)
16λ2

+ O
(
λ−3) ,

sinh (L4) = sinh

(
λ

2

)
+ O

(
λ−1) , cosh (L4) = cosh

(
λ

2

)
+ O

(
λ−1) .

(4.28)

123



297 Page 28 of 37 A. Wehbe, M. Ghader

On the other hand, from (4.25) and (4.28), we obtain:(
sinh (L1) + sinh (L2) cosh (L3) + O

(
λ−1/2)) e−s2

= −
(
sinh

(
3λ

2

)
+ sinh

(
λ

2

)
cos
( c
2

))
e−√

λ. (4.29)

Since the real part of
√

λ is positive, we obtain:

lim|λ|→∞
e−√

λ

λ3
= 0;

hence:
e−√

λ = o
(
λ−3) . (4.30)

Therefore, from (4.29), (4.30), and using the fact that real part of λ is bounded S, we get:(
sinh (L1) + sinh (L2) cosh (L3) + O

(
λ−1/2)) e−s2 = o

(
λ−3) . (4.31)

Finally, inserting (4.28) and (4.31) in (4.27), we get λ is large root of F , where F defined in
(4.23). Thus, the proof is complete. ��
Lemma 4.6 Under hypothesis (H2), there exist n0 ∈ N sufficiently large and two sequences(
λ1,n
)
|n|≥n0

and
(
λ2,n
)
|n|≥n0

of simple roots of F (that are also simple eigenvalues of A2)
satisfying the following asymptotic behavior:

λ1,n = 2iπn + iπ + ε1,n, such that lim|n|→+∞ ε1,n = 0 (4.32)

and

λ2,n = 2nπ i + iπ + i arccos
(
cos2

( c
4

))
+ ε2,n, such that lim|n|→+∞ ε2,n = 0. (4.33)

Proof First, we look at the roots of f0. From (4.24), we deduce that f0 can be written as:

f0(λ) = 2 sinh

(
λ

2

)(
cosh (λ) + cos2

( c
4

))
. (4.34)

The roots of f0 are given by:{
μ1,n = 2nπ i, n ∈ Z,

μ2,n = 2nπ i + iπ + i arccos
(
cos2

( c
4

))
, n ∈ Z.

Now, with the help of Rouché’s theorem, we will show that the roots of F are close to f0.
Let us start with the first family μ1,n . Let Bn = B (2nπ i, rn) be the ball of centrum 2nπ i
and radius rn = 1

|n| 14
and λ ∈ ∂Bn ; i.e., λ = 2nπ i + rneiθ , θ ∈ [0, 2π). Then:

sinh

(
λ

2

)
= (−1)n sinh

(
rneiθ

2

)
= (−1)n rneiθ

2
+ O(r2n ), cosh(λ)

= cosh
(
rne

iθ
)

= 1 + O(r2n ). (4.35)

Inserting (4.35) in (4.34), we get:

f0(λ) = (−1)n rne
iθ
(
1 + cos2

( c
4

))
+ O(r3n ).
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It follows that there exists a positive constant C , such that:

∀ λ ∈ ∂Bn, | f0 (λ)| ≥ C rn = C

|n| 14
.

On the other hand, from (4.23), we deduce that:

|F(λ) − f0(λ)| = O

(
1√
λ

)
= O

(
1√|n|
)

.

It follows that, for |n| large enough:

∀ λ ∈ ∂Bn, |F(λ) − f0 (λ)| < | f0(λ)| .

Hence, with the help of Rouché’s theorem, there exists n0 ∈ N
∗ large enough, such that

∀ |n| ≥ n0 (n ∈ Z
∗) , the first branch of roots of F , denoted by λ1,n are close to μ1,n , hence

we get (4.32). The same procedure yields (4.33). Thus, the proof is complete. ��

Remark 4.7 From Lemma 4.6, we deduce that the real part of the eigenvalues ofA2 tends to
zero, and this is enough to get Theorem 4.3. However, we look forward to knowing the real
part of λ1,n and λ2,n . Since in the final of this section, we will use the real part of λ1,n and
λ2,n for the optimality of polynomial stability. ��

We are now in a position to conclude the proof of Proposition 4.4.

Proof of Proposition 4.4 The proof is divided into two steps.
Step 1. Calculation of ε1,n . From (4.32), we have:

⎧⎪⎪⎨
⎪⎪⎩
cosh

(
3λ1,n
2

)
= (−1)n cosh

(
3ε1,n
2

)
, sinh

(
3λ1,n
2

)
= (−1)n sinh

(
3ε1,n
2

)
,

cosh

(
λ1,n

2

)
= (−1)n cosh

(ε1,n

2

)
, sinh

(
λ1,n

2

)
= (−1)n sinh

(ε1,n

2

)
,

(4.36)
and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

λ1,n
= − i

2πn
+ O

(
ε1,n n

−2)+ O
(
n−3) , 1

λ21,n
= − 1

4π2n2
+ O

(
n−3),

1√
λ1,n

= 1 − i sign(n)

2
√

π |n| + O
(
ε1,n |n|−3/2)+ O

(
|n|−5/2

)
,

1√
λ31,n

= −1 − i sign(n)

4
√

π3|n|3 + O
(
|n|−5/2

)
,

1√
λ51,n

= O
(
|n|−5/2

)
.

(4.37)

On the other hand, since lim|n|→+∞ ε1,n = 0, we have the asymptotic expansion:

⎧⎪⎪⎨
⎪⎪⎩
cosh

(
3ε1,n
2

)
= 1 + 9ε21,n

8
+ O(ε41,n), sinh

(
3ε1,n
2

)
= 3ε1,n

2
+ O(ε31,n),

cosh
(ε1,n

2

)
= 1 + ε21,n

8
+ O(ε41,n), sinh

(ε1,n

2

)
= ε1,n

2
+ O(ε31,n).

(4.38)
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Inserting (4.38) in (4.36), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh

(
3λ1,n
2

)
= (−1)n + 9(−1)n ε1,n

8
+ O(ε41,n),

sinh

(
3λ1,n
2

)
= 3(−1)n ε1,n

2
+ O(ε31,n),

cosh

(
λ1,n

2

)
= (−1)n + (−1)n ε1,n

8
+ O(ε41,n),

sinh

(
λ1,n

2

)
= (−1)n ε1,n

2
+ O(ε31,n).

(4.39)

Substituting (4.37) and (4.39) in (4.23), we get:

ε1,n

2

(
3 + cos

( c
2

))
+ (1 − i sign(n))

(
1 − cos

( c
2

))
2
√

π |n| + i c
(
4 sin

( c
2

)− c
)

16πn

+ (1 + i sign(n))
(
1 − cos

( c
2

))
8
√

π3 |n|3 + 8c sin
( c
2

)+ (1 + cos
( c
2

))
c2

16π2n2

+O
(
|n|−5/2

)
+ O

(
ε1,n |n|−3/2)+ O

(
ε21,n |n|−1/2)+ O

(
ε31,n
) = 0.

(4.40)

We distinguish two cases:
Case 1. If sin

( c
4

) �= 0, then:

1 − cos
( c
2

)
= 2 sin2

( c
4

)
�= 0;

therefore, from (4.40), we get:

ε1,n

2

(
3 + cos

( c
2

))
+ sin2

( c
4

)
(1 − i sign (n))√|n|π +O

(
ε31,n
)+O

(|n|−1/2 ε21,n
)+O

(
n−1) = 0;

hence, we get:

ε1,n = −2 sin2
( c
4

)
(1 − i sign (n))(

3 + cos
( c
2

))√|n|π + O
(
n−1) . (4.41)

Inserting (4.41) in (4.32), we get (4.17) and (4.19).
Case 2. If sin

( c
4

) = 0, then:

1 − cos
( c
2

)
= 2 sin2

( c
4

)
= 0 and sin

( c
2

)
= 2 sin

( c
4

)
cos
( c
4

)
= 0.

Consequently, from (4.40), we get:

2ε1,n − i c2

16πn
+ c2

8π2n2
+O

(
|n|−5/2

)
+O

(
ε1,n |n|−3/2)+O

(
ε21,n |n|−1/2)+O

(
ε31,n
) = 0.

(4.42)
Solving Eq. (4.42), we get:

ε1,n = i c2

32πn
− c2

16π2n2
+ O

(
|n|−5/2

)
. (4.43)

Inserting (4.43) in (4.32), we get (4.21).
Step 2. Calculation of ε2,n . We distinguish three cases:
Case 1. If sin

( c
4

) �= 0 and cos
( c
4

) �= 0, then 0 < cos2
( c
4

)
< 1. Therefore:

ζ := arccos
(
cos2

( c
4

))
∈
(
0,

π

2

)
.
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From (4.33), we have:

1√
λ2,n

= 1 − i sign(n)

2
√

π |n| + O
(|n|−3/2) and

1

λ2,n
= O(n−1). (4.44)

Inserting (4.33) and (4.44) in (4.23), we get:

2 sinh

(
λ2,n

2

)(
cosh

(
λ2,n
)+ cos2

( c
4

))

+
cosh

(
λ2,n
2

) (
cosh

(
λ2,n
)− cos2

( c
4

))
(1 − i sign(n))

√
π |n| + O(n−1) = 0.

(4.45)

From (4.33), we obtain:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cosh(λ2,n) = − cos2
( c
4

)
cosh

(
ε2,n
)− i sin (ζ ) sinh

(
ε2,n
)
,

cosh

(
λ2,n

2

)
= (−1)n

(
− sin

(
ζ

2

)
cosh

(ε2,n

2

)
+ i cos

(
ζ

2

)
sinh

(ε2,n

2

))
,

sinh

(
λ2,n

2

)
= (−1)n

(
− sin

(
ζ

2

)
sinh

(ε2,n

2

)
+ i cos

(
ζ

2

)
cosh

(ε2,n

2

))
.

(4.46)

Since ζ = arccos
(
cos2

( c
4

)) ∈ (0, π
2

)
, we have:

sin (ζ ) =
∣∣∣sin ( c

4

)∣∣∣
√
1 + cos2

( c
4

)
, cos

(
ζ

2

)
=
√
1 + cos2

( c
4

)
√
2

, sin

(
ζ

2

)
=
∣∣sin ( c4 )

∣∣
√
2

.

(4.47)
On the other hand, since lim|n|→+∞ ε2,n = 0, we have the asymptotic expansion:

{
cosh

(
ε2,n
) = 1 + O(ε22,n), sinh

(
ε2,n
) = ε2,n + O(ε32,n),

cosh
(ε2,n

2

)
= 1 + O(ε22,n), sinh

(ε2,n

2

)
= ε2,n

2
+ O(ε32,n).

(4.48)

Inserting (4.47) and (4.48) in (4.46), we get:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh(λ2,n) = − cos2
( c
4

)
− i ε2,n

∣∣∣sin ( c
4

)∣∣∣
√
1 + cos2

( c
4

)
+ O(ε22,n),

cosh

(
λ2,n

2

)
= (−1)n√

2

⎛
⎝ i ε2,n

√
1 + cos2

( c
4

)
2

−
∣∣∣sin ( c

4

)∣∣∣
⎞
⎠+ O(ε22,n),

sinh

(
λ2,n

2

)
= − (−1)n

2
√
2

(∣∣∣sin ( c
4

)∣∣∣ ε2,n − 2i

√
1 + cos2

( c
4

))
+ O(ε22,n).

(4.49)

Inserting (4.49) in (4.45), we get:

√
2 (−1)n

∣∣∣sin ( c
4

)∣∣∣ (1 + cos2
( c
4

)) (
ε2,n + cos2

( c
4

)
(1 − i sign(n))(

1 + cos2
( c
4

)) √
π |n|

)

+O(n−1) + O(ε22,n) + O
(|n|−1/2 ε2,n

) = 0.

Consequently, since in this case, cos
( c
4

) �= 0, then we get:

ε2,n = −cos2
( c
4

)
(1 − i sign(n))(

1 + cos2
( c
4

)) √
π |n| + O(n−1). (4.50)

Substituting (4.50) in (4.40), we get (4.18).
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Case 2. If cos
( c
4

) = 0, then:

cos
( c
2

)
= −1 and sin

( c
2

)
= 0. (4.51)

In this case, λ2,n becomes:

λ2,n = 2inπ + 3π i

2
+ ε2,n . (4.52)

Therefore, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh

(
3λ2,n
2

)
= (−1)n√

2

(
cosh

(
3ε2,n
2

)
+ i sinh

(
3ε2,n
2

))
,

sinh

(
3λ2,n
2

)
= (−1)n√

2

(
i cosh

(
3ε2,n
2

)
+ sinh

(
3ε2,n
2

))
,

cosh

(
λ2,n

2

)
= (−1)n√

2

(
− cosh

(ε2,n

2

)
+ i sinh

(ε2,n

2

))
,

sinh

(
λ2,n

2

)
= (−1)n√

2

(
i cosh

(ε2,n

2

)
− sinh

(ε2,n

2

))
.

(4.53)

On the other hand, since lim|n|→+∞ ε2,n = 0, we have the asymptotic expansion:

⎧⎪⎪⎨
⎪⎪⎩
cosh

(
3ε2,n
2

)
= 1 + 9ε22,n

8
+ O(ε42,n), sinh

(
3ε2,n
2

)
= 3ε2,n

2
+ O(ε32,n),

cosh
(ε2,n

2

)
= 1 + ε22,n

8
+ O(ε42,n), sinh

(ε2,n

2

)
= ε2,n

2
+ O(ε32,n).

(4.54)

Inserting (4.54) in (4.53), we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh

(
3λ2,n
2

)
= (−1)n√

2

(
1 + 3i ε2,n

2
+ 9ε22,n

8
+ O(ε32,n)

)
,

sinh

(
3λ2,n
2

)
= (−1)n√

2

(
i + 3 ε2,n

2
+ 9i ε22,n

8
+ O(ε32,n)

)
,

cosh

(
λ2,n

2

)
= (−1)n√

2

(
−1 + i ε2,n

2
− ε22,n

8
+ O(ε32,n)

)
,

sinh

(
λ2,n

2

)
= (−1)n√

2

(
i − ε2,n

2
+ i ε22,n

8
+ O(ε32,n)

)
.

(4.55)

Moreover, from (4.52), we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

λ2,n
= − i

2πn
+ 3iπ

8π2n2
+ O

(
ε2,n n

−2)+ O
(
n−3) , 1

λ22,n
= − 1

4π2n2
+ O

(
n−3),

1√
λ2,n

= 1 − i sign(n)

2
√

π |n| + 3 (− sign(n) + i)

16
√

π |n|3 + O
(
ε2,n |n|−3/2)+ O

(
|n|−5/2

)
,

1√
λ32,n

= −1 − i sign(n)

4
√

π3|n|3 + O
(
|n|−5/2

)
,

1√
λ52,n

= O
(
|n|−5/2

)
.

(4.56)
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Inserting (4.51), (4.55), and (4.56) in (4.23), we get:

i ε22,n
2

+
(
1 + sign(n) + i

2
√

π |n| + 3c2

64πn

)
ε2,n − i c2

32πn
+ (sign(n) − i) c2

64
√

π3|n|3
+
(
64 − i

(
c2 − 24π + 16

))
c2

1024π2n2

+O
(
|n|−5/2

)
+ O

(
ε2,n |n|−3/2)+ O

(
ε22,n |n|−1/2)+ O

(
ε32,n
) = 0.

(4.57)

From (4.57), we get:

ε2,n − i c2

32πn
+ O

(
ε2,n |n|−1/2)+ O

(
ε22,n
) = 0;

hence:

ε2,n = i c2

32πn
+ ξn

n
, such that lim|n|→+∞ ξn = 0. (4.58)

Inserting (4.58) in (4.57), we get:

ξn

n
+ (8 + i (3π − 2)) c2

128π2n2
+ O

(
ξn |n|−3/2)+ O

(
|n|−5/2

)
= 0;

therefore:

ξn = − (8 + i (3π − 2)) c2

128π2n
+ O(n−3/2). (4.59)

Inserting (4.58) in (4.59), we get:

ε2,n = i c2

32πn
− (8 + i (3π − 2)) c2

128π2n2
+ O(n−5/2). (4.60)

Finally, inserting (4.60) in (4.52), we get (4.20).
Case 3. If sin

( c
4

) = 0, then:

cos
( c
2

)
= 1 and sin

( c
2

)
= 0. (4.61)

In this case, λ2,n becomes:
λ2,n = 2inπ + i π + ε2,n . (4.62)

Similar to case 2, from (4.62) and using the fact that lim|n|→+∞ ε2,n = 0, we have the
asymptotic expansion:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh

(
3λ2,n
2

)
= −3i (−1)n ε2,n

2
+ O

(
ε32,n
)
,

sinh

(
3λ2,n
2

)
= −i (−1)n

(
1 + 9ε22,n

8

)
+ O(ε42,n),

cosh

(
3λ2,n
2

)
= i (−1)n ε2,n

2
+ O

(
ε32,n
)
,

sinh

(
3λ2,n
2

)
= i (−1)n

(
1 + ε22,n

8

)
+ O(ε42,n).

(4.63)
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Moreover, from (4.62), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

λ2,n
= − i

2πn
+ i π

4π2n2
+ O

(
ε2,n n

−2)+ O
(
n−3) , 1

λ22,n
= − 1

4π2n2
+ O

(
n−3) ,

1√
λ2,n

= 1 − i sign(n)

2
√

π |n| + (1 + i sign(n)) ε2,n + (− sign(n) + i) π

8
√

π |n|3
+3 (1 − i sign(n))

64
√

π |n|5 + O
(
ε2,n |n|−5/2

)
+ O

(|n|−7/2),
1√
λ32,n

= −1 − i sign(n)

4
√

π3|n|3 + 3 (sign(n) + i)

16
√

π3|n|5 + O
(
ε2,n |n|−5/2

)
+ O

(|n|−7/2),
1√
λ52,n

= −1 + i sign(n)

8
√

π5|n|5 + O
(|n|−7/2) , 1

λ32,n
= O

(
n−3).

(4.64)
Inserting (4.61), (4.63), and (4.64) in (4.23), we get:

−i ε22,n +
(

− sign(n) + i√
π |n| − 3c2

32πn
+ sign(n) − i + (1 + i sign(n)) π

4
√

π3|n|3
)

ε2,n

− (sign(n) − i) c2

32
√

π3|n|3
+ i c4

512π2n2
− 3 (3(sign(n) + i) − (1 − i sign(n)) π) c2

128
√

π5|n|5
+O

(
n−3)+ O

(
ε2,n n

−2)+ O
(
ε22,n n

−1)+ O
(
ε32,n
) = 0.

(4.65)

Similar to case 2, solving Eq. (4.65), we get:

ε2,n = i c2

32πn
− (4 + iπ) c2

64π2n2
+ O

(
|n|−5/2

)
. (4.66)

Finally, inserting (4.66) in (4.62), we get (4.22). Thus, the proof is complete.

Proof of Theorem 4.3 From Proposition 4.4, the operatorA2 has two branches of eigenvalues
with eigenvalues admitting real parts tending to zero. Hence, the energy corresponding to
the first and second branch of eigenvalues has no exponential decaying. Therefore, the total
energy of the Timoshenko System (1.1)–(1.2) with local Kelvin–Voigt damping, and with
Dirichlet–Neumann boundary conditions (1.4), has no exponential decaying in the equal
speed case. ��

Our second result in this part is following theorem.

Theorem 4.8 Under hypothesis (H2), for all initial data U0 ∈ D (A2) and for all t > 0, if

there exists κ ∈ N, such that c :=
√

k1
k2

= 2κπ , then the energy decay rate in (3.1) is optimal;

i.e., for ε > 0 (small enough), we cannot expect the energy decay rate t−
2

2−ε .

For the proof of Theorem 4.8, we first recall Theorem 3.4.1 stated in Nadine (2016).

Theorem 4.9 Let A : D(A) ⊂ H → H generate a C0−semigroup of contractions
(
et A
)
t≥0

on H. Assume that iR ∈ ρ(A). Let
(
λk,n
)
1≤k≤k0, n≥1 denote the kth branch of eigenvalues

of A and
(
ek,n
)
1≤k≤k0, n≥1 the system of normalized associated eigenvectors. Assume that
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for each 1 ≤ k ≤ k0, there exist a positive sequence μk,n → ∞ as n → ∞ and two positive
constant αk > 0, βk > 0, such that:

�(λk,n) ∼ − βk

μ
αk
k,n

and �(λk,n) ∼ μk,n as n → ∞. (4.67)

Here, � is used to denote the imaginary part of a complex number. Furthermore, assume that
for u0 ∈ D(A), there exists constant M > 0 independent of u0, such that:∥∥∥et Au0

∥∥∥2
H

≤ M

t
2
�k

‖u0‖2D(A) , �k = max
1≤k≤k0

αk, ∀ t > 0. (4.68)

Then, the decay rate (4.68) is optimal in the sense that for any ε > 0, we cannot expect the

energy decay rate t
− 2

�k−ε . ��
Proof of Theorem 4.8 If condition (H2) holds, first following Theorem 3.1, for all initial data
U0 ∈ D (A2) and for all t > 0,we get (4.68) with �k = 2. Furthermore, from Proposition 4.4
(case 2 and case 3), we remark that:
Case 1. If there exists κ0 ∈ N, such that c = 2 (2κ0 + 1) π , we have:⎧⎪⎪⎨

⎪⎪⎩
� (λ1,n) ∼ − 1

π1/2|n|1/2 , � (λ1,n) ∼ 2nπ,

� (λ2,n) ∼ − c2

16π2n2
, � (λ2,n) ∼

(
2n + 3

2

)
π,

then (4.67) holds with α1 = 1
2 and α2 = 2. Therefore, �k = 2 = max(α1, α2). Then,

applying Theorem 4.9, we get that the energy decay rate in (3.1) is optimal.
Case 2. If there exists κ1 ∈ N, such that c = 4κ1π , we have:⎧⎪⎨

⎪⎩
� (λ1,n) ∼ − c2

16π2n2
, � (λ1,n) ∼ 2nπ,

� (λ2,n) ∼ − c2

16π2n2
, � (λ2,n) ∼ (2n + 1) π,

then (4.67) holds with α1 = 2 andα2 = 2. Therefore, �k = 2 = max(α1, α2).Then, applying
Theorem 4.9, we get that the energy decay rate in (3.1) is optimal. ��
Remark 4.10 It would be very interesting to study the optimal decay rate for the Timoshenko
System (1.1)–(1.2) with Dirichlet–Neumann boundary conditions (1.4) when ρ1

k1
�= ρ2

k2
or

with fully Dirichlet boundary conditions (1.3). However, in these cases, we can no longer
calculate explicitly the eigenvalues as in Proposition 4.4. ��
Acknowledgements The authors would like to thank the referees for their valuable comments and useful
suggestions.
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