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Abstract
In this paper, we discuss the superconvergence of the “interpolated” collocation solutions
for weakly singular Volterra integral equations of the second kind. Based on the collocation
solution uh , two different interpolation postprocessing approximations of higher accuracy:
I 2m−1
2h uh based on the collocation points and Im2huh based on the least square scheme are
constructed, whose convergence order are the same as that of the iterated collocation solution.
Such interpolation postprocessing methods are much simpler in computation. We further
apply this interpolation postprocessing technique to hybrid collocation solutions and similar
results are obtained. Numerical experiments are shown to demonstrate the efficiency of the
interpolation postprocessing methods.

Keywords Volterra integral equations · Superconvergence · Supercloseness · Interpolation
postprocessing · Weakly singular kernels · Collocation · Hybrid collocation
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1 Introduction

In this paper, we consider the following weakly singular Volterra integral equation (VIE) of
the second kind:

u(t) = g(t) +
∫ t

0
(t − s)−αK (t, s)u(s)ds, t ∈ I := [0, T ], (1)
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with 0 < α < 1. K (t, s), g(t) are known functions and u(t) is the function to be determined.
Let D := {(t, s) : 0 ≤ s < t ≤ T }. We assume that K (t, s) ∈ C(D) , with K (t, t) �= 0 for
t ∈ I .

(1) arises in many modeling problems in mathematical physics and chemical reactions,
such as stereology, heat conduction, crystal growth, electrochemistry, superfluidity, and the
radiation of heat from a semi-infinite solid.

The second kind Volterra integral equations with weakly singular kernels typically have
solutions whose derivatives are unbounded at the left endpoint of the interval of integration.
Due to this singular behavior, the optimal global and local (super-) convergence results of
collocation solutions in piecewise polynomial spaces on uniform meshes will no longer be
valid (Brunner 1983). The use of suitable graded meshes (Brunner 1985; Tang 1992) is a
possible alternative approach for dealing with this order reduction problem. However, as
pointed out in (Brunner 1983; Diogo et al. 1994), the initial stepsize becomes very small in
the graded mesh and may cause serious round-off errors when the number of elements N is
increased or high-order piecewise polynomials are used. Alternatively, some other numerical
methods are proposed to get the optimal convergence of the numerical solutions. See, for
example, nonpolynomial spline functions reflecting the singularity on uniformmeshes (Brun-
ner 1983), β−polynomial collocation methods under quasi-graded meshes (Hu 1996, 1997),
and variable transformations followed by standard methods (Pedas and Vainikko 2004a, b).
The hybrid method first proposed by Cao et al. (2003) uses “looser” graded partitions to
avoid round-off errors and nonpolynomial interpolation in the first stepsize to preserve the
optimal order of convergence.

Superconvergence is a hot topic in solving various differential equations and integral equa-
tions. Based on current convergence results of numerical solutions, suitable postprocessing
with relative cheap computation can result in global superconvergence of the new “postpro-
cessed” solutions. There are many postprocessing methods to get the superconvergence of
the “postprocessed” solutions of partial differential equations and integral equations. See,
for instance, iterated postprocessing (Graham et al. 1985; Sloan 1976, 1990), interpolation
postprocessing (Lin and Lin 2006; Lin and Yan 1996), and PPR ( Naga and Zhang 2004;
Zhang and Naga 2005), etc. For weakly singular Volterra integral equations, generally, the
iterated postprocessing method (including the classical iterative and hybrid iterative meth-
ods) is used to accelerate the approximation. See, for example, Diogo 2009; Huang and Xu
2006; Rebelo and Diogo 2010. Interpolation postprocessing was proposed by Lin and his
group to accelerate the convergence of finite-element solutions for various partial differen-
tial equations, integral equations, and integro-differential equations, and the corresponding
works are contained in some papers (such as Lin et al. 1998; Zhang et al. 2000; Huang and
Zhang 2010; Huang and Xie 2009) and two monographs (Lin and Lin 2006; Lin and Yan
1996). For weakly singular VIEs, the interpolation postprocessing is used to β-polynomial
collocation solutions to get the superconvergence of the new solutions (Hu 1997). Theoretical
analysis and numerical results show that this interpolation postprocessing technique is both
simple and of higher accuracy.

In this paper, we apply the interpolation postprocessing technique to the collocation solu-
tion under graded mesh and the hybrid collocation solution under “looser” graded mesh to
get the same superconvergence as the iterated methods. This interpolation postprocessing is
simpler in computation than the iterated postprocessing method. Since the former just needs
to interpolate uh at some nearby points, and, however, the latter needs to compute an integral
(probably weakly singular) for each t .

Here is the outline of the remaining sections. The collocation method, the hybrid colloca-
tion method, and the corresponding iterated methods for weakly singular Volterra equations
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are presented in Sect. 2 to make the paper self-contained. In Sect. 3, the supercloseness
between the (hybrid) collocation solution and the interpolation of the exact solution u is
proved, and the main results about the superconvergence of interpolation postprocessing
method, instead of the iterated method, are obtained. Finally, numerical experiments are
provided in Sect. 4 to show the efficiency of the interpolation postprocessing method and to
compare the computational efficiency of these two postprocessing methods.

2 Iterated collocationmethod for weakly singular Volterra integral
equations

In this section, we first introduce the collocation method and the hybrid collocation method
for weakly VIEs. The iterated postprocessing is then presented based on these two methods.

2.1 Collocationmethod for weakly singular VIEs

Define the linear Volterra integral operator Vα as:

(Vαu)(t) :=
∫ t

0
Hα(t, s)u(s)ds, t ∈ I := [0, T ], (2)

with

Hα(t, s) := (t − s)−αK (t, s), 0 < α < 1. (3)

Then, the corresponding operator formof the linearVolterra integral equation (1) is as follows:

u(t) = g(t) + (Vαu)(t), t ∈ I . (4)

The existence and uniqueness of the solution for (1) (or (4)) are given in the following
Theorem (see Brunner (2004) for details).

Theorem 1 Assume that K ∈ C(D) and 0 < α < 1. Then, for any g ∈ C(I ) the linear,
weakly singular Volterra integral equation (1) possesses a unique solution u ∈ C(I ). If
g ∈ Cm(I ) and K ∈ Cm(D) with K (t, t) �= 0 on I , then:

u ∈ Cm(0, T ] ∩ C(I ), wi th |u′(t)| ≤ Cαt
−α, f or t ∈ (0, T ].

Typically, VIEs with weakly singular kernels behave like t−α (0 < α < 1) have solutions
whose derivatives are unbounded at the left endpoint of the interval of integration. Due to this
singular behavior, the optimal global and local (super-) convergence results for collocation
solutions in piecewise polynomial spaces on uniform meshes will no longer be valid. The
use of appropriately graded meshes is one of the possible alternative approaches for dealing
with this order reduction.

We recall that for an interval I := [0, T ], a graded mesh with grading exponent r > 1 is
defined by:

Ih := {tn = t (N )
n := (n/N )r T , n = 0, 1, . . . , N }. (5)

The sequence {hn = tn − tn−1 (n = 1, 2, . . . , N )} is strictly increasing.
The piecewise polynomial space of degree ≤ m − 1 is defined as:

S(−1)
m−1(Ih) := {v ∈ L2(I ) : v|In ∈ Pm−1 (1 ≤ n ≤ N )},
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where Pm−1 is the space of all polynomials of degree ≤ m − 1.
The desired collocation solution uh for the weakly singular VIE (4) is defined by:

uh(t) = g(t) + (Vαuh)(t), t ∈ Xh, (6)

where the set of collocation points:

Xh : = {tni = tn−1 + ci hn : 0 < c1 < . . . < ci < . . . < cm ≤ 1,

n = 1, 2, . . . , N ; i = 1, 2, . . . ,m}. (7)

is determined by the given mesh Ih and the (distinct) collocation parameters {ci }.
Define the corresponding interpolatory projection operator Ph : C[0, T ] → S(−1)

m−1(Ih)
satisfying that for x ∈ C[0, T ]:

Ph(x(tn,i )) = x(tn,i ) (n = 1, 2, . . . , N ; i = 1, . . . ,m). (8)

It is easy to verify that Ph is bounded. The collocation equation (6) has the following
operator form:

uh = Phg + Ph(Vαuh). (9)

Theorem 2 (Brunner 2004) Assume:

1. The given functions in the Volterra integral equation (1) satisfy K ∈ Cm(D) and g ∈
Cm(I ).

2. uh ∈ S(−1)
m−1(Ih) is the (unique) collocation solution to (1) defined by (6), with h :=

T /N ∈ (0, h̄) and corresponding to the collocation points Xh, where h̄ = h̄(α) > 0.
3. The grading exponent r = r(α) ≥ 1 determining the mesh Ih is given by:

r(α) = μ

1 − α
, μ ≥ 1 − α.

Then, we have:

‖u − uh‖∞ := sup
t∈I

|u(t) − uh(t)| ≤ C(r)

{
hμ, if 1 − α ≤ μ < m,

hm, if μ ≥ m,
(10)

holds for any set Xh of collocation points with 0 ≤ c1 < · · · < cm ≤ 1. The constant C(r)
depends on {ci } and on the grading exponent r = r(α), but not on h.

2.2 Hybrid collocationmethod for weakly singular VIEs

Although the graded mesh can get the desired convergence, its initial stepsize becomes very
small andmay cause round-off errors for α → 1when N is increased or high-order piecewise
polynomials are used. A “looser” graded mesh combining nonpolynomials interpolation in
the initial stepsize called the hybrid method (Cao et al. 2003) was proposed to optimize the
grid while maintaining the same accuracy.

In this subsection, we describe the “looser” graded partition of I . Specifically, for a real
number r ≥ 1, we let i0 be an integer, such that:

⌈(
N

i0

)r⌉
= N ,

where �a� denotes the smallest integer greater than or equal to a.
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It is easy to verify that such an integer i0 exists and satisfies:

N 1−1/r ≤ i0 < N (N − 1)−1/r

or the equivalent estimate:

N 1−1/r ≤ i0 < N 1−1/r + 1.

Set N ′ := N − i0 + 1. The partition on I is given by:

t0 = 0, ti =
(
i0 + i − 1

N

)r

T , i = 1, 2, ..., N ′. (11)

Note that tN ′ = T and the stepsize of the first subinterval for this partition is larger than that
for the graded mesh and reduces the possibility of round errors.

However, this “looser” partition cannot capture the singularity of the exact solution as well
as the graded mesh due to the “bigger” stepsize of the initial subinterval. To preserve the sin-
gularity properties of the solution, the nonpolynomial interpolation reflecting the singularities
of the exact solution is used in the first subinterval.

For 0 < α < 1 and a positive integer, we introduce an index set:

Wα,m = {i + jα : i + jα < m, i, j ∈ N∗},
where N∗ denotes the set of the nonnegative integers and l is the cardinality of the dimension
of the space Wα,m (l := dimWα,m).

The nonpolynomial space Vm of degree < m is defined by:

Vm := span{tν j : j = 0, 1, ..., l − 1, ν j ∈ Wα,m}.
The hybrid space S(−1)

m (Ih) of degree < m is defined by:

S(−1)
m (Ih) := {v ∈ L2(I ) : v|I1 ∈ Vm, v|Ii ∈ Pm−1, i = 2, 3, · · · , N ′}. (12)

Let 0 ≤ c1 < c2 < ... < cl ≤ 1, and we choose l collocation points t1 j := t0 + c j h1 ( j =
1, 2, ..., l) in I1 = [t0, t1] and ti j = ti−1 + c j hi ( j = 1, 2, ...,m) in Ii = [ti−1, ti ] (i =
2, ..., N ′), and denoted by:

X̄h =
{
t1 j := t0 + c j h1 ( j = 1, 2, ..., l), t1 j ∈ I1
ti j = ti−1 + c j hi ( j = 1, 2, ...,m), ti j ∈ Ii , i = 2, ..., N ′. (13)

For simplicity of the notations, we introduce the notation:

mn :=
{
l, n = 1;
m, n = 2, 3, ..., N ′.

The hybrid collocation method for (1) [or the relevant operator form (4)] is to seek uh ∈
S(−1)
m (Ih), such that:

uh(tn j ) = g(tn j ) + (Vαuh)(tn j ), n = 1, 2, . . . , N ′, j = 1, 2, . . . ,mn . (14)

For f ∈ C(I ), we define the relevant hybrid interpolation operator Qh : C(I ) → S(−1)
m (Ih)

by:

(Qh f )(tni ) = f (tni ), n = 1, 2, · · · , N ′, j = 1, 2, · · · ,mn . (15)

We know from the definition of Qh that the singularity preserving (nonpolynomial) inter-
polation is used in the first subinterval and the standard piecewise polynomial interpolation
in the rest of subintervals. We refer (Cao et al. 2003) for more details of Qh .
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Then, the operator form of the hybrid collocation method for weakly singular VIE (4) or
(1) is to seek uh ∈ S(−1)

m (Ih), such that:

uh = Qhg + Qh(Vαuh), (16)

where Qh is defined by (15) under the mesh defined by (11).
The following lemma shows the convergence of the hybrid collocation solution.

Lemma 1 (Cao et al. 2003) Let u be the exact solution of (1) and N be a positive integer. Let
Qh be the hybrid interpolation operator defined by (15) associated with the graded partition
(11). Suppose the forcing function g in (1) has the form g(t) = ∑

j+iα<m
gi j t j+iα + gm(t).

Then, for sufficiently largeN, (16) has a unique solution uh and there exists a positive constant
C independent of N, such that:

‖ u − uh ‖∞≤ CN−m .

2.3 Iterated postprocessing for (hybrid) collocation solutions

The iterated collocation solution uith corresponding to the (hybrid) collocation solution uh is
then defined by:

uith (t) := g(t) + (Vαuh)(t), t ∈ I . (17)

It trivially satisfies:

uith (t) = uh(t), ∀t ∈ Xh(X̄h). (18)

That is, Phuith = uh for the traditional collocation method and Qhuith = uh for the hybrid
collocation method.

It is easy to prove that the iterated collocation solution uith have the following operator
form:

uith = g + Vα(Rhu
it
h ), (19)

where the operator Rh := Ph for the traditional collocation method and Rh := Qh for the
hybrid collocation method.

Next, we give the superconvergence results of iterated collocation solutions and iterated
hybrid collocation solutions.

Theorem 3 (Brunner 2004) Assume:

1. g ∈ Cm+1(I ), K ∈ Cm+1(D), with K (t, t) �= 0 on I , and 0 < α < 1;
2. uh ∈ S(−1)

m−1(Ih) is the (unique) collocation solution to (1), with corresponding iterated

collocation solution uith ;

3. the collocation parameters satisfy J0 := ∫ 1
0

m∏
i=1

(s − ci )ds = 0;

4. Ih is the graded mesh (5) with grading exponent r = r(α) ≥ 1 and h := T /N.

Then:

‖u − uith ‖∞ ≤ C(r)

{
h2(1−α), if r = 1,
hm+1−α, if r ≥ m

1−α
.

(20)
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Similarly, the hybrid collocation parameters is supposed to satisfy:

J0 :=
∫ 1

0
s j

m∏
i=1

(s − ci )ds = 0, ( j = 0, ..., r0), (21)

where r0 is a nonnegative integer less than m. When r0 = 1, the following result for the
iterated hybrid collocation method is obtained.

Theorem 4 (Huang and Xu 2006) Suppose that K ∈ Cm+2(D) and g ∈ Cm+2(I ). Let u be
the exact solution of (1) and uh ∈ S(−1)

m (Ih) is the (unique) hybrid collocation solution to
(1), with corresponding iterated hybrid collocation solution uith . Then, there exists a positive
constant C and a positive integer N0, such that for all N > N0 :

‖u − uith ‖∞ ≤ CN−m−1+α. (22)

If r0 = 0 in the orthogonal condition (21), we can get the similar result of iterated hybrid
collocation solutions under the same regularity restrictions of K , g as Theorem 3:

Corollary 1 Assume that g ∈ Cm+1(I ), K ∈ Cm+1(D), with K (t, t) �= 0, the hybrid collo-
cation parameters satisfy

∫ 1
0

∏m
i=1(s − ci )ds = 0. Then, for the iterated hybrid collocation

solution, there holds:

‖ u − uith ‖∞≤ C

{
N−(m+1−α), if α ≥ 1

m+1 ,

N−(m+1− 1−α
m ), if α < 1

m+1 .

In fact, when r0 = 0, (21) simplifies to
∫ 1
0

m∏
i=1

(s − ci )ds = 0.

The kernel Hα(t, s) satisfies the following condition on D = {(t, s) : 0 ≤ s ≤ t ≤ T }:

| ∂ i

∂si
Hα(t, s) |≤ C(t − s)−α−i , i = 0, 1, ...,m.

See (3.2) of Huang and Xu (2006) for details, where l = −1, β = 0. The conclusion is valid
by Lemma 3.2 and (3.23) of Huang and Xu 2006. We leave the details to the reader.

Remark 1 We see from Lemma 1 and Theorem 4 that the graded parameter r of the hybrid
collocation method is not as sensitive to the values of m, α as the traditional collocation
method.

3 Global superconvergence of interpolation postprocessing

In this section, some results on supercloseness between the (hybrid) collocation solution uh
and the interpolant defined in (8) [(15) for hybrid collocation] of the exact solution u are given,
and then, we use two postprocessing methods based on the supercloseness to accelerate the
(hybrid) collocation solutions.

3.1 Supercloseness analysis between uh and Phu (Qhu)

We begin by citing from (Lin and Lin 2006; Lin and Yan 1996) the following definition of
“supercloseness”.
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Definition 1 If the error between the numerical solution and some interpolant of the exact
solution is much smaller than that between the numerical solution and the exact solution;
that is, if:

‖Phu − uh‖∞ � ‖u − uh‖∞,

then this phenomenon is called “supercloseness”.

We then introduce the following Hölder space:

C (0,β)[a, b] = {g ∈ C[a, b]|dβ(g) ≡ sup
a≤t,τ≤b

|g(t) − g(τ )|
|t − τ |β < ∞},

where 0 < β < 1, and if u ∈ C (0,β)[a, b], then u is called β − Hölder continuous.

Lemma 2 Atkinson 1997 For N ,m > 0 and grading exponent r ≥ 1, Ph is the interpolation
projection operator defined by (8) in Sect. 2. For 0 < α < 1, assume u ∈ C (0,1−α)[0, 1] ∩
Cm(0, 1], with:

|um(t)| ≤ cα,m(u)t1−α−m, 0 < t ≤ 1,

where C (0,1−α)[0, 1] is the Hölder space,
Then, for r ≥ m

1−α
, we have:

‖u − Phu‖∞ ≤ c

Nm

with c a constant independent N.

Theorem 5 Under the conditions stated in Theorem 3, the following global supercloseness
result holds:

‖uh − Phu‖∞ ≤ C(r)

{
h2(1−α), if r = 1,
hm+1−α, if r ≥ m

1−α
.

(23)

Proof We know from (4) and (9) that:

uh − Phu = Phg + Ph(Vαuh) − (Phg + Ph(Vαu))

= PhVα(uh − u) = PhVα(uh − Phu + Phu − u);
then:

uh − Phu = (I − PhVα)−1PhVα(Phu − u). (24)

For the first subinterval, i.e., for n = 1, we combine Lemma 2 and Theorem 1 that:

‖ Vα(Phu − u) ‖I1,∞ = max
t∈[0,t1]

∣∣∣∣
∫ t

0
(t − s)−αK (t, s)(Phu − u)(s)ds

∣∣∣∣
≤ max

t,s∈D |K (t, s)|‖Phu − u‖I1,∞ max
t∈[0,t1]

∣∣∣∣
∫ t

0
(t − s)−αds

∣∣∣∣
≤ C‖Phu − u‖I1,∞ max

t∈[0,t1]

∣∣∣∣
∫ t

0
(t − s)−αds

∣∣∣∣
= C max

t∈[0,t1])

∣∣∣∣ t
1−α

1 − α

∣∣∣∣ ‖Phu − u‖I1,∞ ≤ C
h1−α
1

1 − α
h1−α
1
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≤ Ch1−α

(
1

N

)r(1−α)

≤ Ch(1+r)(1−α)

≤
{
h2(1−α), if r = 1,
hm+1−α, ifr ≥ m

1−α
.

For n ≥ 2, we write t ∈ In as t = tn−1 + vhn with v ∈ [0, 1]. Then:
Vα(Phu − u)(t)

=
∫ tn−1

0
(t − s)−αK (t, s)(Phu − u)(s)ds

+h1−α
n

∫ v

0
(v − s)−αK (tn−1 + vhn, tn−1 + shn)(Phu − u)(tn−1 + shn)ds. (25)

For the second term of the right-hand side of (25), by Lemma 2, we obtain:

h1−α
n

∣∣∣∣
∫ v

0
(v − s)−αK (tn−1 + vhn, tn−1 + shn)(Phu − u)(tn−1 + shn)ds

∣∣∣∣
≤ h1−α

n max
t,s∈D |K (t, s)|‖Phu − u‖∞

∣∣∣∣
∫ v

0
(v − s)−αds

∣∣∣∣
≤ Ch1−α

n ‖Phu − u‖∞
∣∣∣∣
∫ v

0
(v − s)−αds

∣∣∣∣
= Ch1−α

n ‖Phu − u‖∞
v1−α

1 − α

≤ Ch1−α‖Phu − u‖∞ ≤ Ch1−α · hm
≤ Chm+1−α.

The first term of the right-hand side of (25) can be written as:
∣∣∣∣
∫ tn−1

0
(t − s)−αK (t, s)(Phu − u)(s)ds

∣∣∣∣

=
∣∣∣∣∣
n−1∑
l=1

∫ tl

tl−1
(t − s)−αK (t, s)(Phu − u)(s)ds

∣∣∣∣∣

=
∣∣∣∣∣
n−1∑
l=1

h1−α
l

∫ 1

0

(
tn−1 + vhn − tl−1

hl
− s

)−α

K (tn−1 + vhn, tl−1 + shl )(Phu − u)(tl−1 + shl )ds

∣∣∣∣∣

=
∣∣∣∣∣∣
n−1∑
l=1

h1−α
l

⎛
⎝ m∑

j=1

ω j

(
tn−1 + vhn − tl−1

hl
− c j

)−α

K (tn−1 + vhn, tl−1 + c j hl )(Phu − u)(tl−1 + c j hl )

+El (t)) |,
where ω j is the weight function, and we write the integral into the numerical quadrature with
the reminder El(t), |El(t)| ≤ Chd(d ≥ m + 1).

From the definition of Ph , we know that:

(Phu − u)(tl−1 + c j hl) = 0.

Therefore:
∣∣∣∣
∫ tn−1

0
(t − s)−αK (t, s)(Phu − u)(s)ds

∣∣∣∣ =
∣∣∣∣∣
n−1∑
l=1

h1−α
l El(t)

∣∣∣∣∣
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≤ Ch1−α
n−1∑
l=1

hm+1
l ≤ Chm+1−α

n−1∑
l=1

hl

≤ Chm+1−α,

where it is easy to verify that hl ≤ Ch.
Hence, for n ≥ 1, we have:

‖uh − Phu‖∞ = ‖(I − PhVα)−1PhVα(Phu − u)‖∞
≤ Chm+1−α

��.
Theorem 6 Under the conditions stated in Corollary 1, we have the following supercloseness
between the hybrid collocation uh and the hybrid interpolation Qhu of the exact solution u:

‖ uh − Qhu ‖∞≤ C

{
N−(m+1−α), if α ≥ 1

m+1 ,

N−(m+1− 1−α
m ), if α < 1

m+1 .

The proof is similar with the iterated hybrid collocation method in Huang and Xu (2006)
(Theorem 3.4), since uh − Qhu = (I − QhVα)−1QhVα(Qhu − u) and u − uith = (I −
VαQh)

−1Vα(u − Qhu). We omit the details and leave the proof to the reader.

Remark 2 The conclusions in Theorem 5 and Theorem 6 can also be obtained by the results of
the iterated collocation and iterated hybrid collocation solutions. In fact, from the relationship
between uh and uith , we know that:

uh − Phu = Phu
it
h − Phu = Ph(u

it
h − u).

Then:

‖uh − Phu‖∞ = ‖Ph‖∞‖uith − u‖∞ ≤ C‖uith − u‖∞.

(20) leads to the supercloseness results.We replace Ph by Qh and the relevant supercloseness
results of the hybrid collocation method can be obtained in the same way.

3.2 Global superconvergence of interpolation collocation solutions

Based on the supercloseness between uh and Phu, we can obtain the global superconvergence
of the new “interpolated collocation solution” by applying the interpolation postprocessing
technique to the collocation solution instead of the iterated collocation method.

We assume that Ih is gained from I2h with mesh size 2h by subdividing each element
of I2h into two equal elements, so that the number of elements N for Ih is even. Then, we
define a higher order interpolation operator I 2m−1

2h of degree (2m − 1) associated with I2h
satisfying the following conditions:

I 2m−1
2h u|Ii∪Ii+1 ∈ P2m−1 (i = 1, 3, · · · , N − 1), (26)

and

I 2m−1
2h u(tni ) = u(tni ),

I 2m−1
2h u(t(n+1)i ) = u(t(n+1)i ), (n = 1, 3, . . . , N − 1; i = 1, 2, . . . ,m). (27)
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It is easy to check that:

‖v − I 2m−1
2h v‖∞ ≤ Chm+1‖v‖m+1,∞, ∀v ∈ Wm+1,∞(I ); (28)

I 2m−1
2h Ph = I 2m−1

2h ; (29)

‖I 2m−1
2h v‖∞ ≤ C‖v‖∞, ∀v ∈ S(−1)

m−1(Ih). (30)

Thus, we can get the global superconvergence of the new “interpolated collocation solution”
by the interpolation postprocessing method as follows.

Theorem 7 Under the conditions stated in Theorem 3 and assume that u ∈ Wm+1,∞(I ), the
following global superconvergence result holds:

‖I 2m−1
2h uh − u‖∞ ≤ C(r)

{
h2(1−α), if r = 1,
hm+1−α, if r ≥ m

1−α
.

(31)

Proof It follows from (30), the interpolation error estimates, and (23) that:

‖I 2m−1
2h uh − u‖∞ ≤ ‖I 2m−1

2h uh − I 2m−1
2h Phu‖∞ + ‖I 2m−1

2h Phu − u‖∞
≤ C‖uh − Phu‖∞ + ‖I 2m−1

2h u − u‖∞
≤ C‖uh − Phu‖∞ + Chm+1

≤ C(r)

{
h2(1−α), if r = 1,
hm+1−α, if r ≥ m

1−α
.

��
We observe that the degree (2m − 1) is not the unique choice for the interpolation post-

processing operator. In fact, the superconvergence result (31) is valid for any interpolation
operator I p2h (p ≥ m) that satisfies (28)-(30).

In contrast to (26)–(27), the operator I p2h can also be constructed by the least-squares
method (Naga and Zhang 2004; Zhang and Naga 2005).

Polynomial Preserving Recovery (PPR). In this scheme, the higher order interpolation
operator Im2h of degree m associated with I2h is:

Im2hu|In∪In+1 ∈ Pm (n = 1, 3, . . . , N − 1). (32)

In each bigger subinterval In ∪ In+1, Im2hu is the solution of the least-squares problem:

2m∑
i=1

∣∣u(t∗i ) − Im2hu(t∗i )
∣∣2 = min

v∈Pm (In∪In+1)

2m∑
i=1

∣∣u(t∗i ) − v(t∗i )
∣∣2, (33)

where t∗i (i = 1, · · · , 2m) are the 2m collocation points in In and In+1 (n = 1, 3, . . . , N−1).
It is readily verified that this type of interpolation also satisfies the conditions (28)–(30).

Theorem 8 Let the conditions stated in Theorem 3 hold and assume that u ∈ Wm+1,∞(I ).
The interpolation operator Im2h is defined by (32)–(33), and then, the following global super-
convergence estimate holds:

‖Im2huh − u‖∞ ≤ C(r)

{
h2(1−α), ifr = 1,
hm+1−α, if r ≥ m

1−α
.

(34)

The proof is similar with Theorem 7. We omit here and leave it to the reader.
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3.3 Global superconvergence for interpolated hybrid collocation solutions

Based on the supercloseness between uh and Qhu, we can obtain the global superconver-
gence of the new “interpolated hybrid collocation solution” by applying the interpolation
postprocessing to the hybrid collocation solution.

Similar with Sect. 3.2, we assume the number of elements N for Ih is an even number.
We define the higher order interpolation operator Î2h := Ĩ m+1

2h ∪ I 2m−1
2h , where Ĩ m+1

2h denotes
the nonpolynomial interpolation of degree < m + 1 in I1 ∪ I2 and I 2m−1

2h denotes the normal
higher order polynomial interpolation of degree (2m − 1) associated with [t2, T ] satisfying
the following conditions:

Ĩ m+1
2h u|I1∪I2 ∈ Vm+1,

I 2m−1
2h u|Ii∪Ii+1 ∈ P2m−1 (i = 3, 5, . . . , N − 1),

and

Ĩ m+1
2h u(t1i ) = u(t1i ), (i = 1, 2 . . . , l). (35)

Ĩ m+1
2h u(t2i ) = u(t2i ), (i = 1, 2 . . . ,m). (36)

I 2m−1
2h u(tni ) = u(tni ), (37)

I 2m−1
2h u(t(n+1)i ) = u(t(n+1)i ), (n = 3, 5, . . . , N − 1; i = 1, 2 . . . ,m). (38)

where Vm+1 is the nonpolynomial space of degree < m + 1 defined in the hybrid collocation
method.

We note that whenwe get the “better” approximation based on the hybrid collocation solu-
tion, the first “bigger” subinterval Ĩ1 = I1∪ I2 need to be paid attention. For the “bigger” new
subinterval Ĩ1, we compute the interpolated hybrid collocation solution using the singular-
ity preserving (nonpolynomial) interpolation rather than an easy addition of nonpolynomial
interpolation and piecewise polynomial interpolation. We use the l +m collocation points to
get the nonpolynomial interpolation Ĩ m+1

2h u of degree < m + 1 in Ĩ1. Let M := dim Vm+1.
Normally, M �= l + m. The least-squares method is usually used to get Ĩ m+1

2h u by the inter-
polation conditions (35) and (36).
It is easy to verify that Î2h of (35)–(38) satisfies (28)–(30), with Ph replaced by Qh .

Thus, we can get the global superconvergence result of the new “interpolated hybrid
collocation solution” by applying the interpolation postprocessing to the “hybrid collocation
solution”.

Theorem 9 Under the conditions stated in Theorem 3, the following global superconvergence
result holds:

‖ Î2huh − u‖∞ ≤ CN−m−1+α. (39)

The proof is similar with the proof of Theorem 7. We omit here and leave it to the reader.
Similarly, the postprocessing operator Ĩ2h is not the unique choice and the superconver-

gence result (39) is valid for any interpolation operator I p2h (p ≥ m) that satisfies (35)-(38).
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3.4 Interpolation postprocessingVS iteration postprocessing

In this subsection, we compare the computational complexities of the two kinds of post-
processings. For simplicity, we only take the interpolation postprocessing I 2m−1

2h uh and the
iterated postprocessing uith on the collocation solution as an example.

Interpolation postprocessing solution I 2m−1
2h uh(t).

We get the “better” approximation I 2m−1
2h uh of the exact solution u by combining the

adjacent subinterval and constructing higher order polynomials in each “bigger” subintervals
Ĩ n+1

2
:= In ∪ In+1(n = 1, 3, · · · , N − 1).

The computing formof the interpolation postprocessing in the bigger subinterval Ĩ n+1
2

(n =
1, 3, · · · , N − 1) is as follows.

For t ∈ Ĩ n+1
2

:= [tn−1, tn+1] (n = 1, 3, . . . , N − 1):

I 2m−1
2h uh(t) =

2m∑
j=1

ũ n+1
2 j L̃ n+1

2 j (t).

Where the Lagrange basis functions L̃ n+1
2 j (t)( j = 1, 2, . . . , 2m) are constructed by the 2m

collocation points. Because of the local property of the basis function, it is very easy to show
that:

I 2m−1
2h uh(t) =

m∑
j=1

un, j L̃ n+1
2 j (t) +

2m∑
j=m+1

un+1, j L̃ n+1
2 j (t).

Therefore, the computing time is mainly composed by the computation of the higher order
Lagrange polynomials, which greatly simplifies calculation.

Iteration postprocessing solution uith (t)
For the iteration postprocessing, we compute the new approximation uith (t) at t = tn−1 +

vhn ∈ In = [tn−1, tn] with v ∈ [0, 1]:

uith (t) = g(t) +
∫ t

0
(t − s)−αK (t, s)uh(s)ds

= g(t) +
n−1∑
l=1

∫ tl

tl−1

(t − s)−αK (t, s)uh(s)ds +
∫ t

tn−1

(t − s)−αK (t, s)uh(s)ds

= g(t) +
n−1∑
l=1

m∑
j=1

ul, j

∫ tl

tl−1

(t − s)−αK (t, s)Ll, j (s)ds

+
m∑
j=1

un, j

∫ t

tn−1

(t − s)−αK (t, s)Ln, j (s)ds

= g(t) +
n−1∑
l=1

m∑
j=1

ul, j hl

∫ 1

0
(t − tl−1 − shl)

−αK (t, tl−1 + shl)L j (s)ds

+
m∑
j=1

un, j h
1−α
n

∫ v

0
(v − s)−αK (t, tn−1 − shn)L j (s)ds.

Because of theweak singularity of the kernel, the normal numerical integral is no longer valid.
We must divide the interval [0, v] into several subintervals (using graded mesh) and compute
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numerical integral in each subinterval (omitting the subinterval containing the singular point
v).This increases the complexity of the iteration solution uith (t). (See Kaneko and Xu 1994
for details).

4 Numerical experiments

In this section, we give an example to illustrate the theory established in the previous section.

Example 4.1 We solve the following second kind weakly singular VIE:

y(t) = f (t) +
∫ t

0

1√|t − s| y(s)ds, t ∈ [0, 1], (40)

where f (t) is given to make the exact solution y(t) = √
t .

We first compute the piecewise linear (m = 2) collocation solution uh under graded mesh,
and obtain two different interpolated collocation solutions I 2m−1

2h uh (27) and Im2huh (33). The
numerical results and error figures for the error estimates are given in Table 1 and Fig. 1.

We see from Table 1 and Fig. 1 that:

‖u − uh‖∞ = O(hm), ‖u − I 2m−1
2h uh‖∞ = O(hm+1−α),

‖uh − Phu‖∞ = O(hm+1−α) ‖u − Im2huh‖∞ = O(hm+1−α) (m = 2).

We calculate the interpolated hybrid collocation solution Î2huh based on the piecewise
quadratic hybrid collocation solution uh (m = 3). As mentioned in Sect. 3.3, in practical
computation, we just need to calculate the interpolated hybrid collocation solution Ĩ2huh
by the least-squares method in the first two subintervals I1 ∪ I2. We also make a compari-
son between the interpolated hybrid collocation solution and the iterated hybrid collocation
solution. The relevant numerical results are illustrated in Table 2.

We see from Table 2 that the convergence order for the interpolated hybrid collocation
solution is O(hm+1−α) and the CPU time of getting the interpolated hybrid collocation
solution is much less than that of getting the iterated hybrid collocation solution which
shows the efficiency our proposed method.

Fig. 1 Superclose and superconvergence (left) and least-squares postprocessing (right)
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5 Concluding remarks

In this paper, we propose two different interpolation postprocessing approximations of higher
accuracy based on the collocation solutions and the hybrid collocation solutions. The super-
convergence orders of the proposed methods are the same as those of the iterated methods,
but are much simpler in computation. The following problem remains to be addressed in
future research work:

1. The nonpolynomial spectral methods for high-dimensional IEs.
2. The newnumericalmethod combining themultistep collocation and the hybrid collocation

method and aiming to reduce the computational complexity of the numerical solution for
IEs.
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