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Abstract

We propose an extragradient method for solving equilibrium problems of pseudo-monotone
type in Hadamard spaces. We prove A-convergence of the generated sequence to a solution
of the equilibrium problem, under standard assumptions on the bifunction. Then, we propose
a regularization procedure which ensures strong convergence of the generated sequence to
an equilibrium point of the problem.
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1 Preliminaries

Let (X, d) be a metric space. For x, y € X, amapping ¢ : [0, /] — X, where ! > 0, is called
a geodesic with endpoints x, y, if ¢(0) = x, c() = y, and d(c(?), c(t')) = |t — | for all
t,t" €[0,1].1f, forevery x, y € X, a geodesic with endpoints x, y exists, then we call (X, d)
a geodesic metric space. Furthermore, if there exists a unique geodesic for each x, y € X,
then (X, d) is said to be uniquely geodesic.

Definition 1.1 A subset K of a uniquely geodesic space X is said to be convex when for any
two points x, y € K, the geodesic joining x and y is contained in K.

For each x, y € X, the image of a geodesic ¢ with endpoints x, y is called a geodesic
segment joining x and y and is denoted by [x, y].
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Let X be a uniquely geodesic metric space. Foreach x, y € X and foreacht € [0, 1], there
exists a unique point z € [x, y] such that d(x, z) = td(x,y) and d(y, z) = (1 — t)d(x, y).
We will use the notation (1 — #)x @ ty for denoting the unique point z satisfying the above
statement.

Definition 1.2 (see Dhompongsa and Panyanak 2008) A geodesic space X is called CAT(0)
space if for all x, y,z € X and ¢ € [0, 1] it holds that

d*tx ® (1 — 1)y, 2) <td*(x,2) + (1 = 0d*(y, 2) — t(1 — 1)d*(x, y).

A complete CAT(0) space is called a Hadamard space.

We enumerate next some relevant examples of Hadamard spaces (see Bacak 2014;
Bertrand and Kloeckner 2012).

1. The Euclidean space R"”, and more generally all Hilbert spaces. The geodesics are the
line segments. Moreover, it is known that a Banach space is CAT(0) if and only if it is
Hilbert.

2. The real hyperbolic space. We equip R"*! with the inner product given by (x, y) =
—x0y0+ >ty xiyi. forx = (x, x1, ..., xp) and y = (y0, Y1, . . -, yn). We consider the
hyperbolic space H" := {x = (X0, X1,...,Xp) € R+ (x,x)=—1, xg9 > 0}. The
Riemannian metric g on the tangent spaces T, H" C T,R"*! for p € H" is defined as
g(x,y) = arccosh(—(x, y)) for all x, y € H". The sectional curvature of (H", g) is —1
at every point.

3. Other hyperbolic spaces, like CH", HH", QH?2.

4. More generally, the symmetric spaces of non-compact type, like the quotient SL(n, R)/
SO (n, R) endowed with the metric induced by the Killing form of SL(n, R).

5. More generally, all simply connected Riemannian manifold with non-positive sectional
curvature.

6. R-trees. Recall that a metric space (X, d) is an R-tree if it is uniquely geodesic and for
every x, y, z € X we have [x, z] = [x, y] U [y, z] whenever [x, y] N [y, z] = y.

7. The Hilbert ball. Let (H, | - ||) be a complex Hilbert space with inner product and
put B := {x € H : ||x|| < 1}. We equip B with the hyperbolic metric p(x, y) :=
tanh~! /T — o (x, y), forall x, y € B, where o (x, y) := (1 — [|x|))(1 — [|y|®) /(1 —
(x, y)) forall x, y € B. Now, (B, p) is a Hadamard space. This is an infinite dimensional
Hadamard space with non zero curvature.

8. All products of Hadamard spaces.

9. The gluing of any two Hadamard spaces along isometric, convex subsets; for example, any
Hadamard space with an additional geodesic ray glued at some point, or three hyperbolic
half-planes glued along their limiting geodesics, etc.

Berg and Nikolaev (1998, 2008) introduced the concept of quasi-linearization as follows.

Letus formally denote a pair (a, b) € X x X as a_l)) and call it a vector. Then quasi-linearization
is defined as amap (-, -) : (X x X) x (X x X) — R defined by

1
(ab, cd) = SP@d+db.0) - @0 -}, abedeX.

. - — - = = - - — - = - —
It is easy to see that (ab, cd) = (cd, ab), (ab, cd) = —(ba, cd) and (ax, cd) + (xb, cd) =
— —

(ab, cd) for all a, b, c,d, x € X. We say that X satisfies the Cauchy—Schwarz inequality

if (ab, cd) < d(a,b)d(c,d) for all a,b,c,d € X. It is known (Corollary 3 of Berg and
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Nikolaev 2008) that a geodesically connected metric space is a CAT(0) space if and only if
it satisfies the Cauchy—Schwarz inequality.

Let (X, d) be a Hadamard space and {x"} be a bounded sequence in X. Take x € X. Let
r(x, {x"}) =limsup,_, ., d(x, x™). The asymptotic radius of {x"} is given by

r({x"}) = 1inf{r(x, x"D|x € X}

and the asymptotic center of {x"} is the set A({x"*}) = {x € X|r(x, {x"}) = r({x"}D}. Itis
known that in a Hadamard space, A({x"}) consists exactly one point.

Definition 1.3 (see Kirk and Panyanak 2008, p. 3690) A sequence {x"} in a Hadamard space
(X, d) A-converges to x € X if A({x"*}) = {x}, for each subsequence {x"**} of {x"}.

. A .
We denote A-convergence in X by —> and the metric convergence by —.
We present next two known results related to the notion of A-convergence.

Lemma 1.4 (see Kirk and Panyanak 2008, Proposition 3.6) Let X be a Hadamard space.
Then, every bounded, closed and convex subset of X is A-compact, i.e. every bounded
sequence in it, has a A-convergent subsequence.

Lemma 1.5 (see Dhompongsa and Panyanak 2008) Let (X, d) be a CAT(0) space. Then, for
allx,y,z€ Xandt €[0,1]:

dix® (1 —1)y,z) <td(x,2) + (1 —0)d(y, 2).

Let C C X be nonempty, closed and convex. It is well known for any x € X there exists
a unique u € C such that

d(u,x) =inf{d(z,x) : z € C}. (1.1)

We define the projection onto C, Pc : X — C, by taking as Pc(x) the unique u € C which
satisfies (1.1). We give next a characterization of the projection.

Proposition 1.6 (see Dehghan and Rooin 2013) Let C be a nonempty convex subset of a
CAT(0) space X, x € X andu € C. Then u = Pc(x) if and only if

(yit, Xti) < 0,

forally € C.

A function i : X — (—00, 00] is called:
(i) convex iff
hitx ® (1 —1t)y) <th(x)+ (1 —1t)h(y), Vx,ye Xandt € (0, 1)
(i) strictly convex iff
hitx® (1 —t)y) <th(x)+ (A —=0)h(y), Vx,ye X, x #yandt € (0, 1).
It is easy to see that each strictly convex function has at most one minimizer on X.
Take a closed and convex set K C X and f : X x X — R such that

Bl: f(x,x)=0forall x € X,
B2: f(-,+): X x X — R is continuous,
B3: f(x,:): X — Risconvex forall x € X.
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The equilibrium problem EP(f, K) consists of finding x* € K such that f(x*, y) > 0
for all y € K. The set of solutions of EP(f, K) will be denoted as S(f, K).

For convergence of the extragradient method, some monotonicity assumptions on the
bifunction f are needed. We define next two such properties for future reference: the bifunc-
tion f is said to be monotone if f(x, y)+ f(y, x) < Oforall x, y € X, and pseudo-monotone
if for any pair x, y € X, f(x,y) > 0 implies f(y, x) <O.

The equilibrium problem encompasses, among its particular cases, convex optimization
problems, variational inequalities (monotone or otherwise), Nash equilibrium problems, and
other problems of interest in many applications.

Equilibrium problems with monotone and pseudo-monotone bifunctions have been studied
extensively in Hilbert, Banach as well as in topological vector spaces by many authors (e.g.
Bianchi and Schaible 1996; Chadli et al. 2000; Combettes and Hirstoaga 2005; Iusem et al.
2009; Tusem and Sosa 2010). Recently the second author and Khatibzadeh have studied
optimization and equilibrium problems in Hilbert and Hadamard spaces (see Khatibzadeh
and Mohebbi 2016, 2019a,b; Khatibzadeh et al. 2017). Also, some authors have studied
equilibrium problems on Hadamard manifolds (see Colao et al. 2012; Noor and Noor 2012).

We make now a brief reference to existence results for equilibrium problems in Hadamard
spaces. It has been proved in Theorem 2.4 of Khatibzadeh and Mohebbi (2019b) that
EP(f, K) has solutions whenever X is a Hadamard space, K is convex, and f, besides
B1-B3 above, satisfies the following two conditions:

(i) f is properly quasi-monotone, meaning that for any finite subset L C X it holds that
maxyer f(x,y) < 0 for all y belonging to the convex hull of L (the convex hull being
understood in the sense of Definition 1.1).

(ii) f is coercive in K, meaning that there exists z € K such that for any sequence (xkF} c K
such that limy_, o d(x¥, 7) = o0, there exists u € K satisfing f(xk, u) < 0 for large
enough k.

This result extends a similar one, on existence of solutions for equilibrium problems in Hilbert
spaces, proved in Tusem et al. (2009).

We will deal in this paper with the extragradient (or Korpelevich’s) method for equilibrium
problems in Hadamard spaces, and thus we start with an introduction to its well known
finite dimensional formulation when applied to variational inequalities, i.e., we assume that
X = R" with the Euclidean distance and f(x,y) = (T'(x),y — x) with T : R" — R”".
It is easy to check that for this f, EP(f, K) reduces to the variational inequality problem
VIP(T, K), consisting of finding x* € K suchthat (T (x*), x —x*) > Oforall x € K. Several
iterative methods for solving the finite dimensional VIP(T', K') have been proposed. A basic
one is the natural extension of the projected gradient method for optimization problems,
substituting the operator T for the gradient, which generates a sequence {x¥} C R” through:

K = P (xF — e T(x9)), (1.2)

where oy is a positive stepsize and P, is the orthogonal projection onto K. This method con-
verges under quite strong hypothesis, namely Lipschitz continuity and strong monotonicity
of T, 1i.e.

IT@) —TWI<Llx—-yl Yx,yeR",
and

(Tx) =T, x—y)=olx—yl*> Yx,yeR",
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where L > 0 and 0 > 0 are the Lipschitz and strong monotonicity constants respectively.
With these assumptions, the sequence generated by (1.2) converges to a solution of VIP(T', K)
(provided that the problem has solutions), as long as the stepsizes oy satisfy oy = o €
(0, 20/L2) for all k (see e.g., Bertsekas and Tsitsiklis 1989; Fang 1980).

When T is just monotone, i.,e.

(T)=T(),x—y)=0 Vx,yeR",

then the situation changes: the generated sequence may diverge independently of the choice
of the stepsizes ay. Take e.g. E = K = R? and assume that T is a rotation with a 7z /2 angle.
T is certainly monotone and Lipschitz continuous. The unique solution of VIP(T, K) is the
origin, but (1.2) gives rise to a sequence satisfying ||xk+l H > ka || for all k. To deal with
this situation, Korpelevich introduced in Korpelevich (1976) a two-step algorithm, namely:

¥ = Pr(xF — o T(xY)), (1.3)
K = Pk — T (M). (1.4)

The geometric motivation behind this procedure is the following: Let Hy = {x € R" :
(T (%), x — y*) = 0}, with y* as in (1.3). It is easy to check that, by monotonicity of T,
Hj separates x* from the solution set S(7', K). Thus, if a is small enough, the point Pan
defined by (1.4) is obtained by moving first from x¥ in the direction of its projection onto a
hyperplane separating it from the solution set (achieving the point x¥ — o T (y¥)), and then
projecting the resulting point onto K, which contains S(7', K). Hence, x**! is closer than
x¥ to any solution. This property, called Fejér monotonicity of {x*} with respect to S(T', K),
is the basis of the convergence analysis. If T is Lipschitz continuous with constant L and
VIP(T, K) has solutions, then the sequence generated by (1.3)—(1.4) converges to a solution
of VIP(T, K) provided that oy = « € (0, 1/L) (see Korpelevich 1976).

In the absence of Lipschitz continuity of 7', it is natural to perform a linesearch to find
appropriate stepsize, as is done in the following method:

Take § € (0, 1), ,é, B satisfying 0 < ,3 < ,3, and a sequence {fr} € [,é, ,5]. The method
is initialized with any x° € K and the iterative step is as follows:

Given x* define

K= xk = BT (). (1.5)
If xk = Pg(Z5) stop. Otherwise take

k) = min{ j>0: <T(2—/PK(z") £ (1 =27k, Xk - PK(zk)>

> 2k = P } (1.6)

B
oy =270 (L.7)
Y= o P (z) + (1 — ), (1.8)
Hy = {z eR" : (z— Y. TON) ZO}, (1.9)
= P (P (69)). (1.10)

Note that along the search for o the right hand side of (1.6) is kept constant, which is
quite convenient from a computational viewpoint, and that no orthogonal projections onto
K are required during the inner loop: there are only two projections onto K per iteration,
namely in the computation of z¥ and x¥*1, exactly as in the original method (1.3)—(1.4). This
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method converges to a solution of VIP(T, K) under the only assumptions of monotonicity
of T and existence of solutions; see usem and Svaiter (1997).

The above backtracking procedure for determining the right «; is sometimes called an
Armijo-type search (see Armijo 1966). It has been analyzed for VIP(7', K') in Konnov (1993a)
and Iusem and Svaiter (1997). Other variants of Korpelevich’s method can be found in
Khobotov (1987) and Marcotte (1991).

Extensions of Korpelevich’s method to the point-to-set setting (in which case Lipschitz
continuity assumptions must be carefully reworked, see e.g. Robinson and Lu 2008), can be
found in Bao and Khanh (2005), Iusem and Lucambio Pérez (2000), Konnov (1993b) and
Konnov (2001). All these references deal with finite dimensional spaces.

The extragradient method for solving variational inequalities (1.5)—(1.10) has been
extended to Banach spaces in Iusem and Nasri (2011). An extragradient method for non-
smooth equilibrium problems in Banach spaces has been recently studied in Iusem and
Mohebbi (2018).

The extragradient method has recently been extended also to the case of variational
inequalities on Hadamard manifolds (see Tang and Huang 2012). A variant of the method in
Tang and Huang (2012) can be found in Tang et al. (2015), where a regularization scheme is
added, consisting of the projection of the iterates onto the intersection of two halfspaces.

We comment next on the difference between these two references and our results in this
paper. First, our method applies to equilibrium problems, which are a quite more general class
than variational inequalities. We remark that, as pointed out in Iusem and Mohebbi (2018),
monotone equilibrium problems in Banach spaces can be reduced to variational inequalities,
through the introduction of the so called diagonal subdifferential operator US (see also
Tusem and Sosa 2010). This reduction does not work in Hadamard spaces, where there is
no clear way of defining the diagonal subdifferential operator and establishing its properties
(e.g. maximal monotonicity). Hence, the results in Tang and Huang (2012) cannot be applied
for solving equilibrium problems in Hadamard spaces.

Also Hadamard spaces are substantially more general than Hadamard manifolds, which
are intrinsically finite dimensional, as commented after Definition 1.2.

In connection with the results in Tang et al. (2015), their above described regularization
procedure cannot be easily extended to Hadamard spaces. Our regularization procedure,
through a Halpern regularization scheme (which gives raise to a strong convergence result),
is fully unrelated to the scheme in Tang et al. (2015).

Other versions of extragradient methods in Hadamard manifolds, for finding zeros of
monotone vector fields and solutions of variational inequalities, both rather unrelated to our
approach, can be found in Ferreira et al. (2005) and Batista et al. (2019) respectively.

Since one of the main contributions of this paper is the extension of the extragradi-
ent method for equilibrium problems from Hadamard manifolds to Hadamard spaces, it is
worthwhile to provide an example of an equilibrium problem in a Hadamard space which is
not a Hadamard manifold.

Let X be the space R” with the radial metric (also called French railroad metric), where
the distance p : X x X — R is defined as:

lx — Il if x,y are colinear

X, y) = 1.11
PO Y) lxll + 1yl otherwise. (.11

Itis known that the metric space (X, p) is a R-tree space (see Kirk 2007, p 197), and R-tree
spaces, as mentioned above, are Hadamard spaces (e.g. Bertrand and Kloeckner 2012). For
x #0andt € Ry, let B(x, t) be the open ball with center x and radius 7 in the radial metric,
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and B(x, t) the Euclidean open ball with the same center and radius. Also, for x € R", let
[0, x) = {sx : s € [0, 1)}. Itis easy to check that B(x, x| +1) = B(x, ) U0, (x|l +)x),
i.e. a ball with a “spike”. Clearly, this radial open ball is not locally homeomorphic to either R
or R”, and hence X is neither a Riemannian manifold nor, ““a fortiori” a Hadamard manifold.
It is also easy to check that the nonnegative orthant R} is a convex set of (X, p).

Let now (X, d) be a Hadamard space. Take z1,...,2, € X and wy, ..., w, € Ryt
satisfying Y "_, w; = 1. Given a convex subset K C X, we define the K-constrained
geometric median of 71, ..., Z; as:

m
argmin, c g {Z wid(x,z;) :x e X
i=1

and the K-Fréchet mean of z1, ..., z;, as:

m

argmin, . g {Z w,-dz(x, zi):xeX
i=1

Define g, 7 : X — Ras g(x) = Y7L, wid(x, z;), h(x) = 30 wid*(x, z:).

It is clear that f, g are proper, convex and continuous. If we define the bifunction f :
X x X — Raseither f(x,y) = g(y) — g(x) or f(x,y) = h(y) — h(x), where (X, d) is
R" with the radial metric, and take K as the nonnegative orthant of R", then the equilibrium
problem E P(f, K) satisfies all the assumptions required for convergence of our algorithm,
which thus can be used for computing constrained geometric medians and Fréchet means
in R" with the radial metric. We comment that, since E P(f, K) is indeed an optimization
problem, the second step (1.6)—(1.10) of the extragradient method is superfluous (the gradient
method is sufficient for convex optimization problems). Of course, examples can be given
of monotone bifunctions in the radial space, satisfying the convergence assumptions of our
method, and such that the second step of the method is indeed essential for convergence.

In Sect. 2, we will present an extragradient method for equilibrium problems in Hadamard
spaces, and prove A-convergence of the generated sequence to a solution of the equilibrium
problem, assuming pseudomonotonicity of the bifunction. In Sect. 3, we propose a variant
of the extragradient method for which the generated sequence can be shown to be strongly
convergent to an equilibrium point, when the bifunction is pseudomonotone.

We will add now some additional conditions on the bifunction f, besides B1-B3 defined
above, which will be needed in the convergence analysis.

B4: fispseudo-monotone,i.e. whenever f(x, y) > Owithx, y € X,itholdsthat f(y, x) <
0.

BS5: f is Lipschitz continuous on bounded sets, meaning that for any bounded set
B C X, there exists M > 0 such that |f(x,y) — f(x,z)] < Md(y,z) and
[f(x,y) = f(z, 9| <Md(x,z)forallx,y,z € B.

B6: f(-, y) is A-upper semicontinuous for all y € X.

It is well known that a concave and upper semicontinuous function is always A-upper
semicontinuous.

We make some comments now on these assumptions. In connection with B4, we mention
that some monotonicity-like property is needed for convergence of all variants of the extra-
gradient method. In the case of EP, the usual assumption is monotonicity of f meaning that
S, )+ f(y,x) <0forall x, y € X. Clearly, B4 is weaker than monotonicity. Regarding
B5, note that it holds when, for all bounded set B, f(x, -) and f (-, x) are Lipschitz continuous
on B for all x € B, say with Lipschitz constant Ly, and L, is bounded on B. In connection
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with B6, we emphasize that it holds when f (-, y) is concave for all y € X. In view of B3, our
analysis covers the very important concave-convex case (e.g., the problem of finding saddle
points of the Lagrangian of constrained convex optimization problems).

2 Extragradient method with linesearch and A-convergence

We start with a Hadamard space X, a closed and convex set K C X and a bifunction
f : X x X — R which satisfies B1-B3. We consider the equilibrium problem EP(f, K) as
defined in Sect. 1, and propose the following Extragradient Method with Linesearch (EML)
for solving this problem.

Take § € (0, 1), /§, B satisfying 0 < B < /§, and a sequence {f;} € [B, B].

1. Initialization:

1 eKk. 2.1)
2. Iterative step: Given x¥, define
. 1
2 € Argmin,, ¢ {f(x", »+ ﬁd%y, xk>} . (2.2)
: k
If x% = zk stop. Otherwise, let
)
£(k) = min {e >0: B fOh ) = Bfh ) = EdQ(zk, xk)} , (2.3)
where
ye=2"F @ 1 - 27k (2.4)
We take
o =270, (2.5)
k .__ k k
Y=ot @ (1 —og)x”, (2.6)
wh = Py, (x%), 2.7)
where
Hy={yeX:f("y <0}
Finally we define

K = P (wh). (2.8)
We start the analysis of the algorithm with some elementary properties of EML.
Proposition 2.1 The sequence {z*} is well defined.

Proof Tt is a consequence of Lemma 3.1.2 in Jost (1997) (see also Lemma 2.2.19 in Bacak

2014). O
Proposition 2.2 Assume that f satisfies B3. Take x € K, 8 € Rt If
1
z € Argmin,,_x {f(x, y) + ﬁd"’(y,x)} (2.9)

then 3 {d*(z, x) — d*(y, x) + d*(y, 2)} < BIf (x,y) — f(x, )] forall y € K.
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Proof Note that

Fx.2)+ %dz(z, X < fGey)+ %d%y, x) 2.10)

for all y € K. Now, taking w =ty @ (1 — t)z with ¢ € (0, 1] in (2.10), we have:

Foo)+ %dz(z, x) < flrw) + %dz(w,x)

= flx,ty® (1 —1)z) + %dz(ty ® A —1)z,x)
<tfx,y)+ A —-1)f(x,2)
+ i{tdz(y, x)+ (1 =0d* @z, x) —t(1 —d*(y,2)}. (2.11)

2p
It follows from (2.11) that
1 2 2 2
% (@ x) —d* (v, x) + (A =0Dd*(y, D)} < fx,9) = fx,2). (2.12)
Taking limits in (2.12) with t — 0, we obtain
[ 2 2
5 {d* @ x) =d*(y, ) +d°(y, D)} < BLF(x, y) = f(x, 2] (2.13)
[m}

Corollary 2.3 Assume that {x*} and {z*} are the sequences generated by EML. Then
e =20 120, ) = p ek - ek ] ek
Proof Follows from Proposition 2.2 and (2.2). ]
Proposition 2.4 IfAlgorithm EML stops at the k-th iteration then x* is a solution of EP( f, K ).
Proof Follows from Corollary 2.3. O

Proposition 2.5 The following statements hold for Algorithm EML.

(i) £L(k) is well defined, (i.e. the Armijo-type search for oy, is finite), and consequently the
same holds for the sequence {x*}.
(i) x* € K forall k > 0.
(iii) If the algorithm does not stop at iteration k, then f(y*, x*) > 0.

Proof (i) We proceed inductively, i.e. we assume that x¥ is well defined, and proceed to
establish that the same holds for x¥*1. Note that z¥ is well defined by Proposition 2.1. It
suffices to check that £(k) is well defined. Assume by contradiction that

Bl f 8 x5 — oY, 21 < gdz(zk,xk) Ve > 0. (2.14)

Note that the sequence {y*} is strongly convergent to x*. In view of B2, taking limits in
(2.14) as £ — oo,

Bl f (x5 — (kM1 < gdz(zk,xk). (2.15)
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Since x* € K by (2.8), we apply Corollary 2.3 with y = x* in (2.15), obtaining
3
d>(ZF, %) < Edz(z",x"). (2.16)

Since 6 € (0, 1), we get a contradiction.
(ii) It follows from (2.1) and (2.8).
(iii) Assume that f(yk, x¥) < 0. Note that, using B1, B3 and (2.6),

0=fO* ¥ <afOF 5+ (1 — ) FGF X5
Hence f(y¥, zF) > 0. On the other hand, by (2.3)~(2.6),

8
FO5 2 FOR 4+ d? @ > FOR D =0, @17
in contradiction with the assumption. Note that the strict inequality in (2.17) is due to
the fact that x¥ # z£. O

We continue with an intermediate lemma.

Lemma 2.6 (see Ahmadi Kakavandi and Amini 2010) Let h : X — (—o00, o] be a proper;
lower semicontinuous, convex function. Denote as clD(h) the closure of the domain of h.
Then, for every b € cID(h) andt € R witht < h(b), there exist a point a € X and a real
number s with t < s < h(b) such that

9_>

1
h(x) z —{ab,ax) +s

forall x € X. Moreover d(a,b) < h(b) —t.

We continue the analysis of the convergence properties of ELM. Recall that S(f, K)
denotes the solution set of EP(f, K).

Proposition 2.7 Assume that the bifunction f satisfies BI-B5 and that S(f, K) # {. Let
{(xkY, (9K}, (%) and {wk} be the sequences generated by Algorithm EML. If the algorithm
does not have finite termination, then

() The sequence {d(x*, x*)} is nonincreasing (and henceforth convergent) for any x* €
S(f, K).
(ii) The sequence {x*} is bounded, and therefore it has A-cluster points.
(iii) limg_s oo d(w*, x¥) = 0.
(iv) The sequence {z*} is bounded.
(V) limg 00 f(YF, xF) =0

Proof (i) Take x* € S(f, K). By B4, x* € Hj for all k. By Proposition 2.5(iii), x* ¢ Hy.
Also, we have wk = Py, (x5). Using Proposition 1.6,
(rwk, xFwky <0,
that is to say,
d>(wk, x%) + d?(x*, wh) — d?(x*, xb) <o, (2.18)

k

Now, since x¥*1 = Pg (wk), again Proposition 1.6 implies that

k k k+1
(kL wkekthy <o
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or equivalently,
d> (K why 4+ @, XY — @2 (e, wk) < 0. (2.19)
In view of (2.18) and (2.19), we have
dz(x*,xk+1) < d2(x*’ wk) _ d2(xk+1, wk) < dz(x*’ wk)
< &> (%, wh) + > (w*, x*) < a*(x*, xb). (2.20)

(i1) In view of (i), limy_, o0 d(x*, x¥) exists, so that {x*} is bounded.
(iii) It follows from (i) and (2.20).
(iv) Since x* € K by (2.8), we get from (2.2)

1 1
FOR Y+ —d* @ 2N < fOR N + G M) =0 .21)
2Bk 2Bk
It follows from (2.21) that
d> (K, X% < =28 F (K, 2. (2.22)

Take a negative real number ¢, so that 1 < f(xk, xk) = 0. Since f(xk, -) is convex,
proper and lower semicontinuous, by Lemma 2.6 there exists v* € X and a real number
t<sp <0= f(xk,xk) such that

—

1 —_—>
fek y) > S—(vkx", VR y) + sk (2.23)

Kk — 1t
for all y € K. Let B(x¥, 1) be the closed ball of radius 1 centered at x*. Since f is
bounded on bounded sets by B5, and {x¥} is bounded by item (ii), there exists M > 0
such that f(x*, y) < M for all k and for all y € B(x*, 1). Therefore,

1 Kk ok k
sip (——0hb vy +s) s s feh =M. @24
yeB(xk,1) Sk — 1 yeB(k,1)
It follows from (2.24) that the sequences {Xk%td(vk,xk)] and [Sk%tdz(vk,xk)]
are bounded. Therefore, setting y = zF in (2.23), we have that — f (xk,zk) <
TR i . . . .
5= (X%, v72%) — si. Applying Cauchy—Schwarz inequality, we obtain
1
—fk e < —td(vk,xk)d(vk,zk) — Sk (2.25)
Sk —

From (2.22) and (2.25), we get

d*(F, b < i"td(v",x")dw", ) — st

2By J

=
Sk — 1t

ok, xk)<d(vk, )+ dk, zk)) — 5. (2.26)

Now, since the sequences {st}, {(xk}, [Sk%td(vk,xk)] and [Sk%tdz(vk,xk)] are

bounded, boundedness of {z¥} follows from (2.26).

(v) By (iii), we have limy_, oo d(wk, x*) = 0. Since {x*}, {yk}, and {w*} are bounded, we
invoke BS, obtaining some M > 0 such that | £ (%, x¥) — f(y*, wh)| < Md(x*, wh).
We conclude from item (iii) that

Jim FOk x5 — f(yk,wk)‘ =0. (2.27)
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Note that if the algorithm does not stop at iteration k, then f(y*, x¥) > 0, by Propo-
sition 2.5(iii). Also, since wk e Hj., we have f(yk, wk) < O for all k. These two
inequalities, together with (2.27), easily imply that

lim f(OF, x5 = lim F(*, w*) = 0.
k— 00 k—o00

Definition 2.8 We say that {x¥} is an asymptotically solving sequence for EP(f, K) if
liminf f(x%, y) >0
k— 00

forally € K.

We continue with two technical results to be used for proving that EML generates an
asymptotically solving sequence.

Proposition 2.9 Assume that the bifunction f satisfies BI-B5 and that S(f, K) # (. Let
{(x*} and {z*} be the sequences generated by Algorithm EML. If {x*i} is a subsequence of
(x*} satisfying

lim d(z", xk) = 0, (2.28)

11— 00

then {x*} is an asymptotically solving sequence for EP(f, K).
Proof Since {x¥} and {z*} are bounded, B5 entails the existence of some M > 0 such that

e 2

= | £k, R = o] = MaEh 5, (2.29)

using B1 in the equality. From (2.29), we obtain
lim f(xh, 28y =o0. (2.30)
11— 00

Take now any y € K. By Corollary 2.3, we have

S = 2ot + 22| < g [ et - pek ]
which implies that
— dH A, +d () = 28 [ FOEL ) - FeE ] @3

Now, taking liminf in (2.31), we use (2.30), together with the boundedness of {x*} and {z*},
to obtain that liminf;_, f(x%,y) > 0 for all y € K, thus establishing that {x*} is an
asymptotically solving sequence. O

Proposition 2.10 Assume that the bifunction f satisfies BI-B5 and that S(f, K) # 0. Ifa
subsequence {ay,; } of {ax}, as defined in (2.5), converges to 0, then {xki}is an asymptotically
solving sequence for EP(f, K).

Proof For proving the result, we will use Proposition 2.9. Thus, we must show that

lim d(z%, x5y = 0.
11— 00
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For the sake of contradiction, and without loss of generality, let us assume that

liminf; _, ood (2, x1) > 5 > 0. (2.32)
Define
§' = 20,2 @ (1 = 204", (2.33)
or equivalently
d', xby = 20y,d (5, x). (2.34)

Note that, since lim; o o, = 0, £(k;) > 1 for large enough i. Also, in view of (2.33),
we have that ' = y*®)~=1 in the inner loop of the linesearch for determining ay,, i.e., in
(2.4). Since £(k;) is the first integer for which the inequality in (2.3) holds, such inequality
is reversed for £(k;) — 1, i.e., we have

: : s
B [ S x) = 1G] < Sa2ER ) (2.35)

for large enough i. On the other hand, since lim;_, o, ai; = 0 by hypothesis, and {d (2%, xki)
is bounded by Proposition 2.7(ii) and (iv), it follows from (2.34) that

lim d(3', x%) = 0. (2.36)
1—>00

Since {x¥} and {z¥} are bounded by Proposition 2.7 (ii) and (iv), we invoke B5, and conclude
that there exist M > 0 such that

B [ SO, x) = 1G] < AMAGT, )
B [ S 29 = FG6H, 2] < BMaGh, x), @37)

with B as in the definition of the sequence {fx}. Since é belongs to (0, 1), we obtain from
(2.36) and (2.37) that there exists m € N such that

2
L N (1-29)
B [ G0 = ] < T2
ik L 2(1-34
Bk [f(yl,z"l) - f(x"',zk')] < ¥, (2.38)
for i > m, with  as in (2.32) and § as in (2.35). Therefore, we obtain
2
. . . . AP . Al : (l - 6)
B [ £ k) = pf 0| = g [£O R - p G |+ T
) 1-36 1
< @ x) + Sl > L2zt b = SA2@ M,
(2.39)

for all i > m, using (2.38) in the first inequality and (2.35), (2.32) in the second one. Now
we combine Corollary 2.3 and (2.39) to get

1
E{dz(zk",xk") —d* (N, xR 4 a? (xR 2N
o - 1 R
< B [ £OM ) = R 2] < SdrE )
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foralli > m,i.e.,
dz(xkf,zk") <0
for all i > m, which is a contradiction. O

Now we prove that EML generates an asymptotically solving sequence.

Proposition 2.11 Assume that f satisfies BI-B5, and that S(f, K) # (. Then the sequence
{(x*} generated by Algorithm EML is an asymptotically solving sequence for EP(f, K).

Proof First assume that there exists a subsequence {o4;} of {ax} which converges to 0. In
this case, by Proposition 2.10, we obtain lim inf;_, » f(xkl', y) > 0 for each y € K. Now
assume that {oy, } is any subsequence of {«x} bounded away from zero (say o, > a > 0). It
follows from (2.3) and (2.6) that

R — ) o
B [ £ ) = FOM 2 ] = Sd2EH ). (240)
Note that, since ay; < 1 by (2.5), we get, in view of B3,

0= FOM, ) <o FOM, M) + (1 — ) F N, XM,
so that
1 —ay, & L
Tf(yknxkf) > — f(yk, 2. (2.41)

i

Multiplying both sides of (2.41) by B, and adding (2.40), we easily get
ok S, ok
B f (N, xki) > sz(zk’,xk’). (2.42)

Taking limits in (2.42) with i — oo, we obtain, in view of Proposition 2.7(v),

5
0> % lim a?(, ).
2 i—o0

Hence, lim; _, oo d(zki s xki) = 0. We are within the assumptions of Proposition 2.9, and thus
we conclude that {x*i} is an asymptotically solving sequence for EP(f, K). It follows that
every subsequence of {x*} is an asymptotically solving sequence for EP(f, K), and hence
the same holds for the whole sequence {xFy. ]

We need now the following theorem, which is the last intermediate result leading to our
A-convergence theorem.

Theorem 2.12 (see Ahmadi Kakavandi 2013) Let (X, d) be a Hadamard space and {(xK} be
—

a sequence in X. Take x € X. {x*} A-converges to x if and only if lim supk_,oo(xxk, x_)>}) <0
forall y € X.

We end this section with our A-convergence theorem for EML.

Theorem 2.13 Assume that f satisfies BI-B6, and that S(f, K) # (. Then the sequence
{x*} generated by Algorithm EML is A-convergent to a solution of EP(f, K).
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Proof Proposition 2.7(ii) shows that {xX} is bounded. Therefore {x¥} has A-cluster points.
Let v € K be one of them, and {x*} be a subsequence of {xk} A-convergent to v. By
Proposition 2.11, we have that lim inf; o, f(x%,y) > O forall y € K. Since f(-, y) is A-
upper semicontinuous by B6, we conclude that f (v, y) > Oforally € K,i.e.,v € S(f, K).
It remains to be proved that there exists only one A-cluster point of {x*}. Let v’ be another

A-cluster point of {xF}, so that there exists a subsequence {xki} such that x%i A, v'. We
have already proved that v € S(f, K). Also both limy_, o d (v, x*) and lim_, o0 d(v/, x*)
exist, in view of Proposition 2.7(i). Note that

—>
i /
]’vv

—_—
205068 ) = @) + PNV PN ) — et 243)

k

—
Letting i — oo, and then j — oo, we get lim _, solim; o (x ixki, v'v) = 0. Also, we can

write the left side of (2.43) as:

ik, T & T — = e
2(x"x" v'v) = 2(x" v, v v) + 2w, v'u) + 2(v' X", v'v). (2.44)

By taking lim sup in (2.44) and using Theorem 2.12, we conclude that d*(v, v') < 0. Hence
v = v/, ie. {x*} has only one A-cluster point, and so it A-converges to a solution of
EP(f, K). O

3 A strongly convergent variant of the EML method

In this section we perform a minor modification on the EML algorithm which ensures strong
convergence of the generated sequence to a solution of EP(f, K). In Hilbert spaces, this
procedure, called Halpern’s regularization (see, e.g., Halpern 1967), consists of taking a
convex combination of a given EML iterate with a fixed point # € X, where the weight given
to u decreases to 0 with k. The strong limit of the generated sequence is the projection of u
onto the solution set. The modified method will be called EMLH. We remark that, besides the
theoretical interest in having strong (rather than A-) convergence, the sequences generated by
regularized methods which ensure strong convergence tend to exhibit a more regular behavior.
For instance, examples have been presented in Garciga Otero et al. (2001), showing that the
proximal point method for convex optimization in Hilbert spaces can generate a weakly
convergent sequence {x*} such that Yo ka — xk+1 ” = 00. When regularized versions of
the proximal point method, which ensure strong convergence, are applied to these examples,
the generated sequence {x*} turns out to satisfy Yreo ||xk — xktl || < 00.

We will assume in the sequel that X is a Hadamard space, K C X is closed and convex,
and f : X x X — Risabifunction which satisfies B1-B3. Next we give the formal definition
of Algorithm EMLH.

1. Initialization:
Fix u € X and consider a sequence {yx} C (0, 1) such that limz— yx = 0 and
Y ieo Yk = 00. Define

W eKk. (3.1)
2. Iterative step: Given x¥, define

1
e Argmin, ¢ g {f(xk, »+ sz(y,xk)} . (3.2)

B
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If x* = z* stop. Otherwise, let

)
(k) = min {z >0: B fOL ) = Bfot 25 > 5d2<z’2 x’f)} : (3.3)
with
yo=27% e (1 — 275k, (3.4)
Set
oy =270, (3.5)
k .__ k k
yoi=apzt @ (1 — ag)x”, (3.6)
wh = Py, (xh), (3.7)
where
Hy={yeX:fO*y <o
Define
v =y (1 - ywt, (3.8)
= P 05). (3.9)

Observe that the only difference between EML and EMLH is the introduction of v¥ in
(3.8). Note also that our assumptions on X ensure that v¥ is well defined. We proceed now
to the convergence analysis of EMLH. We mention that many of the intermediate results
coincide with those for EML, in which case we will refer to their proofs without much detail.

We observe first that, as in the case of EML, the sequence {zk} is well defined by Lemma
3.1.2 of Jost (1997) (see also Lemma 2.2.19 of Bacak 2014).

Proposition 3.1 Assume that {x*} and {z*} are the sequences generated by EMLH. Then

1
E{dz(z", x5 —d?(y, X +d* (0. ) < B f K y) = Bf (R 2N, Yy ek.
Proof Follows from Proposition 2.2 and (3.2). O

Proposition 3.2 If Algorithm EMLH stops at the k-th iteration then x* is a solution of
EP(f,K).

Proof Follows from Proposition 3.1. O

Proposition 3.3 The following statements hold for Algorithm EMLH.

(1) £(k) is well defined, (i.e. the Armijo-type search for oy is finite), and consequently the
same holds for the sequence {xk).
(ii) x* € K forallk > 0.
(iii) If the algorithm does not stop at iteration k, then f(y*, x*) > 0.

Proof Similar to the proof of Proposition 2.5. O

Proposition 3.4 Assume that f satisfies BI-B5 and S(f, K) # @. Let {x*}, {y*}, {z*} and
{wk} be the sequences generated by Algorithm EMLH. If the algorithm does not have finite
termination, then
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(i) The sequence {x*} is bounded, and therefore it has A-cluster points.
(ii) The sequence {z¥} is bounded.
(iii) If {d(wkn, xk)} is a subsequence of {d(w¥, x*)} such that lim,_ o d(w*n, x*) = 0,
then lim,,— o0 f(y*, x*n) = 0.

Proof (i) Let x* € S(f, K). By Proposition 3.3 (iii), x* ¢ Hy. By (3.7), w* = Pp, (x*).
Therefore, Proposition 1.6 implies that

(rwk, xFwky <0,
or equivalently,
d>(Wwk, x5y + d*>(x*, wh) — d*(x*, x5 < 0. (3.10)

On the other hand, since x**t! = Pg (v¥), we have

(L ) < o,
or equivalently,

d? (R oK) 4 @ (o, xR — d? (o 0k < 0. (3.11)
Using (3.8), (3.10) and (3.11), we obtain:

dc*, Xy < d(x*, %) < pd (L w) + (1 — p)d (xF, wh)
< yd(x*, u) + (A — y)d (x*, ) < max{d(x*, u), d(x*, x5)}. (3.12)

Iterating (3.12), we conclude that
d(x*, x*1) < max{d(x*, u), d(x*, x%)},

and hence {x¥} is bounded.
The proofs of items (ii) and (iii) are similar to those of Proposition 2.7(iv) and (v). O

Proposition 3.5 Assume that the bifunction f satisfies BI-B5 and that S(f, K) # (. Let
(x*} and {z*} be the sequences generated by Algorithm EMLH. If {x*i} is a subsequence of
{(xkY satisfying lim;_ o0 d(5, x%1) = 0, then {x*} is an asymptotically solving sequence for
EP(f.K).

Proof Similar to the proof of Proposition 2.9. O

Proposition 3.6 Assume that the bifunction f satisfies BI-B5 and that S(f, K) # 0. If a
subsequence {ay;} of {ax} as defined in (3.5) converges to 0, then {(xki} is an asymptotically
solving sequence for EP(f, K).

Proof Similar to the proof of Proposition 2.10. O

To establish strong convergence of the sequence generated by EMLH, we need an inter-
mediate result which establishes an elementary property of real sequences.

Lemma 3.7 Consider sequences {sy} C [0,00),{tx} C R and {yx} C (0, 1) satisfying
Y iey vk = o0o. Suppose that si1 < (1 — yi)sk + vkt for all k > 1. If limsup,,_, . fx, <0
forall subsequence {sy, } of {si} satisfying im inf,, _, oo (S, +1—5k,) = 0, thenlimy_, oo 5k = 0.

Proof See Saejung and Yotkaew (2012). O
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We complete the paper with our strong convergence result for Algorithm EMLH.

Theorem 3.8 Assume that the bifunction f satisfies BI-B6 and that S(f, K) # (. Then the
sequence {x*} generated by EMLH is strongly convergent to Ps(r, k) (u).

Proof Tt is easy to check that under B1-B4, S(f, K) is closed and convex. Let x* =
Ps(,x)(u). By Proposition 3.3(iii), x*™! ¢ Hyyy. By (3.7), wkt! = Py, (x**1). There-
fore, Proposition 1.6 implies that

(x*warl xk+1wk+l> < 0
or equivalently,
P Y £ 2ot whth — @2k, 5D <o, (3.13)

On the other hand, since x**t! = Pg (v%), we have

K1k k+1
(x*xk kXl <o

’

or equivalently,

A2 4+ @k, KD — @k, 09 < 0. (3.14)
Now, (3.13) and (3.14) imply that
A2 06 + @2 XY P, wE Y — 2, 06 <o, (3.15)

We conclude from (3.15) that
d?(x*, whthy < @?(x*, b, (3.16)
Taking into account (3.8), (3.13) and (3.14), we obtain
d(x*, X <d(x*, vh) < yd (F, u) + (1= p)d (%, wh)
< md(x*,u) + (1 — y)d (x*, xF) < max{d(x*, u), d(x*, x5)}.  (3.17)
Iterating (3.17), we get that
max{d (x*, x**1), d(x*, v%)} < max{d(x*, u), d(x*, x*)},

and hence both {x*} and {v¥} are bounded. It follows from (3.13) that {w*} is also bounded.
On the other hand, we have

d? (0 = @, e ® (1 =y wt
< (I = perD)d* (¥, W) + yep1d® (0, w) — v (1 =y )d? (u, whth
< (1= e )d @ 0 + i [d2<x*, ) — (1 =y )d>, wk“)] ,
(3.18)

using (3.16) in the second inequality. Next we will show that d?(x*, v*) — 0. In view of
Lemma 3.7, it suffices to show that

lim sup [d2(x*, ) — (1 — e 4 1)d2(u, wk"+1)] <0 (3.19)

n—oo

for every subsequence {d2(x*, vFn)} of {d2(x*, vF)) satisfying

lim inf [dz(x*, vty — g% (%, v"")] > 0.
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Consider such a subsequence. We have
0 < liminf [d2(r*, v +) — d2(x*, 0f)|

n—oo

= liminf [d2(c%, i, 10 @ (1 =y p)uh ™) — 2@, v |
n—0o0

< timinf [y, 418 (@ 0) 4+ (1= v DA wb ) — a2 b |
n—o0

— lim inf []/k,,+1(d2(x*, M) _ d2(.x*, wkn-'rl)) 4 d2(x*’ wkn+l) _ dZ(x*’ vkn ]
n—0o0

< lim sup yx, +1 [dz(x*, u) — d?(x*, wk”H)] + lim inf [dz(x*, whthy — g2 (x*, vk”)]
n—oo n—o0

— 1im inf [aﬂ(x*, whn Ty — @2 (x*, vk”)]
n—oo

< lim sup [dQ(x*, whtly — g2 (x*, ok ] <0, (3.20)

n—oo

using the fact that limg_, o % = 0 in the third equality and (3.16) in the last inequality. We
conclude from (3.20) that

n—oo

lim [dz(x*, Wity — g2 (x*, vk")] =0. (3.21)
Combining (3.21) and (3.15), we get

lim &2t vy = lim @@t xRt = 0. (3.22)
n—oo n—oo

Refining the subsequence {w® !} if needed, we may assume, without loss of generality, that
it has a A-limit p € X, so that
Jim sup [d2(x*, W) — (1 — y 41)d>(u. wk"+1)] < Pt u) —dPu, ). (323)
n—oo

We claim now that p € S(f, K). By (3.22), x*»*!1—~ p. Now we consider, as we did for
Algorithm EML, two cases related to the behavior of {oy}. First assume that there exists a
subsequence {otkniJr 1} of {a,+1} which converges to 0. In this case, by Proposition 3.6, we
obtain lim inf;_, o f(xk”i+1, y) > Oforall y € K. Since f (-, y) is A-upper semicontinuous
by B6, we get that p € S(f, K).

Now we take a subsequence {ozkn[ +1} of {otg, +1} bounded away from zero, say greater or
equal to n for large enough i. It follows from (3.3) and (3.6) that

)
Bl +1 [f(yknl.Jrl’xk,,iJrl) — Ffmt, an,.+1)] > Edz(zkni+1’xkni+l)' (3.24)
Note that
0= fOot Yoty < g, 1 fOMT T (1= g, p) FOR K,

so that

1— Uk, +1

7r+f(yk,,,.+17 ity > p(phntl gty (3.25)
Ok, +1

Multiplying (3.25) by f,, +1 and adding (3.24), we easily get

ok, +1
T’+d2(zkn[+1’ xk”i+1). (326)
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Since lim; o d(wk"i“, xk”iH) = 0 by (3.22), taking limits in (3.26) and using Proposi-
tion 3.4(iii) we obtain lim;_, oo d/(zX7i 1, % 1) = 0.

Now, we invoke Proposition 3.5 to get liminf;_ f(xk”iH, y) > Oforall y € K.
Again, since f (-, y) is A-upper semicontinuous by B6, we conclude that p € S(f, K). We
have shown that the A-limit p of {x*»*!} belongs to S(f, K) both when the corresponding
stepsizes o, +1°s either approach zero or are bounded away from zero, establishing the claim.

Note that S(f, K) is closed and convex, whetl A, p, X* = Pss xy(u) and p e
S(f, K). Therefore we have d(x*, u) < d(p, u). Now we apply (3.23) and get

lim sup [dz(x*, W) — (1 — y 41)d>(u. wk”+1)] < (" u) — dP, p) < 0.

n—o00o

Therefore (3.19) holds and thus, by Lemma 3.7, d%(x*, vk) — 0. Hence d?(x*, x¥) > 0 by
(3.14),ie. xk — x* = Py(s k) (u). o
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