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Abstract
Let R = F4 + vF4, v

2 = v. A linear code over R is a double cyclic code of length (r , s), if
the set of its coordinates can be partitioned into two parts of sizes r and s, so that any cyclic
shift of coordinates of both parts leave the code invariant. In polynomial representation, these
codes can be viewed as R[x]-submodules of R[x]

〈xr−1〉 × R[x]
〈xs−1〉 . In this paper, we determine

generator polynomials of R-double cyclic codes and their duals for arbitrary values of r and
s. We enumerate R-double cyclic codes of length (2e1 , 2e2) by giving a mass formula, where
e1 and e2 are positive integers. Some structural properties of double constacyclic codes over
R are also studied. These results are illustrated with some good examples.
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1 Introduction

Codes over rings were introduced in early seventies. These studies received a great attention
after a breakthrough paper by Hammons et al. (1994), where certain good non-linear binary
codes were obtained as images of some linear codes over Z4 under a map, called the Gray
map. Since then, several families of codes have been studied over various finite ring structures.
Most of these studies are concentrated over finite chain rings (Cao 2013; Dinh and López-
permouth 2004). Recently, researchers also studied linear codes over finite non-chain rings.
Unlike chain rings, the algebraic structure of non-chain rings do not possess any common
pattern, and linear codes over these rings do not have any compact form. Zhu et al. (2010)
constructed some binary optimal codes asGray images of cyclic codes over the non-chain ring
F2 + vF2, v

2 = v. Generalizing these results, Bayram and Siap (2014), have studied cyclic
and constacyclic codes over Zp[v]/ 〈v p − v〉. Some lower and upper bounds on the covering
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radius of repetition codes, simplex codes and MacDonald codes with Chinese Euclidean
distance over the finite non-chain ring F2 + vF2 with v2 = v are determined in Gao et al.
(2018). Further, Wang and Gao (2019) have studied MacDonald codes over the finite non-
chain ring Fp + vFp + v2F2 and their applications in constructing secret sharing schemes
and associations schemes, where p is a prime and v3 = v.

Many good quantum error correcting codes and DNA codes are constructed from cyclic
codes over finite non-chain rings (Ashraf and Mohammad 2016; Dinh et al. 2019, 2018; Shi
and Lu 2019).

More recently, linear codes are also studied over mixed alphabets. Borges et al. (2009)
have studied Z2Z4-additive codes. Wherein, the set of coordinates is partitioned into two
parts such that the projections of aZ2Z4-additive code on these coordinates are a binary code
and a quaternary code. These additive codes were later generalized to ZprZps -additive codes
(Aydogdu and Siap 2014). In Borges and Fernàndez-Còrdoba (2017), Borges et al. have
studied the algebraic structure of Z2-double cyclic codes as Z2[x]-submodules of Z2[x]〈xr−1〉 ×
Z2[x]〈xs−1〉 . In this study, the authors have determined the generating polynomials of Z2-double
cyclic codes and their duals. Similarly, the structure of Z4-double cyclic codes and Z2 +
uZ2 + u2Z2-double cyclic codes have been studied in Gao et al. (2016) and Yao et al.
(2015), respectively. Gao et al. (2016), determined the generator polynomials of duals of free
Z4-double cyclic codes, and obtained some optimal or suboptimal non-linear binary codes
from these family of codes. Diao et al. (2019) have studied the structure of ZpZp[v]-additive
cyclic codes and constructed some good quantum codes as their Gray images. A double cyclic
code is in fact a generalized quasi-cyclic (GQC) code of index two. Siap and Kulhan (2005)
introducedGQCcodes over finite fields, and the study has been extended to various finite rings
(Bhaintwal andWasan 2009; Cao 2011; Esmaeili andYari 2009). Generalizing these concepts
further, Aydin and Halilović (2017) have studied Multi-twisted codes, a generalization of
quasi-twisted codes. Gao et al. (2016), have studied the structural properties skew GQC
codes over finite fields by giving Chinese Reminder Theorem in the skew polynomial ring
Fq [x, σ ], which leads to a canonical decomposition of skew GQC codes. Similarly, by using
the Chinese Remainder Theorem, structural properties and decompositions of GQC codes
with arbitrary lengths over the ring Fq + uFq , where u2 = 0, q = pn , n a positive integer
and p a prime number, are investigated in Gao et al. (2014). Motivated by these studies, in
this paper we introduce and study the algebraic structure of double cyclic codes over the ring
R = F4 + vF4, v2 = v. We determine the generating polynomials of R-double cyclic codes
and their duals. We also investigate some algebraic properties of double constacyclic codes
and their duals over R.

The paper is organized as follows. In Sect. 2,wegive somebasic definitions and recall some
structural properties of cyclic codes over R. In Sect. 3, we present the generator polynomials
of F4-double cyclic codes, and study R-double cyclic codes as direct sum of F4-double
cyclic codes. We determine the general form of the generator polynomials of R-double
cyclic codes and their duals. We give a mass formula to enumerate R-double cyclic codes of
length (2e1 , 2e2), where e1 and e2 are positive integers. In Sect. 4, we determine the structural
properties of R-double constacyclic codes.

2 Preliminaries

Let F4 = {0, 1, w, 1 + w} be the finite field with four elements, where w2 = 1 + w.
Throughout this paper, R denote the commutative ring F4+vF4 = {a+vb | a, b ∈ F4}with
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v2 = v. R is a finite non-chain ring with sixteen elements and of characteristic two. The unit
elements in R are {1, w,w+1, v+w, 1+v+w, 1+vw, 1+v+vw, 1+w+vw, v+w+vw},
while the non-units are {0, v, vw, 1+v, v+vw,w+vw, 1+v+w+vw}. Further, R is a semi-
local Frobenius ring with two maximal ideals 〈v〉 and 〈1+ v〉. From the Chinese Remainder
Theorem, any element a+vb in R can uniquely be expressed as a+vb = (1+v)a+v(a+b).
More information about the ring can be found in Bayram et al. (2016).

A linear code C of length n over R is an R-submodule of Rn . The dual code C⊥ of C is
defined as C⊥ = {y ∈ Rn | c · y = 0, ∀c ∈ C}, where c · y is the standard Euclidean inner
product of c and y in Rn . A code C is self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.

The Hamming weight wH (c) of any c ∈ F
n
4 is the number of non-zero coordinates in c.

The Hamming distance between any two elements c1 and c2 in Fn
4 is defined as dH (c1, c2) =

wH (c1 − c2). The minimum Hamming distance of a linear code C, denoted by dH (C), is the
minimum of the Hamming weights of non-zero codewords in C.

Now, recall the definition of the Gray map which was defined in Gursoy et al. (2014) as
follows:

φ : R → F
2
4

φ(a + vb) = (a + b, a),

where a, b ∈ F4. This map can be extended naturally to the case over Rn .
The Lee weight of any c ∈ Rn is the Hamming weight of its Gray image, i.e., wL(c) =

wH (φ(c)). The Lee distance between x, y in R is defined by dL(x − y) = wL(x − y). The
minimum Lee distance between distinct pairs of codewords of a linear code C over R is
called the minimum distance of C and denoted by dL(C) or shortly dL . Further, it is easy
to check that φ is a linear isometry from (Rn, dL) to (F2n

4 , dH ). Therefore, if C is a linear
code of length n over R with 4k codewords and minimum Lee distance d , then φ(C) is a
[2n, k, d]-linear code over F4 (Gursoy et al. 2014).

Recall that, for any two sets A and B, the operations ⊕ and ⊗ are defined as A ⊕ B =
{a + b | a ∈ A, b ∈ B}, A ⊗ B = {(a, b) | a ∈ A, b ∈ B}. Also note that, for any linear
code C of length n over R the two sets C1 = {x ∈ F

n
4 | x + vy ∈ C for some y ∈ F

n
4} and

C2 = {x + y ∈ F
n
4 | x + vy ∈ C} are linear codes of length n over F4.

Following these notations, the following theorem gives the structure of linear codes over
R and their Gray images. The results follows directly from Gursoy et al. (2014) for q = 22.

Theorem 1 Gursoy et al. (2014) Let C be a linear code of length n over the ring R. Then C
can be uniquely expressed as C = (1 + v)C1 ⊕ vC2, where C1 = {x ∈ F

n
4 | x + vy ∈

C for some y ∈ F
n
4} and C2 = {x + y ∈ F

n
4 | x + vy ∈ C}. Further, if C1 and C2 are linear

codes over F4 with dimensions k1, k2 and minimum Hamming distances dH (C1), dH (C2),
respectively, then φ(C) is a [2n, k1 + k2, min{dH (C1), dH (C2)}]-linear code over F4. Also,
the dual code of C is C⊥ = (1 + v)C⊥

1 ⊕ vC⊥
2 .

Theorem 2 Gursoy et al. (2014) Let C = (1 + v)C1 ⊕ vC2 be a linear code over R, and
G1 and G2 be the generator matrices of F4-linear codes C1 and C2, respectively. Then the

generator matrix of C is

(
(1 + v)G1

vG2

)
.

Theorem 3 Let C = (1+v)C1 ⊕vC2 be a linear code of length n over R and G1, G2 be the
generator matrices of F4-linear codes C1 and C2, respectively. Then, the generator matrix

of φ(C) is

(
G1 0
0 G2

)
.

123



64 Page 4 of 17 B. Srinivasulu, P. Seneviratne

Proof The proof follows from the definition of the Gray map φ and Theorm 2. ��
Letσ be the cyclic shift operator onRn such that,σ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

A linear code C of length n over R is called a cyclic code if σ(C) = C. Let Rn denote the
quotient ring R[x]/〈xn −1〉. Identifying each n-tuple (c0, c1, . . . , cn−1) ∈ Rn with the poly-
nomial c0+c1x+· · ·+cn−1xn−1 ∈ Rn , we see that C is a cyclic code of length n over R if and
only if C is an ideal of Rn . Further, C is a λ-constacyclic code if (λcn−1, c0, . . . , cn−2) ∈ C
whenever (c0, c1, . . . , cn−1) ∈ C, where λ is a unit in R. Also, C is a λ-constacyclic code if
and only if C is an ideal of R[x]

〈xn−λ〉 (Gao et al. 2017).

Theorem 4 Gursoy et al. (2014) Let C = (1+ v)C1 ⊕ vC2 be a linear code of length n over
R. Then C is a cyclic code over R if and only if C1 and C2 are cyclic codes over F4. Further,
if C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉, then C = 〈(1 + v)g1(x) + vg2(x)〉.

The following result characterizes the generator polynomials of a cyclic code over R:

Theorem 5 Let C be a cyclic code in Rn.

1. If the least degree polynomial in C is monic, then C = 〈g(x)〉, where g(x) ∈
F4[x]/ 〈xn − 1〉 such that g(x)|(xn − 1).

2. If C has no monic polynomial of least degree, then C = 〈v f1(x)〉 or C = 〈(1+ v) f1(x)〉
or C = 〈v f1(x), (1 + v) f2(x)〉, where f1(x), f2(x) ∈ F4[x]/ 〈xn − 1〉.

3. If C contain some monic polynomials and least degree polynomials that are non-monic,
then C = 〈g(x), v f1(x)〉 or C = 〈g(x), (1 + v) f2(x)〉 or C = 〈v f1(x), (1 + v) f2(x)〉,
where f1(x), f2(x) ∈ F4[x]/ 〈xn − 1〉 and g(x) is the monic polynomial of least degree
in C.

In the examples given below, the parameters marked with ‘∗’ denote an optimal code
according to Grassl (2020).

Example 1 Let C = 〈x + 1〉 be a cyclic code of length 3 over R. Clearly, C is a free cyclic
code with parameters [3, 2, 2]. Also, it is easy to see that C1 = 〈x + 1〉 and C2 = 〈x + 1〉.
As C1 and C2 are cyclic codes over F4 with parameters [3, 2, 2]∗ and [3, 2, 2]∗, respectively,
we have φ(C) a [6, 4, 2]∗-quasi-cyclic code of index two over F4.

Example 2 Let n = 4 and C = (1 + v)C1 ⊕ vC2 be a cyclic code of length n over R, where
C1 = 〈x + 1〉 and C2 = 〈x + 1〉. As C1 and C2 are cyclic codes of length 4 over F4 with
parameters [4, 3, 2]∗ and [4, 3, 2]∗, respectively, φ(C) is a [8, 6, 2]∗-linear code over F4.

3 Double cyclic codes over R

In this section, we study some the structural properties of R-double cyclic codes and their
duals by determining their generator polynomials. Also, we give a complete classification of
R-double cyclic codes of length (2e1 , 2e2).We enumerate such codes by givingmass formula.
It may be noted here that R-double cyclic codes are in fact generalized quasi-cyclic codes of
index two over R. Also, it is obvious to see that an R-double cyclic code of length (r , s) is a
cyclic code over R of length r or s whenever s = 0 or r = 0, respectively.

Let r and s be two non-negative integers and n = r + s. The n coordinates of each n-
tuple in Rn can be partitioned into two sets of sizes r and s. Then, Rn can be treated as an
R-submodule of Rr × Rs , and any linear code C of length n over R is an R-submodule of
Rr × Rs .
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For any element c = (c10, c11, . . . , c1 r−1 | c20, c21, . . . , c2 s−1) in Rr × Rs , we define
the double cyclic shift of c as follows:

τ(c) = (c1 r−1, c10, . . . , c1 r−2 | c2 s−1, c20, . . . , c2 s−2).

Definition 1 A linear code C of length n = r + s over R is called an R-double cyclic code
of length (r , s) if τ(c) ∈ C whenever c ∈ C.

Now, we identify each (c10, c11, . . . , c1 r−1 | c20, c21, . . . , c2 s−1) ∈ Rr × Rs with a
pair of polynomials (c10 + c11x + · · · + c1 r−1xr−1 | c20 + c21x + · · · + c2 s−1xs−1) in
Rr ,s[x] = R[x]

〈xr−1〉 × R[x]
〈xs−1〉 . Clearly, this correspondence is one-to-one. Further, for any

f (x) = ∑
fi x i ∈ R[x] and (c1(x) | c2(x)) ∈ Rr ,s[x], we define the product f (x) · (c1(x) |

c2(x)) = ( f (x)c1(x) | f (x)c2(x)). We can see that Rr ,s[x] is an R[x]-module with respect
to this product. Also, the product x · (c1(x) | c2(x)) = (xc1(x) | xc2(x)) represents the
double cyclic shift of (c1(x) | c2(x)) in Rr ,s[x].
Theorem 6 A code C is an R-double cyclic of length (r , s) if and only if C is an R[x]-
submodule of Rr ,s[x].
Theorem 7 Let C be an R-double cyclic codes of length (r , s). Then

C = 〈((1 + v)b1(x) + vb2(x) | 0), ((1 + v)l1(x) + vl2(x) | (1 + v)a1(x) + va2(x))〉,
where a1(x), a2(x), b1(x) and b2(x) are monic polynomials such that a1(x)|(xs − 1),
a2(x)|(xs − 1), b1(x)|(xr − 1) and b2(x)|(xr − 1).

Proof Consider the map π : C → R[x]/〈xs − 1〉 such that π(c1(x) | c2(x)) = c2(x).
Since R[x]/〈xs − 1〉 and C are R[x] submodules Rr ,s , the map φ is an R[x]-modular homo-
morphism with kernel kerC(π) = {( f (x) | 0) ∈ C | f (x) ∈ R[x]/〈xr − 1〉}. Define
a set K = { f (x) ∈ R[x] | ( f (x) | 0) ∈ C}. Clearly, K is an ideal of R[x]

〈xr−1〉 . On the other

hand, the homomorphic image of C under π is an ideal of R[x]
〈xs−1〉 . As cyclic codes over R

are principally generated (Bayram et al. 2016), we have K = 〈(1 + v)b1(x) + vb2(x)〉 and
π(C) = 〈(1+v)a1(x)+va2(x)〉, where ai (x) and bi (x) aremonic polynomials inF4[x] such
thatai (x)|(xs−1) andbi (x)|(xr−1), i = 1, 2.Thus, kerC(π) = 〈((1+v)b1(x)+vb2(x) | 0)〉
and C = 〈((1 + v)b1(x) + vb2(x) | 0), ((1 + v)l1(x) + vl2(x) | (1 + v)a1(x) + va2(x))〉
for some (1 + v)l1(x) + vl2(x) ∈ R[x]. ��

Let C be an R-double cyclic code of length (r , s). Define C1 = {x ∈ F
r
4 × F

s
4 | x + vy ∈

C for some y ∈ F
r
4 × F

s
4} and C2 = {x + y ∈ F

r
4 × F

s
4 | x + vy ∈ C}. Then it is easy to

prove that C1 and C2 are F4-double cyclic codes of length (r , s). In Sect. 3.2, we see that an
R-double cyclic code is completely determined by the constituent F4-double cyclic codes.
Thus, we first present the structural properties of F4-double cyclic codes and then we use
these results further to describe the structure of R-double cyclic codes.

3.1 F4-double cyclic codes

A linear code C of length r + s over F4 is an F4-double cyclic code of length (r , s) if it is
closed with respect to the double cyclic shift operator τ . An F4-double cyclic code of length
(r , s) is an F4[x]-submodule of F4[x]〈xr−1〉 × F4[x]〈xs−1〉 . We see that the structure of F4-double cyclic
codes is similar to that of Z2-double cyclic codes, defined in Borges and Fernàndez-Còrdoba
(2017). We omit the proofs of the results in the present setting as they are straightforward
generalization of the study onZ2-double cyclic codesBorges and Fernàndez-Còrdoba (2017).
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Theorem 8 Let C be an F4-double cyclic code of length (r , s). Then C = 〈(b(x) | 0), (l(x) |
a(x))〉, where l(x) ∈ F4[x], b(x)|(xr − 1) and a(x)|(xs − 1). Moreover,

1. deg(l(x)) < deg(b(x));
2. b(x) divides l(x) x

s−1
a(x) ;

3. If deg(b(x)) = t1 and deg(a(x)) = t2, then C is spanned by S1 ∪ S2, where S1 =
r−t1−1⋃
i=0

xi (b(x) | 0) and S2 =
s−t2−1⋃
i=0

xi (l(x) | a(x)). Further, |C| = 4r+s−t1−t2 .

The following result provides the structure of dual code of an F4-double cyclic code. Note
that f ∗(x) is the reciprocal polynomial of f (x).

Theorem 9 Let C be an F4-double cyclic code. Then the dual code of C is also an F4-double
cyclic code.

Theorem 10 LetC be anF4-double cyclic code of length (r , s) andC⊥ = 〈(b̂(x) | 0), (l̂(x) |
â(x))〉 be the dual code of C. Then
1. b̂(x) = xr−1

gcd(b(x),l(x))∗ ,

2. â(x) = (xs−1)gcd(b(x),l(x))∗
a∗(x)b∗(x) and

3. l̂(x) = xr−1
b∗(x) λ(x), where λ(x) =

[
l∗(x)

gcd(b(x),l(x))∗
]−1

xm−deg(a(x))+deg(l(x))(
mod b∗(x)

gcd(b(x),l(x))∗
)
, m = lcm{r , s}.

An F4-double cyclic code C of length (r , s) is separable if C = Cr × Cs , where
Cr and Cs are the projections of C on r coordinates and s coordinates, respectively. A
separable F4-double cyclic code is of the form, C = 〈(b(x) | 0), (0 | a(x))〉, where
b(x)|(xr − 1) and a(x)|(xs − 1). The dual code of a separable F4-double cyclic code C is

C⊥ =
〈(

xr−1
b′′(x)

∣∣∣ 0) ,
(
0

∣∣∣ xr−1
a′′(x)

)〉
.

Theorem 11 An F4-double cyclic code of the form C = 〈(1 | 0), (l(x) | a(x))〉 is separable.
Proof The result follows as (0 | a(x)) = l(x)(̇1 | 0) − (l(x) | a(x)) ∈ C. ��
Example 3 Let r = s = 5 and C = 〈(b(x) | 0), (l(x) | a(x)〉, where b(x) = x4 + x3 + x2 +
x + 1, l(x) = x2 + x and a(x) = x + 1. Then C is an F4-double cyclic code of length (5, 5)
with parameters [10, 5, 4]∗.
Example 4 Let r = s = 6 and C = 〈(b(x) | 0), (l(x) | a(x)〉, where b(x) = x4 + x3 + x +
1, l(x) = x + 1 and a(x) = x + 1. Then C is an F4-double cyclic code of length (6, 6) with
parameters [12, 7, 4]∗.
Example 5 Let r = 2 and s = 4 and C = 〈(b(x) | 0), (l(x) | a(x)〉, where b(x) =
x2 + 1, l(x) = x + 1 and a(x) = x2 + 1. Then C is an F4-double cyclic code of length

(2, 4) with parameters [6, 2, 4]∗. Also, from Theorem 10, we have b̂(x) = x2−1
gcd(x2+1,x+1)∗ =

x + 1, â(x) = (x4−1)gcd(x2+1,x+1)∗
(x2+1)∗(x2+1)∗ = x + 1 and l̂(x) = x2−1

(x2+1)∗ λ(x) = λ(x) with λ(x) =
x4−2+1

(
x+1
x+1

)−1 (
mod x2+1

(x+1)∗
)

= 1. Therefore, C⊥ = 〈(x + 1 | 0), (1 | x + 1)〉. Further,
C⊥ is an F4-double cyclic code with parameters [6, 4, 2]∗.
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3.2 R-Double cyclic codes and their duals

In this subsection, we continue and study R-double cyclic codes and their duals as direct sum
of F4-double cyclic codes. Let C be an R-double cyclic code and C1, C2 be the correspond-
ing F4-linear codes as defined in Sect. 2. The following result shows that C is determined
completely by the F4-double cyclic codes C1 and C2:

Theorem 12 Let C = (1 + v)C1 ⊕ vC2 be a linear code of length r + s over R. Then C is
an R-double cyclic code of length (r , s) if and only if C1 and C2 are F4-double cyclic codes
of length (r , s).

Proof Let x = (a1, a2, . . . , ar | b1, b2, . . . , bs) ∈ C1. Then x + vy ∈ C for some y =
(a′

1, a
′
2, . . . , a

′
r | b′

1, b
′
2, . . . , b

′
s) ∈ F

r
4×F

s
4. If C is an R-double cyclic code, then τ(x+vy) =

(ar + va′
r , a1 + va′

1, . . . , ar−1 + va′
r−1 | bs + vb′

s, b1 + vb′
1, . . . , bs−1 + vb′

s−1) ∈ C. This
implies that (ar , a1, . . . , ar−1 | bs, b1, . . . , bs−1) ∈ C1 and, therefore, C1 is an F4-double
cyclic code. Similarly we can show that C2 is an F4-double cyclic code. Conversely, assume
C1 and C2 are F4-double cyclic codes. Then for any x + vy ∈ C, we have τ(x) ∈ C1 and
τ(x + y) ∈ C2. This implies that (1+v)τ(x)+vτ(x + y) = τ(x +vy) ∈ C, from the unique
representation of C. Therefore C is an R-double cyclic code. Hence the result. ��
Remark 1 For any k(x) ∈ R[x], there exist some r(x), r ′(x) ∈ F4[x] such that (1+v)k(x) =
(1 + v)r(x) and vk(x) = vr ′(x).

The following theorem gives the form of generators of an R-double cyclic code of length
(r , s):

Theorem 13 Let C1 = 〈(b1(x) | 0), (l1(x) | a1(x))〉 and C2 = 〈(b2(x) | 0), (l2(x) | a2(x))〉
be twoF4-double cyclic codes of length (r , s) as defined in Theorem 8. IfC = (1+v)C1⊕vC2

is an R-double cyclic code of length (r , s), then C = 〈((1 + v)b1(x) | 0), ((1 + v)l1(x) |
(1 + v)a1(x)), (vb2(x) | 0), (vl2(x) | va2(x))〉.
Proof From the unique representation of C as C = (1 + v)C1 ⊕ vC2, we have C ⊆ 〈(1 +
v)(b1(x) | 0), (1 + v)(l1(x) | a1(x)), v(b2(x) | 0), v(l2(x) | a2(x))〉. Conversely, let c(x) ∈
〈((1 + v)b1(x) | 0), ((1 + v)l1(x) | (1 + v)a1(x)), (vb2(x) | 0), (vl2(x) | va2(x))〉. Then
c(x) = (1 + v)k1(x)(b1(x) | 0) + (1 + v)k2(x)(l1(x) | a1(x)) + vk3(x)(b2(x) | 0) +
vk4(x)(l2(x) | a2(x)) for some k1(x), k2(x), k3(x) and k4(x) in R[x]. But from Remark
1, there exist r1(x), r2(x), r3(x) and r4(x) in F4[x] such that c(x) = (1 + v)[r1(x)(b1(x) |
0)+r2(x)(l1(x) | a1(x))]+v[r3(x)(b2(x) | 0)+r4(x)(l2(x) | a2(x))] ∈ c(x) ∈ C.Therefore
〈(1 + v)(b1(x) | 0), (1 + v)(l1(x) | a1(x)), v(b2(x) | 0), v(l2(x) | a2(x))〉 ⊆ C. ��
Theorem 14 Let C1 = 〈(b1(x) | 0), (l1(x) | a1(x))〉 and C2 = 〈(b2(x) | 0), (l2(x) | a2(x))〉
be twoF4-double cyclic codes of length (r , s) as defined in Theorem 8. IfC = (1+v)C1⊕vC2

is an R-double cyclic code of length (r , s), then C = 〈((1 + v)b1(x) + vb2(x) | 0), ((1 +
v)l1(x) + vl2(x) | (1 + v)a1(x) + va2(x))〉.
Proof From Theorem 13, we have C = 〈(1+v)(b1(x) | 0), (1+v)(l1(x) | a1(x)), v(b2(x) |
0), v(l2(x) | a2(x))〉. Clearly 〈((1 + v)b1(x) + vb2(x) | 0), ((1 + v)l1(x) + vl2(x) | (1 +
v)a1(x) + va2(x))〉 ⊆ C. On the other hand, let c(x) ∈ 〈(1 + v)(b1(x) | 0), (1 + v)(l1(x) |
a1(x)), v(b2(x) | 0), v(l2(x) | a2(x))〉. Then, there exist r1(x), r2(x), r3(x) and r4(x) in
R[x] such that
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c(x) = r1(x)[(1 + v)(b1(x) | 0)] + r2(x)[(1 + v)(l1(x) | a1(x))]
+ r3(x)[v(b2(x) | 0)] + r4(x)[v(l2(x) | a2(x))]

= r1(x)[(1 + v)((1 + v)b1(x) + vb2(x) | 0)] + r2(x)[(1 + v)((1 + v)l1(x)

+ vl2(x) | (1 + v)a1(x) + va2(x))]
+ r3(x)[v((1 + v)b1(x) + vb2(x) | 0)] + r4(x)[v((1 + v)l1(x)

+ vl2(x) | (1 + v)a1(x) + va2(x))]
= ((1 + v)b1(x) + vb2(x) | 0)[(1 + v)r1(x) + vr3(x)]

+ ((1 + v)l1(x) + vl2(x) | (1 + v)a1(x) + va2(x))

[(1 + v)r2(x) + vr4(x)].
Therefore c(x) ∈ 〈(1+v)(b1(x) | 0), (1+v)(l1(x) | a1(x)), v(b2(x) | 0), v(l2(x) | a2(x))〉.
The result follows. ��

Recall, the definitions of π(C), kerπ (C) and K . In the following theorem we give the
form of generator polynomials of an R-double cyclic code when π(C) and K has no monic
polynomials of least degree.

Theorem 15 Let C be an R-double cyclic code of length (r , s) such that π(C) = 〈va(x)〉
and Ker(π)C = 〈(vb(x) | 0)〉, where a(x), b(x) ∈ R[x]. Then C = 〈(vb(x) | 0), (vl(x) |
va(x))〉 for some l(x) ∈ F4[x]. Similarly, when π(C) = 〈(1 + v)a(x)〉 and Ker(π)C =
〈((1 + v)b(x) | 0)〉, then C = 〈((1 + v)b(x) | 0), ((1 + v)l(x) | (1 + v)a(x))〉.
Proof Suppose C is an R-double cyclic code with π(C) = 〈va(x)〉 and Ker(π)C = 〈(vb(x) |
0)〉. Then C = 〈(vb(x) | 0), ((1+ v)l ′ + vl(x) | va(x))〉. Clearly, (1+ v)((1+ v)l ′ + vl(x) |
va(x)) = ((1 + v)l ′ | 0) ∈ C and hence (1 + v)l ′ ∈ K . As K contains no polynomial with
leading coefficient as (1 + v), we get l ′ = 0. Therefore C = 〈(vb(x) | 0), (vl(x) | va(x))〉.
Second part of the theorem can be proved similarly. ��
Theorem 16 LetC be anR-double cyclic code of length (r , s). ThenC is one of the following
form:

1. C = 〈((1 + v)b1(x) + vb2(x) | 0)〉, where b1(x)|(xr − 1) and b2(x)|(xr − 1);
2. C = 〈(l(x) | (1 + v)a1(x) + va2(x))〉, where b1(x)|(xr−1), b2(x)|(xr−1), and (xr−1)

divides xs−1
(1+v)a1(x)+va2(x)

l(x);
3. C = 〈((1 + v)b1(x) + vb2(x) | 0), ((1 + v)l1(x) + vl2(x) | (1 + v)a1(x) + va2(x))〉,

where bi (x)
∣∣(xr − 1), ai (x)

∣∣(xs − 1), i = 1, 2, and ((1 + v)b1(x) + vb2(x)) divides
xs−1

(1+v)a1(x)+va2(x)
((1 + v)l1(x) + vl2(x)).

Now, we give a minimal spanning set of an R-double cyclic code C of length (r , s) in
Rr ,s[x] as anR-module. Recall that theminimal spanning set of anF4-double cyclic codeC =
〈(b(x) | 0), (l(x) | a(x))〉of length (r , s) is S = S1∪S2,where S1 = ∪r−deg(b(x))−1

i=0 (b(x) | 0)
and S2 = ∪s−deg(a(x))−1

j=0 (l(x) | a(x)) (Borges and Fernàndez-Còrdoba (2017), Proposition
3).

Theorem 17 Let C = 〈((1 + v)b1(x) + vb2(x) | 0), ((1 + v)l1(x) + vl2(x) |
(1 + v)a1(x) + va2(x))〉 be an R-double cyclic code of length (r , s). Let

S11 =
r−deg(b1(x))−1⋃

i1=0

((1 + v)b1(x) | 0) S12 =
s−deg(a1(x))−1⋃

j1=0

((1 + v)l1(x) | (1 + v)a1(x))
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S21 =
r−deg(b2(x))−1⋃

i2=0

(vb2(x) | 0) S22 =
s−deg(a2(x))−1⋃

j2=0

(vl2(x) | va2(x)).

Then, S = S11 ∪ S12 ∪ S21 ∪ S22 forms a minimal spanning set for C as an R-module.
Moreover,

|C| = 42r+2s−deg(a1(x))−deg(b1(x))−deg(a2(x))−deg(b2(x)).

Proof Clearly, span(S) ⊆ C. Let c = ((1+ v) f1(x)+ v f2(x) | (1+ v)g1(x)+ vg2(x)) ∈ C.
Then from the definitions of C1 and C2, we have ( f1(x) | g1(x)) ∈ C1 and ( f2(x) | g2(x)) ∈
C2. This implies ((1 + v) f1(x) | (1 + v)g1(x)) ∈ span (S11 ∪ S12) and (v f2(x) | vg2(x)) ∈
span (S21 ∪ S22). Thus c ∈ span(S), and C ⊆ span(S). Therefore S is a minimal spanning
set of C. ��

In the following result, we show that the dual of an R-double cyclic codes is also an
R-double cyclic code.

Theorem 18 If C is an R-double cyclic code of length (r , s), then the dual C⊥ of C is also
an R-double cyclic code of length (r , s).

Proof Let y = (y1,0, y1,1, . . . , y1,r−1 | y2,0, y2,1, . . . , y2,s−1) ∈ C and
x = (x1,0, x1,1, . . . , x1,r−1 | x2,0, x2,1, . . . x2,s−1) ∈ C⊥. Since C is invariant under τ ,
we have τm−1(y) ∈ C, where m = lcm(r , s). Therefore

0 = x · σm−1(y) = (x1,0y1,1 + · · · + x1,r−2y1,r−1 + x1,r−1y1,0) + (x2,0y2,1 + · · · + x2,s−1y2,0)

= (x1,r−1y1,0 + x1,0y1,1 + · · · + x1,r−2x1,r−1) + (x2,s−1y2,0 + · · · + x2,s−2y2,s−1)

= τ(x) · y.
As y is an arbitrary element of C, the result follows. ��

Now, we give the generators of the dual code of an R-double cyclic code.

Theorem 19 LetC = (1+v)C1+vC2 be anR-double cyclic code of length (r , s), andC⊥
1 =

〈(b̂1(x) | 0), (l̂1(x) | â1(x))〉 and C⊥
2 = 〈(b̂2(x) | 0), (l̂2(x) | â2(x))〉 be the dual codes of

C1 = 〈(b1(x) | 0), (l1(x) | a1(x))〉 and C2 = 〈(b2(x) | 0), (l2(x) | a2(x))〉, respectively.
Then C⊥ = 〈((1+ v)b̂1(x)+ vb̂2(x) | 0), ((1+ v)l̂1(x)+ vl̂2(x) | (1+ v)â1(x)+ vâ2(x))〉.
Proof The result follows directly from the fact that C⊥ = (1 + v)C⊥

1 + vC⊥
2 and Theorem

14. ��
Corollary 1 An R-double cyclic code C = (1+ v)C1 + vC2 is self-dual if and only if C1 and
C2 are self-dual double cyclic codes over F4.

The following result gives the cardinality of an R-double cyclic code and its dual code.

Theorem 20 LetC = (1+v)C1⊕vC2 be anR-double cyclic code and as defined in Theorem
14.Then |C| = 42(r+s)−deg(a1)−deg(a2)−deg(b1)−deg(b2) and |C⊥| = 4deg(a1)+deg(a2)+deg(b1)+deg(b2).

Proof The proof follows as |C| = |C1| · |C2| and |C⊥| = |C⊥
1 | · |C⊥

2 |. ��
The following theorem gives the structure of the Gray image of an R-double cyclic code.
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Theorem 21 Let C = (1 + v)C1 + vC2 be an R-double cyclic code of length (r , s), where
C1 and C2 are F4-double cyclic codes of length (r , s) as defined in Theorem 8. Then the
Gray image of C under φ is a generalized quasi cyclic code of length (r , s, r , s) over F4. In
particular if r = s, then φ(C) is a 4-quasi cyclic code of length 4r over F4.

Proof The result follows as C1 and C2 are F4-double cyclic codes (quasi cyclic codes of
index 2) and φ(C) = C1 × C2. ��

An R-double cyclic code is separable if C = Cr × Cs . It is easy to prove that C =
(1 + v)C1 + vC2 is sparable R-double cyclic code if and only if C1 and C2 are separable
F4-double cyclic codes. Further, the dual of an R-separable code is also separable.

Theorem 22 Let C⊥ be the dual code of a separable R-double cyclic code C = 〈((1 +
v)b1(x)+vb2(x) | 0), (0 | (1+v)a1(x)+va2(x))〉. ThenC⊥ =

〈(
(1 + v) x

r−1
b∗
1(x)

+ v xr−1
b∗
2(x)

∣∣∣ 0) ,(
0

∣∣ (1 + v) x
r−1

a∗
1 (x) + v xr−1

a∗
2 (x)

)〉
.

Example 6 Let C = 〈((1+ v)(x4 + x3 + x2 + 1) | 0), (vx4 + vx3 + vx2 + x | vx3 + x + 1)〉
be an R-double cyclic code of length (7, 14). Then, C1 = 〈(x4 + x3 + x2 + 1 | 0), (x |
x + 1)〉 and C2 = 〈(x4 + x3 + x2 + x | x3 + x + 1)〉. The F4-double cyclic codes C1 and
C2 are of length (7, 14) with parameters [21, 16, 3] and [21, 11, 6], respectively. Further,
from Theorem 8, we see C⊥

1 = 〈(x3 + x + 1 | x9 + x8 + x6 + x5 + x4 + x3 + 1)〉
and C⊥

2 = 〈(x6 + x5 + x4 + x3 + x2 + x + 1 | 0), (x4 + x3 + 1 | x5 + x2 + x + 1)〉.
Therefore C⊥ = 〈(v(x6 + x5 + x4 + x3 + x2 + x + 1) | 0), (vx4 + x3 + (1 + v)x + 1 |
(1+v)x9+ (1+v)x8+ (1+v)x6+ x5+ (1+v)x4+ (1+v)x3+vx2+vx+1)〉. As C⊥

1 and
C⊥
1 are F4-double cyclic codes with parameters [21, 5, 10]∗ and [21, 10, 7]∗, respectively,

we have φ(C⊥) a generalized quasi-cyclic code of index four with parameters [42, 15, 7]
over F4.

Example 7 Let C1 = 〈(wx + 1 | 0), (x + 1 | 1)〉 and C2 = 〈(wx + 1 | 0), (x + 1 | x + 1)〉
be two F4-double cyclic codes of length (6, 6). We see C1 and C2 are optimal F4-codes with
parameters [12, 11, 2]∗ and [12, 10, 2]∗, respectively. From Theorem 14, C = (1 + v)C1 ⊕
vC2 = 〈((1+v)(wx+1)+v(x+1) | 0), (x+1 | 1+vx)〉, an R-double cyclic code of length
(6, 6). The Gray image of C is a quasi-cyclic code of index 4 with parameters [24, 21, 2]∗
over F4.

Example 8 Let C = 〈(x + 1 | 0), (0 | x + 1)〉 be a separable R-double cyclic code of length
(10, 10). Then C1 = C2 = 〈(x + 1 | 0), (0 | x + 1)〉, a separable F4-double cyclic code with
parameters [20, 18, 2]∗4. The Gray image of C under φ is a quasi-cyclic code of index 4 and
length 40 with parameters [40, 36, 2]4. Also, C⊥ = 〈(x9 + x8 + x7 + x6 + x5 + x4 + x3 +
x2 + x + 1 | 0), (0 | x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)〉.

3.3 Enumeration of R-double cyclic codes

In this section, we give the complete classification of R-double cyclic codes of length
(2e1 , 2e2), where e1 and e2 are non-negative integers. We give a mass formula that enumerate
these family of codes for given values of e1 and e2. For that we first recall the structure of
cyclic codes over F4 of length n = 2e.

Let R′
n denote the quotient ring F4[x]/〈xn − 1〉, where n = 2e. As (x + 1) is a nilpotent

element of nilpotency 2e Dinh and López-permouth (2004), each polynomial in R′
n can be
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written as
2n−1∑
i=0

ai (x + 1)i , ai ∈ F4, and such an element is a unit in R′
n if and only if

a0 �= 0. From this we see that Rn is a finite chain ring and any ideal of R′
n is of the form

〈(x + 1)i 〉, 0 ≤ i ≤ n Dinh and López-permouth (2004). Therefore, if C is an F4-double
cyclic code of length (2e1 , 2e2), then C = 〈((x + 1)i1 | 0), ((x + 1)t h(x) | (x + 1)i2)〉,
where h(x) is zero or unit in F4[x]/〈x2e1 − 1〉. Summarizing this discussion, the following
theorem present the completemodule structure ofF4-double cyclic codes of length (2e1 , 2e2).
Throughout this section we let r = 2e1 and s = 2e2 , where e1, e2 are non-negative integers.

Lemma 1 Let C be an F4-double cyclic code of length (r , s). Then C is one of the following:

Type 1: C = 〈((x + 1)i1 | 0)〉, 0 ≤ i1 ≤ r;
Type 2: C = 〈((x + 1)t h(x) | (x + 1)i2)〉, where 0 ≤ i2 ≤ s − 1 and h(x) is either zero
or a unit in F4[x]/〈xr − 1〉 such that t + deg(h(x)) < r;
Type 3:C = 〈((x+1)i1 | 0), ((x+1)t h(x) | (x+1)i2)〉, where 0 ≤ i1 ≤ r−1, 0 ≤ i2 ≤
s − 1 and h(x) is either zero or a unit in F4[x]/〈xr − 1〉 such that t + deg(h(x)) < i .

Remark 2 The F4-double cyclic codes of length (r , s) of Type 2 are in fact C = 〈(xr − 1 |
0), ((x + 1)t h(x) | (x + 1)i2)〉, 0 ≤ i2 ≤ s − 1.

Lemma 2 Let r = 2e1 and s = 2e2 , e1 > 0, e2 > 0. Then, the number of F4-double cyclic
codes of length (r , s) is

N =
{
r4s − s4s + 5

34
s − 1

2 s
2 + rs + 3

2 s − 5
3 if r ≥ s

s4r − r4r + 5
34

s − 1
2r

2 + rs + 3
2r − 5

3 if r < s.

Proof We enumerate F4-double cyclic codes separately in each case as given in Lemma1.
Let Ni be the number of F4-double cyclic codes of Type i .
T ype 1 : The number of F4-double cyclic codes of Type 〈((x + 1)i1 | 0)〉, 0 ≤ i1 ≤ r is
N1 = r + 1.
T ype 2 : We enumerate the number of F4-double cyclic codes of Type 2 in two cases. When
h(x) is zero, there are N21 = s number of cyclic codes of Type 〈(0 | (x + 1)i2)〉, 0 ≤ i2 ≤
s − 1. When, h(x) �= 0, the number of F4-double cyclic codes of type 〈((x + 1)t h(x) |
(x + 1)i2)〉, 0 ≤ i2 ≤ s − 1 is as follows:

N22 =

⎧⎪⎪⎨
⎪⎪⎩

s−1∑
t=0

3 · 4t if r ≥ s

(s − r + 1)
[
3 · 4r−1

] +
r−1∑
t=1

3 · 4r−t−1 if r < s.

=
{
4s − 1 if r ≥ s

4r + 3s4r−1 − 3r4r−1 − 1 if r < s.

T ype 3 : Again, we enumerate the number of F4-double cyclic codes of Type 3 in two cases.
When h(x) = 0, the F4-double cyclic codes are of the form C = 〈((x + 1)i1 | 0), (0 |
(x + 1)i2)〉, where 0 ≤ i1 ≤ r − 1, 0 ≤ i2 ≤ s − 1. Clearly, these are separable F4-
double cyclic codes. Thus, the number of separable F4-double cyclic codes of length (r,s) is
N31 = r · s.

Let h(x) �= 0 and C = 〈((x + 1)i1 | 0), ((x + 1)t h(x) | (x + 1)i2)〉. Then it is easy to see
that (x + 1)i1 divides (x + 1)s−i2

(
(x + 1)t h(x)

)
(see Lemma 8). As h(x) a unit element in

F4[x]/〈xr − 1〉, we thus have s − i2 + t ≥ i1. So the number of F4-double cyclic codes of

123



64 Page 12 of 17 B. Srinivasulu, P. Seneviratne

the form C = 〈((x + 1)i1 | 0), ((x + 1)t h(x) | (x + 1)i2)〉, 0 ≤ i1 ≤ r − 1, 0 ≤ i2 ≤ s − 1
is

N32 =

⎧⎪⎪⎨
⎪⎪⎩

(r − s)
s−1∑
t=0

3 · 4t +
s−1∑
i=1

[
(s − i)3 · 4i−1 +

i−1∑
t=0

3 · 4t
]

if r ≥ s

r−1∑
i=1

[
(s − i)3 · 4i−1 +

i−1∑
t=0

3 · 4t
]

if r < s.

=
{
r4s − s4s + 2

34
s − 1

2 s
2 − r + 1

2 s − 5
3 if r ≥ s

s4r−1 − r4r−1 + 2
34

r − s + 1
2r − 1

2r
2 − 5

3 if r < s.

Therefore, the total number of F4-double cyclic codes length (r , s) is

N =
{
r4s − s4s + 5

34
s − 1

2 s
2 + rs + 3

2 s − 5
3 if r ≥ s

s4r − r4r + 5
34

s − 1
2r

2 + rs + 3
2r − 5

3 if r < s.

��
Theorem 23 The number of R-double cyclic codes of length (r , s), where r = 2e1 , s = 2e2 ,
is

N =

⎧⎪⎨
⎪⎩

(
r4s − s4s + 5

34
s − 1

2 s
2 + rs + 3

2 s − 5
3

)2
if r ≥ s(

s4r − r4r + 5
34

s − 1
2r

2 + rs + 3
2r − 5

3

)2
if r < s.

Proof The proof follows from Lemma 2, and the fact that the size of an R-double cyclic code
C = (1 + v)C1 ⊕ vC2 of length (r , s) is |C| = |C1| × |C2|, where C1 and C2 are F4-double
cyclic codes of length (r , s). ��
Example 9 Let r = s = 2 and Ni be the number of F4-double cyclic codes of T ype i . Then
the F4-double cyclic codes of length (2, 2) as follows:

Type codes Ni

Type 1 〈(1 | 0)〉, 〈(x + 1 | 0)〉 and 〈(0 | 0)〉 N1 = 3
Type 2 when
h(x) = 0

〈(0 | x + 1)〉 and 〈(0 | 1)〉 N21 = 2

Type 2 when
h(x) �= 0

〈(x + 1 | x + 1)〉, 〈(wx + w | x + 1)〉, 〈(w2x + w2 | x + 1)〉, 〈(x + 1 | 1)〉,
〈(x + w | 1)〉, 〈(x + w2 | 1)〉, 〈(wx + 1 | 1)〉, 〈(wx + w | 1)〉, 〈(wx + w2 | 1)〉,
〈(w2x + 1 | 1)〉, 〈(w2x + w | 1)〉, 〈(w2x + w2 | 1)〉, 〈(1 | 1)〉, 〈(w | 1)〉and〈(w2 | 1)〉

N22 = 15

Type 3 when
h(x) = 0

〈(1 | 0), (0 | 1)〉, 〈(x + 1 | 0), (0 | 1)〉,
〈(1 | 0), (0 | x + 1)〉, 〈(x + 1 | 0), (0 | x + 1)〉 N31 = 4

Type 3 when
h(x) �= 0

〈(x + 1 | 0), (1 | 1)〉, 〈(x + 1 | 0), (w | 1)〉, 〈(x + 1 | 0), (w2 | 1)〉
〈(x + 1 | 0), (1 | x + 1)〉, 〈(x + 1 | 0), (w | x + 1)〉, 〈(x + 1 | 0), (w2 | x + 1)〉 N32 = 6

Therefore, the total number ofF4-double cyclic codes of length (2, 2) is 3+2+15+4+6 = 30.
Further, from Theorem 20, the total number of R-double cyclic codes of length (2, 2) is 900.

Theorem 24 Let C = 〈((x + 1)i1 | 0), ((x + 1)t h(x) | (x + 1)i2)〉 be an R-double
cyclic code of length (r , s), where r = 2e1 , s = 2e2 and h(x) is either zero or a unit
over F4. Then C⊥ = 〈((x + 1)r−t | 0), ((x + 1)r−i1δ | (x + 1)s+t−i1−i2)〉, where
δ = [h]−1xm−i2+t+deg(h) (mod (x + 1)i1−t ).
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Table 1 Some good F4-double constacyclic codes

Generators [r , s] Parameters

〈(x3 + wx2 + w2x + 1 | 0), (w2x + w | w2)〉 [4, 4] [8, 5, 3]∗
〈(x3 + wx2 + w2x + 1 | 0), (w2x + w | wx + w2)〉 [4, 4] [8, 4, 4]∗
〈(x2 + w2 | 0), (w2x + w | 1)〉 [4, 4] [8, 6, 2]∗
〈(wx2 + 1 | 0), (w | w2)〉 [4, 6] [10, 8, 2]∗
〈(x + w | 0), (w | 1)〉 [4, 6] [10, 9, 2]∗
〈(wx3 + w2x2 + x + w | 0), (x + w2 | x2 + w)〉 [4, 8] [12, 7, 4]∗
〈(wx5 + x4 + x + w2 | 0), (x3 + w2x2 + wx | w2)〉 [8, 8] [16, 11, 4]∗
〈(wx5 + x4 + x + w2 | 0), (w2x3 + x + w | x + w2)〉 [8, 14] [22, 16, 4]∗
〈(wx3 + x2 + w2x + w | 0), (wx2 + wx | 1)〉 [8, 18] [26, 23, 2]∗
〈(x5 + wx4 + w2x3 + wx2 + wx + w | 0), (w2x + w | w2x + w)〉 [20, 20] [40, 34, 4]∗

Example 10 Let r = 4, s = 8, and C = 〈((x + 1)4 | 0), (x2 + x | (x + 1)5)〉 be an
R-double cyclic code of length (4, 8). Following the notations in Theorem 24, we have
i1 = 4, i2 = 5, t = 1 and h(x) = x = (x + 1) + 1. Clearly, δ = x2 + x + 1, and the dual
code C⊥ of C is C⊥ = 〈((x + 1)3 | 0), (x2 + x + 1 | 1〉.

4 R-Double constacyclic codes

Constacyclic codes constitutes an important generalization of cyclic codes. These codes are
important because of simplified algebraic structure and practical usage. In this section, we
define an R-double constacyclic code of length (r , s). We characterize these codes with their
Gray images. These codes are multi-twisted cyclic codes (generalization of quasi-twisted
cyclic codes) of index two over R. Recently, Aydin and Halilović (2017) introduced these
family of codes over finite fields and presented few construction methods. Recall, an (α, β)-
double constacyclic code of length (r , s) over Fq is an F4[x]-submodule of F4[x]〈xr−α〉 × F4[x]〈xs−β〉 ,
where α, β are units in F4 Aydin and Halilović (2017).

The following Table1 gives some examples of F4-double constacyclic codes, which have
the best known minimum distance.

Now, we extend the definition of double constacyclic codes over finite fields given in
Aydin and Halilović (2017) and define an R-double constacyclic codes.

Definition 2 Let λ1 and λ2 be two unit elements in R and c = (c0, c1, . . . , cr−1 |
c′
0, c

′
1, . . . , c

′
s−1) ∈ Rr × Rs . Then the double constacyclic shift σλ1λ2 of c is defined by

σλ1λ2(c) = (λ1cr−1, c0, . . . , cr−2 | λ2c
′
s−1, c

′
0, . . . , c

′
s−2).

A linear code C of length r + s over R is called a (λ1, λ2)-double constacyclic code of length
(r , s) if it is invariant under the double constacyclic shift operator σλ1λ2 . Under polynomial
representation, we can easily see that C is a (λ1, λ2)-double constacyclic code of length (r , s)
over R if and only if C is an R[x]-submodule of R[x]

〈xr−λ1〉 × R[x]
〈xs−λ2〉 . As a special case, if we

take λ1 = λ2 = 1, then C an R-double cyclic code. Note that, when λ1 = λ2 = λ, we call C
a λ-double constacyclic code over R.

Let πi : F4 × F4 → F4 be a projection map such that πi (a1 | a2) = ai , i = 1, 2. Also let
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Ln =
[

F4[x]〈xr−π1(φ(λ1))〉 × F4[x]〈xs−π1(φ(λ2))〉
]

×
[

F4[x]〈xr−π2(φ(λ1))〉 × F4[x]〈xs−π2(φ(λ2))〉
]
, where φ(λ1)

and φ(λ2) are Gray images of λ1 and λ2. Now, we extend the Gray map φ to 
 as follows:


 : R[x]
〈xr − λ1〉 × R[x]

〈xs − λ2〉 → Ln

such that

φ

⎛
⎝ r∑
i=0

ai x
i
∣∣∣∣

s∑
j=0

bi x
j

⎞
⎠ �→

⎛
⎝ r∑
i=0

π1(φ(ai ))x
i ,

r∑
i=0

π2(φ(ai ))x
i ,

s∑
j=0

π1(φ(b j ))x
j ,

s∑
j=0

π2(φ(b j ))x
j

⎞
⎠ .

Clearly, φ is a modular isomorphism, and, therefore, R[x]
〈xr−λ1〉 × R[x]

〈xs−λ2〉
∼=[

F4[x]〈xr−π1(φ(λ1))〉 × F4[x]〈xs−π1(φ(λ2))〉
]

×
[

F4[x]〈xr−π2(φ(λ1))〉 × F4[x]〈xs−π2(φ(λ2))〉
]
. With this we have the

following result:

Theorem 25 Let C = (1 + v)C1 + vC2 be a linear code of length r + s over R, and
λ1, λ2 be two unit elements in R. Then C is a (λ1, λ2)-constacyclic code of length (r , s)
over R if and only if C1 is a (π2(φ(λ1)), π2(φ(λ2)))-double constacyclic code and C2 is a
(π1(φ(λ1)), π1(φ(λ2)))-double constacyclic code of length (r , s) over F4.

Proof Let λ1 = λ11 + vλ12 and λ2 = λ21 + vλ22 be two unit elements in R. Let c =
(c0, c1, . . . , cr−1 | c′

0, c
′
1, . . . , c

′
s−1) ∈ C, where ci = (1+v)xi +vyi , c′

j = (1+v)x ′
j +vy′

j
for 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s − 1. Then we have

σλ1λ2 (c) =
(
λ1cr−1, c0, . . . , cr−2

∣∣∣ λ2c
′
s−1, c

′
0, . . . , c

′
s−2

)

= ([λ11 + vλ12][(1 + v)xr−1 + vyr−1], (1 + v)x0 + vy0, . . . ,

(1 + v)xr−2 + vyr−2

∣∣∣ [λ21 + vλ22][(1 + v)x ′
s−1 + vy′

s−1],
(1 + v)x ′

0 + vy′
0, . . . , (1 + v)x ′

s−2 + vy′
s−2

)
=

(
[(1 + v)λ11 + v(λ11 + λ12)][(1 + v)xr−1 + vyr−1], (1 + v)x0 + vy0, . . . , (1 + v)xr−2 + vyr−2

∣∣∣
[(1 + v)λ21 + v(λ21 + λ22)][(1 + v)x ′

s−1 + vy′
s−1], (1 + v)x ′

0 + vy′
0, . . . , (1 + v)x ′

s−2 + vy′
s−2

)
= (1 + v)

(
λ11xr−1, x0, . . . , xr−2

∣∣∣ λ21x
′
s−1, x

′
0, . . . , x

′
s−2

)

+ v
(
(λ21 + λ22)yr−1, y0, . . . , yr−2

∣∣∣ λ22y
′
s−1, y

′
0, . . . , y

′
s−2

)

= (1 + v)
(
π2(φ(λ1))xr−1, x0, . . . , xr−2

∣∣∣ π2(φ(λ2))x
′
s−1, x

′
0, . . . , x

′
s−2

)
+

v
(
π1(φ(λ1))yr−1, y0, . . . , yr−2

∣∣∣ π1(φ(λ2))y
′
s−1, y

′
0, . . . , y

′
s−2

)
.

Suppose C1 is a (π2(φ(λ1)), π2(φ(λ2)))-double constacyclic code and C2 is a
(π1(φ(λ1)), π1(φ(λ2)))-double constacyclic code of length (r , s) over F4. Then for any
c = (c0, c1, . . . , cr−1 | c′

0, c
′
1, . . . , c

′
s−1) ∈ C, where ci = (1 + v)xi + vyi , c′

j = x ′
j + vy′

j
for 0 ≤ r−1 and 0 ≤ j ≤ s−1, we have x = (x0, x1, . . . , xr−1 | x ′

0, x
′
1, . . . , x

′
s−1) ∈ C1 and

y = (y0, y1, · · · , yr−1 | y′
0, y

′
1, . . . , y

′
s−1) ∈ C2. This implies σπ2(φ(λ1)),π2(φ(λ2))(x) ∈ C1

and σπ1(φ(λ1)),π1(φ(λ2))(y) ∈ C2. This further implies that (1 + v)σπ2(φ(λ1)),π2(φ(λ2))(x) +
vσπ1(φ(λ1)),π1(φ(λ2))(y) = σλ1λ2(c) ∈ C. As x and y are arbitrary elements in C1 and C2,
respectively, C is a (λ1, λ2)-constacyclic code of length (r , s) over R. Similarly we can prove
the sufficient part of the theorem. ��
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Table 2 The relation between a (λ1, λ2)- double constacyclic code C and the codes C1 and C2

R-Double constacyclic code C C1 C2

(α + v, α)-double constacyclic (α, α)-double constacyclic (α2, α)-double constacyclic

(1 + αv, α + α2v)-double constacyclic (1, α)-double constacyclic (α2, 1)-double constacyclic

R-Double cyclic F4-Double cyclic F4-Double cyclic

(α, α2)-double constacyclic (α, α2)-double constacyclic (α, α2)-double constacyclic

(1 + αv, 1 + αv)-double constacyclic F4-Double cyclic (α, α2)-double constacyclic

(α2 + v, α2)-double constacyclic (α2, α2)-double constacyclic (α, α2)-double constacyclic

(α2 + αv, α2 + αv)-double constacyclic (α2, α2)-double constacyclic F4-Double cyclic

(α + α2v, α2 + αv)-double constacyclic (α, α2)-double constacyclic F4-Double cyclic

The Table 2 below lists the relation between a (λ1, λ2)- double constacyclic code C over
R and the F4-double constacyclic codes C1 and C2.

The following result characterizes the dual of a double constacyclic code over F4:

Lemma 3 Let α, β be two unit elements in F4 and C be an (α, β)-double constacyclic code
of length (r , s) over F4. Then C⊥ is an (α−1, β−1)-double constacyclic code of length (r , s)
over F4.

Proof Let m = lcm{r , s}. We note that for any a = (a11, a12, . . . , a1 r | a21, a22, . . . , a2 s),
we have σm−1

α,β (a) = (α
m
s a12, . . . , α

m
s a1 r , α

m
s −1a11 | β

m
r a22, . . . , β

m
r a2 s, β

m
r −1a21).

Also, as multiplicative order of each non-zero element in F4 is 3, we have σ 3m
α,β(a) = a.

Let a = (a11, a12, . . . , a1 r | a21, a22, . . . , a2 s) ∈ C and b = (b11, b12, . . . , b1 r |
b21, b22, . . . , b2 s) ∈ C⊥. Then

σ 3m−1
α,β (a) · b =

(
a12b11 + · · · + a1 r b1 r−1 + α3m

s −1a11b1 r

)

+
(
a22b21 + · · · + a2 sb2 s−1 + β3m

r −1a21b2 s−1

)

=
(
a12b11 + · · · + a1 r b1 r−1 + α3m

s −1[α.α−1]a11b1 r

)

+
(
a22b21 + · · · + a2 sb2 s−1 + β3m

r −1[β.β−1]a21b2 s−1

)

= (
a12b11 + · · · + a1 r b1 r−1 + [α−1]a11b1 r

)
+ (

a22b21 + · · · + a2 sb2 s−1 + [β−1]a21b2 s−1
)

= (
a11[α−1b1 r ] + a12b11 + · · · + a1 r b1 r−1 + a21[β−1b2 s−1]

)
+ (a22b21 + · · · + a2 sb2 s−1)

= a · σα−1,β−1(b).

Since σ 3m−1
α,β (a) ∈ C, σm−1

α,β (a) · b = 0. This implies that a · σα−1,β−1(b) = 0. Therefore,

σα−1,β−1(b) ∈ C⊥. As b is an arbitrary element in C⊥, we have C⊥ an (α−1, β−1)-double
constacyclic code over F4. ��
Theorem 26 Let λ1 = (1 + v)λ11 + vλ12, λ2 = (1 + v)λ21 + vλ22 be two unit elements in
R and C = (1+ v)C1 ⊕ vC2 be a (λ1, λ2)-double constacyclic code of length (r , s) over R.
Then C⊥ is a ((1 + v)λ−1

11 + vλ−1
12 , (1 + v)λ−1

21 + vλ−1
22 )-double constacyclic code of length

(r , s) over R.

123



64 Page 16 of 17 B. Srinivasulu, P. Seneviratne

Table 3 Some good R-double constacyclic codes

Constacyclic code C [r , s] Parameters of φ(C)

〈(wx2 + w2x + 1 | 0), (wx + 1 | 1)〉 [3, 1] [8, 4, 3]
〈(wx3 + w2x2 + x + w | 0), (w2x2 + x | x + w)〉 [4, 4] [16, 8, 4]
〈(w2x2 + w2x + 1 | 0), (x | wx + 1)〉 [5, 5] [20, 14, 3]
〈(x3 + wx2 + 1 | 0), (wx2 | w2x + 1)〉 [7, 7] [28, 20, 3]
〈(x5 + w2x4 + w2x + w | 0), (x3 + w2x2 + wx | w)〉 [8, 8] [32, 22, 4]
〈(x5 + w2x4 + w2x + w | 0), (w2x3 + w2x2 + w | x + w2)〉 [8, 14] [44, 32, 4]
〈(1 | x14 + wx11 + x10 + wx9 + x8 + x7 + wx6 + x5 + x4 + w2x3 + w)〉 [18, 18] [72, 36, 12]

Proof The result follows from Lemma 3 and Theorem 25. ��

It is easy to see that the Gray image of an R-double constacyclic code of length (r , s) is
a generalized quasi-twisted code of length (r , s, r , s) over F4. The following Table3 gives
some examples of R-double constacyclic codes whose Gray images are optimal F4-codes:

5 Conclusion

In this paper, we have studied generalized quasi-cyclic codes over R of index 2 as R-double
cyclic codes of length (r , s).We determined the generators of R-double cyclic codes and their
duals for arbitrary values of r and s. A mass formula to enumerate R-double cyclic codes of
length (2e1 , 2e2), e1, e2 > 0 is presented. Some structural properties of R-double constacyclic
codes, and R-skew double cyclic codes are also studied. Finding generator polynomials of
double constacycilc codes, skew double constacyclic codes, and their dual codes over R are
a future interesting problems.
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