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Abstract
This paper is devoted to the investigation of a nonsmooth multiobjective bilevel program-
ming problem with equilibrium constraints ((MBPP) for short) in terms of convexificators
in finite-dimensional spaces. We present necessary optimality conditions for the local weak
efficient solution to such problem. Under the Mangasarian–Fromovitz and generalized stan-
dard Abadie type constraint qualification in the sense of convexificators, we establish as an
application the Wolfe and Mond-Weir type dual problem for the problem (MBPP). Besides,
we provide strong and weak duality theorems for the original problem and its Wolfe and
Mond–Weir type dual problem under suitable assumptions on the ∂∗-convexity and the upper
semi-regularity of objective and constraint functions. Illustrative examples are also proposed
to demonstrate the main results of the paper.
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1 Introduction

Multiobjective bilevel programming problemwith equilibrium constraints is a generalization
fromMultiobjective bilevel programming problems. They is known as a combination of two
multiobjective programming problems in which the feasible region of upper level problem
with equilibrium constraints, the so-called included set, can be formulated as the set of mini-
mal solutions of a multiobjective programming problem, see, for instance, Eichfelder (2010).
As far as we know, this problem belongs to the class of NP-hard multiobjective programming
problems even either only with inequality and set constraints or the objective and constraint
functions are linear, e.g., in Ben-Ayed and Blair (1990). On optimality for this artificial prob-
lem is formulated by moving them into a multiobjective single-level programming problem
where the nonsmooth Mangasarian–Fromovitz and generalized standard Abadie type con-
straint qualification may true at any feasible solution, e.g., in Dempe (2002), Colson et al.
(2007), Gadhi and Gadhi and Dempe (2013), Dempe et al. (2013), and the references therein.

In recent years,Dempe et al. (2013) obtained necessary optimality conditions for efficiency
in terms of the directional convexificators and as well as duality theorems for a multiobjective
bilevel programming problem with constraints and its Wolfe andMond-Weir type dual prob-
lem. The authors in Dempe et al. (2013) used the tools in Gadhi and Dempe’ paper Gadhi and
Dempe (2013) and a special scalarization function in Hiriart-Urruty (1979); Hiriart-Urruty
and Lemaréchal (1993) for their investigation. Luu and Mai (2018) formulated a Wolfe and
Mond-Weir type dual problem for a vector equilibrium problem with constraints via the
directional convexificators, and then, they obtained weak and strong duality theorems for
the same. Pandey and Mishra (2016, 2018) formulated a Wolfe and Mond–Weir type dual
problem for a single-level nonsmoothmultiobjective programming problemwith equilibrium
constraints, and then, they established sufficient optimality conditions for the GA-stationary
solution of mathematical programming problem with equilibrium constraints. Most recently,
Su and Dinh (2020) constructed a Wolfe and Mond–Weir types dual problem, and then,
they provided results on duality theorems to the interval-valued pseudoconvex optimization
problem with equilibrium constraints in terms of contingent epiderivatives.

A fundamental question here is why we should study necessary optimality conditions
and duality theorems for a nonsmooth multiobjective bilevel programming problem with
equilibrium constraints and its Wolfe and Mond–Weir types dual problem via the directional
convexificators. We try to answer these question with a few words. Many papers have been
published in the last decade about bilevel programs, but there are only fewof themdealingwith
multiobjective bilevel programming problem with equilibrium constraints (see Babahadda
and Gadhi 2006; Chuong 2018; Dempe 1992, 2002; Dempe and Pilecka 2015; Dempe and
Zemkoho 2012; Eichfelder 2010;Gadhi andDempe 2013; Suneja andKohli 2011;Ye andZhu
1995 and the references therein). Especially, the Wolfe and Mond–Weir type dual problems
are very popular in the area of applicable and this is a motivation for our present work.

Necessary optimality conditions for efficiency and as well as results on duality for con-
strained nonsmooth multiobjective single-level and two-level programming problems are an
active research area in the recent years (see, e.g., Babahadda and Gadhi 2006; Ben-Ayed and
Blair 1990; Clarke 1983; Chuong 2018; Dempe 1992, 2002; Dempe and Pilecka 2015; Dutta
and Chandra 2004; Ehrgott 2005; Jahn 2004; Gong 2010; Li and Zhang 2006; Luo et al. 1996;
Luc 1989; Luu 2014, 2016; Luu and Mai 2018; Luu and Hang 2015; Mangasarian 1969;
Mond andWeir 1981;Movahedian andNabakhtian 2010; Pandey andMishra 2016, 2018; Su
and Hang 2019; Su and Hien 2021; Su 2019, 2020; Ye 2005; Wolfe 1961 and the references
therein). For instance, Babahadda and Gadhi (2006) gave necessary optimality conditions via
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theLagrange–Kuhn–Tuckermultipliers in termsof the directional convexificators for a bilevel
programming problem; Dempe and Pilecka (2015) established primal and dual optimality
conditions by means of the directional convexificators for an optimistic bilevel programming
problem; Gadhi and Dempe (2013) obtained necessary optimality conditions via the Clarke
generalized Jacobians for amultiobjective bilevel programming problem;Dempe et al. (2013)
derived necessary optimality conditions in terms of Mordukhovich’s subdifferentials for a
semivectorial bilevel programming problem; Chuong (2018) formulated a relaxation mul-
tiobjective formulation for a nonsmooth multiobjective bilevel programming problem and
examine the relationships of solutions between them, and then, the author received Fritz John
andKarush–Kuhn–Tucker necessary optimality conditions to problem such via its relaxation.
More recently, Dempe et al. (2020) provided necessary optimality conditions for a vectorial
bilevel programming problem in terms of the directional convexificators, using the optimal-
value reformulation and a scalarization technique. It should be mentioned that an application
of the obtained result for establishing the Wolfe and Mond–Weir type dual problem for a
nonsmooth multiobjective bilevel programming problem with equilibrium constraints is not
considered. This is the reason why we study optimality and duality for a nonsmooth multi-
objective bilevel programming problem with equilibrium constraints ((MBPP) for short) via
the convexificators in the present paper.

Motivated by the preceding discussions, our aim in this paper is to study and develop
necessary optimality conditions for the local weak efficient solution of nonsmooth multiob-
jective bilevel programming problem with equilibrium constraints and construct the Wolfe
and Mond-Weir type dual problem for the original problem (MBPP). We, in addition, obtain
various duality theorems for the problem (MBPP) and its dual problem via the convexificators
under some suitable assumptions. The content of the paper is constructed as follows. In Sect.
2, we recall some preliminaries and concepts of directional convexificator with extended-
real-valued functions. Section 3 provides fundamental notations and necessary optimality
conditions for the local weak efficient solution of nonsmooth multiobjective bilevel program-
ming problemwith equilibriumconstraints via the convexificators. Some applications are also
presented in this section. Section 4 is devoted to constructing theWolfe andMond–Weir types
dual problem and establishing the weak and strong duality theorems for a nonsmooth mul-
tiobjective bilevel programming problem with equilibrium constraints and its dual problem.
Illustrative examples are also provided in the literature.

2 Preliminaries and definitions

In this section, we recall some basic concepts and results, which will be needed in what
follows. As usual, one writes R,N, Rn+ and Rn− instead of the set of real numbers, the set of
natural numbers, the nonnegative orthant cone, and the nonpositive orthant cone, respectively.
The origin of any spaceRn is expressed as 0.Weuse the symbol BRn to denote the closed unit
sphere of Rn and In := {1, 2, . . . , n}. Given a nonempty subset C ⊂ R

n, bdC, intC, clC,

convC , and coneC stand for the topological boundary of C , the topological interior of C , the
topological closure of C , the convex hull of C , and the cone generated by C, respectively,
where coneC := {tc : t ≥ 0, c ∈ C}. We use the symbol C− to denote the negative polar
cone of C, i.e., C− = {v ∈ R

n : 〈v, x〉 ≤ 0 ∀ x ∈ C}, and tk → 0+ to instead of the
positive real numbers sequence (tk)with limit 0. The contingent cone to the setC at the point
x ∈ clC is given as:

T (C, x) =
{
v ∈ R

n | ∃ tk → 0+, ∃ vk → v such that x + tkvk ∈ C ∀ k ≥ 1
}
.
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IfC is convex, then T (C, x) = cl cone(C − x), and so, T (C, x) is a closed and convex cone.
In the sequel, in R

n, consider the order given by a cone Rn+, that is:

x, y ∈ R
n, x ≥ y ⇐⇒ x − y ∈ R

n+,

x, y ∈ R
n, x > y ⇐⇒ x ≥ y and not y ≥ x, in the words x ∈ y + R

n+ \ {0},
x, y ∈ R

n, x � y ⇐⇒ x − y ∈ intRn+ ∪ {0} and not x − y ∈ intRn− ∪ {0}.
The nonnegative scalar function ΔC : Rn → R+ is defined as:

ΔC (y) =
{
d(y,C), if y ∈ R

n \ C,

−d(y,Rn \ C), if y ∈ C,

where the distance from the vector y to the set C is d(y,C) := infc∈C ‖y − c‖.
Wemention that the functionΔC was first introduced by Hiriart-Urruty (1979), used after

by Hiriart-Urruty and Lemaréchal (1993), Ehrgott (2005) and Dempe et al. (2020). In sense,
C �= R

n is a closed and convex cone with nonempty interior, and then, ΔC is 1-Lipschitzian,
positively homogeneous, convex, and decreasing on R

n . Furthermore:

bdC = {y ∈ R
n : ΔC (y) = 0},

intC = {y ∈ R
n : ΔC (y) < 0},

R
n \ C = {y ∈ R

n : ΔC (y) > 0}.
From now on, if not otherwise specified, we always assume that the bifunctions F =

(F1, . . . , Fq) : Rq1 ×R
q2 → R

q , g = (g1, . . . , gm) : Rq1 ×R
q2 → R

m, h = (h1, . . . , hn) :
R
q1 × R

q2 → R
n, G = (G1, . . . ,Gp) : Rq1 × R

q2 → R
p, H = (H1, . . . , Hp) : Rq1 ×

R
q2 → R

p, k = (k1, . . . , kl) : Rq1 ×R
q2 → R

l and f : Rq1 ×R
q2 → R,where Fi (i ∈ Iq ),

g j ( j ∈ Im), hk (k ∈ In), Gl and Hl (l ∈ Ip), km (m ∈ Il), and f are locally Lipschitz
real-valued bifunctions on Rq1 × R

q2 .

We consider a nonsmooth multiobjective bilevel programming problem with equilibrium
constraints (in short, (MBPP)) of the following form:

Minimize
x,y

F(x, y) =
(
F1(x, y), . . . , Fq(x, y)

)
(MBPP)

subject to g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≥ 0, H(x, y) ≥ 0,

G(x, y)T H(x, y) = 0,

y ∈ S(x),

where T indicates the transpose and for any x ∈ R
q1 , S(x) is the solution set of the following

parametric programming problem (or the lower level problem):

Minimize
y

f (x, y) (MPPP-x)

subject to k(x, y) ≤ 0.

The sets K and Kx are said to be the feasible regions to the multiobjective bilevel program-
ming problem with equilibrium constraints (MBPP) and the lower level problem (MPPP-x),
respectively. In sense, the constraint functions h,G, H are omitted, and then, the prob-
lem (MBPP) is said to be a multiobjective bilevel programming problem with constraints
(MBBP∗).

We also introduce next the notation for the efficiency of problem (MBPP).
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Definition 1 A pair (x, y) is said to be a local efficient (resp., local weak efficient) solution
of problem (MBPP) iff there exists a neighborhood V of (x, y), such that:

F(K ∩ V ) ⊂ F(x, y) + (
R
q1+q2 \ Rq1+q2−

) ⋃{
0
}

(
resp., F(K ∩ V ) ⊂ F(x, y) + (

R
q1+q2 \ intRq1+q2−

))
,

where Rq1+q2 := R
q1 × R

q2 and Rq1+q2− := R
q1− × R

q2− .

It should be mentioned that if (x, y) is a local weak efficient solution of problem (MBPP)
then one can find some neighborhoods U0 of x and V0 of y, such that:

F(x, y) − F(x, y) /∈ −intRq
+ ∀ (x, y) ∈ K ∩ (U0 × V0).

This means that there exists no (x0, y0) ∈ K ∩ (U0 × V0) satisfying:

Fk(x0, y0) − Fk(x, y) < 0 ∀ k ∈ Iq .

Let X be a real Banach space, one denotes X∗ the topological dual space of X and
R := R ∪ {+∞} ∪ {−∞}. Given a mapping l : X → R, we use the symbols l−d (x; u) :=
lim inf t→0+ l(x+tu)−l(x)

t and l+d (x; u) := lim supt→0+ l(x+tu)−l(x)
t to denote the lower and

upper Dini directional derivatives of l at x ∈ X in the direction u ∈ X , respectively. The
following concepts related to convexificators can be found in Jeyakumar and Luc (1999).

Definition 2 (Jeyakumar and Luc (1999)) An extended real-valued function l defined on X
is said to admit an upper (resp. lower) convexificator ∂∗ f (x) at x iff ∂∗ f (x) ⊂ X∗ (resp.
∂∗ f (x) ⊂ X∗) is weakly* closed, and for every u ∈ X ,

l−d (x; u) ≤ sup
ξ∈∂∗l(x)

〈ξ, u〉
(
resp. l+d (x; u) ≥ inf

ξ∈∂∗l(x)
〈ξ, u〉

)
.

A weakly* closed set ∂∗ f (x) ⊂ X∗ is said to be a convexificator of l at x iff it is both upper
and lower convexificators of l at x .

Definition 3 An extended real-valued function l defined on X is said to admit an upper
(lower) semi-regular convexificator ∂∗ f (x) (resp. ∂∗ f (x)) at x iff ∂∗ f (x) ⊂ X∗ (resp.
∂∗ f (x) ⊂ X∗) is weakly* closed, and for every u ∈ X :

l+d (x; u) ≤ sup
ξ∈∂∗l(x)

〈ξ, u〉 (2.1)

(
resp., l−d (x; u) ≥ inf

ξ∈∂∗l(x)
〈ξ, u〉

)
. (2.2)

If the equality in (2.1) (resp. (2.2)) holds then ∂∗ f (x) (resp. ∂∗ f (x)) is called an upper
(resp. lower) regular convexificator of l at x .

Definition 4 An extended real-valued function l defined on X that has an upper semi-regular
convexificator at x ∈ X . Then, l is said to be ∂∗− convex at x iff for all x ∈ X ,

l(x) ≥ l(x) + 〈ξ, x − x〉 , ∀ ξ ∈ ∂∗l(x).

At the end of this section, we provide two propositions, which play an important role in
the literature.
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Proposition 1 (Gadhi andDempe 2013) Let Q ⊂ R
q be a nonempty, closed. and convex cone

with intQ �= ∅. For every x ∈ R
q , we have 0 /∈ ∂CΔQ(x), where the set ∂C f (x) designs the

subdifferential of convex analysis of f at x .

Proposition 2 (Jeyakumar and Luc 1999) Let x ∈ R
p, and for each i ∈ I2, let fi : Rp → R

be a continuous function and admits an upper convexificator ∂∗ fi (x) at x. The function h
is defined by h(x) = max{ f1(x), f2(x)}. Then, ∂∗h(x) := ⋃

i∈{i∈I2 : h(x)= fi (x)}
∂∗ fi (x) is an

upper convexificator of h at x .

3 Optimality conditions

The goal of this section is to present necessary optimality conditions for the local weak effi-
cient solution of multiobjective bilevel programming problem with equilibrium constraints
(MBPP) via the directional convexificators.

To begin with, we provide some important notations: given a feasible pair (x, y) ∈ K to
the problem (MBPP), the following index sets will be used:

Ig := Ig(x, y) = {i ∈ Im : gi (x, y) = 0};
Ik := Ik(x, y) = {i ∈ Il : ki (x, y) = 0};
α := α(x, y) := {i ∈ Ip : Gi (x, y) = 0, Hi (x, y) > 0};
β := β(x, y) := {i ∈ Ip : Gi (x, y) = 0, Hi (x, y) = 0};
γ := γ (x, y) := {i ∈ Ip : Gi (x, y) > 0, Hi (x, y) = 0};
ν1 := α ∪ β; ν2 = β ∪ γ.

α+
μ := {i ∈ α : μG

i > 0};
γ +
μ := {i ∈ γ : μH

i > 0};
βG

μ := {i ∈ β : μH
i = 0, μG

i > 0};
βH

μ := {i ∈ β : μG
i = 0, μH

i > 0};
Lμ := α+

μ ∪ γ +
μ ∪ βG

μ ∪ βH
μ .

The set β is the degenerate set and if, in addition, the set β is empty„ then a pair (x, y) is
said to satisfy the strict complementarity condition. Furthermore, we put:

M :=
{
(λ, μ) =

(
λg, λk , λh , λΨ , λG , λH , μh , μG , μH

)
∈ R

m+l+2n+2|J (x,y)|+4p ∣∣ λgIg ≥ 0,

λkIk
≥ 0, λ

Ψ (z)
i ≥ 0 (i ∈ I (x, y), z ∈ J (x, y)), λhj ≥ 0, μh

j ≥ 0 ( j ∈ In),

λGi ≥ 0, λH
i ≥ 0, μG

i ≥ 0, μH
i ≥ 0 (i ∈ Ip),

λGγ = λH
α = μG

γ = μH
α = 0, ∀ i ∈ β, μG

i = 0, μH
i = 0

}
,

Γ (x, y) =
[ ⋃
i∈Im

conv∂∗gi (x, y)
]− ⋂ [⋃

i∈In
conv∂∗hi (x, y) ∪ conv∂∗(−hi )(x, y)

]−

⋂ [⋃
i∈α

conv∂∗Gi (x, y) ∪ conv∂∗(−Gi )(x, y)
]−
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⋂ [⋃
i∈γ

conv∂∗Hi (x, y) ∪ conv∂∗(−Hi )(x, y)
]−

⋂ [⋃
i∈β

conv∂∗(−Gi )(x, y) ∪ conv∂∗(−Hi )(x, y)
]−

.

We consider the set-valued mapping Y : Rq1 ⇒ R
q2 is defined by Y (x) = Kx for all

x ∈ R
q1 . We fixed a feasible vector (x, y) ∈ K , such that they become a local weakly

efficient solution of problem (MBPP), and a bounded neighborhoodU (x, y) of (x, y). Until
now, taking U0 and V0 are given as in Definition 1 and it is always assumed that U :={
x ∈ R

q1 : ∃ y ∈ R
q2 , such that (x, y) ∈ U (x, y)

}
, the set-valued mapping Y is uniformly

bounded around x and the set
⋃
x∈U

Y (x) is bounded, which yields that the set
⋃

x∈Ux

Y (x) is

bounded too, where Ux := U0 ∩U . Consequently, the set cl
⋃

x∈Ux

Y (x) is compact. We set:

Θ =
(
cl

⋃
x∈Ux

Y (x)
)

+ BR
q2 .

According to Gadhi and Dempe (2013), the setΘ is nonempty compact that contains an open
neighborhood of cl

⋃
x∈Ux

Y (x). This allows us to define the real-valued function:

Ψ : Rq1 × R
q2 → R

by

Ψ (x, y) = max
z∈Θ

ψ(x, y, z) ∀(x, y) ∈ R
q1 × R

q2 ,

where the mapping ψ from R
q1 × R

q2 × Θ into R is given as:

ψ(x, y, z) := min
{
f (x, y) − f (x, z), −Δ

R
l−(k1(x, z), . . . , kl(x, z))

}
.

For simplicity, for each (x, y) ∈ R
q1 × R

q2 , we denote by:

J (x, y) = {z ∈ Θ : ψ(x, y, z) = Ψ (x, y)}.
Consider the scalar functions ψ1 and ψ2 defined onRq1 ×R

q2 ×Θ are defined, respectively,
as:

ψ1(x, y, z) = f (x, y) − f (x, z),

ψ2(x, y, z) = −Δ
R
l−(k1(x, z), . . . , kl(x, z)).

By the above definitions, it holds that:

Ψ (x, y) = max
z∈Θ

min
{
ψ1(x, y, z), ψ2(x, y, z)

}
.

For this sense, we put:

I (x, y) = {i ∈ {1, 2} : ψi (x, y, z) = ψ(x, y, z)}.
It is not difficult to check that if ki (x, z) ≤ 0 for all i ∈ Il , then

ψ2(x, y, z) = d(k(x, z), R
l \ Rl−) > 0.

If, in addition, that y ∈ S(x), we have the following equality:

ψ(x, y, z) = ψ1(x, y, z).
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The following propositions play a key role in the next section.

Proposition 3 (Gadhi and Dempe (2013)) If (x, y) is a local weak efficient solution for the
problem (MBPP), then the solution set of the problem maxz∈Θ ψ(x, y, z) is given by S(x).

Proposition 4 Let (x, y) be a local weak efficient solution for the problem (MBPP). Assume
that for each z ∈ J (x, y) and i ∈ I (x, y), ψi is continuous and admits an upper convexifi-
cator ∂∗ψi (x, y, z) at (x, y, z), one gets:

conv ∂∗Ψ (x, y) ⊂ conv
( ⋃
z∈J (x,y)

conv
( ⋃
i∈I (x,y)

∂∗ψi (x, y, z)
))

. (3.1)

Proof Let us see that:

conv ∂∗Ψ (x, y) ⊂ conv
⋃

z∈J (x,y)

∂∗ψ(x, y, z). (3.2)

In fact, in view of Proposition 3, it follows that there exists z ∈ S(x), such that:

Ψ (x, y) = min
{
ψ1(x, y, z), ψ2(x, y, z)

}
.

By a similar argument as in the proof of Rule 4.4 Jeyakumar and Luc (1999), we deduce that
(3.2) holds. Again taking account of Proposition 2, we have:

∂∗ψ(x, y, z) = conv
⋃

i∈I (x,y)
∂∗ψi (x, y, z).

This allows us to conclude that (3.1) holds, which proves the claim. ��
To derive necessary optimality conditions for the problem (MBPP), we introduce the

following two related problems:

Minimize
x,y

F(x, y) :=
(
F1(x, y), . . . , Fq(x, y)

)
(MBPP1)

subject to g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≥ 0, H(x, y) ≥ 0,

G(x, y)T H(x, y) = 0,

k(x, y) ≤ 0, Ψ (x, y) ≤ 0,

x ∈ R
q1 , y ∈ R

q2 ,

and Minimize
x,y

↔
Ψ (x, y) :=

(
F(x, y), k(x, y), Ψ (x, y)

)
(MBPP2)

subject to g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≥ 0, H(x, y) ≥ 0,

G(x, y)T H(x, y) = 0,

x ∈ R
q1 , y ∈ R

q2 .

Wealso propose the following constraint qualification of the (CQ) and (GS-ACQ) types [(CQ)
and (GS-ACQ) are generalizations of theMangasarian-Fromovitz constraint qualification and
the Abadie constraint qualification, respectively]:
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Definition 5 The following constraint qualification of the (CQ) type is considered:
(CQ): there exist v0 ∈ R

q1 × R
q2 and the positive real numbers agi (i ∈ Ig(x)), aki

(i ∈ Ik(x)), aGi (i ∈ ν1), aH
i (i ∈ ν2), a

Ψ (z)
i (i ∈ I (x), z ∈ J (x)) satisfying:

(i)
〈
ξ
g
i , v0

〉 ≤ −agi

(
∀ ξ

g
i ∈ ∂∗gi (x), ∀ i ∈ Ig(x)

)
;

(ii)
〈
ξ ki , v0

〉 ≤ −aki

(
∀ ξ ki ∈ ∂∗ki (x), ∀ i ∈ Ik(x)

)
;

(iii)
〈
ξGi , v0

〉 ≤ −aGi

(
∀ ξGi ∈ ∂∗(−Gi )(x), ∀ i ∈ ν1

)
;

(iv)
〈
ξ H
i , v0

〉 ≤ −aH
i

(
∀ ξ H

i ∈ ∂∗(−Hi )(x), ∀ i ∈ ν2

)
;

(v)
〈
ξ hi , v0

〉 = 0
(
∀ ξ hj ∈ ∂∗h j (x), ∀ j ∈ In

)
;

(vi)
〈
ηhi , v0

〉 = 0
(
∀ ηhj ∈ ∂∗(−h j )(x), ∀ j ∈ In

)
;

(vii)
〈
ξ

Ψ (z)
i , v0

〉
≤ −aΨ (z)

i

(
∀ ξ

Ψ (z)
i ∈ ∂∗ψi (x, z), ∀ i ∈ I (x), ∀ z ∈ J (x)

)
.

Definition 6 Let (x, y) be a feasible point of problem (MBPP), and assume that all of the
functions have an upper convexificator at (x, y). We say that the generalized standard Abadie
constraint qualification (GS-ACQ) holds at (x, y) if at least one of the dual sets used in the
definition of Γ (x, y) is nonzero and Γ (x, y) ⊂ T

(
K , (x, y)

)
.

In what follows, a necessary optimality condition for the local weakly efficient solution
of problem (MBPP) will be derived.

Theorem 1 (Necessary optimality condition) Let (x, y) ∈ K be a local weakly efficient
solution to the problem (MBPP). Suppose that:

(i) Fi (i ∈ Iq), gi (i ∈ Ig(x, y)), ki (i ∈ Ik(x, y)), ±h j ( j ∈ In), ψ1( . , . , z) (z ∈ Θ),
−Gi (i ∈ ν1) and −Hi (i ∈ ν2) admit bounded upper semi-regular convexificators and
are ∂∗− convex functions at (x, y);

(ii) Fi (i ∈ Iq), ki (i ∈ Ik(x, y)) and Ψ are locally Lipschitz near (x, y);
(iii) the constraint qualifications (CQ) and (GS-ACQ) at (x, y) hold;
(iv) Lμ = ∅.

Then, there exist s = (si )
q
i=1 ⊂ R+ and (λ, μ) =

(
λg, λk, λh, λΨ , λG , λH , μh, μG , μH

)
∈

M with
∑

i∈Iq si = 1 satisfying:

0 ∈
∑
i∈Iq

si conv ∂∗Fi (x, y) +
∑

i∈Ig(x,y)
λ
g
i conv ∂∗gi (x, y)

+
∑

i∈Ik (x,y)
λki conv ∂∗ki (x, y) +

∑
z∈J (x,y)

∑
i∈I (x,y)

λ
Ψ (z)
i conv ∂∗ψi (x, y, z)

+
∑
j∈In

[
λhj conv ∂∗h j (x, y) + μh

j conv ∂∗(−h j )(x, y)
]

+
∑
i∈Ip

[
λG
i conv ∂∗(−Gi )(x, y) + λH

i conv ∂∗(−Hi )(x, y)
]
.

Proof We consider the mapping
↔
Ψ : Rq1 × R

q2 → R
q+l+1 is defined by:

↔
Ψ (x, y) =

(
F(x, y), k(x, y), Ψ (x, y)

)
, ∀ (x, y) ∈ R

q1 × R
q2 .
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Since (x, y) ∈ K is a local weakly efficient solution of problem (MBPP), and it is also
a local weakly efficient solution of problem (MBPP1). According to Lemma 3.4 in Gadhi
and Dempe (2013), we shall be allowed to deduce that the vector (x, y) is a local weakly
efficient solution of problem (MBPP2). Let K ′ be a feasible set of problem (MBPP2) and
set M := l + 1. Consider a neighborhood V of (x, y), such that:

↔
Ψ (x, y) − ↔

Ψ (x, y) /∈ −intRq+M
+ (∀ (x, y) ∈ V ∩ K ′),

which yields that:

Δ
intRq+M

−

(↔
Ψ (x, y) − ↔

Ψ (x, y)
)

≥ 0 (∀ (x, y) ∈ V ∩ K ′).

We set:
∼
Ψ (x, y) := ↔

Ψ (x, y) − ↔
Ψ (x, y),

which ensures that
∼
Ψ (x, y) = 0. By the definitions, we have:

∂∗↔
Ψ i (x, y) = ∂∗ ∼

Ψ i (x, y) ∀ i = 1, . . . q + |Ik(x, y)| + 1,

where
↔
Ψ i is i th component of

↔
Ψ and

∼
Ψ i is i th component of

∼
Ψ . It is plain that:

Δ
intRq+M

−

(∼
Ψ (x, y)

) = 0,

which yields that x is a local weak minimum of the following scalar problem (MBPP3):

Minimize
x,y

Δ
intRq+M

−

(∼
Ψ (x, y)

)
(MBPP3)

subject to g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≥ 0, H(x, y) ≥ 0,

G(x, y)T H(x, y) = 0,

x ∈ R
q1 , y ∈ R

q2 .

It is well known that the real-valued function Δ
intR

q+|Ik (x)|+1
−

is convex and locally Lips-

chitz, the subdifferential ∂CΔ
intR

q+|Ik (x)|+1
−

(0) is a bounded convexificator of Δ
intR

q+|Ik (x)|+1
−

at
∼
Ψ (x, y). On the other hand, by the initial assumptions, it follows that the mapping

∼
Ψ

is locally Lipschitz near (x, y), which ensures that Δ
intR

q+|Ik (x)|+1
−

o
∼
Ψ is locally Lipschitz

near (x, y) too. Taking account of Theorem 3.2 in Pandey and Mishra (2016), for any u ∈
R
q1 × R

q2 , there exist ξ ∈ conv∂∗Δ
intR

q+|Ik (x)|+1
−

o
∼
Ψ (u), ξ

g
i ∈ conv∂∗gi (u) (i ∈ Ig(x, y)),

ξ hj ∈ conv∂∗h j (u) ( j ∈ In), ηhj ∈ conv∂∗(−h j )(u) ( j ∈ In), ξGi ∈ ∂∗(−Gi )(u) (i ∈ Ip)

and ξ H
i ∈ ∂∗(−Hi )(u) (i ∈ Ip) satisfying λ

g
Ig(x,y)

≥ 0, λhj ≥ 0, μh
j ≥ 0 ( j ∈ Ip),

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0 (i ∈ Il), λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β,

μG
i = 0, μH

i = 0 and:

ξ +
∑

i∈Ig(x,y)
λ
g
i ξ

g
i +

∑
j∈In

(
λhj ξ

h
j + μh

jη
h
j

) +
∑
i∈Ip

(
λG
i ξGi + λH

i ξ H
i

) = 0. (3.3)
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On one side, Luu and Mai’s Result Luu and Mai (2018) was pointed that the set-valued

mapping ∂∗Δ
intR

q+|Ik (x)|+1
−

is upper semicontinuous at
∼
Ψ (x, y). By the initial hypotheses,

∂∗Fi (x, y) (i ∈ Iq ), ∂∗ki (x, y) (i ∈ Ik(x, y)) and ∂∗Ψ (x, y) are bounded upper con-
vexificators of Fi (i ∈ Iq ), ki (i ∈ Ik(x, y)) and Ψ at (x, y), respectively. On the other
side, the set-valued mappings ∂∗Fi (i ∈ Iq ), ∂∗ki (i ∈ Ik(x, y)) and ∂∗Ψ are upper
semicontinuous at (x, y). In view of the chain rule in Jeyakumar and Luc (1999), the set

∂CΔ
intR

q+|Ik (x,y)|+1
−

(∼
Ψ (x, y)

)
:

(
∂∗F1(x, y), . . . , ∂∗Fq(x, y), ∂∗k1(x, y), . . . , ∂∗k|Ik (x,y)|(x, y), ∂∗Ψ (x, y)

)

is a bounded convexificator of Δ
intR

q+|Ik (x,y)|+1
−

o
∼
Ψ at (x, y). Therefore, one can find a:

∼
ξ ∈ ∂CΔ

intR
q+|Ik (x,y)|+1
−

(∼
Ψ (x, y)

)

such that

ξ ∈ ∼
ξ 0

(
∂∗F1(x, y), . . . , ∂∗Fq(x, y), ∂∗k1(x, y), . . . , ∂∗k|Ik (x,y)|(x, y), ∂∗Ψ (x, y)

)
.

Adapting the concept of the subdifferential of Δ
intR

q+|Ik (x,y)|+1
−

at 0 in the sense of convex

analysis, for every v ∈ R
q+|Ik (x)|+1, the following inequality holds:

Δ
intR

q+|Ik (x,y)|+1
−

(v) ≥
〈∼
ξ , v

〉
.

Consequently, for any v ∈ −R
q+|Ik (x,y)|+1
+ , it holds that:

〈∼
ξ , v

〉
≤ Δ

intR
q+|Ik (x,y)|+1
−

(v) = −d
(
v,Rq+|Ik (x,y)| \ Rq+|Ik (x,y)|+1

−
) ≤ 0,

which proves that:

∼
ξ ∈ R

q+|Ik (x,y)|+1
+ .

In other words, it follows from Proposition 1 that
∼
ξ �= 0 and moreover:

ξ ∈ ∼
ξ 0

(
∂∗F1(x, y), . . . , ∂∗Fq(x, y), ∂∗k1(x, y), . . . , ∂∗k|Ik (x,y)|(x, y), ∂∗Ψ (x, y)

)
.

We set
∼
ξ =

(
(si )i∈Iq , (λki )i∈Ik , λ

Ψ
)
.

Making use of Proposition 4 to deduce that:

ξ ∈
q∑

i=1

siconv ∂∗Fi (x, y) +
∑

i∈Ik (x,y)
λki conv ∂∗ki (x, y)

+ λΨ conv
( ⋃
z∈J (x,y)

conv
( ⋃
i∈I (x,y)

∂∗ψi (x, y, z)
))

.
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This yields the existence of ξ F
i ∈ conv ∂∗Fi (x, y) (i ∈ Iq), ξ ki ∈ conv ∂∗ki (x, y) (i ∈

Ik(x, y)), and ∀ z ∈ J (x, y); there exist λ
Ψ (z)
i ≥ 0, ξ

Ψ (z)
i ∈ ∂∗ψi (x, y, z) (i ∈ I (x, y))

satisfying:

ξ =
q∑

i=1

siξ
F
i +

∑
i∈Ik (x,y)

λki ξ
k
i +

∑
z∈J (x,y)

∑
i∈I (x,y)

λ
Ψ (z)
i ξ

Ψ (z)
i . (3.4)

Combining (3.3) with (3.4) yields that:

q∑
i=1

siξ
F
i +

∑
i∈Ig(x,y)

λ
g
i ξ

g
i +

∑
i∈Ik (x,y)

λki ξ
k
i +

∑
z∈J (x,y)

∑
i∈I (x,y)

λ
Ψ (z)
i ξ

Ψ (z)
i

+
∑
j∈In

(
λhj ξ

h
j + μh

jη
h
j

) +
∑
i∈Ip

(
λG
i ξGi + λH

i ξ H
i

)
= 0,

(3.5)

where si ≥ 0 (i ∈ Iq), λ
g
Ig(x,y)

≥ 0, λkIk (x,y)
≥ 0, λhj ≥ 0, μh

j ≥ 0 ( j ∈ Ip), λG
i ≥ 0, λH

i ≥
0, μG

i ≥ 0, μH
i ≥ 0 (i ∈ Il), λ

Ψ (z)
i ≥ 0 (i ∈ I (x, y), z ∈ J (x, y)), λG

γ = λH
α = μG

γ =
μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0.
Finally, we need to point out that s = (si )

q
i=1 �= 0. In fact, if this is fail, then si = 0 for

every i ∈ Iq . It follows further from equality (3.5) that:

∑
i∈Ig(x,y)

λ
g
i ξ

g
i +

∑
i∈Ik (x,y)

λki ξ
k
i +

∑
j∈In

(
λhj ξ

h
j + μh

jη
h
j

)

+
∑
i∈Ip

(
λG
i ξGi + λH

i ξ H
i

)
+

∑
z∈J (x,y)

∑
i∈I (x,y)

λ
Ψ (z)
i ξ

Ψ (z)
i = 0.

Let v0 ∈ R
q1 × R

q2 be arbitrary. It is evident that:

∑
i∈Ig(x,y)

λ
g
i

〈
ξ
g
i , v0

〉 +
∑

i∈Ik (x,y)
λki

〈
ξ ki , v0

〉
+

∑
j∈In

〈
λhj ξ

h
j + μh

jη
h
j , v0

〉

+
∑
i∈Ip

〈
λG
i ξGi + λH

i ξ H
i , v0

〉
+

∑
z∈J (x,y)

∑
i∈I (x,y)

〈
λ

Ψ (z)
i ξ

Ψ (z)
i , v0

〉
= 0.

(3.6)

In other words, under the constraint qualification of the (CQ) type, there exist v0 ∈ R
q1 ×R

q2

and positive real numbers agi (i ∈ Ig(x, y)), aki (i ∈ Ik(x, y)), aGi (i ∈ ν1), aH
i (i ∈ ν2),

aΨ (z)
i (i ∈ I (x, y), z ∈ J (x, y)), such that the conditions from (i) to (vii) in Theorem 1 are
fulfilled. In this sense, the left-hand side of (3.6) is smaller than or equal to:

−
( ∑
i∈Ig(x,y)

λ
g
i a

g
i +

∑
i∈Ik (x,y)

λki a
k
i +

∑
i∈Ip

(
λG
i a

G
i + λH

i aH
i

)

+
∑

z∈J (x,y)

(
λ

Ψ (z)
1 aΨ (z)

1 + λ
Ψ (z)
2 aΨ (z)

2

))
< 0,

which contradicting inequality (3.6). We thus have shown that s �= 0, and without loss of
generality, we may assume that

∑q
i=1 si = 1, which completes the proof. ��

Theorem 1 is illustrated by the following example.
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Example 1 Consider the following problem in R
2 × R :

(MBPP) Minimizex1,x2,y F(x1, x2, y) := 1

2
|x1| + |x2| + 1

2
|y|

subject to g(x1, x2, y) := |x2| ≤ 0, h(x1, x2, y) := x1x2 = 0,

G(x2, x2, y) := x1 ≥ 0, H(x1, x2, y) = x2 ≥ 0,

G(x1, x2, y)H(x1, x2, y) = 0, y ∈ S(x),

where S(x) is the solution set the following lower level problem in R :
(MPPP − x) Minimizey f (x1, x2, y) := x1 + x2

subject to k(x1, x2, y) := −|y − x1 − 1| ≤ 0.

We take x = (0, 0) and y = 0. It can be seen that Im = In = Ip = Iq = Il = {1},
Ig = {1}, Ik = ∅, α = γ = ∅, β = {1}, ν1 = ν2 = {1}, α+

μ = γ +
μ = ∅, βG

μ = {i =
1 : μH

1 = 0, μG
1 > 0}, βH

μ = {i = 1 : μH
1 > 0, μG

1 = 0}, Lμ = ∅, Kx = {y ∈ R :
k1(x, y) ≤ 0} = R and S(x) = R for all x = (x1, x2) ∈ R

2. Therefore, the feasible set of
problem (MBPP) is K = R+ × {0} × R, and so, T (K , (x, x)) = R+ × {0} × R. It is plain
that (x, y) is a local weakly efficient solution of problem (MBPP), and then, we may take
Θ = [−1, 1] + [−1, 1] = [−2, 2], and thus, Ψ : R2 × R → R is defined by:

Ψ (x, y) = max
z∈Θ

ψ(x, y, z) (∀ (x, y) ∈ R
2 × R),

where ψ(x, y, z) = f (x, y) − f (x, z) = 0 for all (x, y) ∈ R
2 × S(x). Consequently,

Ψ (x, y) = 0 for all ∀ (x, y) ∈ R
2 × R.

Directly calculating, we obtain that: conv∂∗F1(x, y) = [− 1
2 ,

1
2 ] × [−1, 1] × [− 1

2 ,
1
2 ],

conv∂∗(±h)1(x, y) = {(0, 0, 0)}, conv∂∗g1(x, y) = {0}×[−1, 1]×{0}, conv∂∗G1(x, y) =
{(1, 0, 0)}, conv∂∗ψ1(x, y, z) = {(0, 0, 0)} (∀ z ∈ Θ = [−2, 2]), conv∂∗(−G)1(x, y) =
{(−1, 0, 0)}, conv∂∗H1(x, y) = {(0, 1, 0)} and conv∂∗(−H)1(x, y) = {(0,−1, 0)}. In con-
sequence:

Γ (x, y) =
[
conv∂∗g1(x, y)

]− ⋂ [
conv∂∗h1(x, y) ∪ conv∂∗(−h1)(x, y)

]−

⋂ [
conv∂∗(−G)1(x, y) ∪ conv∂∗(−H1)(x, y)

]− = R+ × {0} × R.

By the definition 6, the generalized standard Abadie constraint qualification (GS-ACQ) holds
at (x, y). By virtue of Theorem 1, we conclude that there exist s = (si )

q
i=1 ⊂ R+ and

(λ, μ) =
(
λg, λk, λh, λΨ , λG , λH , μh, μG , μH

)
∈ M satisfying:

0 ∈
∑
i∈Iq

siconv ∂∗Fi (x, y) +
∑

i∈Ig(x,y)
λ
g
i conv ∂∗gi (x, y) +

∑
i∈Ik (x,y)

λki conv ∂∗ki (x, y)

+
∑

z∈J (x,y)

∑
i∈I (x,y)

λ
Ψ (z)
i conv ∂∗ψi (x, y, z)

+
∑
j∈In

[
λhj conv ∂∗h j (x, y) + μh

j conv ∂∗(−h j )(x, y)
]

+
∑
i∈Ip

[
λG
i conv ∂∗(−Gi )(x, y) + λH

i conv ∂∗(−Hi )(x, y)
]
.
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In fact, in this setting, we may take s = s1 = 1 ≥ 0, λ
g
1 = 1 ≥ 0, λ

Ψ (z)
i = 1 ≥ 0, where

z ∈ J (x, y) = Θ and I (x, y) = {1}, λh1 = μh
1 = 1 ≥ 0, λG

1 = λH
1 = 1

2 ≥ 0, we have:

0 ∈ s1conv ∂∗F1(x, y) + λ
g
1conv ∂∗g1(x, y) +

∑
z∈Θ

λ
Ψ (z)
1 conv ∂∗ψ1(x, y, z)

+
[
λh1conv ∂∗h1(x, y) + μh

1conv ∂∗(−h1)(x, y)
]

+
[
λG
1 conv ∂∗(−G1)(x, y) + λH

1 conv ∂∗(−H1)(x, y)
]

= [−1, 0] × [−5

2
,
3

2
] × [−1

2
,
1

2
],

as it was checked.

For the next result providing a necessary optimality condition for the local weak efficient
solution of problem (MBPP∗).

Corollary 1 Let (x, y) ∈ K be a local weak efficient solution to the multiobjective bilevel
programming problem with constraints (MBBP∗). Assume that:
(i) the functions Fi (i ∈ Iq), gi (i ∈ Ig(x, y)), ki (i ∈ Ik(x, y)) and ψ1( . , . , z) (z ∈ Θ)

admit bounded upper semi-regular convexificators and are ∂∗− convex functions at
(x, y);

(ii) the functions Fi (i ∈ Iq), ki (i ∈ Ik(x, y)) and Ψ are locally Lipschitz near (x, y);
(iii) the constraint qualifications (CQ) and (GS-ACQ) at (x, y) hold.

Then, there exist s = (si )
q
i=1 ⊂ R+ and λ =

(
λg, λk, λΨ

)
∈ R

m+l+2|J (x,y)| with
∑

i∈Iq si = 1, λ
g
Ig

≥ 0, λkIk
≥ 0, λ

Ψ (z)
i ≥ 0, i ∈ I (x, y) and z ∈ J (x, y) satisfying:

0 ∈
∑
i∈Iq

si conv ∂∗Fi (x, y) +
∑

i∈Ig(x,y)
λ
g
i conv ∂∗gi (x, y)

+
∑

i∈Ik (x,y)
λki conv ∂∗ki (x, y) +

∑
z∈J (x,y)

∑
i∈I (x,y)

λ
Ψ (z)
i conv ∂∗ψi (x, y, z).

Proof It is a direct consequence of the Theorem 1, which completes the proof. ��
Remark 1 We mention that in sense, the solution set of problem (MPPP-x) is Rq2 , and then,
the problem (MBPP) reduces to the optimization problem with equilibrium constraints, say
(P), in Pandey and Mishra (2016). Therefore, the preceding obtained result is fail in the case
the assumption (iv) in Theorem 1 is removed (see Theorem 3.1 Pandey and Mishra (2016)
or Theorem 4.1 Pandey and Mishra (2018), for instance).

Remark 2 The preceding obtained results are still true if the constraint and objective functions
are affine. Especially, if Iq is singleton (or |Iq | = 1) and Ψ ≡ 0, these results reduce to the
well-known result in single-level multiobjective programming problem with equilibrium
constraints, e.g., in Pandey and Mishra (2016, 2018).

4 Applications to duality for multiobjective bilevel programming
problemwith equilibrium constraints

Our aim here is to construct Wolfe and Mond–Weir type dual problem for the nonsmooth
multiobjective bilevel programming problem with equilibrium constraints (MBPP), using
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the tool of convexificators with generalized ∂∗− convex objective and constraint functions.
Besides, we establish the weak and strong duality theorems for the same.

4.1 TheWolfe duality for (MBPP)

TheWolfe type dual problem for the nonsmooth multiobjective bilevel programming problem
(MBPP) is formulated as follows:

(WMBPP) : max
u,s,λ

[ ∑
i∈Iq

si Fi (u) +
∑
i∈Ig

λ
g
i gi (u) +

∑
i∈Ik

λki ki (u) +
∑
j∈In

(λhj − μh
j )h j (u)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z) −

∑
i∈Ip

(
λG
i Gi (u) + λH

i Hi (u)
)]

subject to 0 ∈
∑
i∈Iq

siconv ∂∗Fi (u) +
∑
i∈Ig

λ
g
i conv ∂∗gi (u) +

∑
i∈Ik

λki conv ∂∗ki (u)

+
∑
j∈In

[
λhj conv ∂∗h j (u) + μh

j conv ∂∗(−h j )(u)
]

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i conv ∂∗ψi (u, z)

+
∑
i∈Ip

[
λG
i conv ∂∗(−Gi )(u) + λH

i conv ∂∗(−Hi )(u)
]
,

u ∈ R
q1 × R

q2 , si ≥ 0, i ∈ Iq ,
∑
i∈Iq

si = 1, λ
g
Ig

≥ 0, λkIk ≥ 0,

λ
Ψ (z)
i ≥ 0, i ∈ I (u), z ∈ J (u), λhj ≥ 0, μh

j ≥ 0, j ∈ In,

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0, i ∈ Ip,

λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0,

where λG
γ = (λG

i )i∈γ , λH
α = (λH

i )i∈α, μG
γ = (μG

i )i∈γ , μH
α = (μH

i )i∈α,

λΨ = (
λ

Ψ (z)
i

)
z∈J (u), i∈I (u)

, μ = (μh, μG , μH ) ∈ R
n+2p

and (λ, μ) = (s, λg, λk, λh, λΨ , λG , λH , μh, μG , μH ) ∈ R
q+m+l+2n+2|J (u)|+4p.

We mention that the Wolfe type dual problem for the problem (MBPP∗) is denoted
by (WMBPP∗). Therefore, the problem (WMBPP∗) is defined similarly to the problem
(WMBPP).

The forthcoming example will be provided to illustrate the Wolfe type dual problem for
the problem (MBPP).

Example 2 Consider the following problem in R × R :
(MBPP) Minimizex,y F(x, y) :=

(
F1(x, y), F2(x, y)

)
=

(
x + y, x − y2

)

subject to g(x, y) := −|x | − x

2
≤ 0, h(x, y) := x2 − y = 0,

G(x, y) := −x + y2 ≥ 0, H(x, y) = −y + x2 ≥ 0,

G(x, y)H(x, y) = 0, y ∈ S(x),
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where S(x) is the solution set the following lower level problem in R :
(MPPP − x) Minimizey f (x, y) := x3 + x2 − x − 1

subject to k1(x, y) := −x2 − |y| ≤ 0, k2(x, y) = −1

2
|x | − y2 ≤ 0.

It can be easily seen that Kx = R, S(x) = R and K =
{
(x, y) ∈ R

2 : y2 ≥ x, x2 = y
}
.

Thus, the feasible set of problem (MBPP) is of the following form:

K =
{
(x, y) ∈ R

2 : x ≤ 0 or x ≥ 1, x2 = y
}
.

By directly calculating, for every (u1, u2) ∈ R
2, one obtains ∂∗F1(u1, u2) = {(1, 1)},

∂∗F2(u1, u2) = {(1,−2u2)}, ∂∗g1(u1, u2) = {(−1, 0), (0, 0)}, ∂∗h1(u1, u2) = {(2u1,−1)},
∂∗(−h1)(u1, u2) = ∂∗(−H1)(u1, u2) = {(−2u1, 1)}, ∂∗(−G1)(u1, u2) = {(1,−2u2)},
∂∗k1(u1, u2) = {(−2u1,−1), (−2u1, 1)}, ∂∗k2(u1, u2) = {(− 1

2 ,−2u2), ( 12 ,−2u2)} and
∂∗ψi (u1, u2, z) = {(0, 0)} ∀ z ∈ J (u1, u2), i ∈ I (u1, u2).

Then, theWolfe type dual problem (WMBOP) for themultiobjective bilevel programming
problem (MBPP) is of the form:

(WMBPP) : max
u,s,λ

[
s(u1 + u2) + (1 − s)(u1 − u22) − λ

g
1

2
(u1 + |u1|) − λk1(u

2
1 + |u2|)

− λk2(
1

2
|u1| + u22) + (λh1 − μh

1)(u
2
1 − u2) + λG

1 (u1 − u22) + λH
1 (u2 − u21)

]

subject to 0 ∈ s(1, 1) + (1 − s)(1,−2u2) + λ
g
1conv{(−1, 0), (0, 0)}

+ λk1conv{(−2u1,−1), (−2u1, 1)} + λk2conv{(−
1

2
,−2u2), (

1

2
,−2u2)}

+ λh1(2u1,−1) + μh
1(−2u1, 1) + λG

1 (1,−2u2) + λH
2 (−2u1, 1),

u = (u1, u2) ∈ R
2, 0 ≤ s ≤ 1, λ

g
1 ≥ 0, λk1 ≥ 0, λk2 ≥ 0,

λh1 ≥ 0, μh
1 ≥ 0, λG

1 ≥ 0, λH
1 ≥ 0.

For the sake of brevity, we set u = (u1, u2) and x = (x1, x2), and then, a weak duality
theorem for the multiobjective bilevel programming problem with equilibrium constraints
(MBPP) and its Wolfe type dual problem (WMBPP) can be stated as follows.

Theorem 2 (Weak Duality). Let x and (u, s, λ, μ) be the feasible vectors to the primal
problem (MBPP) and the dual problem (WMBPP), respectively. Suppose that:

(i) Lμ = ∅;
(ii) The functions Fi (i ∈ Iq) gi (i ∈ Ig(x)), ki (i ∈ Ik(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1),

and −Hi (i ∈ ν2) admit bounded upper semi-regular convexificators and are ∂∗−
convex functions at u.

(iii) The function ψ1( . , . , z) := f ( . , . ) − f ( . , z) (z ∈ Θ) admits bounded upper semi-
regular convexificator and is ∂∗− convex function at u.

Then, for any x = (x1, x2) is feasible to the primal problem (MBBP), there exists k ∈ Iq ,
such that:

Fk(x) �< Fk(u) +
∑

i∈Ig(x)
λ
g
i gi (u) +

∑
i∈Ik (x)

λki ki (u) +
∑
j∈In

(λhj − μh
j )h j (u)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z) −

∑
i∈Ip

(
λG
i Gi (u) + λH

i Hi (u)
)
.
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Proof Let x = (x1, x2) be a feasible vector to the problem (MBPP). We have

gi (x) ≤ 0 ∀ i ∈ Ig(x), (4.1)

h j (x) = 0 ∀ j ∈ In, (4.2)

(−Gi )(x) ≤ 0 ∀ i ∈ Ip, (4.3)

(−Hi )(x) ≤ 0 ∀ i ∈ Ip, (4.4)

ki (x) ≤ 0 ∀ i ∈ Ik(x), (4.5)

ψ1(x, z) ≤ 0 ∀ z ∈ J (u). (4.6)

Since (u, s, λ, μ) is a feasible vector of problem (MBPP), there exist ξ F
i ∈ conv∂∗Fi (u)

(i ∈ Iq), ξ
g
i ∈ conv∂∗gi (u) (i ∈ Ig(x)), ξ ki ∈ conv∂∗ki (u) (i ∈ Ik(x)), ξ hj ∈ conv∂∗h j (u)

( j ∈ In), ηhj ∈ conv∂∗(−h j )(u) ( j ∈ In), ξ
Ψ (z)
i ∈ conv ∂∗ψi (u, z) (i ∈ I (u), z ∈ J (u)),

ξGi ∈ ∂∗(−Gi )(u) (i ∈ Ip) and ξ H
i ∈ ∂∗(−Hi )(u) (i ∈ Ip), such that:

∑
i∈Iq

siξ
F
i +

∑
i∈Ig(x)

λ
g
i ξ

g
i +

∑
i∈Ik (x)

λki ξ
k
i +

∑
j∈In

(
λhj ξ

h
j + μh

jη
h
j

)

+
∑
i∈Ip

(
λG
i ξGi + λH

i ξ H
i

) +
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ξ

Ψ (z)
i = 0.

(4.7)

Adapting the initial assumptions along with the ∂∗− convexity of Fi (∀ i ∈ Iq) at u :

Fi (x) − Fi (u) ≥
〈
ξ F
i , x − u

〉
, ∀ i ∈ Iq . (4.8)

In fact, we take N > 0 and sequences (tp)p=1,...,N ⊂ [0, 1] with
∑N

p=1 tp = 1 and

(ξ F
i,p)p=1,...,N ⊂ ∂∗Fi (u) satisfy ξ F

i = ∑N
p=1 tpξ

F
i,p. Since Fi (∀ i ∈ Iq) is ∂∗− convex

at u, it holds that Fi (x) − Fi (u) ≥
〈
ξ F
i,p, x − u

〉
, ∀ p ∈ IN . Consequently:

tp Fi (x) − tp Fi (u) ≥
〈
tpξ

F
i,p, x − u

〉
, ∀ p ∈ IN .

This allows us to say that the following inequality holds true:

N∑
p=1

tp Fi (x) −
N∑
p=1

tp Fi (u) ≥
〈

N∑
p=1

tpξ
F
i,p, x − u

〉
.

In consequence, inequality (4.8) holds. In view of the ∂∗− convexity of gi (∀ i ∈ Ig(x)) at
u, it follows that:

gi (x) − gi (u) ≥ 〈
ξ
g
i , x − u

〉
, ∀ i ∈ Ig(x). (4.9)

Similarly, we also have:

ki (x) − ki (u) ≥
〈
ξ ki , x − u

〉
, ∀ i ∈ Ik(x), (4.10)

h j (x) − h j (u) ≥
〈
ξ hj , x − u

〉
, ∀ j ∈ In, (4.11)

(−h j )(x) + h j (u) ≥
〈
ηhj , x − u

〉
, ∀ j ∈ In, (4.12)

(−Gi )(x) + Gi (u) ≥
〈
ξGj , x − u

〉
, ∀ j ∈ ν1, (4.13)

123



37 Page 18 of 26 T. Van Su et al.

(−Hi )(x) + Hi (u) ≥
〈
ξ H
j , x − u

〉
, ∀ i ∈ ν2, (4.14)

ψ1(x, z) − ψ1(u, z) ≥
〈
ξ

Ψ (z)
1 , x − u

〉
∀ z ∈ J (u). (4.15)

Since R
l− ⊂ R

l is a closed and convex cone with nonempty interior and R
l− �= R

l , the
functionψ2( . , z ) is convex, positively homogeneous, 1-Lipschitzian, decreasing onRl (see
Hiriart-Urruty (1979), for instance). Making use of Luu’s result Luu (2016), we deduce that:

ψ2(x, z) − ψ2(u, z) ≥
〈
ξ

Ψ (z)
2 , x − u

〉
∀ z ∈ J (u). (4.16)

Because Lμ = ∅, by multiplying (4.8)-(4.16) by si (i ∈ Iq), λ
g
i ≥ 0 (i ∈ Ig(x)), λki ≥ 0

(i ∈ Ik(x)), λhj > 0 ( j ∈ In), μh
j > 0 ( j ∈ In), λG

i > 0 (i ∈ ν1), λH
i > 0 (i ∈ ν2), λ

Ψ (z)
i

(i ∈ I (u), z ∈ J (u)), respectively, and adding (4.8)–(4.16), it results in:
∑
i∈Iq

(
si Fi (x) − si Fi (u)

) +
∑

i∈Ig(x)
λ
g
i gi (x) −

∑
i∈Ig(x)

λ
g
i gi (u) +

∑
i∈Ik (x)

λki ki (x)

−
∑

i∈Ik (x)
λki ki (u) +

∑
j∈In

λhj h j (x) −
∑
j∈In

λhj h j (u) −
∑
j∈In

μh
j h j (x) +

∑
j∈In

μh
j h j (u)

−
∑
i∈Ip

λG
i Gi (x) +

∑
i∈Ip

λG
i Gi (u) −

∑
i∈Ip

λH
i Hi (x) +

∑
i∈Ip

λH
i Hi (u)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (x, z) −

∑
z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z)

≥
〈∑
i∈Iq

si ξ
F
i +

∑
i∈Ig(x)

λ
g
i ξ

g
i +

∑
i∈Ik (x)

λki ξ
k
i +

∑
j∈In

(
λhj ξ

h
j + μh

jη
h
j

)
, x − u

〉

+
〈∑
i∈Ip

(
λG
i ξGi + λH

i ξ H
i

) +
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ξ

Ψ (z)
i , x − u

〉
= 0.

Two cases can occur as follows:
Case 1: k(x1, z) /∈ R

l−, it entails that ψ2(x, z) ≤ 0, which combined with (4.1)–(4.6):

M(x) : =
∑

i∈Ig(x)
λ
g
i gi (x) +

∑
i∈Ik (x)

λki ki (x) +
∑
j∈In

λhj h j (x) −
∑
j∈In

μh
j h j (x)

−
∑
i∈Ip

λG
i Gi (x) −

∑
i∈Ip

λH
i Hi (x) +

∑
z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (x, z) ≤ 0.

Case 2: k(x1, z) ∈ R
l−,which leads to thatψ(x, z) = ψ2(x, z) > 0, this is a contradiction

with the inequality ψ(x, z) = ψ1(x, z) ≤ 0.
In consequence:

∑
i∈Iq

si Fi (x) ≥
∑
i∈Iq

si Fi (u) + M(u). (4.17)

We have to point out that there exists k ∈ Iq satisfies Fk(x) �< Fk(u) + M(u). In fact, if it
was not so, then for every k ∈ Iq , Fk(x) < Fk(u) + M(u), which ensures that:

∑
k∈Iq

sk Fk(x) <
∑
k∈Iq

sk Fk(u) +
∑
k∈Iq

skM(u),
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or equivalently:
∑
k∈Iq

sk Fk(x) <
∑
k∈Iq

sk Fk(u) + M(u),

which conflicts with inequality (4.17). This completes the proof. ��
Example 3 Consider problem (MBPP) in which the problem data are given as in Example 2.
We pick x = 0 and y = 0. Then, (x, y) ∈ K , where the feasible set of problem (MBPP) is
K = {(x, y) ∈ R

2 : x ≤ 0 or x ≥ 1, y = x2} (see Example 2, for instance). Let (u, s, λ, μ)

be the feasible vector to the dual problem (WMBPP). Then, it is evident that Iq = Il = {1, 2},
Im = In = Ip = {1}, Ig = {1}, Ik = {1, 2}, α = γ = ∅, β = {1}, ν1 = ν2 = {1},
α+

μ = γ +
μ = ∅, βG

μ = {i = 1 : μH
1 = 0, μG

1 > 0}, βH
μ = {i = 1 : μH

1 > 0, μG
1 = 0},

Lμ = ∅, Kx = {y ∈ R : ki (x, y) ≤ 0, i = 1, 2} = R and S(x) = R for all x ∈ R. We may
choose Θ = [−1, 1] + [−1, 1] = [−2, 2], and thus, Ψ : R2 × R → R is defined by:

Ψ (x, y) = max
z∈Θ

ψ(x, y, z) (∀ (x, y) ∈ R
2 × R),

where ψ(x, y, z) = f (x, y) − f (x, z) = 0 for all (x, y) ∈ R × S(x). Consequently,
Ψ (x, y) = 0 for all ∀ (x, y) ∈ R × R.

It is easy to verify that the mappings satisfy the assumptions of the Theorem 2. According
to Theorem 2, we assert that for every (x, y) ∈ K is feasible to the primal problem (MBBP),
there exists k ∈ Iq = {1, 2}, such that:

Fk(x, y) �< Fk(u) +
∑

i∈Ig(x)
λ
g
i gi (u) +

∑
i∈Ik (x)

λki ki (u) +
∑
j∈In

(λhj − μh
j )h j (u)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z) −

∑
i∈Ip

(
λG
i Gi (u) + λH

i Hi (u)
)
,

where:

u = (u1, u2) ∈ R
2, λ

Ψ (z)
i ≥ 0 (∀ z ∈ J (u), i ∈ I (u)), λ

g
1 ≥ 0,

λk1 ≥ 0, λk2 ≥ 0, λh1 ≥ 0, μh
1 ≥ 0, λG

1 ≥ 0, λH
1 ≥ 0.

For the next result providing strong duality theorems for the primal problem (MBPP) and
its Wolfe type dual problem (WMBPP).

Theorem 3 (Strong Duality) Let x ∈ K be a local weakly efficient solution for the problem
(MBPP). Assume that:

(i) the functions Fi (i ∈ Iq), gi (i ∈ Ig(x)), ki (i ∈ Ik(x)), ±h j ( j ∈ In),ψ1( . , . , z) (z ∈
Θ), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) admit bounded upper semi-regular convexificators
and are ∂∗− convex functions at x;

(ii) the functions Fi (i ∈ Iq), ki (i ∈ Ik(x)) and Ψ are locally Lipschitz near x;
(iii) the constraint qualifications (CQ) and (GS-ACQ) at x hold;
(iv) Lμ = ∅.

Then, there exist s = (si )
q
i=1 ⊂ R and (λ, μ) =

(
λ
g
, λ

k
, λ

h
, λ

Ψ
, λ

G
, λ

H
, μh, μG , μH

)
∈

R
m+l+2n+2|J (x)|+4p, such that (x, s, λ, μ) is a local weak efficient solution of the dual

(WMBPP) and the respective objective values are equal.
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Proof Since x be a local weakly efficient solution for the problem (MBPP), thanks to
the obtained result of Theorem 1, one can find s = (si )

q
i=1 ⊂ R+ with

∑
i∈Iq si = 1,

and (λ, μ) =
(
λg, λk, λh, λΨ , λG , λH , μh, μG , μH

)
∈ R

m+l+2n+2|J (x)|+4p with λ
g
Ig

≥
0, λkIk

≥ 0, λ
Ψ (z)
i ≥ 0 (i ∈ I (x), z ∈ J (x)), λhj ≥ 0, μh

j ≥ 0 ( j ∈ In), λG
i ≥ 0, λH

i ≥
0, μG

i ≥ 0, μH
i ≥ 0 (i ∈ Ip), λG

γ = λH
α = μG

γ = μH
α = 0, ∀ i ∈ β, μG

i = 0, μH
i = 0,

such that:

0 ∈
∑
i∈Iq

siconv ∂∗Fi (x) +
∑

i∈Ig(x)
λ
g
i conv ∂∗gi (x) +

∑
i∈Ik (x)

λki conv ∂∗ki (x)

+
∑

z∈J (x)

∑
i∈I (x)

λ
Ψ (z)
i conv ∂∗ψi (x, z)

+
∑
j∈In

[
λhj conv ∂∗h j (x) + μh

j conv ∂∗(−h j )(x)
]

+
∑
i∈Ip

[
λG
i conv ∂∗(−Gi )(x) + λH

i conv ∂∗(−Hi )(x)
]
.

We set s = s, λ = λ and μ = μ. Taking account of the construction of the Wolfe type dual
problem (WMBPP), it implies that (x, s, λ, μ) is a feasible vector of problem (WMBPP).
According to Theorem 2, for θhj = λhj − μh

j ( j ∈ In), there exists k0 ∈ Iq , such that:

Fk0(x) �< Fk0(u) +
∑

i∈Ig(x)
λ
g
i gi (u) +

∑
i∈Ik (x)

λki ki (u) +
∑
j∈In

θhj h j (u)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z) −

∑
i∈Ip

(
λG
i Gi (u) + λH

i Hi (u)
)

for all feasible solution (u, s, λ, μ) for theWolfe type dual problem (WMBPP). It can be seen
that i ∈ Ig(x), gi (x) = 0, i ∈ Ik(x), gk(x) = 0, j ∈ In, h j (x) = 0 and i ∈ ν1, Gi (x) = 0,
i ∈ ν2, Hi (x) = 0.Moreover, by directly applying Lemma 3.3 Gadhi and Dempe (2013), we
conclude that ψi (x, z) = 0 for all i ∈ I (x) and z ∈ S(x). Therefore, the following equality
is fulfilled:

Fk0(x) = Fk0(x) +
∑

i∈Ig(x)
λ
g
i gi (x) +

∑
i∈Ik (x)

λ
k
i ki (x) +

∑
j∈In

θ
h
j h j (x)

+
∑

z∈J (x)

∑
i∈I (x)

λ
Ψ (z)
i ψi (x, z) −

∑
i∈Ip

(
λ
G
i Gi (x) + λ

H
i Hi (x)

)

Consequently:

Fk0(x) +
∑

i∈Ig(x)
λ
g
i gi (x) +

∑
i∈Ik (x)

λ
k
i ki (x) +

∑
j∈In

θ
h
j h j (x)

+
∑

z∈J (x)

∑
i∈I (x)

λ
Ψ (z)
i ψi (x, z) −

∑
i∈Ip

(
λ
G
i Gi (x) + λ

H
i Hi (x)

)

�< Fk0(u) +
∑

i∈Ig(x)
λ
g
i gi (u) +

∑
i∈Ik (x)

λki ki (u) +
∑
j∈In

θhj h j (u)
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+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z) −

∑
i∈Ip

(
λG
i Gi (u) + λH

i Hi (u)
)
,

which means that (x, s, λ, μ) is an optimal solution of problem (WMBPP) and the respective
objective values are equal, as it was shown. ��

For the next result considering h ≡ 0, G ≡ 0 and H ≡ 0, the following Corollary 2 can
be viewed as a directly consequence from Theorem 3 which its easy proof can be omitted.

Corollary 2 Let x ∈ K be a local weakly efficient solution to the multiobjective bilevel
programming problem with constraints (MBPP∗). Suppose that:
(i) the functions Fi (i ∈ Iq), gi (i ∈ Ig(x)), ki (i ∈ Ik(x)) and ψ1( . , . , z) (z ∈ Θ) admit

bounded upper semi-regular convexificators and are ∂∗− convex functions at x;
(ii) the functions Fi (i ∈ Iq), ki (i ∈ Ik(x)) and Ψ are locally Lipschitz near x;
(iii) the conditions (i), (ii), and (vii) in the constraint qualification of the (CQ) type are valid

and the constraint qualification of the (GS-ACQ) type at x holds.

Then, there exist s = (si )
q
i=1 ⊂ R and λ =

(
λ
g
, λ

k
, λ

Ψ
)

∈ R
m+l+2|J (x)|, such that (x, s, λ)

is a local weak efficient solution of the dual (WMBPP∗), and the respective objective values
are equal.

Remark 3 In sense, all the constraint functions gi (i ∈ Ig(x)), ki (i ∈ Ik(x)), h j ( j ∈ In),
ψ1( . , . , z) (z ∈ Θ), −Gi (i ∈ ν1), and −Hi (i ∈ ν2) are affine, our preceding obtained
results are still true. Furthermore, it should be mentioned here that all of our results in Sect.
4 are generalizations of the existing one in the literature (see, e.g., Babahadda and Gadhi
2006; Bot and Grad 2010; Chuong 2018; Dempe 1992, 2002; Dempe and Zemkoho 2012;
Gadhi and Dempe 2013; Luu and Mai 2018; Pandey and Mishra 2016, 2018; Suneja and
Kohli 2011; Ye and Zhu 1995, and the references therein).

4.2 TheMond–Weir duality for (MBPP)

Based on the fact that the Wolfe type dual problem was built in Section 4.1, a Mond–Weir
type dual problem for the primal problem (MBPP) is defined similarly as follows.

The Mond–Weir type dual problem for the multiobjective bilevel programming problem
with equilibrium constraints (MBPP) is of the form:

(MWMBPP) : max
u,s,λ

[ ∑
i∈Iq

si Fi (u)
]

subject to

0 ∈
∑
i∈Iq

siconv ∂∗Fi (u) +
∑
i∈Ig

λ
g
i conv ∂∗gi (u) +

∑
i∈Ik

λki conv ∂∗ki (u)

+
∑
j∈In

[
λhj conv ∂∗h j (u) + μh

j conv ∂∗(−h j )(u)
]

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i

conv ∂∗ψi (u, z) +
∑
i∈Ip

[
λG
i conv ∂∗(−Gi )(u) + λH

i conv ∂∗(−Hi )(u)
]
,

gIg(x)(u) ≥ 0, kIk (x)(u) ≥ 0, hIn (u) = 0, Gν1 (u) ≤ 0,

Hν2 (u) ≤ 0, ψi (u, z) ≥ 0, (z ∈ J (u), i ∈ I (u)), u ∈ R
q1 × R

q2 ,

si ≥ 0, i ∈ Iq ,
∑
i∈Iq

si = 1, λ
g
Ig(x)

≥ 0, λkIk (x) ≥ 0,
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λ
Ψ (z)
i ≥ 0, i ∈ I (u), z ∈ J (u), λhj ≥ 0, μh

j ≥ 0, j ∈ In,

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0, i ∈ Ip,

λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0,

where λG
γ = (λG

i )i∈γ , λH
α = (λH

i )i∈α, μG
γ = (μG

i )i∈γ , μH
α = (μH

i )i∈α,

λΨ = (
λ

Ψ (z)
i

)
z∈J (u), i∈I (u)

, μ = (μh, μG , μH ) ∈ R
n+2p

and (λ, μ) = (s, λg, λk , λh, λΨ , λG , λH , μh, μG , μH ) ∈ R
q+m+l+2n+2|J (u)|+4p .

The forthcoming example will be provided to demonstrate the Mond-Weir type dual
problem for the primal problem (MBPP).

Example 4 Consider problem (MBPP) in which the data are given as in Example 2. Then,
the Mond-Weir type dual problem (MWMBPP) for the original problem (MBPP) is of the
following form:

(WMBPP) : max
u,s,λ

[
s(u1 + u2) + (1 − s)(u1 − u22)

]

subject to 0 ∈ s(1, 1) + (1 − s)(1,−2u2) + λ
g
1conv{(−1, 0), (0, 0)}

+ λk1conv{(−2u1,−1), (−2u1, 1)} + λk2conv{(−
1

2
,−2u2), (

1

2
,−2u2)}

+ λh1(2u1,−1) + μh
1(−2u1, 1) + λG

1 (1,−2u2) + λH
2 (−2u1, 1),

u1 + |u1| ≤ 0, u21 + |u2| ≤ 0,
1

2
|u1| + u22 ≤ 0, u21 − u2 = 0,

u1 − u22 ≥ 0, u2 − u21 ≥ 0, u = (u1, u2) ∈ R
2, 0 ≤ s ≤ 1,

λ
g
1 ≥ 0, λk1 ≥ 0, λk2 ≥ 0, λh1 ≥ 0, μh

1 ≥ 0, λG
1 ≥ 0, λH

1 ≥ 0.

Hereafter, we state a weak duality theorem for the Mond–Weir type dual problem
(MWMBPP) and the original problem (MBPP).

Theorem 4 (Weak Duality) Let x and (u, s, λ, μ) be the feasible vectors to the original
problem (MBPP) and the Mond-Weir type dual problem (MWMBPP), respectively. Suppose
that:

(i) Lμ = ∅;
(ii) The functions Fi (i ∈ Iq), gi (i ∈ Ig(x)), ki (i ∈ Ik(x)), ±h j ( j ∈ In), ψ1( . , . , z) :=

f ( . , . ) − f ( . , z) (z ∈ Θ), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) admit bounded upper
semi-regular convexificators and are ∂∗− convex functions at u.

Then, for any x = (x1, x2) is feasible to the problem (MBPP), there exists k ∈ Iq , such that:

Fk(x) �< Fk(u).

Proof Arguing similarly as for proving Theorem 2 with observing that:
∑

i∈Ig(x)
λ
g
i gi (u) +

∑
i∈Ik (x)

λki ki (u) +
∑
j∈In

(λhj − μh
j )h j (u)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i ψi (u, z) −

∑
i∈Ip

(
λG
i Gi (u) + λH

i Hi (u)
) ≥ 0,

we arrive at the desired conclusion. ��
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In what follows, we give a strong duality theorem for the original primal (MBPP) and the
Mond–Weir type dual problem (MWMBPP).

Theorem 5 (Strong Duality) Let x ∈ K be a local weak efficient solution to the original
problem (MBPP). Suppose that:

(i) the functions Fi (i ∈ Iq), gi (i ∈ Ig(x)), ki (i ∈ Ik(x)), ±h j ( j ∈ In),ψ1( . , . , z) (z ∈
Θ), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) admit bounded upper semi-regular convexificators
and are ∂∗− convex functions at x;

(ii) the functions Fi (i ∈ Iq), ki (i ∈ Ik(x)) and Ψ are locally Lipschitz near x;
(iii) the constraint qualifications (CQ) and (GS-ACQ) at x hold;
(iv) Lμ = ∅.

Then, there exist s = (si )
q
i=1 ⊂ R and (λ, μ) =

(
λ
g
, λ

k
, λ

h
, λ

Ψ
, λ

G
, λ

H
, μh, μG , μH

)
∈

R
m+l+2n+2|J (x)|+4p, such that (x, s, λ, μ) is a local weak efficient solution of theMond–Weir

type dual (MWMBPP) and the respective objective values are equal.

Proof Arguing similarly as for proving Theorem 3 with observing Theorem 4, which termi-
nates the proof. ��

In sense, the real-valued objective and constraint functions are affine, the following corol-
lary is inspired from Theorem 5 and Remark 3, which its easy proof can be omitted.

Corollary 3 Let x ∈ K be a local weak efficient solution to the original problem (MBPP).
Suppose that the functions Fi (i ∈ Iq), gi (i ∈ Ig(x)), ki (i ∈ Ik(x)), ±h j ( j ∈ In),
ψ1( . , . , z) (z ∈ Θ), −Gi (i ∈ ν1), and −Hi (i ∈ ν2) are affine. If Lμ = ∅ and the
constraint qualifications (CQ) and (GS-ACQ) at x are fulfilled, then there exist s = (si )

q
i=1 ⊂

R and (λ, μ) =
(
λ
g
, λ

k
, λ

h
, λ

Ψ
, λ

G
, λ

H
, μh, μG , μH

)
∈ R

m+l+2n+2|J (x)|+4p such that

(x, s, λ, μ) is a local weak efficient solution of the Mond-Weir type dual (MWMBPP) and
the respective objective values are equal.

An example is provided as follows.

Example 5 Consider the following problem in R × R :
(MBPP) Minimizex,y F(x, y) :=

(
F1(x, y), F2(x, y)

)
=

(
x + y, |x | + |y|

)

subject to g(x, y) := −y ≤ 0, h(x, y) := x − y = 0,

G(x, y) := −x + 2y ≥ 0, H(x, y) = −y + 2x ≥ 0,

G(x, y)H(x, y) = 0, y ∈ S(x),

where S(x) is the solution set the following lower level problem in R :
(MPPP − x) Minimizey f (x, y) := x + yΔ

R
2−(0, 0)

subject to k1(x, y) := −x ≤ 0, k2(x, y) = xy ≤ 0.

Then, it is evident that x = (0, 0) is a local weak efficient solution of problem
(MBPP). By an easy computation, we obtain I (x) = {1}, Θ = [−2, 2], Ig(x) =
β = {1}, Ik(x) = {1, 2}, α = γ = ∅, Lμ = ∅, and moreover, ∂∗F1(0, 0) =
{(1, 1)}, ∂∗F2(0, 0) = {(1, 1), (1,−1), (−1, 1), (−1,−1)}, ∂∗g1(0, 0) = {(0,−1)},
∂∗(±h1)(0, 0) = {(±1,∓1)}, ∂∗(−G1)(0, 0) = {(1,−2)}, ∂∗(−H1)(0, 0) = {(−2, 1)},
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∂∗ψi (0, 0, z) = {(0,Δ
R
2−(0, 0))} ∀ z ∈ J (x), i ∈ I (x), ∂∗k1(0, 0) = {(−1, 0)},

∂∗k2(0, 0) = {(0, 0)}.
It is not difficult to verify that the functions satisfy the assumptions of the Theorem 5,
and moreover, the constraint qualifications (CQ) and (GS − ACQ) at x = (0, 0) hold.
Taking into account Theorem 5, there exist (s, 1 − s) ∈ [0, 1] × [0, 1] and a pair (λ, μ) =(
λ
g
, λ

k
, λ

h
, λ

Ψ
, λ

G
, λ

H
, μh, μG , μH

)
∈ R

9+2|J (x)|, such that the vector (x, s, 1− s, λ, μ)

is a local weak efficient solution of theMond–Weir type dual (MWMBPP) and the respective
objective values are equal.
In fact, in this setting, the Mond–Weir type problem (MWMBPP) for the original problem
MBPP is of the form:

(MWMBPP) : max
u,s,λ

[
s(u1 + u2) + (1 − s)(|u1| + |u2|)

]

s.t. 0 ∈(1 − s)(1, 1) + [−s, s] × [−s, s] + λ
g
1(0,−1) + λk1(−1, 0)

+ λh1(1,−1) + μh
1(−1, 1) + λG

1 (1,−2) + λH
2 (−2, 1)

+
∑

z∈J (u)

∑
i∈I (u)

λ
Ψ (z)
i conv ∂∗ψi (u, z),

u = (u1, u2) ∈ {(0, 0)}, 0 ≤ s ≤ 1, λg
1 ≥ 0, λk1 ≥ 0, λk2 ≥ 0,

λh1 ≥ 0, μh
1 ≥ 0, λG

1 ≥ 0, λH
1 ≥ 0, λ

Ψ (z)
i ≥ 0, i ∈ I (u), z ∈ J (u).

Since u = (0, 0), which proves that the conclusion of Theorem 5, as it was checked.

5 Conclusion

There have not been results on necessary optimality conditions for the local weak effi-
cient solution of multiobjective bilevel programming problem with equilibrium constraints
(MBPP) in terms of convexificators. In this paper, we have established necessary optimality
conditions for efficiency to such problem. An application of the obtained results for theWolfe
and Mond–Weir types dual problem is also presented. The strong and weak duality theorems
for the primal problem (MBPP) and its Wolfe and Mond–Weir types dual problem via the
convexificators are derived. Our results here are new and more general than those obtained
by Dempe (1992), Babahadda and Gadhi (2006), Suneja and Kohli (2011), and some other
related authors.
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