
Computational and Applied Mathematics (2020) 39:107
https://doi.org/10.1007/s40314-020-1130-z

Regular scheduling measures on proportionate flowshop
with job rejection

Baruch Mor1 · Dana Shapira2

Received: 11 September 2019 / Revised: 19 February 2020 / Accepted: 4 March 2020 /
Published online: 17 March 2020
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020

Abstract
In this article, we study the method of job rejection in the setting of proportionate flowshop,
and focus onminimizing regular performancemeasures, subject to the constraint that the total
rejection cost cannot exceed a given upper bound. In particular, we study total completion
time, maximum tardiness, total tardiness, and total weighted number of tardy jobs. All the
addressed problems are NP-hard as their single machine counterpart are known to be NP-
hard. To the best of our knowledge, there are no detailed solutions in scheduling literature to
the first two problems, whereas the last two problems were never addressed to date. For each
problem, we provide a pseudo-polynomial dynamic programming solution algorithm, and
furthermore, we enhance the reported running time of the first two problems. Our extensive
numerical study validates the efficiency of the provided solutions.

Keywords Scheduling · Proportionate flowshop · Regular performance measures · Job
rejection · Dynamic programming

Mathematics Subject Classification 90B35

1 Introduction

Flowshop setting is characterized by several different machines in series and each job
must undergo an operation on each of the machines. A special case of the flowshop
environment is the proportionate flowshop (PFS) setting where the processing times are
machine-independent and the storage between consecutive machines is assumed to be unlim-
ited. This setting replicates many production systems where each operation is relatively short
and the goods are small in size. Thus, each machine can start its operation on the next job

Communicated by Hector Cancela.

B Baruch Mor
baruchm@ariel.ac.il

1 Department of Economics and Business Administration, Ariel University, 40700 Ariel, Israel

2 Department of Computer Science, Ariel University, Ariel, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-020-1130-z&domain=pdf
http://orcid.org/0000-0002-6909-8160
http://orcid.org/0000-0002-2320-9064

107 Page 2 of 14 B. Mor, D. Shapira

in the queue regardless of the status of the job on the succeeding machine, implying that the
production line is not susceptible to blocking.

The PFS machine setting can be seen as a generalization of the single machine setting
and its importance is revealed by the comprehensive review of Panwalkar et al. (2013) and
the following recent studies by Mor and Mosheiov (2014), Panwalkar and Koulamas (2015,
2017), Cheng et al. (Cheng et al. 2018), Gerstl et al. (2019). Quite a few solutions to classical
problems on a single machine can be applied, in a straightforward manner, to their PFS
equivalents. Such problems include, among others, minimizing the total completion time,
minimizing the total tardiness, and minimizing the number of tardy jobs (see Pinedo 2016).
In other problems, the sequencing of the jobs may cause idle times between consecutive jobs,
affecting the complexity of the solution. Several solutions thus consider a more involved
approach, such that solutions to the problem of maximizing the number of just-in-time jobs
(Gerstl et al. 2015), the minmax earliness problem (Mor and Mosheiov 2015a), minimizing
the number of early jobs (Mor and Mosheiov 2015b), and minsum/minmax common flow
allowance (Mor and Mosheiov 2016a).

Several recent articles, Shabtay and Oron (2016), Li et al. (2017), Fiszman and Mosheiov
(2018) and Mor et al. (2019), combine the setting of PFS machine with the method of
job rejection. This method is usually implemented in manufacturing systems to overcome
overloaded assembly lines. Thus, the operation management is given the option to process a
subset of the jobs, and reject, or alternatively out-source, the complementary subset. Utilizing
thismethodmay decrease the overload, optimize the utilization of the inputs, improve the time
to market, and eventually increase the profit. To simulate real-life situations, each rejected
job incurs a job-dependent penalty. Hence, the given total rejection cost is limited and may
impact the profit of the production plant, suggesting solutions based on analytical methods.
The intensive research on job rejection is exposed by the survey of Shabtay et al. (2013) as
well as later papers: Shabtay (2014), Gerstl and Mosheiov (2015), Koulamas and Panwalkar
(2015), Mor and Mosheiov (2016b), Agnetis and Mosheiov (2017), Gerstl et al. (2017),
Zhong et al. (2017), and Mor and Mosheiov (2018).

Recently, Mor and Shapira (2019) improved the computational complexity of two prob-
lems studied in Shabtay and Oron (2016): minimizing the makespan subject to an upper
bound on the total rejection cost, and minimizing the total rejection cost subject to a con-
straint on themakespan. In the current paper,we complement the results of the last two articles
by addressing four regular performance measures, that is, when the objective function is a
non-decreasing function of the completion times of the jobs. In more detail, the objective
functions studied here are total completion time, maximum tardiness, total tardiness, and
total weighted number of tardy jobs. The goal is to minimize these objective functions sub-
ject to a constraint on the total rejection cost. All the addressed problems are NP-hard as
their single machine counterpart variants were proved to be NP-hard by Zhang et al. (2010).
To the best of our knowledge, there are no detailed solutions in scheduling literature to the
first two problems, whereas the last two problems were never addressed. For each problem,
we, therefore, provide a pseudo-polynomial dynamic programming (DP) solution algorithm;
furthermore, we enhance the reported running time of the first two problems. Our extensive
numerical study demonstrates the DPs ability to solve real-life instances efficiently.

The paper is organized as follows. The notations are presented in Sect. 2. Sections 3–6
address our proposed solutions to the problems of minimizing the total completion time,
maximum tardiness, total tardiness, and total weighted number of tardy jobs, respectively.
The conclusions are finally provided in Sect. 7.

123

Regular scheduling measures on proportionate flowshop with… Page 3 of 14 107

2 Notations

Assume that there are given n jobs to be processed on an m-machine PFS. The processing
times of the jobs are independent of the machine they are processed on, i.e., pi j � p j , i �
1, . . . ,m, j � 1, . . . , n.

Let A and Ā denote the subsets of accepted and rejected jobs, respectively. Clearly, their
intersection is empty and their union is the complete set of jobs.

The notations pmax and P are used to denote the processing time of the longest job between
those jobs that are processed and the total processing time of all jobs, correspondingly, i.e.,
pmax � max j∈A

{
p j

}
and P � ∑n

j�1 p j .
Each job is assigned a rejection cost e j , and contributes this value to the total rejection

cost in case it is rejected. The latter quantity is upper bounded by a predefined constant E ;
formally, the restriction is that

∑
j∈ Ā e j ≤ E .

Given a schedule of the processed jobs, the notationCi j denotes the completion time of job
j , j ∈ A on machine i, i � 1, . . . ,m. The completion time of the last operation of job j , i.e.,
on machinem is denoted byC j , i.e.,C j ≡ Cmj . The makespan on a givenm-machine PFS is
attained by Cmax � (m − 1)max1≤ j≤n

{
p j

}
+

∑n
j�1 p j � (m − 1)max1≤ j≤n

{
p j

}
+ P (see

Pinedo 2016) and does not depend on a certain order. Thus, the makespan of the accepted
jobs is Cmax � (m − 1)pmax +

∑
j∈A p j .

Let d j denote the due-date of job j, j � 1, . . . , n. The tardiness of job j (on machine m)
is defined as Tj � max

{
0,C j − d j

}
, and the maximum tardiness, among all accepted jobs,

is given as Tmax � max j∈A
{
Tj

}
.

Let,Uj denote the tardiness unit penalty of job j, j � 1, . . . n, such thatUj � 1 if Tj > 0
andUj � 0, otherwise. In addition, we denote by w j the weight (relative importance) of job
j, j � 1, . . . , n. Thus, the total weighted number of the (accepted) tardy jobs is defined as∑

j∈A w jU j .
All the objective functions which we focus on are regarded as regular performance mea-

sures, i.e., non-decreasing functions of the jobs’ completion times. In this paper, our goal
is to minimize each of these measures subject to the constraint that the total rejection cost
cannot be greater than a given upper bound E . In the following, we utilize the three-field
notation introduced by Graham et al. (1979), to formulate the four addressed problems.

In our first problem, the scheduling measure is total completion time, that is:

P1 : Fm/pi j � p j , rej,
∑

j∈ Ā

e j ≤ E/
∑

j∈A

C j .

Next, our aim is to minimize the maximum tardiness:

P2 : Fm/pi j � p j , rej,
∑

j∈ Ā

e j ≤ E/Tmax.

To formulate the last two problems, we define a common due-date, denoted by d , that is
shared by all jobs. Thus, in the third problem, the objective is to minimize the total tardiness
with a common due-date, that is:

P3 : Fm/pi j � p j , d j � d, rej,
∑

j∈ Ā

e j ≤ E/
∑

j∈A

Tj .

Finally, the aim is to minimize the total weighted number of tardy jobs with a common
due-date:

123

107 Page 4 of 14 B. Mor, D. Shapira

P4 : Fm/pi j � p j , d j � d, rej,
∑

j∈ Ā

e j ≤ E/
∑

j∈A

w jU j .

3 Problem P1 : Fm/pij � pj, rej,
∑

j∈ Ā ej ≤ E/
∑

j∈ A Cj.

Problem 1/rej,
∑

j∈ Ā e j ≤ E/
∑

j∈A C j was reported by Shabtay et al. (2012) to be solved

in O
(
n2

∑
j∈ Ā e j

)
time, although no explicit solution was provided. In this section, we

provide a DP, which is faster by a factor of n, i.e., O
(
n

∑
j∈ Ā e j

)
, even for the setting of

PFS and not only for a single machine environment.
The order of the jobs in an optimal instance of the classical problem 1 //

∑
C j is known to

be in accordancewith the Shortest ProcessingTimefirst (SPT) rule. The sameorder of the jobs
is also valid for the PFS setting (see Pinedo 2016). As stated in Sect. 2, the completion time
of job j on a PFS setting is sequence independent, and is given by C j � (m − 1)max1≤k≤ j

{pk} + ∑ j
k�1 pk � (m − 1)p j +

∑ j
k�1 pk , where the last equation follows from the SPT

order existence in an optimal schedule.
The DP for P1 uses a variable Pj in correspondence to every job j , which is stored in

memory. Pj is used to hold the total processing times of the accepted jobs in the subset of
jobs (1, . . . , j) that achieves the minimum total completion time having maximum rejection
cost e, and is defined as follows:

Pj �
{
Pj−1 + p j , if job j is processed
Pj−1, othewise

, where P0 � 0.

Thus, the completion (on machine m) of job j in subset (1, . . . , j), can be calculated in
a straightforward manner using the simple equation, C j � (m − 1)p j + Pj .

Let f (j, e) denote the minimum total completion time for the partial schedule of jobs
1, . . . , j with maximum rejection cost e. At each iteration of the DP, the scheduling cost of
jobs 1 to j having an upper bound e(0 ≤ e ≤ E) on the rejection cost, is computed, based
on the processing costs of jobs 1 to j − 1, with an upper bound on the rejection cost of either
e or e − e j . Thus, at each iteration of the algorithm, the scheduler needs to decide whether
to accept or reject job j , as follows:

• Job j must be accepted in case its rejection cost exceeds the current rejection cost limit e.
• Job j may be accepted in case its cost is not greater than the minimum processing cost of
jobs 1 to j − 1, and upon acceptance, the cost is increased by (m − 1)p j + Pj .

• Job j may be rejected in case this minimizes the processing cost.

Now, we are ready to present the DP.
Dynamic programming algorithm DP1

f (j, e) �
⎧
⎨

⎩
min

(
f (j − 1, e) + (m − 1)p j + Pj

f
(
j − 1, e − e j

)
)

, e j ≤ e

f (j − 1, e) + (m − 1)p j + Pj , othewise
(1)

The boundary conditions are:

f (j, 0) � (m − 1)p j +
j∑

k�1

pk, j, 1 ≤ j ≤ n

f (0, e) � 0, e, 0 ≤ e ≤ E .

123

Regular scheduling measures on proportionate flowshop with… Page 5 of 14 107

The optimal solution is given as f (n, E).

Theorem 1 Algorithm DP1’s complexity is O(nE).

Proof The recursive formula for f (j, e) given in (1) is processed by a nested loop for each
job j, 1 ≤ j ≤ n, and each rejection cost e ≤ E . The solution is reconstructed by means
of backtracking, starting at the last cell in which j � n and e � E , and ending at the first
cell where j � e � 0. Summing up the processing times of both stages, the computational
complexity of DP1 is O(nE) + O(n + E) � O(nE). �
Example 1 The following illustration is given for clarity.

Let m � 4, n � 6, E � 54, and assume that the jobs are sequenced in SPT order and
renumbered.

The processing times are p � (13, 14, 17, 26, 27, 45).
The job-dependent rejection costs are e � (18, 22, 14, 10, 9, 38).
The solution attained from running DP1 is accepting the first, second, and sixth

jobs, having
∑

j∈A C j � 328, while rejecting the third, fourth, and fifth jobs with∑
j∈ Ā e j � 33 ≤ 35 � E .

Numerical study To evaluate our proposed solution in practice, we ran DP1 on several numer-
ical, randomly generated, instances. As the running times are uninfluenced by the number of
machines, we restricted the illustrations to four machines only. However, being the number
of jobs the main parameter of the running time, we considered an increasing size of the
set of input jobs: n � 500, 1000, 1500 and 2000 jobs. The processing times of all jobs
and their corresponding rejection costs were uniformly generated in the range of [1, 50]. To
avoid trivial instances, i.e., solutions where the majority of the jobs are either accepted or
rejected, we generated the values of E in three different intervals. These intervals guaranty
challenging instances with approximately equal numbers of accepted and rejected jobs, as
expected in real-life circumstances. As themaximum rejection cost in this setting is restricted
to ē � 50, the total rejection upper bound cost, E , was generated uniformly in the intervals
[0.02, 0.03]nē, [0.050, 0.055]nē, and [0.08, 0.10]nē, simulating rejection of approximately
20%, 30%, and 40% jobs, respectively. Twenty random instances were created for each pair
of n and E and then fed to the proposed algorithm.

C++executed on an Intel (R)Core™ i7-8650UCPU@1.90GHz16.0GBRAMplatform.
Table 1 presents the average- and worst-case running times in milliseconds. The number of
jobs, n, is given in the first column, and the intervals controlling the maximal rejection cost,
E , are given in the second column. The third and fourth columns present the average and
worst-case running times, respectively. Although it is not unexpected, it is noteworthy to
observe that the running times increase as the values of n and E increase. This phenomenon
is due to the tabulation approach, which is standard practice in solving DP algorithms. In
this approach, all sub-problems are solved and stored in memory. In the particular case of
DP1, the size of used memory is n× E (See Theorem 1). This characteristic is true for all the
numerical studies presented throughout this study. The results indicate that DP1 is extremely
efficient and can solve large-sized problems. In particular, the worst-case running time for
instances of 2000 jobs and 40% of rejected jobs did not exceed 138 milliseconds (ms).

4 Problem P2 : Fm/pij � pj, rej,
∑

j∈ Ā ej ≤ E/Tmax

The second problem dealt within this paper is minimizing the maximum tardiness, limited
by an upper bound on the cost of all rejected jobs, and improve the latest results reported in

123

107 Page 6 of 14 B. Mor, D. Shapira

Table 1 Average- and worst-case running times of DP1 algorithm for Problem P1

n E Average running time (ms) Worst-case running time (ms)

Approximately 20% rejected jobs

500 [500, 750] 2 3

1000 [1000, 1500] 8 10

1500 [1500, 2250] 17 22

2000 [2000, 3000] 33 47

Approximately 30% rejected jobs

500 [1250, 1375] 4 5

1000 [2500, 2750] 18 21

1500 [3750, 4125] 39 45

2000 [5000, 5500] 70 89

Approximately 40% rejected jobs

500 [2000, 2500] 8 9

1000 [4000, 5000] 29 33

1500 [6000, 7500] 69 85

2000 [8000, 10000] 122 138

scheduling theory. Shabtay and Oron (2016) suggest utilizing their O
(
n2PE

)
time, Pareto

optimal solution, to solve P2. In the following, we prove that P2 can be solved in O(nPE).
First, we prove that, although idle time between consecutive jobs may exist, similarly to

1/Tmax, also Fm/pi j � p j/Tmax can be optimally solved by sequencing the jobs in Earliest
Due-Date first (EDD) order.

Property 1 There exists an optimal schedule for Fm/pi j � p j/Tmax in which the jobs are
sequenced in EDD order.

Proof Let schedule π1 be an optimal schedule which is not sequenced in EDD order. There-
fore, there exist a pair of consecutive jobs in π1 that are scheduled in reverse due-date order.
Let k and l denote the first pair of jobs that violates the EDD order and are scheduled at
positions i and i + 1, respectively. Recall that dk and dl denote the due-dates of jobs k and l,
respectively.

We differentiate between several cases depending on the values of pl and pk .

Case 1max1≤ j≤i−1
{
p j

} ≥ pk, pl . Due to the dominance of the largest job on the completion
times of jobs k and l, there is no idle time between the jobs in schedule π1.

Let t be the starting timeof job k onmachinem in the optimal scheduleπ1. The contribution
cost of jobs k and l in π1 is

Zπ1(k, l) � max{t + pk − dk, t + pk + pl − dl}.
Construct a schedule π2 by a standard pair-wise interchange of jobs k and l and similar

to schedule π1, there is no idle time between these jobs:

Zπ2(k, l) � max{t + pl − dl , t + pl + pk − dk}.
We prove that Zπ1(k, l) ≥ Zπ2(k, l) by showing that:

123

Regular scheduling measures on proportionate flowshop with… Page 7 of 14 107

t + pk + pl − dl ≥ max{t + pl − dl , t + pl + pk − dk}.
The latter is true due to the following inequalities:

i. t + pk + pl − dl ≥ t + pl − dl ;
ii. t + pk + pl − dl ≥ t + pl + pk − dk , since, pk, dl and dk are all positive, and from our

assumption that dk ≥ dl .

Case 2 max1≤ j≤i−1
{
p j

}
< pl < pk .

Since pl < pk , there is no idle time between the jobs in schedule π1.
Let t be the starting time of job k on machine 1 in schedule π1, and thus, the cost contri-

bution of jobs k and l in π1 is:

Zπ1(k, l) � max{t + m × pk − dk, t + m × pk + pl − dl}.
Obtain a schedule π2 by swapping jobs k and l. Since pl < pk , there is an idle time

between the jobs in schedule π2.

Zπ2(k, l) � max{t + m × pl − dl , t + pl + m × pk − dk}.
We prove that Zπ1(k, l) ≥ Zπ2(k, l) by showing that:

t + m × pk + pl − dl ≥ max{t + m × pl − dl , t + pl + m × pk − dk}.
The latter is true due to:

i. (i) t + m × pk + pl − dl ≥ t + m × pl − dl , as pk > pl ;
ii. (i i) t + m × pk + pl − dl ≥ t + pl + m × pk − dk , as dl ≤ dk .

Case 3 max1≤ j≤i−1
{
p j

}
< pk < pl .

Since pk < pl there is an idle time between the jobs in schedule π1.
Let t be the starting time of job k on machine 1 in schedule π1, and thus, the cost contri-

bution of jobs k and l in π1 is:

Zπ1(k, l) � max{t + m × pk − dk, t + pk + m × pl − dl}.
Obtain a schedule π2 by interchanging jobs k and l. Since pl > pk , there is no idle time

between the jobs, and the cost contribution of jobs k and l in π2 is:

Zπ2(k, l) � max{t + m × pl − dl , t + m × pl + pk − dk}.
We prove that Zπ1(k, l) ≥ Zπ2(k, l) by showing that:

t + pk + m × pl − dl ≥ max{t + m × pl − dl , t + m × pl + pk − dk}.
The latter is true due to:

i. (i) t + pk + m × pl − dl ≥ t + m × pl − dl ;
ii. (i i) t + pk + m × pl − dl ≥ t + m × pl + pk − dk .

The remaining cases, i.e., Case 4: pl < max1≤ j≤i−1
{
p j

}
< pk and Case 5: pk <

max1≤ j≤i−1
{
p j

}
< pl are similar to Case 2 and Case 3, respectively, and are thus omitted.

It follows that in all cases, π2 contradicts the optimality of π1, which completes the
proof. �

To facilitate the DP, we use a variable (pmax) j , that holds the largest processing time of
a subset (1, . . . , j) that achieves the minimal tardiness with maximum rejection cost e. The
variable (pmax) j is defined as follows:

123

107 Page 8 of 14 B. Mor, D. Shapira

(pmax) j �
{
max

{
(pmax) j−1, p j

}
, if job j is processed

(pmax) j−1, othewise
, where (pmax) j−1 � 0.

Let f (j, t, e) denote the minimal tardiness for the partial schedule of jobs 1, . . . , j with
total processing time, t , and maximum rejection cost, e. Likewise to DP1 at each iteration
of the DP, the scheduling cost of jobs 1 to j having an upper bound e(0 ≤ e ≤ E) on the
rejection cost is computed, based on the processing times and costs of jobs 1 to j −1, with an
upper bound rejection cost of either e or e− e j , depending on whether it is possible to reject
job j (i.e., its rejection cost does not exceed the current rejection cost limit e), and whether
the resulting minimum tardiness cost can only be improved by this rejection. Intuitively,
variable t is used to track the total time of the processed jobs in the examined schedule.

The completion time of job j (on machine m) in the partial set (1, . . . , j), with total
processing time, t , is given as C j � (m − 1)(pmax) j + t .

Next, we present the formal DP by its recursion formula.

Dynamic programming algorithm DP2

f (j, t, e) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛

⎝max

(
f
(
j − 1, t − p j , e

)
,

max
{
0,C j − d

}
)

f
(
j − 1, t, e − e j

) ,

⎞

⎠, p j ≤ t and e j ≤ e

max

(
f
(
j − 1, t − p j , e

)
,

max
{
0,C j − d

}
)

, p j ≤ t and e j > e

f
(
j − 1, t, e − e j

)
, p j > t and e j ≤ e

∞, p j and e j > e.

(2)

The first condition of the recursion reflects the option to accept or reject job j . The second
condition refers only to the option of processing job j as e j exceeds the current rejection cost
limit e, implying that job j must be accepted. The third condition refers only to the option of
rejecting job j , as t is smaller than p j . The last line addresses invalid cases implying a cost
of ∞.

The boundary conditions are:

f (0, 0, e) � 0, 0 ≤ e ≤ E

f (0, t, e) � ∞, 0 < t ≤ P.

The optimal solution is given by min0≤t≤P,0≤e≤E { f (n, t, e)}
Theorem 2 The computational complexity of DP2 is O(nPE).

Proof Using the recursive function in (2), the DP is calculated for every job j, 1 ≤ j ≤ n, for
every t, 1 ≤ t ≤ P , and every rejection cost e ≤ U , resulting in an O(nPE) processing time.
Reconstructing the solution is done by backtracking, finding the minimum cost, f (n, t, e),
in O(PE) time, and starting at the found minimum and ending at f (0, 0, 0), for an addition
of O(n + P +U) operations. We conclude that the total processing time is O(nPE). �

Example 2 Consider the following instance of the problem,m � 4, n � 6, E � 27, and jobs
with due-dates d � (38, 57, 76, 90, 118, 123), sequenced in EDD order, and renumbered.

The processing times are p � (18, 34, 18, 17, 8, 44).
The job-dependent rejection costs are e � (3, 31, 8, 31, 25, 46).
Executing DP2, we obtain that in an optimal solution, the set of accepted jobs is A �

(2, 4, 5, 6). The tardiness of the jobs is T2 � 79, T4 � 63, T5 � 43, T6 � 112, implying that
Tmax � 112.

123

Regular scheduling measures on proportionate flowshop with… Page 9 of 14 107

Table 2 Average- and worst-case running times of DP2 algorithm for Problem P2

n E Average running time (s) Worst-case running time (s)

Approximately 5% rejected jobs

25 [6, 12] 0.002 0.003

50 [12, 25] 0.013 0.014

75 [18, 37] 0.041 0.058

100 [25, 50] 0.089 0.124

125 [31, 62] 0.179 0.221

Approximately 10% rejected jobs

25 [18, 25] 0.003 0.003

50 [37, 50] 0.024 0.031

75 [56, 75] 0.089 0.096

100 [75, 100] 0.185 0.227

125 [93, 125] 0.352 0.412

Approximately 15% rejected jobs

25 [31, 37] 0.004 0.005

50 [62, 75] 0.035 0.041

75 [93, 112] 0.114 0.128

100 [125, 150] 0.273 0.318

125 [156, 187] 0.553 0.646

The set of rejected jobs is Ā � (1, 3) and
∑

j∈ Ā e j � 11 ≤ 27 � E .

Numerical study We performed numerical experiments to measure the running times of
DP2. For m � 4, we generated random instances having n � 25, 50, 75, 100 and 125
jobs. The job-processing times and the job-rejection costs were generated uniformly in
the interval [1, 50]. For each instance, the maximal makespan was calculated: Cmax �
(m − 1)max1≤ j≤n

{
p j

}
+

∑n
j�1 p j . The job due-dates were generated uniformly in the

interval [0.10, 0.50]Cmax . Similar to Sect. 3, ē � 50, and the total rejection upper bound
cost, E , was generated uniformly in the intervals [0.005, 0.010]nē, [0.015, 0.020]nē and
[0.025, 0.030]nē, reflecting rejection of approximately 10%, 15%, and 20% jobs, respec-
tively. The rest of the scheme is identical to that given in Sect. 3. The results are presented
in Table 2 and demonstrate the efficiency of DP2 to solve real-life instances. We note that
the worst-case running time for problems of 125 jobs and 20% rejection rate did not exceed
0.646 seconds (s).

5 Problem P3 : Fm/pij � pj,dj � d, rej,
∑

j∈ Ā ej ≤ E/
∑

j∈ A Tj

To the best of our knowledge, the problem, Fm/pi j � p j , d j � d/
∑

Tj , was not addressed
in scheduling theory to date. Recall that the SPT rule is optimal for 1/d j � d/

∑
Tj . We

start by proving that the SPT order is optimal for Fm/pi j � p j , d j � d/
∑

Tj as well.

Property 2 There exists an optimal schedule for Fm/pi j � p j , d j � d/
∑

Tj in which the
jobs are sequenced in SPT order.

123

107 Page 10 of 14 B. Mor, D. Shapira

Proof By a pair-wise interchange argument.

Consider an optimal schedule π1, where the tardy jobs are not SPT. As above, let k (at
position i) and l (at position i + 1) denote the first pair of consecutive jobs that violates the
SPT order, that is pl < pk . Let Tj (π1) and Pi−1(π1) denote the tardiness value of job j and
the total processing time of jobs at positions 1, . . . , i − 1, i.e., Pi−1 � ∑i−1

j�1 p j , in schedule
π1:

Tk(π1) + Tl(π1) � Ck − d + Cl − d

�
[(

Pi−1(π1) + pk + (m − 1)max

{
max

1≤ j≤i−1

{
p j

}
, pk

})
− d

]

+

[(
Pi−1(π1) + pk + pl + (m − 1) max

1≤ j≤i+1

{
p j

}) − d

]
.

Obtain a schedule π2 by a standard pair-wise interchange of jobs k and l.
It follows that:

Tk(π1) + Tl(π1) − (Tl(π2) + Tk(π2))

� pk − pl + (m − 1)

[
max

{
max

1≤ j≤i−1

{
p j

}
, pk

}
− max

{
max

1≤ j≤i−1

{
p j

}
, pl

}]
> 0.

We conclude that π2 is optimal as well, which completes the proof. �
We conclude from Property 2 that (pmax) j � p j .

Let f (j, t, e) denote the minimal total tardiness for the partial schedule of jobs 1, . . . , j ,
having total processing time t and maximum rejection cost e.

The dynamic programming for f (j, t, e) is as follows:

Dynamic programming algorithm DP3:

f (j, t, e) �
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
f
(
j − 1, t − p j , e

)
+ max

{
0, (m − 1)p j + t − d

}

f
(
j − 1, t, e − e j

) ,

)
, p j ≤ t and e j ≤ e

f
(
j − 1, t − p j , e

)
+ max

{
0, (m − 1)p j + t − d

}
, p j ≤ t and e j > e

f
(
j − 1, t, e − e j

)
, p j > t and e j ≤ e

∞, p j > t and e j > e.

The first line of the recursion reflects the option to accept or reject job j . The second
line refers to the option of production of job j only and the third line refers to the option of
rejection of job j only. The last line addresses unacceptable cases implying a cost of ∞.

The boundary conditions are:

f (0, 0, e) � 0, 0 ≤ e ≤ E

f (0, t, e) � ∞, 0 < t ≤ P.

The optimal solution is given by min0≤t≤P,0≤e≤E { f (n, t, e)}
Theorem 3 The computational complexity of DP3 is O(nPE).

(The proof is similar to that given for DP2 in Sect. 4.)

Example 3 Consider the following instance of the problem, m � 4, n � 6, E � 28, d � 16,
and the jobs are sequenced in SPT order and renumbered.

123

Regular scheduling measures on proportionate flowshop with… Page 11 of 14 107

Table 3 Average- and worst-case running times of DP3 algorithm for Problem P3

n E Average running time (s) Worst-case running time (s)

Approximately 5% rejected jobs

25 [6, 12] 0.002 0.003

50 [12, 25] 0.010 0.014

75 [18, 37] 0.032 0.044

100 [25, 50] 0.078 0.102

125 [31, 62] 0.143 0.190

Approximately 10% rejected jobs

25 [18, 25] 0.002 0.003

50 [37, 50] 0.017 0.022

75 [56, 75] 0.062 0.072

100 [75, 100] 0.145 0.171

125 [93, 125] 0.274 0.325

Approximately 15% rejected jobs

25 [31, 37] 0.003 0.003

50 [62, 75] 0.025 0.028

75 [93, 112] 0.083 0.110

100 [125, 150] 0.195 0.220

125 [156, 187] 0.418 0.481

The processing times are p � (10, 10, 21, 37, 39, 43).
The job-dependent rejection costs are e � (32, 8, 23, 32, 18, 48).
Applying DP3, the set of accepted jobs is A � (1, 3, 4, 6).
The tardiness of the accepted jobs is T1 � 24, T3 � 78, T4 � 163, T6 � 224, achieving∑
j∈A Tj � 489.

The set of rejected jobs is Ā � (2, 5) and
∑

j∈ Ā e j � 26 ≤ 28 � E .

Numerical study We adapted the arrangement depicted in Sect. 4, except that the common
due-date was generated uniformly in the interval [0.10, 0.50]Cmax . The results presented in
Table 3 reflect the ability of DP3 to solve real-life instances, especially as the worst-case
running time for problems of 125 jobs and 20% rejection rate did not exceed 0.481 s.

6 Problem P4 : Fm/pij � pj,dj � d, rej,
∑

j∈ Ā ej ≤ E/
∑

j∈ A wjUj

It is well known that the classical problem 1/d j � d/
∑

w jU j is equivalent to the knapsack
problem. Solving 1/d j � d/

∑
w jU j , similarly to knapsack, does not require an initial

sequencing of the jobs prior to executing the DP. Unlike the single machine setting, in the
PFS setting, the scheduler has to consider the inherent idle times between consecutive jobs
and, subsequently, keep track of the longest job in the subset of accepted jobs, (pmax) j . To
simplify the DP and avoid excessive variables, we start by sequencing the jobs in accordance
to the SPT rule. From Property 2 in Sect. 5, this step guarantees that (pmax) j � p j . Let
f (j, t, e) denote the minimal total weighted number of tardy jobs for the partial schedule
of jobs 1, . . . , j , having processing time t and maximum rejection cost e. At each iteration

123

107 Page 12 of 14 B. Mor, D. Shapira

of the DP, the scheduling cost of jobs 1 to j , having an upper bound e(0 ≤ e ≤ E) on the
rejection cost is computed, based on the processing costs of jobs 1 to j − 1, with an upper
bound rejection cost of either e or e − e j .

From the above, the tardiness unit penalty of job j can be determined by the following
updated definition:

Uj �
{
1, Tj � t + (m − 1)p j − d > 0
0, otherwise

.

Dynamic programming algorithm DP4:

f (j, t, e) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
f
(
j − 1, t − p j , e

)
+ w jU j ,

f
(
j − 1, t, e − e j

)
)

, p j ≤ t and e j ≤ e

f
(
j − 1, t − p j , e

)
+ w jU j , p j ≤ t and e j > e

f
(
j − 1, t, e − e j

)
, p j > t and e j ≤ e

∞, p j > t and e j > e

.

As for DP3, the first condition of the recursion reflects the option to accept or reject job
j . The second condition refers to the option of acceptation only, whereas the third condition
refers to the option of rejection only. The last line addresses illegal cases implying a cost of
∞.

The boundary conditions are:

f (0, 0, e) � 0, 0 ≤ e ≤ E

f (0, t, e) � ∞, 0 < t ≤ P.

The optimal solution is given by min0≤t≤P,0≤e≤E { f (n, t, e)}.
Theorem 4 The computational complexity of DP4 is O(nPE).

(The proof is similar to that given for DP2 in Sect. 4.)

Example 4 Consider the following instance of the problem, m � 4, n � 6, E � 33, d � 22
and the jobs are sequenced in SPT order and renumbered.

The processing times are p � (31, 31, 37, 40, 44, 45).
The job-dependent rejection costs are e � (42, 43, 21, 25, 31, 6).
The job-dependent weights are w � (20, 7, 10, 11, 24, 20).
Executing DP4, we obtain that in an optimal solution, the set of accepted jobs is A �

(1, 2, 3, 5), obtaining total weighted number of tardy jobs of
∑

j∈A w jU j � 61.

The set of rejected jobs is Ā � (4, 6) and
∑

j∈ Ā e j � 31 ≤ 33 � E .

Numerical study We adapted the scheme presented in Sect. 5, with the addition of job-
dependent weights that were generated uniformly in the interval [1, 25]. The results presented
in Table 4 validate the efficiency of DP4 to solve real-life instances. Specifically, the worst-
case running time for problems of 125 and 20% rejection rate jobs did not exceed 0.468 s.

7 Conclusions

In this study, we combined the method of job rejection and the setting of proportionate flow-
shop, and focused onminimizing regular performancemeasures, subject to the constraint that
the total rejection cost cannot exceed a given upper bound. In particular, we considered the

123

Regular scheduling measures on proportionate flowshop with… Page 13 of 14 107

Table 4 Average- and worst-case running times of DP4 algorithm for Problem P4

n E Average running time (s) Worst-case running time (s)

Approximately 5% rejected jobs

25 [6, 12] 0.002 0.004

50 [12, 25] 0.011 0.014

75 [18, 37] 0.035 0.043

100 [25, 50] 0.075 0.107

125 [31, 62] 0.142 0.174

Approximately 10% rejected jobs

25 [18, 25] 0.002 0.003

50 [37, 50] 0.018 0.022

75 [56, 75] 0.058 0.076

100 [75, 100] 0.130 0.155

125 [93, 125] 0.272 0.318

Approximately 15% rejected jobs

25 [31, 37] 0.003 0.004

50 [62, 75] 0.025 0.033

75 [93, 112] 0.079 0.093

100 [125, 150] 0.195 0.225

125 [156, 187] 0.396 0.468

problems of total completion time, maximum tardiness, total tardiness, and total weighted
number of tardy jobs. For each problem, we introduced an efficient pseudo-polynomial
dynamic programming solution algorithm. We also conducted extensive numerical stud-
ies that demonstrate the DPs ability to solve real-life instances. Challenging future objective
functions in the setting of proportionate flowshop with rejection, include, among others,
makespan with release dates, total weighted tardiness with a common due-date, and total
tardiness. These problems will probably necessitate a different approach, such as applying
advanced metaheuristic techniques.

Acknowledgements This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

References

Agnetis A, Mosheiov G (2017) Scheduling with job-rejection and position-dependent processing times on
proportionate flowshops. Optim Lett 11(4):885–892

ChengC-Y,YingK-C,ChenH-H, Lin J-X (2018)Optimization algorithms for proportionate flowshop schedul-
ing problems with variable maintenance activities. Comput Ind Eng 117:164–170

Fiszman S, Mosheiov G (2018) Minimizing total load on a proportionate flowshop with position-dependent
processing times and job rejection. Inf Process Lett 132:39–43

Gerstl E, Mosheiov G (2015) Single machine scheduling problems with generalised due-dates and job-
rejection. Int J Prod Res 55(11):3164–3172

Gerstl E, Mor B, Mosheiov G (2015) A note: maximizing the weighted number of just-in-time jobs on a
proportionate flowshop. Inf Process Lett 115(2):159–162

Gerstl E, Mor B, Mosheiov G (2017) Minmax scheduling with acceptable lead-times: extensions to position-
dependent processing times, due-window and job rejection. Comput Oper Res 83:150–156

123

107 Page 14 of 14 B. Mor, D. Shapira

Gerstl E, Mor B, Mosheiov G (2019) Scheduling on a proportionate flowshop to minimise total late work. Int
J Prod Res 57(2):531–543

Graham RL, Lawler EL, Lenstra JK (1979) Optimization and approximation in deterministic sequencing and
scheduling: a survey. Ann Discr Math 4:287–326

Koulamas C, Panwalkar SS (2015) On the equivalence of single machine earliness/tardiness problems with
job rejection. Comput Ind Eng 87:1–3

Li SS, Qian DL, Chen RX (2017) Proportionate Flow Shop Scheduling with Rejection. Asia-Pac J Oper Res
34(4):1750015

Mor B, Mosheiov G (2014) Polynomial time solutions for scheduling problems on a proportionate flowshop
with two competing agents. J Oper Res Soc 65(1):151–157

Mor B, Mosheiov G (2015a) A note: minimizing maximum earliness on a proportionate flowshop. Inf Process
Lett 115(2):253–255

Mor B, Mosheiov G (2015b) Minimizing the number of early jobs on a proportionate flowshop. J Oper Res
Soc 66(9):1426–1429

Mor B, Mosheiov G (2016a) Minsum and minmax scheduling on a proportionate flowshop with common
flow-allowance. Eur J Oper Res 254(2):360–370

Mor B, Mosheiov G (2016b) Minimizing maximum cost on a single machine with two competing agents and
job rejection. J Oper Res Soc 67(12):1524–1531

Mor B, Mosheiov G (2018) A note: minimizing total absolute deviation of job completion times on unre-
lated machines with general position-dependent processing times and job-rejection. Ann Oper Res
271(2):1079–1085

Mor B, Mosheiov G, Shapira D (2019) Flowshop scheduling with learning effect and job rejection. J Sched.
https://doi.org/10.1007/s10951-019-00612-y

Mor B, Shapira D (2019) Improved algorithms for scheduling on proportionate flowshop with job-rejection.
J Oper Res Soc 70(11):1997–2003

Panwalkar SS, Koulamas C (2015) Proportionate flow shop: new complexity results and models with due date
assignment. Naval Res Log 62(2):98–106

Panwalkar SS, Koulamas C (2017) On the dominance of permutation schedules for some ordered and propor-
tionate flow shop problem. Comput Ind Eng 107:105–108

Panwalkar SS, Smith ML, Koulamas C (2013) Review of the ordered and proportionate flow shop scheduling
research. Naval Res Log 60(1):46–55

Pinedo ML (2016) Scheduling: theory, algorithms and systems, 5th edn. Springer, New-York
Shabtay D (2014) The single machine serial batch scheduling problem with rejection to minimize total com-

pletion time and total rejection cost. Eur J Oper Res 233(1):64–74
Shabtay D, Oron D (2016) Proportionate flow-shop scheduling with rejection. J Oper Res Soc 67(5):752–769
Shabtay D, Gaspar N, Yedidsion L (2012) A bicriteria approach to scheduling a single machine with job

rejection and positional penalties. J Comb Optim 23:395–424
Shabtay D, Gaspar N, Kaspi M (2013) A survey on offline scheduling with rejection. J Sched 16:3–28
Zhang L, Lu L, Yuan J (2010) Single-machine scheduling under the job rejection constraint. Theoret Comput

Sci 411:1877–1882
Zhong X, Pan Z, Jiang D (2017) Scheduling with release times and rejection on two parallel machines. J Comb

Optim 33:934–944

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10951-019-00612-y

	Regular scheduling measures on proportionate flowshop with job rejection
	Abstract
	1 Introduction
	2 Notations
	3 Problem P1: F_m /p_ij = p_j , rej, sum_ j in barA e_j leE /sum_ j in A C_j .
	4 Problem P2: F_m /p_ij = p_j , rej, sum_ j in barA e_j leE/T_max
	5 Problem P3:F_m /p_ij = p_j , d_j = d,rej,sum_ j in barA e_j leE/sum_ j in A T_j
	6 Problem P4:F_m /p_ij = p_j , d_j = d,rej, sum_ j in barA e_j leE/sum_ j in A w_j U_j
	7 Conclusions
	Acknowledgements
	References

