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Abstract
The purpose of this paper is to study and analyze a new projection-type algorithm for solving
pseudomonotone variational inequality problems in real Hilbert spaces. The advantage of the
proposed algorithm is the strong convergence proved without assuming Lipschitz continuity
of the associated mapping. In addition, the proposed algorithm uses only two projections
onto the feasible set in each iteration. The numerical behaviors of the proposed algorithm on
a test problem are illustrated and compared with several previously known algorithms.

Keywords Projection-type method · Viscosity method · Variational inequality ·
Pseudomonotone mapping

Mathematics Subject Classification 47H09 · 47J20 · 47J05 · 47J25

1 Introduction

We consider the following variational inequality problem (VI) of finding a point x∗ ∈ C such
that

〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1)
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where C is a nonempty closed convex subset in a real Hilbert space H , A : H → H
is a single-valued mapping, and 〈·, ·〉 and ‖ · ‖ are the inner product and the norm in H ,
respectively.

Let us denote the solution set of VI (1) by V I (C, A). Variational inequality problems
are fundamental in a broad range of mathematical and applied sciences; the theoretical and
algorithmic foundations as well as the applications of variational inequality problems have
been extensively studied in the literature and continue to attract intensive research. For the
current state of the art in the finite dimensional setting, see for instance (Facchinei and Pang
2003; Konnov 2001) and the extensive list of references therein.

Many authors have proposed and analyzed several iterative methods for solving the varia-
tional inequality (1). The simplest one is the following projection method, which can be seen
as an extension of the projected gradient method for optimization problems:

xn+1 = PC (xn − τ Axn), (2)

for each n ≥ 1, where PC denotes the metric projection from H onto C . Convergence
results for this method require some monotonicity properties of A. This method converges
under quite strong hypotheses. If A is Lipschitz continuous with Lipschitz constant L and α-
stronglymonotone, then the sequence generated by (2) converges to an element of V I (C, A),

if τ ∈
(
0,

2α

L2

)
.

To deal with the weakness of the method defined by (2). Korpelevich 1976 (also inde-
pendently by Antipin (1976)) proposed the extragradient method in the finite dimensional
Euclidean space Rm for a monotone and L-Lipschitz continuous operator A : Rm → R

m .
The algorithm is of the following form:

⎧⎪⎨
⎪⎩
x0 ∈ C,

yn = PC (xn − τn Axn),

xn+1 = PC (xn − τn Ayn),

(3)

where τn ∈
(
0,

1

L

)
. The sequence {xn} generated by (3) converges to an element of

V I (C, A) provided that V I (C, A) is nonempty.
In recent years, the extragradient method was further extended to infinite-dimensional

spaces in various ways, see, e.g. (Censor et al. 2011a, b, c; Bello Cruz and Iusem 2009, 2010,
2012, 2015; Bello Cruz et al. 2019; Gibali et al. 2019; Kanzow and Shehu 2018; Konnov
1997, 1998; Maingé and Gobinddass 2016; Malitsky 2015; Thong and Hieu 2018, 2019;
Thong et al. 2019c; Thong andVuong 2019; Thong andGibali 2019a, b; Thong et al. 2019a, b;
Vuong 2018) and the references therein.

Note that, when A is not Lipschitz continuous or the constant L is very difficult to compute,
the method of Korpelevich is not applicable (or possible to use) because we cannot determine
the step-size τn . To overcome this obstacle, Iusem (1994) proposed an iterative algorithm in
the finite dimensional Euclidean space Rm for V I (C, A) as follows:

Algorithm 1.1

Initialization: Given l ∈ (0, 1), μ ∈ (0, 1), γ > 0. Let x1 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
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Step 1. Compute
yn = PC (xn − γn Axn)

where γn := γ l jn with jn is the smallest non-negative integer j satisfying

γ l j‖Axn − Ayn‖ ≤ μ‖xn − yn‖. (4)

Step 2. Compute
xn+1 = PC (xn − τn Ayn),

where τn = 〈Ayn, xn − yn〉
‖Ayn‖2 .

It is worth noting that this modification allows the author to prove convergence without
Lipschitz continuity of the operator A.

Algorithm 1.1 may require many iterations in the iterative procedure used to select the
stepsize γn and each iterations uses a new projections. This may lead to a large computational
effort that should be avoided.

Motivated by this idea, Iusem and Svaiter (1997) proposed a modified extragradient
method for solving monotone variational inequalities which requires only two projections
onto C at each iteration. Few years later, this method was improved by Solodov and Svaiter
(1999). They introduced an algorithm for solving (1) in finite-dimensional spaces. In fact,
the method in Solodov and Svaiter (1999) can solve a more general case where A is only
continuous and satisfies the following condition:

〈Ax, x − x∗〉 ≥ 0 ∀x ∈ C and x∗ ∈ V I (C, A). (5)

The property (5) holds if A is monotone or more generally pseudomonotone onC in the sense
of Karamardian (1976). Very recently, Vuong and Shehu (2019) modified result of Solodov
and Svaiter to obtain strong convergence in infinite dimensional real Hilbert spaces. They
constructed the algorithm based on Halpern method (Halpern 1967) and method of Solodov
and Svaiter. The algorithm is of the following form:

Algorithm 1.2

Initialization: Given {αn} ⊂ (0, 1), l ∈ (0, 1), μ ∈ (0, 1). Let x1 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute

zn = PC (xn − Axn)

and r(xn) := xn − zn. If r(xn) = 0 then stop and xn is a solution of V I (C, A). Otherwise
Step 2. Compute

yn = xn − τnr(xn),

where τn := l jn and jn is the smallest non-negative integer j satisfying

〈A(xn − l j r(xn)), r(xn)〉 ≥ μ

2
‖r(xn)‖2. (6)

Step 3. Compute

xn+1 = αnx1 + (1 − αn)PCn (xn),
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where
Cn := {x ∈ C : hn(x) ≤ 0}

and

hn(x) = 〈Ayn, x − yn〉.

Set n := n + 1 and go to Step 1.

They proved that if A : H → H is a pseudomonotone, uniformly continuous and sequentially
weakly continuous on bounded subsets of C and the sequence {αn} satisfies the conditions
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞, then the sequence {xn} generated by Algorithm 1.2

converges strongly to p ∈ V I (C, A), where p = PCx1. Note that when αn = 0 ∀n then
Algorithm 1.2 reduces to the algorithm of Solodov and Svaiter.

Motivated and inspired by the works in Moudafi (2000), Solodov and Svaiter (1999) and
Vuong and Shehu (2019), and by the ongoing research in these directions, in this paper
we introduce a modification of the algorithm proposed by Solodov and Svaiter for solving
variational inequalitieswith uniformly continuous pseudomonotone operator. Themainmod-
ification is to use a different Armijo-type line search to obtain a hyperplane strictly separating
current iterate from the solutions of the variational inequalities.

The paper is organized as follows: We first recall some basic definitions and results in
Sect. 2. Our algorithm is presented and analyzed in Sect. 3. In Sect. 4 we present some
numerical experiments which demonstrate the proposed algorithm performances as well as
provide a preliminary computational overview by comparing it with some related algorithms.

2 Preliminaries

Let H be a real Hilbert space andC be a nonempty, closed and convex subset of H . The weak
convergence of {xn}∞n=1 to x is denoted by xn⇀x as n → ∞, while the strong convergence
of {xn}∞n=1 to x is written as xn → x as n → ∞. For each x, y ∈ H , we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.
Definition 2.1 Let T : H → H be an operator. Then

1. The operator T is called L-Lipschitz continuous with L > 0 if

‖T x − T y‖ ≤ L‖x − y‖ ∀x, y ∈ H .

if L = 1 then the operator T is called nonexpansive and if L ∈ (0, 1), T is called
contraction.

2. T is called monotone if

〈T x − T y, x − y〉 ≥ 0 ∀x, y ∈ H .

3. T is called pseudomonotone if

〈T x, y − x〉 ≥ 0 
⇒ 〈T y, y − x〉 ≥ 0 ∀x, y ∈ H .

4. T is called α-strongly monotone if there exists a constant α > 0 such that

〈T x − T y, x − y〉 ≥ α‖x − y‖2 ∀x, y ∈ H .
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5. The operator T is called sequentially weakly continuous if for each
sequence {xn} we have: xn converges weakly to x implies T xn converges weakly to
T x .

It is easy to see that every monotone operator is pseudomonotone but the converse is not true.
We next present an academic example of a variational inequality problem (VI) in infinite
dimensional Hilbert spaces where the cost function A is pseudomonotone, uniformly con-
tinuous and sequentially weakly continuous, but A fails to be Lipschitz continuous on H .

Example 1 Consider the Hilbert space

H = l2 :=
{
u = (u1, u2, . . . , ui , . . .) |

∞∑
i=1

|ui |2 < +∞
}

equipped with the inner product and induced norm on H :

〈u, v〉 =
∞∑
i=1

uivi and ‖u‖ = √〈u, u〉

for any u = (u1, u2, . . . , ui , . . .), v = (v1, v2, . . . , vi , . . .) ∈ H .

Consider the set and the mapping:

C={u=(u1, u2, . . . , ui , . . .) ∈ H : |ui |≤ 1

i
∀i=1, 2, . . .}, Au=

(
‖u‖+ 1

‖u‖+1

)
u.

With thisC and A, it is easy to see that V I (C, A) �= ∅ since 0 ∈ V I (C, A) and moreover,
A is pseudomonotone, uniformly continuous and sequentially weakly continuous on C , but
A fails to be Lipschitz continuous on H .
Now let u, v ∈ C be such that 〈Au, v−u〉 ≥ 0. This implies that 〈u, v−u〉 ≥ 0.Consequently,

〈Av, v − u〉 =
(

‖u‖ + 1

‖u‖ + 1

)
〈v, v − u〉

≥
(

‖u‖ + 1

‖u‖ + 1

)
(〈v, v − u〉 − 〈u, v − u〉)

=
(

‖u‖ + 1

‖u‖ + 1

)
‖v − u‖2 ≥ 0

meaning that A is pseudomonotone. Now, since C is compact, the mapping A is uniformly
continuous on C and A is sequentially weakly continuous on C .

Finally, we show that A is not Lipschitz continuous on H . Assume to the contrary that A
is Lipschitz continuous on H , i.e., there exists L > 0 such that

‖Au − Av‖ ≤ L‖u − v‖ ∀u, v ∈ H .

Let u = (L, 0, . . . , 0, . . .) and v = (0, 0, . . . , 0, . . .), then

‖Au − Av‖ = ‖Au‖ =
(

‖u‖ + 1

‖u‖ + 1

)
‖u‖ =

(
L + 1

L + 1

)
L.

Thus, ‖Au − Av‖ ≤ L‖u − v‖ is equivalent to(
L + 1

L + 1

)
L ≤ L2,
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equivalently

1

L + 1
≤ 0,

this leads to a contradiction and thus A is not Lipschitz continuous on H .

For every point x ∈ H , there exists a unique nearest point in C , denoted by PCx such that
‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C . PC is called the metric projection of H onto C . It is known
that PC is nonexpansive.

Lemma 2.1 (Goebel and Reich 1984) Let C be a nonempty closed convex subset of a real
Hilbert space H . Given x ∈ H and z ∈ C. Then z = PCx ⇐⇒ 〈x − z, z − y〉 ≥ 0 ∀y ∈ C .

Lemma 2.2 (Goebel and Reich 1984) Let C be a closed and convex subset in a real Hilbert
space H , x ∈ H. Then

(i) ‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉 ∀y ∈ H;
(ii) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 ∀y ∈ C;
(iii) 〈(I − PC )x − (I − PC )y, x − y〉 ≥ ‖(I − PC )x − (I − PC )y‖2 ∀y ∈ H .

For properties of the metric projection, the interested reader could be referred to Sect. 3 in
Goebel and Reich (1984) and Chapter 4 in Cegielski (2012).

The following Lemmas are useful for the convergence of our proposed method.

Lemma 2.3 (Iusem and Garciga 2001) Let H1 and H2 be two real Hilbert spaces. Suppose
A : H1 → H2 is uniformly continuous on bounded subsets of H1 and M is a bounded subset
of H1. Then A(M) is bounded.

Lemma 2.4 (Cottle and Yao 1992, Lemma 2.1) Consider the problem V I (C, A) with C
being a nonempty, closed, convex subset of a real Hilbert space H and A : C → H being
pseudomonotone and continuous. Then, x∗ is a solution of V I (C, A) if and only if

〈Ax, x − x∗〉 ≥ 0 ∀x ∈ C .

Lemma 2.5 (He 2006) Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let h be a real-valued function on H and define K := {x ∈ C : h(x) ≤ 0}. If K is
nonempty and h is Lipschitz continuous on C with modulus θ > 0, then

dist(x, K ) ≥ θ−1 max{h(x), 0} ∀x ∈ C,

where dist(x, K ) denotes the distance function from x to K .

Lemma 2.6 (Maingé 2008) Let {an} be a sequence of nonnegative real numbers such that
there exists a subsequence {ani } of {an} such that ani < ani+1 for all i ∈ N. Then there
exists a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following
properties are satisfied by all (sufficiently large) number k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, . . . , k} such that an < an+1.

Lemma 2.7 (Xu 2002) Let {an} be a sequence of nonnegative real numbers such that:

an+1 ≤ (1 − αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a sequence such that

a)
∑∞

n=0 αn = ∞;
b) lim supn→∞ bn ≤ 0.

Then limn→∞ an = 0.
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3 Main results

In this section we introduce a new modified method of Solodov and Svaiter for solving (1),
and the following conditions are assumed for the convergence of the proposed method:

Condition 1 The feasible set C is a nonempty, closed, and convex subset of the real Hilbert
space H.

Condition 2 The VI (1) associated operator A : H → H is a pseudomonotone, uniformly
continuous and sequentially weakly continuous on bounded subsets of C.

Condition 3 The solution set of the VI (1) is nonempty, that is V I (C, A) �= ∅.
Condition 4 We assume that f : C → C is a contractive mapping with a coefficient ρ ∈
[0, 1), and we add the following condition

Condition 5 Let {αn} be a real sequences in (0, 1) such that

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.

Algorithm 3.3

Initialization: Given l ∈ (0, 1), μ > 0, λ ∈ (0,
1

μ
). Let x1 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute

zn = PC (xn − λAxn)

and rλ(xn) := xn − zn. If rλ(xn) = 0 then stop and xn is a solution of V I (C, A). Otherwise

Step 2. Compute
yn = xn − τnrλ(xn),

where τn := l jn and jn is the smallest non-negative integer j satisfying

〈Axn − A(xn − l j rλ(xn)), rλ(xn)〉 ≤ μ‖rλ(xn)‖2. (7)

Step 3. Compute

xn+1 = αn f (xn) + (1 − αn)PCn (xn),

where
Cn := {x ∈ C : hn(x) ≤ 0}

and

hn(x) = 〈Ayn, x − yn〉. (8)

Set n := n + 1 and go to Step 1.
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Now let us compare the above algorithmwithAlgorithm 1.2. In the step of theArmijo-type
linesearch, the above algorithm uses a different procedure which replaces the one described
in (6) as follows:

〈Axn − A(xn − l j rλ(xn)), rλ(xn)〉 ≤ μ‖rλ(xn)‖2,

where μ > 0 and λ ∈
(
0,

1

μ

)
. Unlike (6), which requires μ ∈ (0, 1) and λ = 1. Such

choices are crucial for the convergence analysis in Solodov and Svaiter (1999) and Vuong
and Shehu (2019), while the parameter μ in our algorithm can take any positive scalar. In
addition, we use viscosity techniques to solve this problem, which increases the speed of the
proposed algorithm (see our numerical experiments). So our algorithm can be applied more
conveniently in practice.

Remark 3.1 It is easy to see that xn, yn, zn in Algorithm 3.3 belong to C .

We start the analysis of the algorithm’s convergence by proving some Lemmas.

Lemma 3.8 Assume that Conditions 1–2 hold. The Armijo-line search rule (7) is well defined.

Proof Since l ∈ (0, 1) and A is continuous on C hence 〈Axn − A(xn − l j rλ(xn)), rλ(xn)〉
converges to zero as j tends to infinite. On the other hand, as a consequence of Step 1,
‖rλ(xn)‖ > 0 (otherwise, the procedure stops). Therefore, there exists a non-negative integer
jn satisfying (7). ��
Lemma 3.9 Assume that {xn} is generated by Algorithm 3.3; then we have

〈Axn, rλ(xn)〉 ≥ λ−1‖rλ(xn)‖2.
Proof By the projection property we have ‖x − PC y‖2 ≤ 〈x − y, x − PC y〉 for all x ∈ C
and y ∈ H . Let y = xn − λAxn, x = xn ; then

‖xn − PC (xn − λAxn)‖2 ≤ λ〈Axn, xn − PC (xn − λAxn)〉;
thus

〈Axn, rλ(xn)〉 ≥ λ−1‖rλ(xn)‖2.
��

Lemma 3.10 Assume that Conditions 1–3 hold. Let x∗ be a solution of problem (1) and the

function hn be defined by (8). Then hn(x∗) ≤ 0 and hn(xn) ≥ τn

(
1

λ
− μ

)
‖rλ(xn)‖2. In

particular, if rλ(xn) �= 0 then hn(xn) > 0.

Proof Since x∗ is a solution of problem (1), by Lemma 2.4 we have hn(x∗) = 〈Ayn, x∗ −
yn〉 ≤ 0. The first claim of Lemma 3.10 is proved. Now, we prove the second claim. We
have

hn(xn) = 〈Ayn, xn − yn〉 = 〈Ayn, τnrλ(xn)〉 = τn〈Ayn, rλ(xn)〉. (9)

On the other hand, from (7) we have

〈Axn − Ayn, rλ(xn)〉 ≤ μ‖rλ(xn)‖2,
thus

〈Ayn, rλ(xn)〉 ≥ 〈Axn, rλ(xn)〉 − μ‖rλ(xn)‖2.
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Using Lemma 3.9 we get

〈Ayn, rλ(xn)〉 ≥
(
1

λ
− μ

)
‖rλ(xn)‖2. (10)

Combining (9) and (10) we get

hn(xn) ≥ τn

(
1

λ
− μ

)
‖rλ(xn)‖2.

��
Remark 3.2 From Lemma 3.10 we have Cn �= ∅.
Lemma 3.11 Assume that Conditions 1–3 hold. Let {xn} be a sequence generated by Algo-
rithm 3.3. If there exists a subsequence {xnk } of {xn} such that {xnk } converges weakly to
z ∈ C and limk→∞ ‖xnk − znk‖ = 0 then z ∈ V I (C, A).

Proof We have znk = PC (xnk − Axnk ) thus,

〈xnk − Axnk − znk , x − znk 〉 ≤ 0 ∀x ∈ C .

or equivalently

〈xnk − znk , x − znk 〉 ≤ 〈Axnk , x − znk 〉 ∀x ∈ C .

This implies that

〈xnk − znk , x − znk 〉 + 〈Axnk , znk − xnk 〉 ≤ 〈Axnk , x − xnk 〉 ∀x ∈ C . (11)

Taking k → ∞ in (11) since ‖xnk − znk‖ → 0 and {Axnk } is bounded, we get
lim inf
k→∞ 〈Axnk , x − xnk 〉 ≥ 0. (12)

Let us choose a sequence {εk}k of positive numbers decreasing and tending to 0. For each
εk , we denote by Nk the smallest positive integer such that〈

Axn j , x − xn j

〉 + εk ≥ 0 ∀ j ≥ Nk, (13)

where the existence of Nk follows from (12). Since {εk} is decreasing, it is clear that the
sequence {Nk} is increasing. Furthermore, for each k, AxNk �= 0 and, setting

vNk = AxNk

‖AxNk‖2
,

we have
〈
AxNk , vNk

〉 = 1 for each k. Now we can deduce from (13) that for each k〈
AxNk , x + εkvNk − xNk

〉 ≥ 0,

and, since A is pseudomonotone on H , that〈
A(x + εkvNk ), x + εkvNk − xNk

〉 ≥ 0. (14)

On the other hand, we have that
{
xnk

}
converges weakly to z when k → ∞. By the fact

that A is sequentially weakly continuous on C , we have that
{
Axnk

}
converges weakly to

Az. We assume that Az �= 0 (otherwise, z is a solution). By the sequentially weakly lower
semicontinuity of norm, we get

0 < ‖Az‖ ≤ lim inf
k→∞ ‖Axnk‖.
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Since
{
xNk

} ⊂ {
xnk

}
and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkvNk‖ = lim sup
k→∞

( εk

‖Axnk‖
)

≤ lim supk→∞ εk

lim infk→∞ ‖Axnk‖
≤ 0

‖Az‖ = 0,

which implies that limk→∞ ‖εkvNk‖ = 0. Hence, taking the limit as k → ∞ in (14), we
obtain

〈Ax, x − z〉 ≥ 0.

By Lemma 2.4 we obtain z ∈ V I (C, A). ��
Theorem 3.1 Assume that Conditions 1–5 hold. Then any sequence {xn} generated by Algo-
rithm 3.3 converges strongly to p ∈ V I (C, A), where p = PV I (C,A) ◦ f (p).

Proof Claim 1. The sequence {xn} is bounded. Indeed, let wn = PCn xn . Since p ∈ Cn we
have

‖wn − p‖2 = ‖PCn xn − p‖2 ≤ ‖xn − p‖2 − ‖PCn xn − xn‖2
= ‖xn − p‖2 − dist2(xn,Cn). (15)

This implies that

‖wn − p‖ ≤ ‖xn − p‖. (16)

Using (16) we have

‖xn+1 − p‖ = ‖αn f (xn) + (1 − αn)wn − p‖
= ‖αn( f (xn) − p) + (1 − αn)(wn − p)‖
≤ αn‖ f (xn) − p‖ + (1 − αn)‖wn − p‖
≤ αn‖ f (xn) − f (p)‖ + αn‖ f (p) − p‖ + (1 − αn)‖wn − p‖
≤ αnρ‖xn − p‖ + αn‖ f (p) − p‖ + (1 − αn)‖xn − p‖
≤ [1 − αn(1 − ρ)]‖xn − p‖ + αn(1 − ρ)

‖ f (p) − p‖
1 − ρ

≤ max{‖xn − p‖, ‖ f (p) − p‖
1 − ρ

}

≤ · · · ≤ max

{
‖x1 − p‖, ‖ f (p) − p‖

1 − ρ

}
.

Thus, the sequence {xn} is bounded. Consequently, the sequences {yn}, { f (xn)}, {Ayn} are
bounded.

Claim 2.

‖wn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈 f (xn) − p, xn+1 − p〉.
We have

‖xn+1 − p‖2 = ‖αn( f (xn) − p) + (1 − αn)(wn − p)‖2
≤ (1 − αn)‖wn − p‖2 + 2αn〈 f (xn) − p, xn+1 − p〉
≤ ‖wn − p‖2 + 2αn〈 f (xn) − p, xn+1 − p〉. (17)
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On the other hand, we have

‖wn − p‖2 = ‖PCn xn − p‖2 ≤ ‖xn − p‖2 − ‖wn − xn‖2. (18)

Substituting (18) into (17) we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ‖wn − xn‖2 + 2αn〈 f (xn) − p, xn+1 − p〉.
This implies that

‖wn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈 f (xn) − p, xn+1 − p〉.
Claim 3.

(1 − αn)

[
1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2

]2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn) − p‖2.

We first prove that

‖wn − p‖2 ≤ ‖xn − p‖2 −
[
1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2

]2
. (19)

Since {Ayn} is bounded, there exists L > 0 such that ‖Ayn‖ ≤ L for all n. Using this fact,
we have for all u, v ∈ Cn that

‖hn(u) − hn(v)‖ = ‖〈Ayn, u − v〉‖ ≤ ‖Ayn‖‖u − v‖ ≤ L‖u − v‖.
This implies that hn(·) is L-Lipschitz continuous on Cn . By Lemma 2.5 we obtain

dist(xn,Cn) ≥ 1

L
hn(xn),

which, together with Lemma 3.10 we get

dist(xn,Cn) ≥ 1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2. (20)

Combining (15) and (20) we obtain

‖wn − p‖2 ≤ ‖xn − p‖2 −
[
1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2

]2
.

Now, we prove Claim 3. From the definition of the sequence {xn} and (19) we obtain

‖xn+1 − p‖2 = ‖αn( f (xn) − p) + (1 − αn)(wn − p)‖2
= αn‖ f (xn) − p‖2 + (1 − αn)‖wn − p‖2 − αn(1 − αn)‖ f (xn) − wn‖2
≤ αn‖ f (xn) − p‖2 + (1 − αn)‖wn − p‖2
≤ αn‖ f (xn) − p‖2 + (1 − αn)‖xn − p‖2

− (1 − αn)

[
1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2

]2

≤ αn‖ f (xn) − p‖2 + ‖xn − p‖2 − (1 − αn)

[
1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2

]2
.

This implies that

(1 − αn)

[
1

L
τn

(
1

λ
− μ

)
‖rλ(xn)‖2

]2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn) − p‖2.
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Claim 4.

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn
2

1 − ρ
〈 f (p) − p, xn+1 − p〉.

We have

‖xn+1 − p‖2 = ‖αn f (xn) + (1 − αn)zn − p‖2
= ‖αn( f (xn) − f (p)) + (1 − αn)(zn − p) + αn( f (p) − p)‖2
≤ ‖αn( f (xn) − f (p)) + (1 − αn)(zn − p)‖2 + 2αn〈 f (p) − p, xn+1 − p〉
≤ αn‖ f (xn) − f (p)‖2 + (1 − αn)‖zn − p‖2 + 2αn〈 f (p) − p, xn+1 − p〉
≤ αnρ‖xn − p‖2 + (1 − αn)‖xn − p‖2 + 2αn〈 f (p) − p, xn+1 − p〉
= (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn

2

1 − ρ
〈 f (p) − p, xn+1 − p〉.

(21)

Claim 5. The sequence {‖xn − p‖2} converges to zero by considering two possible cases on
the sequence {‖xn − p‖2}.
Case 1: There exists an N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N . This
implies that limn→∞ ‖xn − p‖2 exists. It implies from Claim 2 that

lim
n→∞ ‖xn − wn‖ = 0.

Since the sequence {xn} is bounded, it implies that there exists a subsequence {xnk } of {xn}
that converges weakly to some z ∈ C such that

lim sup
n→∞

〈 f (p) − p, xn − p〉 = lim
k→∞〈 f (p) − p, xnk − p〉 = 〈 f (p) − p, z − p〉.

Now, according to Claim 3

lim
k→∞(1 − αnk )

[
1

L
τnk

(
1

λ
− μ

)
‖rλ(xnk )‖2

]2
= 0.

This follows that

lim
k→∞ τnk‖rλ(xnk )‖2 = lim

k→∞ τnk‖xnk − znk‖2 = 0. (22)

Now, we prove that

lim
k→∞ ‖xnk − znk‖ = 0. (23)

We first consider the case lim infk→∞ τnk > 0. In this case, there is a constant τ > 0 such
that τnk ≥ τ > 0 for all k ∈ N. We have

‖xnk − znk‖2 = 1

τnk
τnk‖xnk − znk‖2 ≤ 1

τ
.τnk‖xnk − znk‖2. (24)

Combining (22) and (24) we obtain

lim
k→∞ ‖xnk − znk‖ = 0.
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Second, we consider the case lim infk→ τnk = 0. In this case, we take a subsequence {nk j }
of {nk} if necessary, we assume without loss of generality that

lim
k→∞ τnk = 0, (25)

and

lim
k→∞ ‖xnk − znk‖ = a > 0. (26)

Let yk = 1

l
τnk znk +

(
1 − 1

l
τnk

)
xnk . Using (25), we have

lim
k→∞ ‖yk − xnk‖ = lim

k→∞
1

l
τnk‖xnk − znk‖ = 0. (27)

From the step size rule (6) and the definition of yk we have

〈Axnk − Ayk, xnk − znk 〉 > μ‖xnk − znk‖2. (28)

Since A is uniformly continuous on bounded subsets of C and using (27) it implies that

lim
k→∞ ‖Axnk − Ayk‖ = 0. (29)

Combining (28) and (29) we obtain

lim
k→∞ ‖xnk − znk‖ = 0.

This is a contraction to (26). Therefore, the limit (23) is proved.
Since xnk⇀z and (23), Lemma 3.11 shows that z ∈ V I (C, A).

On the other hand,

‖xn+1 − wn‖ = αn‖ f (xn) − wn‖ → 0 as n → ∞.

Thus

‖xn+1 − xn‖ = ‖xn+1 − wn‖ + ‖xn − wn‖ → 0 as n → ∞.

Since p = PV I (C,A) f (p) and xnk⇀z ∈ V I (C, A) we get

lim sup
n→∞

〈 f (p) − p, xn − p〉 = 〈 f (p) − p, z − p〉 ≤ 0.

This implies that

lim sup
n→∞

〈 f (p) − p, xn+1 − p〉≤ lim sup
n→∞

〈 f (p) − p, xn+1−xn〉+lim sup
n→∞

〈 f (p)− p, xn− p〉
= 〈 f (p) − p, z − p〉 ≤ 0,

which, together with Claim 4, implies from Lemma 2.7 that

xn → p as n → ∞.

Case 2: There exists a subsequence {‖xn j − p‖2} of {‖xn − p‖2} such that ‖xn j − p‖2 <

‖xn j+1 − p‖2 for all j ∈ N. In this case, it follows from Lemma 2.6 that there exists a
nondecreasing sequence {mk} ofN such that limk→∞ mk = ∞ and the following inequalities
hold for all k ∈ N:

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2 and ‖xk − p‖2 ≤ ‖xmk+1 − p‖2. (30)
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According to Claim 2 we have

‖wmk − xmk‖2 ≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + 2αmk 〈 f (xmk ) − p, xmk+1 − p〉.
≤ αmk 〈 f (xmk ) − p, xmk+1 − p〉
≤ αmk‖ f (xmk ) − p‖|xmk+1 − p‖ → 0 as k → ∞.

According to Claim 3 we have

(1 − αmk )

[
1

L
τmk

(
1

λ
− μ

)
‖rλ(xmk )‖2

]2

≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + αmk‖ f (xmk ) − p‖2
≤ αmk‖ f (xmk ) − p‖2 → 0 as k → ∞.

Using the same arguments as in the proof of Case 1, we obtain

lim
k→∞ ‖xnk − znk‖ = 0, lim

k→∞ ‖xmk+1 − xmk‖ → 0

and

lim sup
k→∞

〈 f (p) − p, xmk+1 − p〉 ≤ 0.

Since (21) we get

‖xmk+1 − p‖2 ≤ (1 − αmk (1 − ρ))‖xmk − p‖2 + 2αmk 〈 f (p) − p, xmk+1 − p〉
≤ (1 − αmk (1 − ρ))‖xmk+1 − p‖2 + 2αmk 〈 f (p) − p, xmk+1 − p〉,

which, together with (30), implies that

‖xk − p‖2 ≤ ‖xmk+1 − p‖2 ≤ 2〈 f (p) − p, xmk+1 − p〉.
Therefore, lim supk→∞ ‖xk − p‖ ≤ 0, that is xk → p. The proof is completed. ��

4 Numerical illustrations

In this section, we discuss the numerical behavior of our proposed Algorithm 3.3 using
different test examples and compare our method with method (1.2). In all the examples, we
take αn = 1/(n + 1) and some choices of μ, λ and l.

Example 2 We take a classical example (see, e.g., Maingé and Gobinddass 2016) for which
the usual gradient method does not converge to a solution of the variational inequality. Here,
the feasible set is C := R

m (for some positive even integer m) and A := (ai j )1≤i, j≤m is the
square matrix m × m whose terms are given by

ai j =
⎧⎨
⎩

−1, if j = m + 1 − i and j > i
1, if j = m + 1 − i and j < i
0 otherwise

It is clear that the zero vector z = (0, . . . , 0) is the solution of this test example. Let x1 be the
initial point whose element is randomly chosen in the closed interval [−1, 1]. We terminate
the iterations if ‖xn − zn‖2 ≤ ε with ε = 10−4. The results are listed in Table 1 below. We
consider different values of m.
We next consider somemodel in infinite dimensionalHilbert spaces in the following example:
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Table 1 Proposed Alg. 3.3 vs Vuong and Shehu Alg. 1.2 with (μ, λ, l) = (0.1, 9, 0.5)

m Proposed Alg. 3.3 Vuong and Shehu Alg. 1.2

No. of iter. CPU (time) No. of iter. CPU (time)

50 11 1.4461 × 10−2 367,520 1730.9830

100 11 6.8007 × 10−2 530,075 3933.2485

150 11 1.4527 × 10−1 565,727 7068.8152

200 11 2.8712 × 10−1 738,056 30484.1555

500 12 1.4298 – –

1000 12 5.9000 – –

2000 12 23.3217 – –

3000 12 53.9247 – –

5000 12 165.1993 – –

10000 13 719.1500 – –

Example 3 ConsiderC := {x ∈ H : ‖x‖ ≤ 2}. Let g : C → Rbedefinedby g(u) := 1
1+‖u‖2 .

Observe that g is Lg-Lipschitz continuouswith Lg = 16
25 and

1
5 ≤ g(u) ≤ 1, ∀u ∈ C . Define

the Volterra integral operator F : L2([0, 1]) → L2([0, 1]) by F(u)(t) := ∫ t
0 u(s)ds, ∀u ∈

L2([0, 1]), t ∈ [0, 1]. Then F is bounded linear monotone (see Exercise 20.12 of Bauschke
and Combettes 2011) and ‖F‖ = 2

π
. Now, define A : C → L2([0, 1]) by A(u)(t) :=

g(u)F(u)(t), ∀u ∈ C, t ∈ [0, 1]. Suppose 〈Au, v − u〉 ≥ 0, ∀u, v ∈ C ; then we have that
〈Fu, v − u〉 ≥ 0 (noting that g(u) ≥ 1

5 > 0). Hence,

〈Av, v − u〉 = g(v)〈F(v), v − u〉
≥ g(v)

[
〈F(v), v − u〉 − 〈F(u), v − u〉

]
= g(v)〈F(v) − F(u), v − u〉 ≥ 0.

Therefore, A is pseudomonotone. Observe that A is not monotone since 〈Av − Au, v −u〉 =
− 1

20 < 0 with v = 1 and u = 2. Furthermore, for all u, v ∈ C , we have

‖Au − Av‖ = ‖g(u)F(u) − g(v)F(v)‖
= ‖g(u)F(u) − g(u)F(v) + g(u)F(v) − g(v)F(v)‖
≤ ‖g(u)F(u) − g(u)F(v)‖ + ‖g(u)F(v) − g(v)F(v)‖
≤ |g(u)|‖F(u) − F(v)‖ + ‖F(v)‖|g(u) − g(v)|
≤ |g(u)|‖F‖‖u − v‖ + ‖F‖‖v‖Lg‖u − v‖
= (|g(u)|‖F‖ + ‖F‖‖v‖Lg)‖u − v‖
= 82

π
‖u − v‖.

Hence, A is L A-Lipschitz-continuous with L A = 82
π
. Therefore, A is uniformly continuous.

Observe that V I (C, A) �= ∅ since 0 ∈ V I (C, A). We take ‖xn+1−xn‖2
max{1,‖xn‖2} ≤ ε as stopping

criterion, with ε = 10−2. We consider different initial points x1 = 1, x1 = 1 + t2, x1 = et

and x1 = sin(t) in the following cases:

123



108 Page 16 of 24 D. V. Thong et al.

Fig. 1 Comparison with m = 50

Fig. 2 Comparison with m = 100

Case I: (μ, λ) = (0.3, 3.2)

Case II: (μ, λ) = (3.0, 0.3)
We report the numerical behaviour of this example in Figs. 11, 12, 13 and 14 and Table 2.

Remark 4.3 1. From the numerical results of Examples 2–3, we observe that our proposed
Algorithm3.3 is efficient and easy to implement. See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13 and 14 and Tables 1 and 2.
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Fig. 3 Comparison with m = 150

Fig. 4 Comparison with m = 200

2. In Example 2, there is no significant change in the number of iterations required as we
increase the dimension m. This is a significant improvement since the iteration number
required to terminate the proposed Algorithm 3.3 does not depend on the size of the
problem. See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 and Table 1.

3. In Example 3, we observe also that both the choice of initial points and the parameters
μ and λ do not have significant effect on the number of iterations and the CPU time. See
Figs. 11, 12, 13 and 14 and Table 2.
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Fig. 5 Proposed Alg. 3.3 with m = 500
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Fig. 6 Proposed Alg. 3.3 with m = 1000

4. Clearly from the numerical Examples presented above, our proposed Algorithm 3.3
outperformed Algorithm 1.2 proposed by Vuong & Shehu. See Table 1 and Figs. 1 2, 3
and 4. We have omitted some of the comparison results (part in Example 2 and all in
Example 3) due to large amount of time required by Vuong and Shehu Algorithm 1.2 to
terminate.
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Fig. 7 Proposed Alg. 3.3 with m = 2000
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Fig. 8 Proposed Alg. 3.3 with m = 3000

Our preliminary examples in this section play a role in illustrating the rationality in study-
ing pseudomonotone variational inequality. In future works, we shall give more interesting
examples from applications.
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Fig. 9 Proposed Alg. 3.3 with m = 5000
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Fig. 10 Proposed Alg. 3.3 with m = 10000
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Fig. 11 Proposed Alg. 3.3 with x1 = 1
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Fig. 12 Proposed Alg. 3.3 with x1 = 1 + t2

5 Conclusions

In this paper we proposed a new algorithm for solving variational inequalities in real
Hilbert spaces. The proposed algorithm shows the strongly convergence property under pseu-
domonotonicity and non-Lipschitz continuity of the mapping A. The algorithm requires the
calculation of only two projections onto the feasible set C per iteration. These two properties
pseudomonotonicity and non-Lipschitz continuity of the mapping A emphasize the applica-
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Fig. 13 Proposed Alg. 3.3 with x1 = et
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Fig. 14 Proposed Alg. 3.3 with x1 = sin(t)

Table 2 Proposed algorithm 3.3
with l = 0.2

x1 Case I Case II

No. of iter. CPU (time) No. of iter. CPU (time)

1 13 1.5213 × 10−3 8 7.2533 × 10−4

1 + t2 16 2.7737 × 10−3 19 2.5132 × 10−3

et 18 2.5230 × 10−3 23 2.2292 × 10−3

sin(t) 19 2.5944 × 10−3 23 1.9536 × 10−3
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bility and advantages over several existing results in the literature. Numerical experiments
in finite and infinite dimensional spaces illustrate the performance of the new scheme.
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