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Abstract
In this work, an adaptive element free Galerkin (EFG) technique is proposed for solving con-
vection diffusion equation. A post-processed gradient is used as a posteriori error estimation
to find locations with large contribution of the error. Also, to avoid instabilities, the EFG
method is applied on a modified equation instead of the original equation. In the modified
equation diffusion coefficient (known as artificial diffusion) depends to the distance between
nodal points. The numerical results reveal efficiency of the adaptive technique.

Keywords Element free Galerkin (EFG) method · Moving least squares (MLS)
approximation · Error estimation · Adaptive technique · Local refinement

Mathematics Subject Classification 65N50 · 65N30 · 65N99

1 Introduction

The convection diffusion equation is given by

−ε�u + b.∇u + cu = f in �,

u = gD on �D,

ε
∂u

∂n
= gN on �N , (1.1)

where ε is a small positive parameter and � is an open bounded domain enclosed with ∂� =
�D∪�N .Moreover, n is the outward unit normal to the boundary. This type of equations plays
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an important role in many physical phenomena. For example, scalar convection diffusion
equations describe the transport of a scalar quantity, e.g. temperature or concentration. In
these equations the operators −ε� and b.∇ determine what the solution of (1.1) looks like.
The first one relates u proportionally to ε and the second one transports u in the direction of
vector b (Larson and Bengzon 2013). Hence, these operators model the physical processes
of diffusion and convection, respectively. Generally, solutions of the convection diffusion
equations have layers, due to this trait there are some small parts of the domain where
derivative of the solution is very large (John 2000). In Tang and Trummer (1996) boundary
layer resolving pseudospectral methods are presented to overcome this problem. Adaptive
techniques are very suitable to this kind of problems. In adaptive techniques a posteriori error
estimation is needed to find information about locations for local mesh refinement as well as
for estimating the global error. There are several works in implementation and analysis of a
posteriori error estimation for solving many classes of partial differential equations in finite
element methods (Ainsworth and Oden 1993; Bank and Weiser 1985; Eriksson et al. 1995).
A good review of some a posteriori error estimation for convection diffusion equations can
be found in John (2000).

Themain challenge in convection diffusion problems depends to how large is “Péclet num-
ber” which provides a measure of how much the convective term prevails over the diusive
one. A problem featuring Pe � 1 will be named convection dominated diffusion prob-
lem (Quarteroni et al. 2014). In this case behaviour of the numerical solutions is oscillatory.
To avoid these solutions, discretization parameters should be chosen sufficiently small which
makes the numerical method inconvenient. An approximate solution of the problem does
not exhibit oscillations if Pe < 1. A stabilization technique is based on adding an artificial
diffusion to make Péclet number as small as possible. Therefore, for smaller values of ε, this
stabilization technique is more efficient. This more diffusion should be as little as possible
not to sacrifice accuracy, but as much as need to obtain stability (Larson and Bengzon 2013).

The current work presents an adaptive element free Galerkin method for solving con-
vection diffusion equations. The EFG method was introduced by Belytschko et al. (1994),
Dolbow and Belytschko (1998). This method is based on the moving least squares (MLS)
Yaw (2009) approximation and a background mesh for the integration purpose. The MLS
shape functions do not have Kronecker delta property, therefore, the essential boundary con-
dition should be enforced. In Dehghan andAbbaszadeh (2018a, b) the authors have combined
the EFG method with the moving Kriging interpolation and radial point interpolation which
have Kronecker delta property for solving transport problems, incompressible Navier–Stokes
equation and some PDEs with discontinuous solutions. The element free Galerkin method is
used for solving real world problems in Jannesari and Tatari (2016, 2017) and Dehghan and
Narimani (2018). More about meshfree methods are presented in Liu (2003).

Rest of the paper is organized as follows: Sect. 2 is devoted to explain EFG method and
MLS approximation. Section 3 explains the proposed adaptive technique and in Sect. 4,
numerical results for some problems are presented to confirm validity of the approach. The
last section is conclusion.

2 The EFGmethod

The element freeGalerkinmethod is based on theweak formulation of the considered problem
and MLS approximation. In MLS approximation nodal points are used and does not need
any mesh generation. This approximation is not necessarily interpolant, hence enforcement
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of Dirichlet boundary conditions is not straightforward. There are several ways to impose
these boundary conditions such as Lagrange multipliers and penalty method. In this work,
the penalty method is used to impose Dirichlet boundary conditions.

2.1 MLS approximation

The MLS approximation which was introduced by Lancaster and Salkauskas (1981) is well-
known technique with acceptable accuracy. This approximation is local and at any arbitrary
evaluation point x, only the neighboring nodes in influence domain of point x are conse-
quential. The influence of a node xi is governed with a weight function w(x − xi ), which
vanishes outside of the influence domain of node xi . Let the true solution u be known at some
selected points xi . To approximate solution uh(x) in the problem domain �̄, by least squares
sense, the goal is to find minimum of the expression (uh(xi ) − u(xi ))2 for each i . Let the
approximation uh(x), be posed as a polynomial of order m with variant coefficients in the
following matrix form

uh(x) = pT(x)a(x), ∀x ∈ �̄, (2.1)

where pT(x) = [p1(x) p2(x) · · · pm(x)] consists of complete monomial of order m. In two
dimensional cases, linear and quadratic basis are defined as:

pT(x) = [1 x y] linear basis, m = 3,

pT(x) = [1 x y x2 xy y2] quadratic basis, m = 6.

The vector a(x) is given by

a(x) = [a1(x) · · · am(x)]T.

The unknown parameters a j (x), j = 1, . . . ,m, vary with space coordinates x. Therefore,
a(x) should be determined at any given point x. In doing so, the least squares functional is
written as following:

J (x) = 1

2

Nt∑

i=1

w(x − xi )
(
pT(xi )a(x) − u(xi )

)2

. (2.2)

where Nt is the total number of points. The coefficient 1
2 is added for mathematical conve-

nience. Also, each summation term, is weighted by a weight functionw(x−xi ) thus the local
solution is influenced by the local nodes that are not far away. To minimize J with respect to
each ai (x), for the sake of simplicity, first write functional J in the following matrix form

J (x) = 1

2
[Pa(x) − u]TW[Pa(x) − u], (2.3)

where

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

pT(x1)

pT(x2)

...

pT(xNt
)

⎤

⎥⎥⎥⎥⎥⎥⎦

Nt ×m

,W =

⎡

⎢⎢⎣

w(x − x1) · · · 0

· · · . . . · · ·
0 · · · w(x − xNt

)

⎤

⎥⎥⎦

Nt ×Nt

,
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and

u = [u1, u2, . . . , uNt
]T.

Setting ∂J
∂a = 0 yields the following:

(Pa(x) − u)TWP = 0. (2.4)

Transpose the whole Eq. (2.4) gives:

(WP)T(Pa(x) − u) = 0. (2.5)

This equation can be rewritten as follows:

PTWPa(x) = PTWu. (2.6)

Define moment matrices A(x) and B(x) as follows:

A(x) = PTWP =
Nt∑

i=1

w(x − xi )p(xi )pT(xi ), (2.7)

B(x) = PTW = [w(x − x1)p(x1), w(x − x2)p(x2), . . . , w(x − xNt
)p(xNt

)]. (2.8)

Using these definitions, Eq. (2.6) becomes:

A(x)a(x) = B(x)u, (2.9)

solve for unknown coeffiecints a(x) and substituting it into Eq. (2.1):

uh(x) =
Nt∑

i=1

φi (x)ui = �T(x)u, x ∈ �̄, (2.10)

where

�T(x) = pT(x)A−1(x)B(x), (2.11)

is the vector of shape functions. Moreover, derivatives of shape function can be obtained
using the product rule on Eq. (2.11)

�T
,k(x) = pT,kA

−1B + pTA−1
,k B + pTA−1B,k, (2.12)

with

A−1
,k = −A−1A,kA−1, (2.13)

where

A,k(x) =
Nt∑

i=1

w,k(x − xi )p(xi )pT(xi ). (2.14)

Further details about MLS shape functions can be found in Yaw (2009). In all numerical
exampleswehave used shifted and scaledMLS shape functions that computationally aremore
efficient. Details about how to construct these shape functions are presented in Belytschko
et al. (1996).
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2.2 The governing system

Consider Eq. (1.1) as follows:
find u ∈ H1(�) from

a(u, v) = l(v), ∀v ∈ H1(�), (2.15)

where

a(u, v) =
∫

�

(−ε�uv + b.∇uv + cuv)d�,

and

l(v) = ( f , v) =
∫

�

f vd�,

where v is the test function that is chosen as MLS shape function. Applying the integration
by parts formula to the above equation and adding the penalty terms to enforce Dirichlet
boundary conditions lead to the following system (Dolbow and Belytschko 1999):

(S + E + M + Mp)u = F + FN + Fp,

where

Si j = ε

∫

�

∇φi .∇φ jd�, (2.16)

Ei j =
∫

�

b.∇φiφ jd�, (2.17)

Mi j =
∫

�

cφiφ jd�, (2.18)

Mpi j =
∫

�D

φiγφ jds, (2.19)

and

Fi =
∫

�

fiφid�, (2.20)

FNi =
∫

�N

ε
∂ui
∂n

φids, (2.21)

F pi =
∫

�D

gDi γφids. (2.22)

The parameter γ in Eqs. (2.19) and (2.22) is used to penalize difference between Dirichlet
boundary conditions and the obtained solution by EFG approximation. Moreover, it should
be noted that the EFG method requires the partitioning of the domain into cells, to evaluate
all integrals appeared in Eqs. (2.16)–(2.22).

In the point of geometry, these cells should be as simple as possible and usually are
rectangle or triangle. In this work, we use a triangular mesh as a partition of the domain.
Based on Reference (Belytschko et al. 1994) a proper ratio of Gaussian points to total number
of nodes is 4–7. To get this ratio, 3-point Gaussian rule is used, however, the results are
acceptable using one point rule. An excellent detail about integration on triangle can be
found in Gockenbach (2006).
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2.2.1 Stabilization

Based on what is discussed in Larson and Bengzon (2013), when ε in Eq. (1.1) decreases we
lose control of gradients of u, i.e.∇u can grow sharply. In other words, small perturbations of
f can lead to a large local values of ∇u. Indeed, it is common for u to has thin regions called
layers where it changes rapidly. Due to large local values of ∇u there are great difficulties
in handling layers and thus need modification of the numerical method. There are several
techniques to do this such as adding an artificial diffusion, least squares stabilization (John
2000) and edge stabilization that is based on least square stabilization of the gradient jumps
across the element boundaries (Burman and Hansbo 2004). In this paper h

2b is added to the
diffusion term as an artificial diffusion, where h is mesh size. Therefore, Eqs. (2.16) and
(2.21) are replaced by the following equations

Si j =
∫

�

[
ε + h

2
b1φix , ε + h

2
b2φiy

]
.∇φ jd�,

and

FNi =
∫

�N

[
ε + h

2
b1uix , ε + h

2
b2uiy

]
.nφids.

Although, thiswork is presentedwith the aimof implementation of an adaptiveEFG technique
for convection diffusion problems, stabilization strategy can help us to get better results with
less computational effort.

3 The adaptive algorithm

Let T = {T } be a partition of domain � and the mesh size hT is defined by hT = diam(T ).
The following adaptive algorithm generates a sequence of meshes, T0, T1, T2, . . ..

• Start with a coarse mesh T0.
• Solve the problem to get the discrete solution uh on the current mesh.
• Compute the error on each element using a suitable a posteriori error estimation.
• Mark a fixed (θ) percentage of those element with largest error contribution.
• Refine the marked element with a local mesh refinement technique such as red-green

refinement and longest edge bisection, to generate new triangulation Tk+1. Details of
these local refinement techniques can be found inmost finite element books such asGock-
enbach (2006). If in the previous step we chose θ = 1, then the refinement is global.

• Continue this process until get acceptable tolerance, or when the maximum number of
elements in the mesh exceeds from a user predefined number.

3.1 A posteriori error control

Let eh = u− uh be the numerical error relates to the exact solution u and numerical solution
uh . Instead of measuring the error of the solution in some applications, it maybe useful to
consider the gradient of error, i.e. ∇eh = ∇u − ∇uh . In most problems the exact value of
the gradient is not known. Here, the main idea is post processing the gradient and to find an
estimate for the true error by comparing the post-processed gradient and non post-processed
gradient of the numerical solution uh (Gratsch and Bathe 2005). LetGuh denote an improved
(post-processed) approximation to the gradient. It can be approximated by
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Guh(x) =
ni∑

i=1

φi (x)guhi , (3.1)

where ni is number of points in the influence domain of x. The coefficients guhi can be
determined by solving the following equation:

(Guh, φ) = (∇uh, φ), (3.2)

or, in the other words, solving the following linear system:
∫

�

(Guh − ∇uh)φ jd� = 0, j = 1, 2, . . . ni . (3.3)

Substituting (3.1) into Eq. (3.3) leads to:

ni∑

i=1

∫

�

φiφ j guhid� =
∫

�

φ j∇uh jd�. (3.4)

Then using guhi to findGuh and applying it instead of the true gradient, yield the following
a posteriori error estimation (Gratsch and Bathe 2005)

‖eh‖2E ≈ (Eh)
2 =

∑

T∈T
η2T , (3.5)

where ‖.‖E shows the energy norm and

η2T = ‖Guh − ∇uh‖2L2(T )
.

This kind of error estimation is known as recovery-based error estimation was introduced by
Zienkiewicz and Zhu (1992).

4 Numerical investigation

In this section, the EFG method is applied for some examples to demonstrate efficiency and
accuracy of the proposed method. In all of the examples linear basis (m = 3) and following
cubic spline weight function with rectangular support are used

w(r) =
⎧
⎨

⎩

4r3 − 4r2 + 2
3 r ≤ 1

2 ,− 4
3r

3 + 4r2 − 4r + 4
3

1
2 < r ≤ 1,

0 r > 1.
(4.1)

where r = ||x−xi ||2
di

, and di is about 1.5h where h is the maximum diameter of the triangles
that one of their vertices is xi . Moreover, all examples are solved in unit square [0, 1]×[0, 1]
and with γ = 1000 as the penalty parameter. To show efficiency of the present method, the
initial mesh is chosen very coarse. The unit square is only divided into two triangles as the
first mesh. Also, we set θ = 0.3, and use the following definition as effectivity index

Effectivity index := (
∑

T∈T η2T )1/2

‖eh‖E .

Besides, in the following tables L2 error is reported on some level of refinements where
adaptive.S and uniform.S are adaptive and uniform methods using stabilization and Nt is
total number of nodes.
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Table 1 Error of computed solution by uniform refinement, Example 1

Method Level 5 Level 9 Level 13

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
Uniform 41 1.38e+0 545 4.92e−1 8321 6.10e−2

Uniform.S 41 1.46e−1 545 7.68e−2 8321 3.75e−2

Table 2 Error of computed solution on adaptive refined mesh, Example 1

Method Level 6 Level 12 Level 18

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
Adaptive 26 2.89e−1 393 8.81e−1 4773 7.24e−2

Adaptive.S 25 1.87e−1 242 6.55e−2 2036 3.76e−2

Table 3 Relative error and CPU time of computed solution, Example 1

Adaptive.S Uniform.S

Level Nt Re(u) Time Level Nt Re(u) Time

6 25 8.76e−2 2 7 145 3.30e−2 3

12 242 8.38e−3 10 10 1089 8.57e−3 19

18 2036 1.13e−3 106 13 8321 1.43e−3 472

4.1 Example 1

As the first numerical experiment consider following example with ε = 10−3, b = (2, 3)T

and c = 1 and ∂� = �D . The right hand side f and Dirichlet boundary conditions are
chosen such that

u = xy2 − y2 exp

(
2(x − 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x − 1) + 3(y − 1)

ε

)
.

In this case, the solution has typical regular boundary layers at x = 1 and y = 1 (John 2000).
In Tables 1 and 2, L2 error of solutions computed by uniform and adaptive refinements are
reported respectively. In each of these tables stabilized and unstabilized cases are investigated.
According to these tables stabilization technique is more efficient for adaptive refinement.
In Table 3 relative error and CPU time of stabilized adaptive and uniform refinements are
compared which shows efficiency of the presented stabilized adaptive method.

The numerical solution and the last mesh of this test are plotted in Fig. 1. Also, Fig. 2
shows the effectivity indices and obtained L2 error for this example. In this example, the
effectivity indices are lower than one. Indeed, the error is underestimated by around a factor
between 0.1 and 0.5. We emphasize that an a posteriori error estimator is called efficient, if
the effectivity index (E I ) and inverse of it ( 1

E I ) are bounded for all meshes. Besides, if it
does not vary too much with respect to a given mesh. Also, Fig. 3 shows convergence rate
for this example.
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Fig. 1 EFG solution by adaptive technique (left) and corresponding background mesh on level 20 (right),
Example 1
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Fig. 2 The effectivity index as a function of refinement (left) and L2 error (right), Example 1
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Fig. 3 Convergence rate by adaptive and uniform refined mesh with stabilization, Example 1
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Fig. 4 EFG solution by adaptive technique (left) and the last adapted mesh (right), Example 2
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Fig. 5 The effectivity index as a function of refinement (left) and L2 error (right), Example 2

4.2 Example 2

This example is taken from Burman and Hansbo (2004). Consider (1.1) with ε = 10−5,
b = (1, 0)T and c = 1. The exact solution that has an internal boundary layer, is given by

u = 1

2

(
1 − tanh

(
x − 0.5

0.05

))
.

The corresponding f and Dirichlet boundary conditions are obtained by inserting the exact
solution into Eq. (1.1). The numerical solution and the final mesh of this test at level 15 of
adaptive refinements are shown in Fig. 4. Moreover, the effectivity indices and the obtained
L2 error at this refinement level have shown in Fig. 5. In this case, the effectivity indices for
both stabilized and unstabilized are convergent to 1.5. However, L2 errors are too different
in with and without stabilization. In Fig. 6, convergence rates of the solutions obtained
by adaptive and uniform refined mesh with stabilization are compared. As in the previous
example, Tables 4, 5 and 6 are devoted to the comparison of adaptive and uniform refinements
and effect of stabilization technique. Also, in Table 7 results of the current method and finite
element method using edge stabilization (FEM-ES) are compared. Results of FEM-ES have
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Fig. 6 Convergence rate by adaptive and uniform refined mesh with stabilization, Example 2

Table 4 Error of computed solution by uniform refinement, Example 2

Method Level 4 Level 8 Level 12

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
Uniform 25 6.84e−1 289 9.02e−2 4225 4.09e−4

Uniform.S 25 2.56e−1 289 6.78e−2 4225 2.84e−4

Table 5 Error of computed solution on adaptive refined mesh, Example 2

Method Level 6 Level 11 Level 16

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
Adaptive 32 5.08e−1 214 4.63e−1 1626 5.52e−1

Adaptive.S 36 3.04e−1 250 9.80e−3 1677 1.09e−3

Table 6 Relative error and CPU time of computed solution, Example 2

Adaptive.S Uniform.S

Level Nt Re(u) Time Level Nt Re(u) Time

6 36 8.69e−2 2 4 25 7.64e−2 1

11 250 1.37e−3 6 8 289 5.77e−3 4

16 1677 5.73e−5 64 12 4225 6.33e−6 140

extracted from Burman and Hansbo (2004). It should be noted that, the reported CPU time
is the total elapsed time, from level 1 to the last level, and it is not the CPU time of last level.
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Table 7 Comparison of Adaptive.S and Uniform.S and FEM-ES, Example 2

Method Adaptive.S Uniform.S FEM-ES

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
1677 1.09e−3 2113 3.78e−3 1681 2.5e−3

-0.5
1 1

0

0.5

0.5

1

0.5

1.5

0 0 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7 EFG solution by adaptive technique (left) and corresponding adapted background mesh (right) on level
15, Example 3
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Fig. 8 The effectivity index as a function of refinement (left) and L2 error (right), Example 3

4.3 Example 3

In this case ε = 10−2, b = (0, 1)T and c = 0. The exact solution is as follows:

u = exp( 1
ε
) − exp( x

ε
)

exp( 1
ε
) − 1

.

The right-hand side f and Dirichlet boundary conditions can be computed from the exact
solution. The results of this test are shown in Fig. 7. The effectivity indices and L2 error
are gathered in Fig. 8. Also, as Example 2, we have reported the effectivity indices for both
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Fig. 9 Convergence rate by adaptive and uniform refined mesh with stabilization, Example 3

Table 8 Error of computed solution by uniform refinement, Example 3

Method Level 4 Level 8 Level 12

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
Uniform 25 1.56e+0 289 1.12e−1 4225 1.03e−2

Uniform.S 25 5.29e−1 289 1.11e−1 4225 1.02e−2

Table 9 Error of computed solution on adaptive refined mesh, Example 3

Method Level 5 Level 10 Level 15

Nt ‖u − uh‖L2 Nt ‖u − uh‖L2 Nt ‖u − uh‖L2
Adaptive 25 1.32e+0 230 9.53e−2 1193 7.71e−3

Adaptive.S 30 1.24e+0 200 9.55e−2 1009 3.21e−3

Table 10 Relative error and CPU time of computed solution, Example 3

Adaptive.S Uniform.S

Level Nt Re(u) Time Level Nt Re(u) Time

5 25 2.19e−1 1 4 25 1.18e−1 1

10 200 7.22e−3 5 8 289 7.02e−3 4

15 1009 1.08e−4 33 12 4225 2.38e−4 146

stabilized and unstabilized methods. However, here the results of using artificial diffusion
(stabilized) and without this term (unstabilized) are not too different. The reason is that in this
example ε can not be too small because even the exact solution is undefined for ε = 10−3 in
the MATLAB double precision floating point system. Also, Fig. 9 shows convergence rate of
presented methods in this example. Comparisons of adaptive and uniform refinements and
effect of stabilization are presented in Tables 8, 9 and 10.
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Fig. 10 The EFG solution by adaptive technique with t = π
4 (left) and the adapted mesh at level 20 (right)

Example 4

4.4 Example 4

As the last example, consider the following example without exact solution, which involves
discontinuous boundary conditions and causes not only a sharp layer, but also an internal
sharp layer (Lin andAtluri 2000). In this case, ε = 10−3, the right hand side f and the reaction
coffiecient c are zero. The vector b = [cos t, sin t] and Dirichlet boundary conditions are as
follows:

gD =

⎧
⎪⎨

⎪⎩

1 0 ≤ x ≤ 1, y = 0

1 x = 0, 0 ≤ y ≤ 0.2

0 otherwise.

(4.2)

The numerical solution and last mesh obtained at level 20 of refinements for t = π
4

are shown in Fig. 10. A mild oscillation can be observed near the point (0.05,0.2). Results
without using stabilization and adaptive technique are not acceptable and are not reported in
the paper.

5 Conclusion

In this paper, an adaptive element free Galerkin (EFG) method is suggested for solving
convection diffusion type equations.A posteriori error estimation based on the post-processed
gradient is used. Also, to get the stability an artificial diffusion is considered. Here, it should
be noted that based on the results reported in the tables, use of artificial diffusions has great
effect on adaptive refinements, while this effect is insignificant for uniform refinements. To
show efficiency of the proposed adaptive technique, some examples are solved numerically
and the effectivity indices are computed in the examples with exact solution.
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