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Abstract
In this paper, we intend to introduce a modified approach for solving fuzzy differential
equations (FDEs) under generalized differentiability.Modified Eulermethod estimated FDEs
by using a two-stage predictor–corrector algorithm with local truncation error of order two.
The consistency, convergence, and stability of the proposed method are also investigated in
detail. The acceptable accuracy of theModifiedEulermethod is illustrated by some examples.

Keywords Fuzzy differential equations · Generalized Hukuhara differentiability ·
Numerical method

Mathematics Subject Classification 34A07

1 Introduction

Fuzzy differential equations (FDEs) are applied for modeling problems in science and engi-
neering under uncertainly and has been rapidly developing in recent years Allahviranloo
(2020).
The concept of fuzzy derivatives is a very important notation in FDEs. Fuzzy derivatives were
first initiated by Chang and Zadeh (1972), and followed up by Dubois and Prade (1982), Puri
and Ralescu (1986) and Goetschel and Voxman (1987).

The concept of FDEs was introduced by Kaleva (1987), Seikkala (1987), and other
researches. Many works have been done to study the numerical solution of FDEs
under Hukuhara differentiability like Euler method, Taylor method, Runge–Kutta method,
Predictor–Corrector and Improved Predictor–Corrector method (Ma et al. 1999; Abbasbandy
and Allahviranloo 2002, 2004; Allahviranloo et al. 2007, 2009).
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It is well-known that the solution of FDEs under Hukuhara derivatives has the property that
the diameter is non-decreasing as t increase; to overcome this shortcoming, Bede and Gal
introduced the strongly generalized differential of set value fuzzy function (Bede and Gal
2005) and studied more properties in Bede and Stefanini (2011), Bede and Gal (2006), Bede
and Stefanini (2013).

Rapidly, the numerical methods for solving fuzzy differential equation and fuzzy integral
equation under Hukuhara differentiability extended to fuzzy differential equation and fuzzy
integral equation under strongly generalized differentiability (Rabiei et al. 2013; Hajighasemi
et al. 2010; BaloochShahryari and Salashour 2012; Ahmadian et al. 2018, 2012).
Nieto et al. (2009) obtained solution of first-order fuzzy differential equations using general-
ized differentiability by interpreting the original fuzzy differential equations with two crisp
ordinary differential equations.

Allahviranloo and Salahshour proposed a new approach for solving first order fuzzy differ-
ential equations under strongly generalized H-differentiability; the main part of the proposed
techniquewas extending 1-cut solution of original FDEs by allocating some unknown spreads
in Salahshour et al. (2018). Also Allahviranloo, Gouyandeh, and Armand by introducing
the fuzzy Taylor expansion proposed the Euler method for solving FDEs under general-
ized differentiability; the local truncation error for the Euler method is o(h) (Allahviranloo
et al. 2015). Tapaswini and Chakraverty proposed improved Euler methods for solving FDEs
under Hukuhara differentiability in Tapaswini and Chakraverty (2012). In the present paper,
we intend to improve the Euler method under generalized differentiability by two-stage
predictor–corrector method, to get better accuracy without losing the simplicity of the Euler
method. The convergence and stability of the proposed method are proved. By some exam-
ples, the capability of the proposed method is shown.

The paper is organized as follows: In Sect. 2, some basic definitions are brought. In the
proposed method, moreover consistency, convergence, and stability of the Modified Euler
method are introduced in Sect. 3. The numerical examples are presented in Sect. 4 and finally,
conclusion is drawn.

2 Preliminaries

In this section the most basic notations and definitions used are introduced:
The set of fuzzynumbers, that is, normal, fuzzy convex, upper semi-continuous and compactly
supported fuzzy sets which are defined over the real line and denoted byRF . For 0 < α ≤ 1,

set [u]α =
{
t ∈ R

∣∣∣u(t) ≥ α
}
, and [u]0 = cl

{
t ∈ R

∣∣∣u(t) > 0
}
. We represent [u]α =

[u−(α), u+(α)], so if u ∈ RF , the α-level set [u]α is a closed interval for all α ∈ [0, 1].
For arbitrary u, v ∈ RF and k ∈ R, the addition and scalar multiplication are defined by
[u + v]α = [u]α + [v]α , [ku]α = k[u]α, respectively.

Definition 2.1 (see Kaleva 1987) The Hausdorff distance between fuzzy numbers is given
by D : RF × RF −→ R

+ ∪ {0} as

D(u, v) = sup
α∈[0, 1]

max
{
|u−(α) − v−(α)|, |u+(α) − v+(α)|

}
.

Consider u, v, w, z ∈ RF and λ ∈ R; then the following properties are well-known for
metric D:(see Negoita and Ralescu 1975):
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1. D(u ⊕ w, v ⊕ w) = D(u, v);
2. D(λu, λv) = |λ|D(u, v);
3. D(u ⊕ v, w ⊕ z) ≤ D(u, w) + D(v, z);
4. D(u � v, w � z) ≤ D(u, w) + D(v, z), as long as u � v and w � z exist, where

u, v, w, z ∈ RF ,

where � is the Hukuhara difference(H-difference); it means that w � v = u if and only if
u ⊕ v = w.

Definition 2.2 (see Stefanini 2008) The generalized Hukuhara difference of two fuzzy num-
bers u, v ∈ RF is defined as follows:

u � v = w ⇐⇒
{

(a). u = v + w;
or (b). v = u + (−1)w.

Proposition 2.1 (see Stefanini 2008) Let A, B ∈ KC
n be two compact convex set; then

1. if the gH-difference exists, it is unique and it is a generalization of the usual Hukuhara
difference since A � B = A ∼h B, whenever A ∼h B exists,

2. A � A = 0,
3. if A � B exists in the sence (a), then B � A exists in sense (b) and vice versa,
4. (A ⊕ B) � B = A,

5. {0} � (A � B) = (−B) � (−A),

6. we have (A � B) = (B � A) = C if and only if C = {0} and A = B.

Definition 2.3 (see Nieto et al. 2009) A fuzzy valued function f : [a, b] → RF is said to
be continuous at t0 ∈ [a, b] if for each ε > 0 there is δ > 0 such that D( f (t), f (t0)) < ε,
whenever t ∈ [a, b] and |t − t0| < δ. We say that f is fuzzy continuous on [a, b] if f is
continuous at each t0 ∈ [a, b].
Definition 2.4 (see Bede and Gal 2005) Let F : I → R. Fix t0 ∈ I . We say F is strongly
generalized differentiable at t0, if there exists an element F ′(t0) ∈ R such that either

1. for all h > 0 sufficiently closed to 0, theH-differences F(t0+h)�F(t0), F(t0)�F(t0−h)

exist and limits (in the metric D)

lim
h→0+

F(t0 + h) � F(t0)

h
= lim

h→0+
F(t0) � F(t0 − h)

h
= F ′(t0) (2.1)

or
2. for all h > 0 sufficiently closed to 0, theH-differences F(t0)�F(t0+h), F(t0−h)�F(t0)

exist and limits (in the metric D)

lim
h→0+

F(t0) � F(t0 + h)

−h
= lim

h→0+
F(t0 − h) � F(t0)

−h
= F ′(t0) (2.2)

or
3. for all h > 0 sufficiently closed to 0, theH-differences F(t0+h)�F(t0), F(t0−h)�F(t0)

exist and limits (in the metric D)

lim
h→0+

F(t0 + h) � F(t0)

h
= lim

h→0+
F(t0 − h) � F(t0)

−h
= F ′(t0) (2.3)

or
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4. for all h > 0 sufficiently closed to 0, theH-differences F(t0)�F(t0+h), F(t0)�F(t0−h)

exist and limits (in the metric D)

lim
h→0+

F(t0) � F(t0 + h)

−h
= lim

h→0+
F(t0) � F(t0 − h)

h
= F ′(t0) (2.4)

Definition 2.5 Let f : I → RF . We say f is [(i) − gH ]-differentiable on I if f is differ-
entiable in the sense (1) of Definition 2.4 and its derivative is denoted fi .gH and similarly
for [(i i) − gH ]− differentiable we have fii .gH if f is differentiable in the sense (2) of
Definition 2.4.

Theorem 2.1 (seeChalco-Cano andRoman-Flores 2008)Let f : I → RF and put [ f (t)]α =
[( f +)(t;α) , ( f −)(t;α)] for each α ∈ [0, 1].
1. If f is [(i) − gH ] differentiable the f + and f − are differentiable functions and

f ′
i .gH (t0;α) = [( f −)′(t;α), ( f +)′(t;α)], (2.5)

2. If f is [(i i) − gH ] differentiable the f + and f − are differentiable functions and

f ′
i i .gH (t0;α) = [( f +)′(t;α), ( f −)′(t;α)], (2.6)

Definition 2.6 (see Chalco-Cano and Roman-Flores 2008) We say that a point t0 ∈ (a, b)
is a switching point for the differentiability of f if in any neighborhood V of t0 there exist
points t1 < t0 < t2 such that

type (I) at t1 (2.5) holds while (2.6) does not hold and at t2 (2.6) holds and (2.5) does not
hold, or

type (II) at t1 (2.6) holds while (2.5) does not hold and at t2 (2.5) holds and (2.6) does not
hold.

The following condition and notations are used in the reminder of paper:
We assume that in thewhole paper, the generalizedHukuhara difference of two fuzzy numbers
exists.
CF ([a, b],RF ) is the set of fuzzy valued functions f which are defined on [a, b] and is fuzzy
continuous from the interior points of [a, b] such that the continuity is one-sided at endpoints
a, b.

CkgH ([a, b], RF ), is the space of functions f such that f and its first k, gH-derivtives are all
in CF ([a, b],RF ).

Theorem 2.2 (see Allahviranloo et al. 2015) Consider f : [a, b] −→ RF is gH-
differentiable such that type of differentiability f in [a, b]does not change. Then for a ≤ s ≤ b

(i) if f (t) is [(i) − gH ]-differentiable, then f ′
i .gH (t) is (FR)-integrable over [a, b] and

f (s) = f (a) ⊕
∫ s

a
f ′
i .gH (t)dt . (2.7)

(ii) If f (t) is [(i i) − gH ]-differentiable, then f ′
i i .gH (t) is (FR)-integrable over [a, b] and

f (a) = f (s) ⊕ (−1)
∫ s

a
f ′
i i .gH (t)dt . (2.8)

Theorem 2.3 (see Allahviranloo et al. 2015) Let f (i) : [a, b] → RF and f ∈
C4gH ([a, b], RF ). For all s ∈ [a, b]
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(i) Consider f (i)
gH , i = 1, . . . , n are [(i) − gH ]-differentiable and type of differentiability

does not change in interval [a, b]; then

f (i−1)
i .gH (s) = f (i−1)

i .gH (a) ⊕
∫ s

a
f (i)
i .gH (t)dt . (2.9)

(ii) If f (i)
gH , i = 1, . . . , n are [(i i) − gH ]-differentiable and type of differentiability does

not change in interval [a, b], then

f (i−1)
i i .gH (s) = f (i−1)

i i .gH (a) ⊕
∫ s

a
f (i)
ii.gH(t)dt . (2.10)

(iii) Suppose that f (i), i = 2k − 1, k ∈ N are [(i)-gH]-differentiable and f (t), f (i), i =
2k, k ∈ N are [(ii)-gH]-differentiable, so

f (i−1)
i .gH (s) = f (i−1)

i.gH (a) � (−1)
∫ s

a
f (i)
i i .gH (t)dt . (2.11)

(iv) Consider for i = 2k − 1, k ∈ N, f (i) are [(ii)-gH]-differentiable and f (t), f (i) are
[(i)-gH]-differentiable for i = 2k, k ∈ N, then

f (i−1)
ii.gH (s) = f (i−1)

ii.gH (a) � (−1)
∫ s

a
f (i)
i.gH(t)dt . (2.12)

3 Proposedmethod

Now, let us consider the following fuzzy differential equation (FDE):
{
y′
gH (t) = f (t, y(t)), t ∈ [0, T ];
y(0) = y0 ∈ RF ; (3.1)

here y(t) is an unknown fuzzy function of crisp variable t and f : [0, T ] × RF → RF is
continuous; also y′

gH (t) is the generalized Hukuhara derivative of y(t) such that the set of
switching points is finite.

First, we are going to approximate y′′
gH (t) in four different cases by using concept of

generalized differentiability.

Theorem 3.1 Let f ∈ C4gH ([a, b], RF ). Then

(i) if f (i)
gH , i = 1, . . . , 4 are [(i)− gH ]-differentiable and type of differentiability does not

change in interval [a, b], then

f ′′
i .gH (a) ≈ f

′
i .gH (s) � f

′
i .gH (a)

s − a
, (3.2)

(ii) let f (i)
gH , i = 1, . . . , 4 are [(i i) − gH ]-differentiable and type of differentiability does

not change in interval [a, b], then

f ′′
i i .gH (a) ≈ f

′
i i .gH (s) � f

′
i i .gH (a)

s − a
, (3.3)
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(iii) suppose that f (i), i = 1, 3 are [(i) − gH ]-differentiable and f (t), f (i), i = 2, 4 are
[(i i) − gH ]-differentiable, so

(−1) f ′′
i .gH (a) ≈ f

′
i i .gH (s) � f

′
i i .gH (a)

s − a
, (3.4)

(iv) consider for i = 1, 3, f (i) are [(i i)− gH ]-differentiable and f (t), f (i) are [(i)− gH ]-
differentiable for i = 2, 4, then

(−1) f ′′
i i .gH (a) ≈ f

′
i .gH (s) � f

′
i .gH (a)

s − a
. (3.5)

Proof Since f ∈ C4gH ([a, b], RF ), so f (i)
gH , i = 0, 1, 2, 3, 4, are (FR)-integrable on T .

(i) Let f (i) be [(i) − gH ]-differentiable; by Theorem 2.3, we can write

f ′
i .gH (s) = f ′

i .gH (a) ⊕
∫ s

a
f ′′
i .gH (s1)ds1,

where

f ′′
i .gH (s1) = f ′′

i .gH (a) ⊕
∫ s1

a
f ′′′
i .gH (s2)ds2. (3.6)

by integration of Eq. (3.6), we get

∫ s

a
f ′′
i .gH (s1)ds1 =

∫ s

a
f ′′
i .gH (a)ds1 ⊕

∫ s

a

( ∫ s1

a
f ′′′
i .gH (s2)ds2

)
ds1,

= f ′′
i .gH (a) � (s − a) ⊕

∫ s

a

( ∫ s1

a
f ′′′
i .gH (s2)ds2

)
ds1,

where the last double (FR)-integral belongs to RF . So

f ′
i .gH (s) = f ′

i .gH (a) ⊕ f ′′
i .gH (a) � (s − a)

⊕
∫ s

a

( ∫ s1

a
f ′′′
i .gH (s2)ds2

)
ds1.

Consequently,

f ′′′
i .gH (s2) = f ′′′

i .gH (a) ⊕
∫ s2

a
f (4)
i .gH (s3)ds3;

applying the (FR)-integral operator to f ′′′
i .gH (s2), gives

∫ s1

a
f ′′′
i .gH (s2)ds2

= f ′′′
i .gH (a) � (s1 − a) ⊕

∫ s1

a

( ∫ s2

a
f (4)
i .gH (s3)ds3

)
ds2;
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furthermore,
∫ s

a

( ∫ s1

a
f ′′′
i .gH (s2)ds2

)
ds1 = f ′′′

i .gH (a) �
∫ s

a
(s1 − a)ds1

⊕
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i .gH (s3)ds3

)
ds2

)
ds1,

where the last triple integral belongs to RF . Hence

f ′
i .gH (s) = f ′

i .gH (a) ⊕ f ′′
i .gH (a) � (s − a) ⊕ f ′′′

i .gH (a)

� (s − a)2

2! ⊕
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i .gH (s3)ds3

)
ds2

)
ds1.

If s is very closed to a and (s − a) → 0,

D( f ′
i .gH (s), f ′

i .gH (a) ⊕ f ′′
i .gH (a) � (s − a)) → 0,

and

D( f ′
i .gH (s) � f ′

i .gH (a), f ′′
i .gH (a) � (s − a)) → 0,

this means where (s − a) → 0, we obtain:

f ′′
i .gH (a) ≈ f

′
i .gH (s) � f

′
i .gH (a)

s − a
.

(ii) Suppose that f (i) is [(i i) − gH ]-differentiable for i = 1, 2, 3, 4; by Theorem 2.3, we
have

f ′
i i .gH (s) = f ′

i i .gH (a) ⊕
∫ s

a
f ′′
i i .gH (s1)ds1,

where f ′′
i i .gH is gained by

f ′′
i i .gH (s1) = f ′′

i i .gH (a) ⊕
∫ s1

a
f ′′′
i i .gH (s2)ds2.

It is easy to see that
∫ s

a
f ′′
i i .gH (s1)ds1 = f ′′

i i .gH (a) � (s − a) ⊕
∫ s

a

( ∫ s1

a
f ′′′
i i .gH (s2)ds2

)
ds1,

where the last double (FR)-integral belongs to RF . Thus we conclude

f ′
i i .gH (s) = f ′

i i .gH (a) ⊕ f ′′
i i .gH (a) � (s − a)

⊕
∫ s

a

( ∫ s1

a
f ′′′
i i .gH (s2)ds2

)
ds1.

Consequently f ′′′
i i .gH can be written as

f ′′′
i i .gH (s2) = f ′′′

i i .gH (a) ⊕
∫ s2

a
f (4)
i i .gH (s3)ds3,

applying the (FR)-integral operator to f ′′′
i i .gH (s2), gives

∫ s1

a
f ′′′
i i .gH (s2)ds2 = f ′′′

i i .gH (a) � (s1 − a) ⊕
∫ s1

a

( ∫ s2

a
f (4)
i i .gH (s3)ds3

)
ds2;
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furthermore,
∫ s

a

( ∫ s1

a
f ′′′
i i .gH (s2)ds2

)
ds1 = f ′′′

i i .gH (a) �
∫ s

a
(s1 − a)ds1

⊕
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i i .gH (s3)ds3

)
ds2

)
ds1,

where the last triple integral belongs to RF . Hence

f ′
i i .gH (s) = f ′

i i .gH (a) ⊕ f ′′
i i .gH (a) � (s − a) ⊕ f ′′′

i i .gH (a)

� (s − a)2

2! ⊕
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i i .gH (s3)ds3

)
ds2

)
ds1.

If s is very closed to a and (s − a) → 0,

D( f ′
i i .gH (s) � f ′

i i .gH (a), f ′′
i .gH (a) � (s − a)) → 0,

this means where (s − a) → 0 we have

f ′′
i i .gH (a) ≈ f

′
i i .gH (s) � f

′
i i .gH (a)

s − a
.

(iii) Suppose that f (i), i = 1, 3, are [(i) − gH ]-differentiable and f (i), i = 2, 4, are
[(i i) − gH ]-differentiable, so

f ′
i i .gH (s) = f ′

i i .gH (a) � (−1) �
∫ s

a
f ′′
i .gH (s1)ds1,

As it is known, f ′′
i .gH is obtained from

f ′′
i .gH (s1) = f ′′

i .gH (a) � (−1) �
∫ s1

a
f ′′′
i i .gH (s2)ds2;

by integration we obtain
∫ s

a
f ′′
i .gH (s1)ds1 = f ′′

i .gH (a) � (s − a) � (−1) �
∫ s

a

( ∫ s1

a
f ′′′
i i .gH (s2)ds2

)
ds1;

therefore,

f ′
i i .gH (s) = f ′

i i .gH (a) ⊕ (−1) f ′′
i .gH (a) � (s − a) �

∫ s

a

( ∫ s1

a
f ′′′
i i .gH (s2)ds2

)
;

similarly, in order to find f ′′′
i i .gH by Theorem 2.3, we have

f ′′′
i i .gH (s2) = f ′′′

i i .gH (a) � (−1)
∫ s2

a
f (4)
i .gH (s3)ds3,

and
∫ s

a

( ∫ s1

a
f ′′′
i i .gH (s2)ds2

)
ds1 = (s − a)2

2
� f ′′′

i i .gH (a)

�(−1)
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i i .gH (s3)ds3)ds2

))
ds1,
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thus, we conclude:

f ′
i i .gH (s) = f ′

i i .gH (a) ⊕ (−1) f ′′
i .gH (a) � (s − a) � (−1) f ′′′

i i .gH (a) � (s − a)2

2

⊕
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i .gH (s3)ds3)ds2

))
ds1;

now, if (s − a) → 0, we get

D( f ′
i i .gH (s) � f ′

i i .gH (a), (−1) f ′′
i .gH (a) � (s − a)) → 0;

this means

(−1) f ′′
i .gH (a) ≈ f

′
i i .gH (s) � f

′
i i .gH (a)

s − a
.

(iv) Suppose that f (i), i = 1, 3, are [(i i) − gH ]-differentiable and f (i), i = 2, 4, are
[(i) − gH ]-differentiable, so base on the above procedures,

f ′
i .gH (s) = f ′

i .gH (a) � (−1) �
∫ s

a
f ′′
i i .gH (s1)ds1,

where

f ′′
i i .gH (s1) = f ′′

i i .gH (a) � (−1) �
∫ s1

a
f ′′′
i .gH (s2)ds2.

also

∫ s

a
f ′′
i i .gH (s1)ds1 = f ′′

i i .gH (a) � (s − a) � (−1) �
∫ s

a

( ∫ s1

a
f ′′′
i .gH (s2)ds2

)
ds1.

By a similar way, it is easy to see that

f ′
i .gH (s) = f ′

i .gH (a) ⊕ (−1) f ′′
i i .gH (a) � (s − a) � (−1) f ′′′

i .gH (a) � (s − a)2

2

⊕
∫ s

a

( ∫ s1

a

( ∫ s2

a
f (4)
i i .gH (s3)ds3)ds2

))
ds1,

and finally if (s − a) → 0, we can conclude

f ′′
i .gH (a) ≈ f

′
i .gH (s) � f

′
i .gH (a)

s − a
.

Now, based on the above theorem, we introduce the Modified Euler method for solving
FDE (3.1). First to integrate the system given Eq. (3.1), we replace the interval [0, T ]
by a set of discrete equally spaced grid points, 0 = t0 < t1 < · · · < tN = T , where
tn = nh, h = T

N . ��
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Now in order to obtain the proposed method, we consider three cases:

Case 1
Let y(t) ∈ C4gH ([0, T ], RF ) is [(i) − gH ]-differentiable solution of problem (3.1) and

y(i)(t), i = 1, . . . , 4 are [(i)−gH ]-differentiable. Now by using the Taylor series expansion
of y(tk+1) at the point tk , for each k = 0, 1, . . . , N , we get

y(tk+1) = y(tk) ⊕ (tk+1 − tk) � y′
i .gH (tk)

⊕ (tk+1 − tk)2

2
� y′′

i .gH (tk) ⊕ (tk+1 − tk)3

3! � y′′′
i .gH (ηk);

for some points ηk lie between tk and tk+1. Since h = tk+1 − tk , gives

y(tk+1) = y(tk) ⊕ h � y′
i .gH (tk) ⊕ h2

2
� y′′

i .gH (tk) ⊕ h3

3! � y′′′
i .gH (ηk). (3.7)

Consequently, by taking Eq. (3.2) into Eq. (3.7) we obtain:

y(tk+1) = y(tk) ⊕ h

2
�

( y′
i .gH (tk+1) � y′

i .gH (tk)

h

)
⊕ h3

3! � y′′′
i .gH (ηk).

Fuzzy differential equation (3.1) implies that y′
gH (t) = f (t, y(t)); so we have

y(tk+1) = y(tk) ⊕ h

2
�

(
f (tk+1, y(tk+1)) ⊕ f (tk, y(tk))

h

)
⊕ h3

3! � y′′′
i .gH (ηk). (3.8)

In order to obtain a numerical method, the value of y(tk+1) appearing on the RHS is not
known. To handel this, the value of y(tk+1) is first predicted by Euler method (Allahviranloo
et al. 2015), and then the predicted value is used in Eq. (3.8).

Thus, the Modified Euler method can be written as follows:
⎧⎨
⎩

y∗
k+1 = yk ⊕ h � f (tk, yk),

yk+1 = yk ⊕ h
2 �

(
f (tk+1, y∗(tk+1)) ⊕ f (tk, y(tk))

)
, k = 0, 1, . . . , N − 1.

(3.9)

Case 2
Now, consider y(t) is [(i i) − gH ]-differentiable and belongs to C3gH ([0, T ],RF ) and

y(i)(t), i = 1, . . . , 4 are [(i i) − gH ]-differentiable. So the Taylor’s series expansion of
y(t) about the point tk at tk+1 is

y(tk+1) = y(tk) � (−1)h � y′
i i .gH (tk)

�(−1)
h2

2
� y′′

i i .gH

�(−1)
h3

3! � y′′′
i i .gH (ηk), (3.10)

Now, by taking Eq. (3.3) into Eq. (3.10) we obtain

y(tk+1) = y(tk) � (−1)
h

2
�

(
y′
i i .gH (tk) ⊕ y′

i i .gH (tk+1)

)
,
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As described in Case 1, the Modified Euler method takes the following form:
⎧
⎨
⎩

y∗
k+1 = yk � (−1)h � f (tk, yk),

yk+1 = yk � (−1) h2 �
(
f (tk+1, y∗(tk+1)) ⊕ f (tk, y(tk))

)
, k = 0, 1, . . . , N − 1.

(3.11)

Case 3
We Consider partition of [0, T ] as follows:

t0 = 0, t1, . . . , t j , γ, t j+1, . . . , tN = T . (3.12)

If the assumptions of case 1 are true for y(t), t ∈ [0, t j ] and case 2 are true for y(t), t ∈
[t j+1, T ] (γ ∈ [0, T ] is a switching point type I ), the Modified Euler method can be written
as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗
k+1 = yk ⊕ h � f (tk , yk),

yk+1 = yk ⊕ h
2 �

(
f (tk+1, y∗(tk+1)) ⊕ f (tk , y(tk))

)
, k = 0, 1, . . . , j .

y∗
k+1 = yk � (−1)h � f (tk , yk),

yk+1 = yk � (−1) h2 �
(
f (tk+1, y∗(tk+1)) ⊕ f (tk , y(tk))

)
, k = j + 1, 1, . . . , N − 1.

(3.13)

Case 4
If the assumptions of case 2 are true for y(t), t ∈ [0, t j ] and case 1 are true for y(t), t ∈
[t j+1, T ] (γ ∈ [0, T ] is a switching point type I I ); hence the Modified Euler method can be
written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗
k+1 = yk � (−1)h � f (tk , yk),

yk+1 = yk � (−1) h2 �
(
f (tk+1, y∗(tk+1)) ⊕ f (tk , y(tk))

)
, k = 0, 1, . . . , j,

y∗
k+1 = yk ⊕ h � f (tk , yk),

yk+1 = yk ⊕ h
2 �

(
f (tk+1, y∗(tk+1)) ⊕ f (tk , y(tk))

)
, k = j + 1, 1, . . . , N − 1.

(3.14)

3.1 Consistency, convergence and stability

In this section, consistency, convergence and stability of the Modified Euler Method are
discussed in detail.

Theorem 3.2 The Modified Euler method is consistent.

Proof First, let y(t) is [(i) − gH ]-differentiable; by Eq. (3.9) we can write

φk = yk+1 �
(
yk ⊕ h

2
�

(
f (tk+1, yk ⊕ f (tk, yk)) ⊕ f (tk, yk)

))
.

The local truncation error is defined as

τk = 1

h
� φk;
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now, it is sufficient to show

lim
h→0

max D(τk, 0) = 0,

where τk = h2
3! y

′′′
i .gH (ξk) and D(y′′′

i .gH , 0) ≤ M1.
Consequently,

lim
h→0

max D(τk, 0) = lim
h→0

h2

3! � max D(y′′′
i .gH (ξk), 0) ≤ h2

3! M1 = 0.

If y(t) is [(i i) − gH ]-differentiable, then

τk = �(−1)
h2

3! � y′′′
i i .gH (ξk),

and D(y′′′
i i .gH , 0) ≤ M2;

therefore,

lim
h→0

max D(τk, 0) = lim
h→0

∣∣∣∣
−h2

3!
∣∣∣∣ � max D(�y′′′

i .gH (ξk), 0) ≤ h2

3! M2 = 0;

so, the proof of the theorem is complete. ��
Lemma 3.1 (see Nieto et al. 2009) For all real z,

1 + z ≤ ez . (3.15)

Theorem 3.3 Let y′′′
gH (t) exist and f (t, y(t)) satisfy inLipschitz conditionon the {(t, y(t))|t ∈

[0, p], y ∈ B(y0, q), p, q > 0}; then the Modified Euler Method converges to the solution
of fuzzy differential Eq. (3.1).

Proof Let y(t) is [(i) − gH ]-differentiable; then the Modified Euler method may be written
in the following form:

yk+1 = yk ⊕ h � φ(tn, yn; h), (3.16)

where

φ(tn, yn; h) = 1

2
[ f (tn, yn) ⊕ f (tn + h, yn ⊕ h � f (tn, yn))],

and φ(., .; .) is continuous function of its variables. First we want to verify the Lipschitz
condition of the function φ for the Modified Euler method.
From Lipschitz condition, we obtain

D(φ(t, u; h), φ(t, v; h)) ≤ 1

2
D( f (t, u), f (t, v))

+1

2
D( f (t + h, u ⊕ h � f (t, u)), f (t + h, v ⊕ h � f (t, v))),

≤ L

2
D(u, v) + L

2
D(u ⊕ h � f (t, u), v ⊕ h � f (t, v)),

≤ L

(
1 + hL

2

)
D(u, v) = LφD(u, v),

i.e. φ satisfies a Lipschitz condition with constant (L + 1
2hL

2).
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Now the exact solution of Eq. (3.1) is satisfied:

y(tk+1) = y(tk) ⊕ h � φ(tk, y(tk); h) ⊕ Rk, (3.17)

where Rk = h3
3! � y′′′

i .gH (tk).
Subtracting Eq. (3.17) from Eq. (3.16) and by using Lipschitz condition, the following

equation is obtained:

D(y(tk+1), yk+1) ≤ (1 + hLφk )D(y(tk), yk) ⊕ D(Rk, 0); (3.18)

we put

Lφ = max
0≤k≤N

{Lφk }, R = max
0≤k≤N

D(Rk, 0),

and by substituting in Eq. (3.18), get

D(y(tk+1), yk+1) ≤ (1 + hLφ)D(y(tk), yk) ⊕ R,

it is easy to see that

D(y(tk+1), yk+1) ≤ (1 + hLφ)k+1D(y(t0), y0) ⊕ [1 + (1 + hLφ) + · · · + (1 + hLφ)k] � R.

On the other hand,

k∑
i=0

(1 + hLφ)i = (1 + hLφ)k+1 − 1

hLφ

,

Now for 0 ≤ (k + 1)h ≤ T , (k + 1) ≤ (N − 1), and by using Eq. (3.15), we obtain

D(y(tk+1), yk+1) ≤ eT Lφk D(y(t0), y0) + R

hLφ

[eT Lφ − 1],

where R = max0≤k≤N D( h
3

3! � y′′′
i .gH (ξk), 0).

It is clear that D(y(t0), y0) = 0; so

D(y(tk+1), yk+1) ≤ h2

6Lφ

[eT Lφ − 1] max
0≤t≤T

D(y′′′
i .gH (t), 0).

Thus, limh→0 D(y(tk+1), yk+1) → 0 and in this case, Modified Euler method converges.
Consider y(t) is [(i i) − gH ]-differentiable, the Modified Euler method is written as

follows:

yk+1 = yk � (−1)h � ϕ(tn, yn; h), (3.19)

where

ϕ(tn, yn; h) = 1

2
[ f (tn, yn) ⊕ f (tn + h, yn � (−1)h � f (tn, yn))],

and ϕ(., .; .) is continuous function of its variables. The Lipschitz condition of the function
ϕ for the Modified Euler method is as follows:

D(ϕ(t, u; h), ϕ(t, v; h)) ≤ 1

2
D( f (t, u), f (t, v))

+1

2
D( f (t + h, u � (−1)h f (t, u)), f (t + h, v � (−1)h f (t, v))),
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≤ L

2
D(u, v) + L

2
D(u � (−1)h � f (t, u), v � (−1)h � f (t, v)),

≤ L

(
1 − hL

2

)
D(u, v) = LϕD(u, v),

i.e. ϕ satisfies a Lipschitz condition with constant (L − 1
2hL

2).
Now the exact solution of Eq. (3.1) is satisfied:

y(tk+1) = y(tk) � (−1)h � ϕ(tk, y(tk); h) ⊕ Jk, (3.20)

where Jk = − h3
3! � y′′′

i i .gH (tk).
Subtracting Eq. (3.20) from Eq. (3.19) and by using Lipschitz condition, the following

equation is obtained:

D(y(tk+1), yk+1) ≤ (1 − hLφk )D(y(tk), yk) ⊕ D(Jk, 0); (3.21)

now by putting

Lϕ = max
0≤k≤N

{Lϕk }, J = max
0≤k≤N

D(Jk, 0),

and by similar procedure, we obtain

D(y(tk+1), yk+1) ≤ −h2

6Lφ

[
1

eT Lφ
− 1

]
max
0≤t≤T

D(y′′′
i i .gH (t), 0).

Thus, limh→0 D(y(tk+1), yk+1) → 0. ��
Theorem 3.4 The Modified Euler method is stable.

Proof Let yk+1, k+1 ≥ 0 be the solution of theModified Euler method with initial condition
y0 ∈ RF and let τk+1 be the solution of the Modified Euler method with perturbed fuzzy
initial condition τ0 = y0 ⊕ ε ∈ RF ; therefore, if y(t) is [(i) − gH ]-differentiable

τk+1 = τk ⊕ h

2
�

(
f (tk+1, τk ⊕ h � f (tk, τk)) ⊕ f (tk, τk)

)
, τ0 = y0 ⊕ ε,

then by using Lipschitz condition and properties of Hausdorff distance, we have

D(yk+1, τk+1) ≤ D(yk, τk) + h

2
L

(
D(yk, τk) + hLD(yk, τk)

)
+ h

2
LD(yk, τk),

Thus

D(yk+1, τk+1) ≤
(
1 + hL + (hL)2

2

)
D(yk, τk).

Now by iterating the above inequality, we can write

D(yk+1, τk+1) ≤
(
1 + hL + (hL)2

2

)k

D(y0, τ0) ≤ (ehL)k D(y0, τ0)

≤ eLT D(y0, τ0) ≤ κD(y0, τ0),

where κ = eT L , and kh ≤ (k+1)h ≤ T . So, if y(t) is [(i)−gH ]-differentiable, this method
is stable. ��
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Now, we suppose that y(t) is [(i i) − gH ]-differentiable; then it is easy to see that

D(yk+1, τk+1) ≤ D(yk, τk) − h

2
L

(
D(yk, τk) − hLD(yk, τk)

)
− h

2
LD(yk, τk);

therefore

D(yk+1, τk+1) ≤
(
1 − hL + (hL)2

2

)
D(yk, τk);

by repeating the earlier procedure we obtain

D(yk+1, τk+1) ≤
(
1 − hL + (hL)2

2

)k

D(y0, τ0) ≤ (e−hL )k D(y0, τ0)

≤ e−LT D(y0, τ0) ≤ κD(y0, τ0),

where κ = e−T L , and kh ≤ (k + 1)h ≤ T ; therefore, the Modified Euler method is stable.

4 Numerical examples

In this section we will provide three examples to emphasize acceptable accuracy of Modified
EulerMethod.All numerical computationswere performedusingMaple 13 software package.

Example 4.1 (see. Allahviranloo et al. 2015) Consider the first-order fuzzy initial value prob-
lem as follows:

{
y′
i .gH (t) = y(t) ⊕ (1.3, 2, 2.1), 0 ≤ t ≤ 1;
y(0) = (0.82, 1, 1.2),

such that the exact [(i) − gH ]-differentiable solution is obtained by solving the following
system:

⎧⎨
⎩

(y−)′(t;α) = y−(t;α) + 1.3 + 0.7α, 0 ≤ t ≤ 1;
(y+)′(t;α) = y+(t;α) + 2.1 − 0.1α, 0 ≤ t ≤ 1;
y(0;α) = [0.82 + 0.18α, 1.2 − 0.2α], .

Now we use the Modified Euler method to obtain approximate solution and we compare
our solution with Euler method (Allahviranloo et al. 2015). The global truncation errors of
the Modified Euler and Euler method have been reported for h = 0.025 and 0.005 in Table 1,
and the approximated solution by the Modified Euler method is shown in Fig. 1.

Example 4.2 (see Allahviranloo et al. 2015) Let us consider the following initial value prob-
lem:

{
y′
i i .gH (t) = −y(t) ⊕ t � (0.7, 1, 1.8), 0 ≤ t ≤ 1,
y(0) = (0, 1, 2.2)

(4.1)

Since y(t) has [(i i) − gH ]-derivative, the [(i i) − gH ]-differentiable solution is obtained by
solving

⎧
⎨
⎩

(y−)′(t;α) = −y−(t;α) + t [1.8 − 0.8α], 0 ≤ t ≤ 1,
(y+)′(t;α) = −y+(t;α) + t [0.7 + 0.3α], 0 ≤ t ≤ 1,
y(0;α) = [α, 2.2 − 1.2α]
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Table 1 The global truncation errors for Example 4.1

t h = 0.025 h = 0.005

Modified Euler Euler Modified Euler Euler

0 0 0 0 0

0.1 2.3952 × 10−5 4.48149 × 10−3 1.514 × 10−7 4.44089 × 10−4

0.2 5.2943 × 10−5 9.89954 × 10−3 3.346 × 10−6 2.00812 × 10−3

0.3 1.36619 × 10−4 1.64009 × 10−2 5.547 × 10−6 3.32856 × 10−3

0.4 2.01315 × 10−4 2.41529 × 10−2 8.174 × 10−6 4.90422 × 10−3

0.5 2.78108 × 10−4 3.33459 × 10−2 1.1291 × 10−5 6.77416 × 10−3

0.6 3.68824 × 10−4 4.41964 × 10−2 1.4973 × 10−5 8.98281 × 10−3

0.7 4.75546 × 10−4 5.69503 × 10−2 1.9305 × 10−5 1.15806 × 10−2

0.8 6.00637 × 10−4 7.18871 × 10−2 2.4382 × 10−5 1.46252 × 10−2

0.9 7.46780 × 10−4 8.93237 × 10−2 3.0317 × 10−5 1.81815 × 10−2

1.0 9.17016 × 10−4 1.09619 × 10−1 3.7230 × 10−5 2.23235 × 10−2

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r 
cu

t

Fig. 1 Approximated solution for Example 4.1. Red lines: y+(t, r); black lines:y−(t, r)

The global truncation errors of Modified Euler and Euler method have been reported for
h = 0.025 and 0.005 in Table 2, and the approximated solution by the Modified Euler
method is shown in Fig. 2.

Example 4.3 (see Allahviranloo et al. 2015) Consider the initial value problem
{
y′
gH (t) = (1 − t) y(t), 0 ≤ t ≤ 2,
y(0) = (0, 1, 2)

Obviously that initial value problem on [0, 1] is [(i) − gH ]-differentiable and at t = 1 the
problem is switched to [(i i)−gH ]-differentiable. So, the point t = 1 is a switching point and
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Table 2 The global truncation errors for Example 4.2

t h = 0.025 h = 0.005

Modified Euler Euler Modified Euler Euler

0 0 0 0 0

0.1 2.7852 × 10−5 3.33362 × 10−3 1.098 × 10−6 6.58119 × 10−4

0.2 5.0403 × 10−5 6.02895 × 10−3 1.984 × 10−6 1.19083 × 10−3

0.3 6.8410 × 10−5 8.17763 × 10−3 2.695 × 10−6 1.61606 × 10−3

0.4 8.2535 × 10−5 9.85964 × 10−3 3.252 × 10−6 1.94945 × 10−3

0.5 9.3351 × 10−5 1.11446 × 10−2 3.679 × 10−6 2.20464 × 10−3

0.6 1.01361 × 10−4 1.20932 × 10−2 3.994 × 10−6 2.39351 × 10−3

0.7 1.07002 × 10−4 1.27580 × 10−2 4.217 × 10−6 2.52638 × 10−3

0.8 1.10650 × 10−4 1.31847 × 10−2 4.360 × 10−6 2.61220 × 10−3

0.9 1.12636 × 10−4 1.34127 × 10−2 4.438 × 10−6 2.65874 × 10−3

1.0 1.13242 × 10−4 1.34763 × 10−2 4.461 × 10−6 2.67269 × 10−3

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r 
cu

t

Fig. 2 Approximated solution for Example 4.2. Red lines: y+(t, r); black lines:y−(t, r)

the obtained solution on [0, 1] is [(i) − gH ]-differentiable and [(i i) − gH ]-differentiable
on (1, 2]. The [(i) − gH ]-differentiable solution can be obtained by solving

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(y−)′(t;α) =
{

(1 − t)y−(t;α), 0 ≤ t ≤ 1,
(1 − t)y+(t;α), 1 < t ≤ 2,

(y+)′(t;α) =
{

(1 − t)y+(t;α), 0 ≤ t ≤ 1,
(1 − t)y−(t;α), 1 < t ≤ 2,

y(0;α) = [α, 2 − α]
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Table 3 The global truncation errors for Example 4.3

t h = 0.025 h = 0.005

Modified Euler Euler Modified Euler Euler

0 0 0 0

0.2 3.7098 × 10−5 1.05772 × 10−3 1.476 × 10−6 2.21057 × 10−4

0.4 6.3540 × 10−5 4.62954 × 10−3 2.507 × 10−6 9.48966 × 10−4

0.6 7.9558 × 10−5 1.07346 × 10−2 3.109 × 10−6 2.18262 × 10−3

0.8 8.7732 × 10−5 1.87015 × 10−2 3.39 × 10−6 3.78194 × 10−3

1.0 9.0927 × 10−5 2.72488 × 10−2 3.471 × 10−6 5.48657 × 10−3

1.2 9.22345 × 10−5 1.84424 × 10−2 3.4815 × 10−6 3.73717 × 10−3

1.4 9.39650 × 10−5 8.95003 × 10−3 3.5120 × 10−6 1.85160 × 10−3

1.6 9.82381 × 10−5 6.46455 × 10−4 3.6421 × 10−6 5.51592 × 10−5

1.8 1.120221 × 10−4 9.62457 × 10−3 4.1481 × 10−6 1.84070 × 10−3

2.0 1.53036 × 10−4 1.72255 × 10−2 5.752 × 10−6 3.35558 × 10−3

0 0.5 1 1.5 2 2.5 3 3.5
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0.6

0.8
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Fig. 3 Approximated solution for Example 4.3. Red lines: y+(t, r); black lines:y−(t, r)

The global truncation errors of Modified Euler and Euler method have been reported for
h = 0.025 and 0.005 in Table 3, and the approximated solution by the Modified Euler
method is plotted in Fig. 3.

Example 4.4 Jafari and Razvarz (2018) A tank with a heating system is displayed in Fig. 4,
where R̃ = 0.5, the thermal capacitance is C̃ = 2, and the temperature is ψ . The model is
formulated as follows:

{
φ′(t) = − 1

R̃C̃
φ(t), 0 ≤ t ≤ T ,

φ(0) = (φ−(0, α), φ+(0, α)),
(4.2)

where the initial condition is a symmetric triangular fuzzy number as φ(0) = (−a(1 −
α), a(1 − α)).

The solution of FDE (4.2), by using Modified Euler method, for a = 2, h = 0.005 is
shown in Fig. 5.
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Fig. 4 Thermal system

Fig. 5 Approximated and Real solution for Example 4.4

5 Conclusion

In this paper, we provided the numerical method for solving fuzzy differential equations
under generalized differentiability. By improving Euler method (Allahviranloo et al. 2015),
the Modified Euler method without losing its simplicity was introduced, and it was shown
that the global error for the Modified Euler method was o(h2), while the global error of Euler
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method was o(h). Finally, some examples were provided to emphasize acceptable accuracy
of proposed method.
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