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Abstract
In this paper, we deal with a class of boundary-value problems for the singularly perturbed
Fredholm integro-differential equation. To solve the problem, we construct a new differ-
ence scheme by the method of integral identities using interpolating quadrature rules with
remainder terms in integral form. We prove that the method is convergent in the discrete
maximum norm, uniformly with respect to the perturbation parameter. We present numerical
experiments which support the theoretical results.
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1 Introduction

We are interested in the numerical solution of the singularly perturbed Fredholm integro-
differential equations (SPFIDEs) of the form:

Lu := εu′′(x) + a(x)u′(x) = f (x) + λ

∫ l

0
K (x, t)u(t)dt, x ∈ Ω, (1.1)

u(0) = A, u(l) = B, (1.2)

where 0 < ε � 1 is the singular perturbation parameter, A and B are given real constants,
λ is a real parameter, Ω = (0, l), and Ω̄ = [0, l]. a(x) ≥ α > 0, f (x) (x ∈ Ω̄) and K (x, t)
((x, t) ∈ Ω̄ × Ω̄) are given sufficiently smooth functions (their actual degree of smoothness
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is specified below) satisfying certain regularity conditions to be specified. The existences
and the uniqueness of the solution of SPFIDEs can be found in Lange and Smith (1988),
Omel’chenko and Nefedov (2002) and references therein.

Since singularly perturbed problems arise in many applications of science and engineer-
ing (such as fluid dynamics, quantum mechanics, plasticity, oceanography, meteorology,
reaction–diffusion processes, and mathematical model of chemical reactions), the studies
for the approximate solutions of these problems are increasing from day to day (Cakir et al.
2016a, b; Cimen and Cakir 2017; Farell et al. 2000; O’Riordan et al. 2003; Roos et al. 2008;
Smith 1985).

It is well known that the usual discretization methods for solving singularly perturbed
problems are unstable and do not give satisfactory results for sufficiently small values of ε.
Therefore, it is necessary to construct uniform numerical methods to solve such problems
(Cimen and Cakir 2017; Farell et al. 2000; Roos et al. 2008).

However, singularly perturbed integral equations or integro-differential equations appear
in population dynamics, polymer rheology, and mathematical model of glucose tolerance
(Brunner and van der Houwen 1986; De Gaetano and Arino 2000; Jerri 1999; Lodge et al.
1978). In particular, singularly perturbed Fredholm integral equation is given by optimal
control problems Nefedov and Nikitin (2007). Some asymptotic approaches for this problem
have discussed in (Lange and Smith 1993; Nefedov and Nikitin 2000, 2007). In recent years,
many methods have proposed by authors in Amiraliyev and Sevgin (2006), Amiraliyev and
Yilmaz (2014), Bijura (2002), Kauthen (1997), Kudu et al. (2016), Ramos (2008), Salama
and Bakr (2007), and Tao and Zhang (2019) for the approximate solution of the singu-
larly perturbed Volterra integro-differential equation. However, the numerical approaches of
SPFIDEs are not studied in literature so far. Motivating from these studies, our goal is to
present an efficient numerical solution for the problem (1.1) and (1.2). Therefore, we first
examine some properties of the exact solution of (1.1) and (1.2) in Sect. 2. In Sect. 3, we
present a finite difference scheme which is constructed by the method of integral identities
with the use of interpolating quadrature rules with the weight and remainder terms in integral
form. We analyze the error estimates for the approximate solution and we prove the uniform
convergence result for the scheme in Sect. 4. Finally, in Sect. 5, we present an example that
confirms the theoretical results.

Notation Throughout the paper, C denotes a generic positive constant that is inde-
pendent of both the perturbation and the mesh parameter. In addition, fixed constants of
this kind are indicated by subscripting C . Cn(Ω̄) denotes the space of real-valued func-
tions which are n-times continuously differentiable on Ω̄ . Cn

m(Ω̄ × Ω̄) denotes the space
of two variable real-valued functions which are n-times continuously differentiable with
respect to the first variable and m-times continuously differentiable with respect to the sec-
ond variable on Ω̄ × Ω̄ . For any continuous function g (x) defined on the corresponding
interval, we use the maximum norm ‖g‖∞ = max[0,l] |g (x)| and ‖g‖1 = ∫ l

0 |g (x)| dx,

K = maxx∈Ω̄

∫ l
0 |K (x, t)| dt .

2 Asymptotic estimates

Here, we give useful asymptotic estimates of the exact solution of the problem (1.1) and (1.2)
that are needed in later sections.
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Lemma 1 Assume that a, f ∈ C(Ω̄), K ∈ C1
1(Ω̄ × Ω̄) with a(x) ≥ α > 0, and:

|λ| <
α

Kl
.

Then, the solution u of the problem (1.1)–(1.2) satisfies the inequalities:

‖u‖∞ ≤ C0, (2.1)

where
C0 = (|A| + |B| + α−1 ‖ f ‖1)(1 − α−1 |λ| Kl)−1,

and ∣∣u′(x)
∣∣ ≤ C

(
1 + 1

ε
e− αx

ε

)
, x ∈ Ω̄. (2.2)

Proof First, we prove (2.1). First of all, we consider the Green’s function of the operator:

Lv := −εv′′(x) − a(x)v′(x), 0 < x < l,
v(0) = 0, v(l) = 0,

which is defined as similar to Andreev (2002):

G(x, s) = w(s)

v1(l)

{
v1(s)v2(x), 0 ≤ s ≤ x ≤ l,
v1(x)v2(s), 0 ≤ x ≤ s ≤ l,

(2.3)

where the functions v1(x) and v2(x) are the solutions of the following initial value problems:

Lv1 = 0, v1(0) = 0, v′
1(0) = 1/ε,

Lv2 = 0, v2(l) = 0, v′
2(l) = −1/ε

and
w(s) = e− 1

ε

∫ l
s a(τ )dτ .

Thus, similar to work of Amiraliyev and Cimen (2010), for the solution u of the problem
(1.1) and (1.2), we can write:

u(x) =
(
1 −

∫ x
0 e− 1

ε

∫ τ
0 a(η)dηdτ∫ l

0 e− 1
ε

∫ τ
0 a(η)dηdτ

)
A +

∫ x
0 e− 1

ε

∫ τ
0 a(η)dηdτ∫ l

0 e− 1
ε

∫ τ
0 a(η)dηdτ

B +
∫ l

0
G(x, s)F(s)ds (2.4)

with

F(x) = − f (x) − λ

∫ l

0
K (x, t)u(t)dt .

From (2.4), we obtain:

|u(x)| ≤ |A| + |B| +
∫ l

0
|G(x, s)| |F(s)| ds (2.5)

and also for Green’s function known as formula (2.3) is valid 0 ≤ G(x, ξ) ≤ α−1 in Andreev
(2002). Using this inequality, from (2.5), we obtain:

|u(x)| ≤ |A| + |B| + max
x,s∈Ω̄

|G(x, s)|
∫ l

0
|F(s)| ds

≤ |A| + |B| + α−1
∫ l

0
[| f (s)| + |λ|

∫ l

0
|K (s, t)| |u(t)| dt]ds
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≤ |A| + |B| + α−1 ‖ f ‖1 + α−1 |λ| ‖u‖∞ Kl.

from which (2.1) follows immediately. Second, from (1.1), we have:

u′(x) = u′(0)e− 1
ε

∫ x
0 a(η)dη + 1

ε

∫ x

0
F (ξ) e− 1

ε

∫ x
ξ a(η)dηdξ. (2.6)

Integrating (2.6) over (0, x), we get:

u(x) = A + u′(0)
∫ x

0
e− 1

ε

∫ τ
0 a(η)dηdτ + 1

ε

∫ x

0
dτ

∫ τ

0
F (ξ) e− 1

ε

∫ τ
ξ a(η)dηdξ

= A + u′(0)
∫ x

0
e− 1

ε

∫ τ
0 a(η)dηdτ + 1

ε

∫ x

0
dξ F (ξ)

∫ x

ξ

e− 1
ε

∫ τ
ξ a(η)dηdτ

from which by setting the boundary condition u(l) = B, we obtain:

u′ (0) = B − A − 1
ε

∫ l
0 dξ F (ξ)

∫ l
ξ

e− 1
ε

∫ τ
ξ a(η)dηdτ∫ l

0 e− 1
ε

∫ τ
0 a(η)dηdτ

. (2.7)

Since ∫ l

0
e− 1

ε

∫ τ
0 a(η)dηdτ ≥

∫ l

0
e− ‖a‖∞τ

ε dτ = ε

‖a‖∞
(1 − e− ‖a‖∞l

ε )

≥ ε

‖a‖∞
(1 − e−‖a‖∞l) ≡ c1ε

and

1

ε

∫ l

0
dξ |F(ξ)|

∫ l

ξ

e− 1
ε

∫ τ
ξ a(η)dηdτ ≤ 1

ε

∫ l

0
dξ |F(ξ)|

∫ l

ξ

e− α(τ−ξ)
ε dτ

≤ 1

ε

∫ l

0
dξ |F(ξ)| [α−1ε(1 − e− α(l−ξ)

ε )] ≤ α−1
∫ l

0
|F(ξ)| dξ

≤ α−1 ‖ f ‖1 + α−1 |λ| C0Kl ≡ C1,

from (2.7), we are led to:

∣∣u′(0)
∣∣ ≤ |A| + |B| + 1

ε

∫ l
0 dξ |F(ξ)| ∫ l

ξ
e− 1

ε

∫ τ
ξ a(η)dηdτ∫ l

0 e− 1
ε

∫ τ
0 a(η)dηdτ

≤ c−1
1 (|A| + |B| + C1)

ε
≡ C2

ε
. (2.8)

We see from (2.6) that:

∣∣u′(x)
∣∣ ≤ C2

ε
e− 1

ε

∫ x
0 a(η)dη

+1

ε

∫ x

0
[| f (ξ)| + |λ|

∫ l

0
|K (ξ, t)| |u(t)| dt]e− 1

ε

∫ x
ξ a(η)dηdξ

≤ C2

ε
e− αx

ε + 1

ε

∫ x

0
[| f (ξ)| + |λ| C0

∫ l

0
|K (ξ, t)| dt]e− α(x−ξ)

ε dξ

≤ C2

ε
e− αx

ε + α−1(‖ f ‖∞ + |λ| C0K )(1 − e− αx
ε ),

which along with (2.8) leads to (2.2). Thus, the proof of lemma completes. 
�
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3 Discretization andmesh

We will construct the new finite difference scheme for approximate solution of the problem
(1.1) and (1.2) in this section. At first, we denote by ωh a uniform mesh on Ω:

ωh = {xi = ih, i = 1, 2, . . . , N − 1; h = l/N }, ω̄h = ωh ∪ {x0 = 0, xN = l} .

To simplify the notation, we set gi = g (xi ) for any function g (x), while yi denotes an
approximation of u (x) at xi . For any mesh function g (xi ) defined on ω̄h , we use:

gx̄,i = gi − gi−1

h
, gx,i = gi+1 − gi

h
, g0

x,i
= gi+1 − gi−1

2h
, gx̄x,i = gi+1 − 2gi + gi−1

h2

and

‖g‖∞ ≡ ‖g‖∞,ω̄N
:= max

0≤i≤N
|gi | , ‖g‖1,ωh

= h
N−1∑
i=1

|gi | , K̃ = max
0≤i≤N

N∑
j=1

h
∣∣Ki j

∣∣ .

To obtain difference approximation for (1.1) and (1.2), we start with the following identity:

h−1
∫ xi+1

xi−1

Lu(x)ϕi (x)dx

= h−1
∫ xi+1

xi−1

[ f (x) + λ

∫ l

0
K (x, t)u(t)dt]ϕi (x)dx, 1 ≤ i ≤ N − 1 (3.1)

with the basis functions:

ϕi (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ
(1)
i (x) := e

ai(x−xi−1)
ε −1

e
ai h
ε −1

, xi−1 < x < xi ,

ϕ
(2)
i (x) := 1−e− ai(xi+1−x)

ε

1−e− ai h
ε

, xi < x < xi+1,

0, otherwise,

where ϕ
(1)
i (x) and ϕ

(2)
i (x) are the solutions of the following problems, respectively:

εϕ′′
i − aiϕ

′
i = 0, xi−1 < x < xi ,

ϕi (xi−1) = 0, ϕi (xi ) = 1,

and

εϕ′′
i − aiϕ

′
i = 0, xi < x < xi+1,

ϕi (xi ) = 1, ϕi (xi+1) = 0.

If we rearrange (3.1) (except for the integral term containing kernel function), we get:

εh−1
∫ xi+1

xi−1

u′′(x)ϕi (x)dx+h−1
∫ xi+1

xi−1

a(x)u′ (x) ϕi (x)dx

= h−1
∫ xi+1

xi−1

f (x) ϕi (x)dx, 1 ≤ i ≤ N − 1.

Furthermore, using the integration by parts to the first integral term on the left side of this
equation, we get:

−εh−1
∫ xi+1

xi−1

ϕ′
i (x)u′ (x) dx+ai h

−1
∫ xi+1

xi−1

ϕi (x)u′ (x) dx
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= f i − R(1)
i − R(2)

i , 1 ≤ i ≤ N − 1, (3.2)

where

R(1)
i = h−1

∫ xi+1

xi−1

[a (x) − a (xi )]ϕi (x)u′ (x) dx, (3.3)

R(2)
i = h−1

∫ xi+1

xi−1

[ f (xi ) − f (x)]ϕi (x)dx . (3.4)

By considering the interpolating quadrature rules (2.1) and (2.2) in Amiraliyev and Mame-
dov (1995) with weight functions ϕi (x) on subintervals (xi−1, xi+1) in (3.2), we obtain the
following precise relation:

−εh−1
∫ xi+1

xi−1

ϕ′
i (x)u′ (x) dx+ai h

−1
∫ xi+1

xi−1

ϕi (x)u′ (x) dx

= −εh−1ux̄,i + ai h
−1ux̄,i

∫ xi

xi−1

ϕ
(1)
i (x)dx

+ai h
−1ux,i

∫ xi+1

xi

ϕ
(2)
i (x)dx+εh−1ux,i

= εux̄x,i + ai (χ
(1)
i ux̄,i + χ

(2)
i ux,i ), (3.5)

where

χ
(1)
i = h−1

∫ xi

xi−1

ϕ
(1)
i (x)dx = ε

hai
− 1

e
ai h
ε − 1

,

χ
(2)
i = h−1

∫ xi+1

xi

ϕ
(2)
i (x)dx = 1

1 − e− ai h
ε

− ε

hai
,

which, clearly, satisfy:

h−1
∫ xi+1

xi−1

ϕi (x)dx = 1.

Upon substituting

ux̄,i = u 0
x,i

− h

2
ux̄x,i , ux,i = u 0

x,i
+ h

2
ux̄x,i

into (3.5), we get:

εux̄x,i + ai (χ
(1)
i ux̄,i + χ

(2)
i ux,i ) = εθi ux̄x,i + ai u 0

x,i
, (3.6)

where

θi = 1 + ai h

2ε
(χ

(2)
i − χ

(1)
i ) = ai h

2ε
coth

(
ai h

2ε

)
. (3.7)

Thus:

εh−1
∫ xi+1

xi−1

u′′(x)ϕi (x)dx+h−1
∫ xi+1

xi−1

a(x)u′ (x) ϕi (x)dx

= εθi ux̄x,i + ai u 0
x,i

− R(1)
i . (3.8)

On the other hand, for integral term involving kernel function, we have from (3.1):

h−1λ

∫ xi+1

xi−1

dxϕi (x)

∫ l

0
K (x, t)u(t)dt = λ

∫ l

0
K (xi , t)u(t)dt − R(3)

i
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with remainder term:

R(3)
i = h−1λ

∫ xi+1

xi−1

dxϕi (x)

∫ xi+1

xi−1

T0(ξ − x)

(∫ l

0

∂

∂ξ
K (ξ, t)u(t)dt

)
dξ (3.9)

and T0(x) = 1, x > 0; T0(x) = 0, x ≤ 0. Further using the composite right side rectangle
rule, we obtain:

λ

∫ l

0
K (xi , t)u(t)dt = λh

N∑
j=1

Ki j u j − R(4)
i (3.10)

R(4)
i = λ

N∑
j=1

∫ x j

x j−1

(ξ − x j−1)
∂

∂ξ
[K (xi , ξ)u(ξ)] dξ. (3.11)

In the consequence, from (3.2), (3.8), and (3.10), it follows the relation:

�ui := εθi ux̄x,i + ai u 0
x,i

= fi + λh
N∑

j=1

Ki j u j − Ri , 1 ≤ i ≤ N − 1 (3.12)

with
Ri = R(1)

i + R(2)
i + R(3)

i + R(4)
i , (3.13)

where R(k)
i , (k = 1, 2, 3, 4) are determined by (3.3), (3.4), (3.9), and (3.11), respectively.

As a consequence of (3.12),wepropose the followingdifference scheme for approximating
the problem (1.1) and (1.2):

�yi := εθi yx̄x,i + ai y0
x,i

= fi + λh
N∑

j=1

Ki j y j , 1 ≤ i ≤ N − 1, (3.14)

y0 = A, yN = B, (3.15)

where θi is given by (3.7).

4 Convergence analysis of themethod

In this section, we analyze the convergence of our present method. We begin with the error
function that is defined by zi = yi − ui , 0 ≤ i ≤ N . Thus, the error function zi satisfies:

�zi := εθi zx̄ x,i + ai z 0
x,i

= λh
N∑

j=1

Ki j z j + Ri , 1 ≤ i ≤ N − 1, (4.1)

z0 = 0, zN = 0. (4.2)

Lemma 2 Let a, f ∈ C1(Ω̄) and K ∈ C1
1 (Ω̄ × Ω̄). Under the conditions of Lemma 1, the

errors Ri satisfy the following inequality:

‖R‖1,ωh
≤ Ch. (4.3)

Proof We estimate R(k)
i , (k = 1, 2, 3, 4) separately. For R(1)

i , using the mean value theorem
for the functions in (3.3), we get:

∣∣∣R(1)
i

∣∣∣ ≤ C
∫ xi+1

xi−1

∣∣u′(x)
∣∣ |ϕi (x)| dx . (4.4)
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Taking into consideration 0 < ϕi (x) ≤ 1 and (2.2) in (4.4), we obtain:

∥∥∥R(1)
∥∥∥
1,ωh

≤ Ch
N−1∑
i=1

∫ xi+1

xi−1

∣∣u′(x)
∣∣ dx

≤ Ch
∫ l

0

∣∣u′(x)
∣∣ v

≤ Ch
∫ l

0
(1 + 1

ε
e− αx

ε )dx

≤ Ch(l + α−1(1 − e− αl
ε )). (4.5)

For R(2)
i in (3.4), we analogously have:

∣∣∣R(2)
i

∣∣∣ ≤ C
∫ xi+1

xi−1

|ϕi (x)| dx .

Therefore: ∥∥∥R(2)
∥∥∥
1,ωh

≤ Ch. (4.6)

For R(3)
i in (3.9), we get:

∣∣∣R(3)
i

∣∣∣ ≤ h−1 |λ|
∫ xi+1

xi−1

dxϕi (x)

∫ xi+1

xi−1

(∫ l

0

∣∣∣∣ ∂

∂ξ
K (ξ, t)

∣∣∣∣ |u(t)| dt

)
dξ.

Due to h−1
∫ xi+1

xi−1
dxϕi (x) = 1, we have:

∣∣∣R(3)
i

∣∣∣ ≤ |λ|
∫ xi+1

xi−1

(∫ l

0

∣∣∣∣ ∂

∂ξ
K (ξ, t)

∣∣∣∣ |u(t)| dt

)
dξ.

Since
∣∣∣ ∂K (x,t)

∂x

∣∣∣ ≤ C and |u| ≤ C0, we have:

∥∥∥R(3)
∥∥∥
1,ωh

≤ Ch
N−1∑
i=1

∫ xi+1

xi−1

(∫ l

0

∣∣∣∣ ∂

∂ξ
K (ξ, t)

∣∣∣∣ |u(t)| dt

)
dξ

≤ Ch
N−1∑
i=1

(xi+1 − xi−1) = 2Ch2(N − 1) ≤ Ch. (4.7)

Finally, for R(4)
i , from (3.11), we get:

∣∣∣R(4)
i

∣∣∣ ≤ |λ|
N∑

j=1

∫ x j

x j−1

(ξ − x j−1)

∣∣∣∣ ∂

∂ξ
[K (xi , ξ)u(ξ)]

∣∣∣∣ dξ

≤ |λ| h
∫ l

0

∣∣∣∣ ∂

∂ξ
[K (xi , ξ)u(ξ)]

∣∣∣∣ dξ

≤ |λ| h
∫ l

0

[∣∣∣∣∂K (xi , ξ)

∂ξ

∣∣∣∣ |u(ξ)| + |K (xi , ξ)| ∣∣u′(ξ)
∣∣
]
dξ.
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Since
∣∣∣ ∂K (x,t)

∂t

∣∣∣ ≤ C, |u| ≤ C0 and using (2.2), we have:

∣∣∣R(4)
i

∣∣∣ ≤ C |λ| h
∫ l

0

(
1 + 1

ε
e− αξ

ε

)
dξ

≤ C |λ| h[l + α−1(1 − e− αl
ε )].

Consequently: ∥∥∥R(4)
∥∥∥
1,ωh

≤ Ch. (4.8)

Thus, taking into account (4.5) and (4.8) in (3.13), we obtain (4.3). 
�

Lemma 3 Let the error function z be the solution of the problem (4.1) and (4.2) and |λ| <

α/(K̃ l). Then, the following inequality

‖z‖∞,ω̄N
≤ C ‖R‖1,ωh

(4.9)

holds.

Proof Here, we will use the discrete Green’s function Gh(xi , ξ j ) for the operator:

Lhzi := −εθi zx̄ x,i − ai z 0
x,i

, 1 ≤ i ≤ N − 1,

z0 = zN = 0.

Namely, the Gh(xi , ξ j ) is defined as a function of xi for fixed ξ j :

Lh Gh(xi , ξ j ) = δh(xi , ξ j ), xi ∈ ωN , ξ j ∈ ωN ,

Gh(0, ξ j ) = Gh(l, ξ j ), ξ j ∈ ωN ,

where δh(xi , ξ j ) = h−1δi j and δi j is the Kronecker delta. For the solution of problem (4.1)
and (4.2), the following relation can be written by using the Green’s function:

zi =
N−1∑
k=1

hGh(xi , ξk)(λh
N∑

j=1

Kkj z j − Rk), xi ∈ ωN . (4.10)

It can be shown in a manner similar to Andreev (2002) that 0 ≤ Gh(xi , ξk) ≤ α−1. Thus,
from (4.10), we can write the following estimate:

‖z‖∞,ωN
≤ α−1

⎧⎨
⎩‖z‖∞,ωN

N−1∑
k=1

⎛
⎝|λ| h2

N∑
j=1

∣∣Kkj
∣∣
⎞
⎠ + ‖R‖1

⎫⎬
⎭

≤ α−1

{
‖z‖∞,ωN

K̃
N−1∑
k=1

|λ| h + ‖R‖1
}

≤ α−1 {‖z‖∞,ωN
|λ| K̃ l + ‖R‖1

}
,

which implies validity of (4.9). 
�

Finally, we give the main result on ε-uniform convergence of the presented method for
solving the problem (1.1) and (1.2).
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Table 1 The resulting errors eN
ε and eN , and convergence rates pN for Example 1

ε N = 64 N = 128 N = 256 N = 512 N = 1024

20 0.0001599 0.0000774 0.0000380 0.0000189 0.0000094

1.05 1.03 1.01 1.01

2−4 0.0010623 0.0004133 0.0001770 0.0000811 0.0000387

1.36 1.22 1.13 1.07

2−8 0.0054273 0.0020433 0.0006660 0.0002145 0.0000750

1.41 1.62 1.63 1.52

2−12 0.0069171 0.0034343 0.0016733 0.0007880 0.0003442

1.01 1.04 1.09 1.19

2−16 0.0070106 0.0035282 0.0017675 0.0008822 0.0004384

0.99 1.00 1.00 1.01

2−20 0.0070165 0.0035341 0.0017733 0.0008881 0.0004443

0.99 0.99 1.00 1.00

2−24 0.0070168 0.0035344 0.0017737 0.0008885 0.0004446

0.99 0.99 1.00 1.00

eN 0.0070168 0.0035344 0.0017737 0.0008885 0.0004446

pN 0.99 0.99 1.00 1.00

Theorem 1 Assume that a, f ∈ C1(Ω̄) and K ∈ C1
1(Ω̄ × Ω̄). If u is the solution of (1.1)

and (1.2) and y is the solution of (3.14) and (3.15), then the following ε-uniform estimate
satisfies:

‖y − u‖∞,ω̄N
≤ Ch. (4.11)

Proof Combining the previous lemmas, we immediately have (4.11). 
�

5 Algorithm and numerical results

In this section, we suggest the following iterative technique for solving problem (3.14) and
(3.15). In addition, we consider an example of problem (1.1) and (1.2) to demonstrate the
effectiveness and accuracy of the our present method.

At first, if we reformulate (3.14), then we can write:

εθi y(n)
x̄ x,i + ai y(n)

0
x,i

= fi + λh
N∑

j=1

Ki j y(n−1)
j , 1 ≤ i ≤ N − 1, (5.1)

y(n)
0 = A, y(n)

N = B, (5.2)

n = 1, 2, . . ., y(0)
i (1 ≤ i ≤ N − 1) are given and stopping criterion is:

max
i

∣∣∣y(n)
i − y(n−1)

i

∣∣∣ ≤ 10−5.
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Fig. 1 Numerical results of Example 1 for ε = 2−4

For the iterative error z(n)
i = y(n)

i − yi from (3.14) and (3.15) and (5.1) and (5.2), we have:

εθi z
(n)
x̄ x,i + ai z

(n)
0
x,i

= λh
N∑

j=1

Ki j z
(n−1)
j , 1 ≤ i ≤ N − 1,

z(n)
0 = 0, z(n)

N = 0.

According to maximum principle:

∥∥∥z(n)
∥∥∥∞ ≤ |λ| h

N∑
j=1

∣∣Ki j
∣∣ ∣∣∣z(n−1)

j

∣∣∣

≤ q
∥∥∥z(n−1)

∥∥∥∞
with

q = |λ| h max
0≤i≤N

N∑
j=1

∣∣Ki j
∣∣ .
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Fig. 2 Numerical results of Example 1 for ε = 2−20

For |λ| < 1/K̃ , the iterative process is evidently convergent.

Example 1 We consider the following test problem:

εu′′(x) + 2u′(x) = ex − 1

4

∫ 1

0
ex−t u(t)dt, 0 < x < 1,

u(0) = 0, u (1) = 1.

The exact solution of the problem is given by:

u(x) = d1 − 1

2 + ε
(1 − ex ) + d2

1 − e− 2x
ε

1 − e− 2
ε

,

where

d1 = (2 + ε)(e− 2
ε − 1) + (3 + ε − e)(2 − 2e + ε(1 − e− 2

ε ))

4e(2 + ε)2(e− 2
ε − 1) − (4e + εe − 2e2) + (2 + εe)e− 2

ε

,

d2 = 1 + (d1 − 1)(e − 1)

2 + ε
.
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We define the exact error eN
ε and the computed parameter-uniform maximum pointwise

error eN as follows:
eN
ε = ‖y − u‖∞,ω̄ , eN = max

ε
eN
ε ,

where y is the numerical approximation to u for various values of ε and N . We also define
the computed parameter-uniform rate of convergence to be:

pN = log2
(

eN /e2N
)

.

The values of ε for which we solve the test problem are ε = 2−4i , i = 0, 1, . . . , 6. Further-
more, the resulting errors and the corresponding numbers pN obtained by taking y(0)

i = x2i
for the test problem are listed in Table 1.

6 Conclusion

We presented a new approach to solve the singularly perturbed problem for a convection–
diffusion Fredholm integro-differential equation. The approach was based on an exponen-
tially fitted difference scheme on a uniform mesh. As a consequence, we proved that our
method is the first order convergent with respect to the perturbation parameter in the discrete
maximum norm. Moreover, after only a few iterations, the computational errors and the rates
of convergence for the test problem were presented for different values of the perturbation
parameter ε and N in Table 1. Also, the graphs of the numerical solution of the test prob-
lem for different values of perturbation parameter were plotted in Figs. 1 and 2. When the
numerical results in both Table 1 and Figs. 1 and 2 were examined, the results showed that
the presented method was effective and accuracy. We point out that the presented method
in this paper can be extended to other type of boundary-value problems such as nonlinear
SPFIDEs and reaction diffusion SPFIDEs.
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