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Abstract
Second-orderVolterra integro-differential equation is solved by the linear barycentric rational
collocation method. Following the barycentric interpolation method of Lagrange polynomial
and Chebyshev polynomial, the matrix form of the collocation method is obtained from the
discrete Volterra integro-differential equation. With the help of the convergence rate of the
linear barycentric rational interpolation, the convergence rate of linear barycentric rational
collocationmethod for solvingVolterra integro-differential equation is proved.At last, several
numerical examples are provided to validate the theoretical analysis.
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1 Introduction

In this article, we pay our attention to the numerical solution of solving second-order Volterra
integro-differential equation

a2u
′′(x) + a1u

′(x) + a0u(x) +
∫ x

a
K (x, t)u(t)dt = f (x), x ∈ (a, b); (1)

u(a) = u0 u′(a) = u′
0,

where a2, a1, a0, a2 �= 0 are constant, K (x, t) are the continuous function on [a, b] × [a, b]
and f (x) are continuous functions.

Second-order Volterra integro-differential equation has been paid much attention because
of its great importance in engineering and science.There are lots of physical phenomenon such
as population dynamics of biological applications, electrostatics, potential theory, mechanics
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and so on. As it is difficult to solve second-order Volterra integro-differential equation analyt-
ically, numerical method is needed to be presented. Several numerical methods (Maleknejad
and Aghazadeh 2005; Delves and Mohamed 1985; Ortiz and Samara 1981; Pour-Mahmoud
et al. 2005; Hosseini and Shahmorad 2003; Razzaghi and Yousefi 2005; Yalcinbas et al.
2009; Bayramov and Kraus 2015), for examples, collocation and spectral collocation meth-
ods, Runge–Kuttamethods, linearmultistepmethods, and block boundary valuemethods, the
successive approximation method, the Adomian decomposition method, the Chebyshev and
Taylor collocationmethod, HaarWavelet method,Wavelet–Galerkin method have been used.
There are some advantages such as without dividing elements, simple formulas, no integrals
and easy programming of the collocation method (Bayramov and Kraus 2015; Shen et al.
2011). The barycentric formula is obtained by the Lagrange interpolation formula (Berrut
et al. 2014; Berrut and Klein 2014; Cirillo and Hormann 2019) and has been used to solve
Volterra equation and Volterra Integro-Differential equation (Ali et al. 2001; Berrut et al.
2011). In general, the interpolation nodes of Lagrange interpolation with barycentric center
are dense at both ends of the interval and sparse in the middle of the interval. The special
distributed nodes are usually the zeros of the spectral function or its derivative, such as the
Chebyshev points of the second kind. To get the equidistant node of the barycentric formula,
Floater et al. (2007, 2012a, 2012b) have proposed a rational interpolation scheme which has
high numerical stability and interpolation accuracy on both equidistant and special distributed
nodes. In Garey and Shaw (1991), one-step methods of the Runge–Kutta type methods are
presented for a class of second-order Volterra integro-differential equations in reference Abdi
and Hossseint (2019), linear barycentric rational interpolation is used to derive a difference-
quadrature scheme for solving first-order Volterra integro-differential equations. In recent
papers, Wang et al. (2012, 2015, 2018, 2018) successfully applied the collocation method to
solve initial value problems, plane elasticity problems, incompressible plane problems and
non-linear problems which have expanded the application fields of the collocation method.

In this paper, the linear barycentric rational collocation method for solving second-order
Volterra integro-differential equation is presented, which not only possess accurate numerical
results but also have excellent stability properties. Following the barycentric interpolation
method of Lagrange polynomial and Chebyshev polynomial, the matrix form of the col-
location method is also obtained which can be easy to programming. With the help of the
convergence rate of the linear barycentric rational interpolation, the convergence rate of linear
barycentric rational collocationmethod for solving second-order Volterra integro-differential
equation is proved.At last, several numerical examples are provided to validate our theoretical
analysis.

This paper is organized as following: In Sect. 2, the differentiationmatrices and collocation
scheme for second-order Volterra integro-differential equation are presented and the matrix
form of collocation scheme is obtained. In Sect. 3, the convergence rate is presented. At last,
some numerical examples are listed to illustrated our theorem.

2 Differentiationmatrices and algorithm for second-order Volterra
integro-differential equation

Let the interval [a, b] be partitioned into n uniformpart with h = (b−a)/n and x0, x1, . . . , xn
with its related function u(xi ), i = 0, 1, . . . , n. For any 0 ≤ d ≤ n, with pi (x), i =
0, 1, . . . , n − d to be the interpolation function at the point xi , xi+1, . . . , xi+d , then we have
pi (xk) = u(xk), k = i, i + 1, . . . , i + d and the rational barycentric interpolation function

123



Linear barycentric rational collocation method for solving second-order... Page 3 of 9 92

as Berrut et al. (2014)

ũn(x) =
n∑
j=0

L j (x)u j , (2)

where u j = u(x j );

L j (x) =
w j

x − x j∑n
k=0

wk
x−xk

, (3)

and

wk =
∑
i∈Jk

(−1)i
i+d∏

j=i, j �=k

1

xk − x j
, (4)

and Jk = {i ∈ I ; k − d ≤ i ≤ k}, I = {0, 1, 2, . . . , n − d}.
Numerical scheme is given as

a2

n∑
j=0

u j L
′′
j (x) + a1

n∑
j=0

u j L
′
j (x) + a0

n∑
j=0

u j L j (x) +
∫ x

a

⎛
⎝K (x, t)

n∑
j=0

u j L j (t)

⎞
⎠ dt

= f (x), (5)

taking the xi at the Eq. (5), we have

a2

n∑
j=0

u j L
′′
j (xi ) + a1

n∑
j=0

u j L
′
j (xi ) + a0

n∑
j=0

u j L j (xi )

+
∫ xi

a

⎛
⎝K (xi , t)

n∑
j=0

u j L j (t)

⎞
⎠ dt = f (xi ), i = 0, 1, 2, . . . , n. (6)

For the term of equation (6) with the integration, we have

∫ xi

a

⎛
⎝K (xi , t)

n∑
j=0

u j L j (t)

⎞
⎠ dt =

∫ xi

a

⎛
⎝ n∑

j=0

K (xi , t)u j L j (t)

⎞
⎠ dt

=
∫ xi

a

n∑
j=0

(
K (xi , t)u j L j (t)

)
dt =

n∑
j=0

[∫ xi

a

(
K (xi , t)L j (t)

)
dt

]
u j , (7)

Integral is written as

K j (xi ) =
∫ xi

a
K (xi , t)L j (t)dt . (8)

Taking (8) into Eq. (6), we have

n∑
j=0

a2u j L
′′
j (xi ) + a1

n∑
j=0

u j L
′
j (xi ) + a0

n∑
j=0

u j L j (xi )

+
n∑
j=0

K j (xi )u j = f (xi ), i = 0, 1, 2, . . . , n. (9)
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Using the notation of differential matrix, the Eq. (9) is denoted as matrices equation in
the form of

a2

n∑
j=0

D(2)
i j u j + a1

n∑
j=0

D(1)
i j u j + a0

n∑
j=0

δi j u j +
n∑
j=0

Ki j u j = f (xi ) , (10)

where we have used L j (xi ) = δi j = 0, i �= j, δi j = 1, i = j ,i = 0, 1, 2, . . . , n and
Ki j = K j (xi ) defined as (8). Equation (9) is written as matrices in the form of

[
a2D(2) + a1D(1) + a0I + K

]
u = f, (11)

whereL := a2D(2)+a1D(1)+a0I+K,u = [u0, u1, u2, . . . , un]T ,D(k) =
[
D(k)
i j

]
(n+1)×(n+1)

,

and

D(1)
i j =

⎧⎪⎪⎨
⎪⎪⎩

ω j/ωi

xi − x j
, i �= j,

−
∑
k �=i

D(1)
ik , i = j,

D(2)
i j =

⎧⎪⎪⎨
⎪⎪⎩
2D(1)

i j

(
D(1)
i i − 1

xi − x j

)
, i �= j

−
∑
k �=i

D(2)
ik , i = j

(12)

where ωi defined as (4).

3 Convergence and error analysis

In this part, the rational interpolation function (Wang and Li 2015) is presented as

r(x) =
∑n−d

i=0 λi (x)pi (x)∑n−d
i=0 λi (x)

, (13)

where

λi (x) = (−1)i

(x − xi ) · · · (x − xi+d)
, (14)

and

pi (x) =
i+d∑
k=i

i+d∏
j=i, j �=k

x − x j
xk − x j

uk . (15)

With the help of error function of difference formula

e(x) := u(x) − r(x) = (x − xi ) · · · (x − xi+d) u
[
xi , xi+1, . . . , xi+d , x

]
, (16)

where u[xi , xi+1, . . . , xi+d , x] denotes the divided difference of u at the points xi , xi+1, . . . ,

xi+d , x , and

e(x) =
∑n−d

i=0 λi (x) (u(x) − pi (x))∑n−d
i=0 λi (x)

= A(x)

B(x)
= O(hd+1); (17)

here,

A(x) :=
n−d∑
i=0

(−1)i u
[
xi , . . . , xi+d , x

]
(18)
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and

B(x) :=
n−d∑
i=0

λi (x). (19)

By taking the numerical scheme

a2

n∑
j=0

u j L
′′
j (xi ) + a1

n∑
j=0

u j L
′
j (xi ) + a0

n∑
j=0

u jδi j +
∫ xi

a

⎛
⎝K (xi , t)

n∑
j=0

u j L j (t)

⎞
⎠ dt

= f (xi ), i = 0, 1, 2, . . . , n. (20)

Combining (20) and (1), we have

T e(x) := a2e
′′ (x) + a1e

′ (x) + a0e (x) + K (e(x)), (21)

and R f (x) = f (x) − f (xk), k = 0, 1, 2, . . . , n.
The following Lemma has been proved in Jean–Paul Berrut Berrut et al. (2014).

Lemma 1 If y ∈ Cd+2[a, b],then
|e (x)| ≤ Chd+1.

If y ∈ Cd+2[a, b],then
∣∣e′ (x)

∣∣ ≤ Chd .

If y ∈ Cd+3[a, b],then
∣∣e′′ (x)

∣∣ ≤ Chd−1.

Let u(x) be the solution of (1) and un(x) is the numerical solution, then we have

Tun(xk) = f (xk), k = 0, 1, 2, . . . , n,

and

lim
n→∞ un(x) = u(x),

where Tu =: a2u′′ (x) + a1u′ (x) + a0u (x) + K (u(x)).
Based on the above lemma, we get the following theorem.

Theorem 1 Let un(x) : Tun(x) = f (x), u∗
n(x) : Tu∗

n(x) = f ∗(x), f (x) ∈ C[a, b] and
assume matrix L := a2D(2) + a1D(1) + a0I + K is invertible , we have

|ũn(x) − ũ∗
n(x)| ≤ Chd−1.

Proof As

ũn(x) =
n∑
j=0

L j (x)u j , ũ
∗
n(x) =

n∑
j=0

L j (x)u
∗
j ,

where Un = (u(x0), u(x1), . . . , u(xn))T , U∗
n = (u∗(x0), u∗(x1), . . . , u∗(xn))T . By

Un −U∗
n = L−1(LUn − F∗

n ),
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which means

ũn(x) − ũ∗
n(x) =

n∑
j=0

Mj (x)T e(x).

Combining the Lemma 1 and Eq. (21), we have

|T e(x)| = |a2e′′(x) + a1e
′(x) + a0e(x) + K (e(x))|

≤ |a2e′′(x)| + |a1e′(x)| + |a0e(x)| + |K (e(x))|
≤ Chd−1 + Chd + Chd+1 + Chd+2

≤ Chd−1. (22)

As we have assumed that matrix L is invertible and Mj (x) is the element of matrix L−1,then
we have

|ũn(x) − ũ∗
n(x)| ≤ |

n∑
j=0

Mj (x)||T e(x)| ≤ Chd−1.

The proof is completed. 	


4 Numerical example

In this part, numerical examples are presented to illustrate our theorem.

Example 1 Consider the second-order Volterra integro-differential equation

u′′ =
∫ x

0
xtu(t)dt + u(x) + 2 − x2 − 1

4
x5 − x2ex + xex − x, (23)

with condition u(0) = 1, u′(0) = 1 and its analysis solution is

u = x2 + ex .

In this example, we test the linear barycentric rational with the equidistant nodes; Table 1
shows that the convergence rate isO(hd−1)with d = 2, 3, 4, 5which agreeswith our theorem
analysis. In Table 2, for the Chebyshev nodes, the convergence rate can reach O(h2d−2)with
d = 2, 3, 4, 5 which is out of our goal of this paper but will be presented in other papers.
For n = 160, 320, 640, because of the higher convergence rate and accumulation error of
matlab, there is no convergence rate.

Table 1 Errors of the linear barycentric rational collocation methods with equidistant nodes

n d = 2 d = 3 d = 4 d = 5

10 5.9907e−02 1.9395e−02 5.2372e−04 1.9660e−04

20 3.0694e−02 0.9647 4.4488e−03 2.1242 7.0920e−05 2.8845 1.0293e−05 4.2555

40 1.5362e−02 0.9986 1.0511e−03 2.0815 8.9243e−06 2.9904 5.8504e−07 4.1370

80 7.6475e−03 1.0063 2.5415e−04 2.0481 1.1102e−06 3.0069 3.4712e−08 4.0750

160 3.8070e−03 1.0063 6.2349e−05 2.0273 1.3764e−07 3.0119 3.1280e−09 3.4721

320 1.8973e−03 1.0047 1.5430e−05 2.0147 2.0059e−08 2.7785 3.8826e−10 3.0101

640 9.4663e−04 1.0031 3.8419e−06 2.0058 7.6389e−09 1.3928 1.9744e−08 –
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Table 2 Errors of the linear barycentric rational collocation methods with Chebyshev nodes

n d = 2 d = 3 d = 4 d = 5

10 2.7259e−02 5.7865e−03 1.5745e−04 5.3617e−05

20 5.6860e−03 2.2613 2.4972e−04 4.5343 1.9710e−06 6.3198 1.5223e−07 8.4603

40 1.2569e−03 2.1775 1.2070e−05 4.3709 2.3906e−08 6.3654 7.9617e−10 7.5789

80 2.9245e−04 2.1036 6.4972e−07 4.2154 1.0648e−08 1.1668 1.3658e−08 –

160 7.0374e−05 2.0551 4.9471e−07 0.3933 2.6274e−07 – 1.1246e−07 –

320 1.5238e−05 2.2073 3.1616e−06 – 2.7575e−06 – 2.9856e−06 –

640 9.9105e−06 0.6207 8.9491e−05 – 2.0356e−05 – 1.5267e−04 –

Table 3 Errors of the linear barycentric rational collocation methods with equidistant nodes

n d = 2 d = 3 d = 4 d = 5

10 5.9962e−02 2.8150e−02 9.5333e−03 3.1054e−03

20 2.7420e−02 1.1288 6.9044e−03 2.0276 1.1976e−03 2.9929 1.1076e−04 4.8092

40 1.2546e−02 1.1280 1.6587e−03 2.0574 1.4460e−04 3.0499 4.8436e−06 4.5153

80 5.8704e−03 1.0957 4.0191e−04 2.0451 1.7659e−05 3.0336 2.4662e−07 4.2957

160 2.8078e−03 1.0640 9.8435e−05 2.0296 2.1791e−06 3.0186 1.4175e−08 4.1208

320 1.3653e−03 1.0402 2.4300e−05 2.0182 2.7057e−07 3.0097 1.2428e−09 3.5117

640 6.7134e−04 1.0242 6.0273e−06 2.0114 3.8757e−08 2.8035 5.0926e−09 –

Example 2 In this example, we consider the second-order Volterra integro-differential equa-
tion with variable coefficient

u′′(x) + cos xu(x) = sin
x

2

∫ x

0
cos(t)u(t)dt + f (x), (24)

where

f (x) = cos x − x sin x + cos(x)[x sin(x) + cos(x)]
− sin(

x

2
)

[
2

9
sin(3x) − x cos(3x)

6
+ x cos(x)

2

]
; (25)

with u(0) = 1, u′(0) = 0 and its analysis solution is

u = x sin(x) + cos(x).

In this example, we test the linear barycentric rational with the equidistant nodes; Table 3
shows that the convergence rate isO(hd−1)with d = 2, 3, 4, 5which agreeswith our theorem
analysis. In Table 4, for the Chebyshev nodes, the convergence rate can reach O(h2d−2)with
d = 2, 3, 4, 5 which is out of our goal of this paper but will be presented in other papers.
For n = 160, 320, 640, because of the higher convergence rate and accumulation error of
matlab, there is no convergence rate.
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Table 4 Errors of the linear barycentric rational collocation methods with Chebyshev nodes

n d = 2 d = 3 d = 4 d = 5

10 2.1368e−02 3.9933e−03 2.3902e−04 7.7161e−05

20 4.4147e−03 2.2751 1.6582e−04 4.5898 2.9218e−06 6.3541 1.9932e−07 8.5966

40 9.8038e−04 2.1709 8.0083e−06 4.3720 3.5909e−08 6.3464 6.8386e−10 8.1872

80 2.2910e−04 2.0974 4.2926e−07 4.2216 8.2364e−10 5.4462 2.5165e−10 1.4423

160 5.5223e−05 2.0526 1.1549e−07 1.8941 3.7065e−08 – 2.2692e−07 –

320 1.3578e−05 2.0240 6.8729e−07 – 2.6198e−06 – 1.3275e−06 –

640 1.5570e−05 – 2.1291e−05 – 1.3539e−06 – 4.0564e−06 –

5 Concluding remarks

In this paper, the numerical approximation of linear barycentric rational collocation method
for solving the constant coefficient second-order Volterra integro-differential equation is
presented. The matrix form of algorithm is obtained from the equation (1). With the help
of error function of difference formula, the convergence rate of linear barycentric rational
collocation method O(hd−1) with equidistant nodes agree with our theorem analysis, while
forChebyshev point, numerical results shows the convergence rate can reach O(h2d−2)which
is out of our goal of this paper will be presented in other papers.

In Theorem 1, we have assumed that the matrix L is invertible. With the matrix equation
of the linear barycentric rational collocation method, as there are the term of integral matrix
K, we have not presented the invertible properties of matrix L which will be given in other
papers.”
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