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Abstract

In this work, we use a kind of C! rational interpolation splines in one and two dimensions
to generate curves and surfaces with region control. Simple data-dependent sufficient con-
straints are derived on the local control parameters to generate C ! interpolation curves lying
strictly between two given piecewise linear curves and C'! interpolation surfaces lying strictly
between two given piecewise bi-cubic blending linear interpolation surfaces.

Keywords Interpolation curve - Interpolation surface - C' continuity - Region control

Mathematics Subject Classification 65D05 - 65D17

1 Introduction

The problem of modeling interpolation curves and surfaces to given data has been studied
with various requirements, such as the preservation of the shape features of the data, the
smoothness of the interpolation curves and surfaces, the computational complexity, and so
on. Generally speaking, for most applications, C' continuity is sufficient. In this paper, we
are particularly concerned with the construction of C! interpolation curves and surfaces with
region control.

There are some C! interpolation curve models based on rational cubic splines. In Sarfraz
et al. (2010), a kind of positivity-preserving interpolation curves was developed based on a
class of rational cubic/quadratic interpolation spline with two local free parameters. However,
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the conditions for the interpolation spline preserving positivity developed in Sarfraz et al.
(2010) were not sufficient. In Qin et al. (2016), this drawback was overcome by introducing
a new local tension parameter t; into the rational cubic/quadratic interpolation spline. In
Walther and Schmidt (1999), range restricted interpolation using Gregory’s rational cubic
splines was proposed. In Duan et al. (1999), the authors discussed constrained interpolation
problems by means of rational cubic spline interpolation with linear denominators, but there
are still some cases in which the constrained interpolation cannot be solved, which means
that there are no such positive parameters to make the rational cubic spline curve defined to
lie between the given piecewise lines in some cases. Later, in Duan et al. (2000) and Duan
etal. (2005), the problems of generating interpolation curves lying strictly between two given
piecewise linear curves were solved using weighted rational cubic/linear interpolation splines.
In Duan et al. (2006), based on the idea of adding more parameters into the interpolating
spline to enhance the constraining ability, a weighted rational cubic spline interpolation was
constructed using two kinds of rational cubic spline with quadratic denominator. However, the
conditions for interpolation curves lying strictly between two given piecewise linear curves
given in Duan et al. (1999, 2000, 2005) and Duan et al. (2006) were non-explicit. Therefore,
these conditions are inconvenient in pratical application. Recently, an automatic algorithm
for generating C? constrained interpolation curves was developed in Zhu (2018).

For visualizing data given on a rectangular grid, some C' interpolation surfaces with
shape control have been proposed, see for example (Hussain and Sarfraz 2008; Hussain et al.
2014; Abbas et al. 2014) and Qin et al. (2017). In Hussain and Sarfraz (2008), by replacing
the classical cubic Hermite interpolation basis for the classical bi-cubic Coons surface with
a kind of rational cubic Hermite-type interpolation basis, a class of C! rational bi-cubic
functions was presented. And constraints concerning the local control parameters were given
for visualizing 3D positive data on a rectangular grid. However, like the classical bi-cubic
Coons surface technique, the given interpolation scheme needs to provide the cross-boundary
derivatives or the twists on a rectangular grid for generating interpolation surfaces. In Hussain
et al. (2014), based upon the Boolean sum of cubic interpolating operators, by blending a
kind of rational cubic interpolation splines as the boundary functions, simpler scheme without
using the twists for constructing C! shape-preserving interpolation surfaces was given. This
transfinite interpolation method was of great convenience for it was possible to control the
shape of the interpolation surfaces using the boundary functions, though it had to pay the price
that the generated interpolation surfaces had zero twist vectors at the data points. However,
as pointed out in Abbas et al. (2014), this method did not depict the positive or monotonic
surfaces because they conserved the shape of data only on the boundaries of patch. Thus
one asks if it is possible to generate positivity and/or monotonicity-preserving interpolation
surfaces by controlling the four boundary curves of each local interpolation surface patch.
In Qin et al. (2017), using a class of C' bi-cubic partially blended rational quartic/linear
interpolation splines and imposing new constrains on the four boundary curves of each
local interpolation surface patch, simple sufficient data-dependent conditions were derived
for the local control parameters to generate C! positivity and/or monotonicity-preserving
interpolation surfaces for positive and/or monotonic data on rectangular grids. There are
some references about the construction of range restricted interpolants to scattered data, see
for example (Chan and Ong 1999; Brodlie et al. 2005) and the references therein. In Chan and
Ong (1999), a local construction of a C! interpolating surface subject to range restrictions
which included constant, linear, quadratic or cubic polynomial surfaces on the triangulation
of the data sites as upper and lower bounds were developed. In Brodlie et al. (2005), the
modified quadratic Shepard method was developed for interpolation of scattered data with
constraining the interpolant within [0, 1] limits. And it was shown that the [0, 1] constraints
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can be generalised to any arbitrary functions as lower and upper bounds. However, in Chan
and Ong (1999) and Brodlie et al. (2005), they used constant, linear, quadratic or cubic
polynomial functions as bounds. In this work, we use piecewise bi-cubic blending linear
interpolation surfaces as bounds, which has been rarely discussed in the references.

The purpose of this paper is to further study the region control properties of the C'
rational interpolation spline curves and surfaces given in Qin et al. (2016). Simple explicit
schemes are developed for constructing C! interpolation curves lying strictly between two
given piecewise linear curves and C! interpolation surfaces lying strictly between two given
piecewise bi-cubic blending linear interpolation surfaces.

The rest of this paper is organized as follows. Section 2 recalls the rational cubic/quadratic
interpolation spline with three local free parameters given in Qin et al. (2016). In Sect. 3,
simple sufficient data-dependent constraints are derived for constructing C' interpolation
curves lying strictly between two given piecewise linear curves. In Sect. 4, simple sufficient
explicit conditions for constructing C! interpolation surfaces lying strictly between two given
piecewise bi-cubic blending linear interpolation surfaces are discussed in detail. Conclusions
are provided in Sect. 5.

2 C rational interpolation spline curves and surfaces

In this section, we recall the C' rational cubic/quadratic interpolation spline with three local
free parameters and bi-cubic partially blended rational cubic/quadratic interpolation surfaces
given in Qin et al. (2016).

2.1 C" rational cubic/quadratic interpolation spline curves

Let fi € R,i = 1,2,...,n, be data given at the distinct knots x; € R,i = 1,2,...,n,
with interval spacing h; = x;4+; —x; > 0, and let d; € R be denoted the first derivative
values defined at the knots. In Qin et al. (2016), for x € [x;, x;j4+1], a piecewise C ! rational
cubic/quadratic interpolation spline with three local free parameters u;, 7; and v; is defined
over each subinterval I; = [x;, x;41] as follows

Zizo Cir(1 — )3k

R = -+ a(—nit o @
where t = (x — x;) /hi, u;i, ti,v; € (0,+00),i =1,2,...,n—1,and
Cio = u; fi,
Cii = v fi +ui (fi +hidi),
Cio = 7 fix1 + vi (fit1 — hidit1),
Ciz =i fit1.
In applications, the first derivative values d;, i = 1,2, ..., n are not known and should be

specified in advance. In this paper, they are computed using the following arithmetic mean

method
hy

d=A — Ay — Ay),
1 1 h1+h2(2 1)
A A;
4= o3, 2
2
hn—l
d:A7 7A7—A7 N
n n 1+hn—2+hn—l( n—1 n2)
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where A; = (fi4+1 — fi)/h;. This arithmetic mean method is the three-point difference
approximation based on arithmetic calculation, which is computationally economical and
suitable for visualization of shaped data, see for example Sarfraz et al. (2010). In the next
discussion, we will also denote R(x) as R(x; fi, fi+1; di, di+1; ui, @i, v;) forx € [x;, xj41]-

2.2 (" bi-cubic partially blended rational cubic/quadratic interpolation surfaces

Let {(xi,yi, Fp,i=12,...,nj= 1,2,...,m} be a given set of data points defined

over the rectangular domain [a, b] X [c,d], where ty :a = x] < x3 < --- < X, = b is
the partition of [a,b] and wy : ¢ = y1 < y2 < -+ < y, = d is the partition of [c, d].
We use the notation 7; ; = [x;, x;+1] x [yj, yj+1]. For (x,y) € m; j, 1 <i <n—1,

1 < j < m — 1, using the boolean sum of cubic interpolating operators to blend together
four rational cubic/quadratic interpolation splines given in (1) as the boundary functions,
a bi-cubic partially blended rational cubic/quadratic interpolation surface is constructed as
follows

S, y) = (Q1® Q2) F) (x,)
=(Q1F) (x,y) +(Q2F) (x,y) = (Q1Q2F) (x, y), 3)

where

bi(1)
bo(S)}
bi(s) |’

(Q102F) (x.y) = [bo(t) bl(f)][ S ][2?8]

Fit1,j Fiy1 jn

(01F) (x,y) == [ F(xi, ) F (xi41, ) ] [bo(t)] ,

(02F) (x,y) := [ F(x,y)) F(x, yj41)] [

with 7 = xijs1 = xi, b} = yje1 = yj, 0 = (x = x))/hf, s = (y — y;)/h}, and

bo(w) := (1 —w)>(1 +2w),  b(w) = w? [l +2(1 —w)],

P . L. ., L. X X . X X X
F(x»yj) = R(x; FI,J, E+1,/a D,‘,jy D,‘+1,j: Ui j> T, jo v,',j)y

. — 2 DX x L oX X x
F(x, y]+l) ‘= R(x; Fz,]Jrla F1+1,]+l’ Di,j+1’ Di+1,j+1’ Ui jv15 T j+10 vi’j_l’_l)a

F(xi,y):=R(y; F; j, Fi j41; D] ;, D}

- y y
l,j’ l,j+1’ui,j"[i,j’vi,j)’

. e R(v F oy o e Y y LY y y
F(xl+la y) = R(y, E+l,ja Ft+l,]+l7 Di+l,j’ Di+1,j+l’ ul‘Jrl’j’ fl'Jrl’j! vi+1,j)'
Here, D? i Diy j are known as the first partial derivatives and (u} /.)(n_])xm,
(uij)nx(m—lﬁ (ti)fj)(n—l)xma (Ti{j)nx(m—l), (vij)(n—l)xmv (U,'y,j)nx(m—l) SerV? as IOC.aI ({OI]-
trol parameters. For2 < i <n—1,2 < j < m — 1, we set the first partial derivatives
ij, Di}j as follows

X X
Df. = A T4
1] 2 ’
“
y y
i, 2 ’

where A ; = (Fiy1j — Fij)/h}, A7 = (Fij+1 = Fij) /.
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Andfori =1,2,...,n,j = 1,2,..., m, we set the derivative values DY ., D}, D¥

1,7 7, 1) Zn,j
y
and Di,m as follows
h.x
X AY 1 (Ax._Ax')
1, 1, 2, 1,j)>
J I j j
. hy y y
Yo Ay y
Di,l - Ai,l - nY +hy (Ai,Z - Ai,l)’
1 2
e )
X AX n— X _AX
Dy j =41+ L (An—l,j n—2,j> .
y
y y n—1 y y
Dim=Aimat 5 (Ai,mfl - Ai,m72> ~
m—2 1

3 Region control of the interpolation curves

In this section, we shall deal with the problem of constraining the C! interpolant R (x) given
in Qin et al. (2016) to lie strictly between two given piecewise linear interpolation curves.

For x € [xj,xi+1],t = (x —x;)/h;, i = 1,2,...,n — 1, given two piecewise linear
interpolants g(x) = (1 —1)g; + 1gi+1, g*(x) = (1 —1)g} + g/, and a data set (x;, fi)
with g(x;) = & < fi < g’ = g*(x;), if the interpolant R(x) of the data set (x;, fi),
i =1,2,...,n satisfies

g(x) < R(x) < g"(x)

for any x € [x1, x,,], then R(x) is called the constrained interpolant lying strictly between
two given piecewise linear interpolants g(x) and g*(x).
For x € [x;, xi+1], 1 <i < n — 1, the interpolant R(x) lies strictly above the piecewise
linear interpolant g(x) if R(x) > g(x), which is equivalent to
S0 Cir(1 — )37k
wi(1— 0%+ (1 — 1)t + v;12
3 3—k k
_oAir(1 —1t t
_ Zk_oz zk( ) =0, (6)
ui(l —1)* + (1 — Ot + v;t?
where A, k =0, 1, 2, 3 are as follows
Aio=u;i (fi—g).
Ail=1 (fl - g,-) + u; (fl — 8it1 +hidi) ’
Ain =7 (fir1 — &) + i (fir1 — & — hidiy1)
Az = (fi—H - gi+1) :
Since f; —g; > 0, Vi, we can see that A;o > 0 and A;3 > 0. Thus, the conditions A;; > 0

and A;p > 0 are sufficient to ensure R(x) — g(x) > 0 (Vx € [x;, xi+1]), from which we can
get the following sufficient conditions for R(x) — g(x) > 0 (Vx € [x;, xi+1])

R(x) —g(x) =

[(1—1)gi +18it1]

ui >0, v; >0,

—ui [(fi — gi+1) + hidi ] —vi [(fi+1 — 8i) — hidiz1]
7; = max )
Ji—&i Jit1 — it

@)

,0}+,0i,
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where 1 <i <n — 1, and p; > 0 serve as free control parameters.
And for x € [x;,xi+1], 1 < i < n — 1, the interpolant R(x) lies strictly below the
piecewise linear interpolant g*(x) if R(x) < g*(x), which is equivalent to

Yo Cin(1 — )ik
ui(l =02+ (1 =)t + v;r?
3 3—k k
D=0 AL (L —=1)""%t

= >0, 8
ui(l =02+ (1 — )t + v;1? ®)

g ) — R = [(1 — 1) gf +1g]] -

where

o=uwi (g~ fi).
h=nle —fi) tu (g,i, —fi —hidi),
h=T (8:1 - fi+1) +vi (8" — fis1 + hidi1) .
i (g;k+1 - fi+l> .

In a similar manner, we can also obtain the following sufficient conditions that can ensure
g"(x) — R(x) > O forany x € [x;, x;j+1]

*
i3

u,->0, U,’>0,

r — max { —ui [(gfy — fi) —hidi] —vi [(gf = fi+1) + hidi1 ] )

.00 + pi,

’

g — fi 8 — fin

where 1 <i <n — 1, and p; > 0 serve as free control parameters.
In summary, for x € [x1, x,], the following simple explicit data-dependent conditions are
sufficient to ensure g(x) < R(x) < g*(x)

u,'>0, vl->0,

{ —v; [(fix1 — &) — hidiy1] —ui [(fi — giv1) + hid;]
7; = max

)

fit1 — &i+1 fi— & ' (10)
(et = ) =hid] —u ({6} = fi) + ] (),
g —fi ’ ghy — firl ’ a
wherei =1,2,...,n — 1, and p; > 0 serve as free control parameters.

Figure 1a, b shows the constrained interpolation curves R;(x) and R>(x) for the 2D data
set given in Table 1 and the corresponding graphics of their first derivatives. The free control
parameters for generating Ry (x) are set with all p; = 0. And R»(x) is generated by changing
all p; from 0to 2.5. As a comparison, Fig. 1¢ shows the constrained interpolation curve P (x)
generated by the method given in Duan et al. (1999), where all the parameters «; and B; in
P1(x) take the same value of 1. It can be seen that all the three interpolation spline curves
Ri(x), Ry(x) and Pj(x) lie strictly between the two given piecewise linear curves g(x) and
g™ (x) and all of them attain the expected C 1 continuity.

Figure 2a, b shows the constrained interpolation curves R3(x) and R4(x) for the 2D data
set given in Table 2 and the corresponding graphics of their first derivatives. The free control
parameters for generating R3(x) are set with all p; = 0. And R4(x) is generated by changing
all p; from O to 1.5. Besides, Fig. 2¢ shows the curve P> (x) generated by the method given in
Duanetal. (1999) will all @; = B; = 5. It can be seen that both the interpolation spline curves
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(a) R (z) generated by our method (b) R (x) generated by our method (C) Py (z) generated by Duan et al. (1999)
2 2 2
1 1 1
0 0 0
1 Bl 1
2 1 2 3 4 2 1 2 3 4 2 1 2 3 4
(d) first derivative of Ry () (e) first derivative of Ra(z) (f) first derivative of Py ()

Fig. 1 Constrained interpolation curves for the 2D data set given in Table 1 and the corresponding graphics
of their first derivatives

Table 1 The 2D data set given in Duan et al. (2000)

i 1 2 3 4 5 6 7 8

Xi 0.0000 0.5000 1.0000 1.5000 2.5000 3.0000 3.5000 4.0000
8i —0.0700 0.6300 0.9300 0.6300 —0.7700 —1.0700 —0.7700 —0.0700
fi 0.0000 0.7071 1.0000 0.7071 —0.7071 —1.0000 —0.7071 0.0000
gf 0.0700 0.7700 1.0700 0.7700 —0.6300 —0.9300 —0.6300 0.0700

14y 1

0.8 0.8
0.6 0.6

04 04

02 02
0 05 1 15 2 0 05 1 15 2

(a) R3(x) generated by our method (b) Ry(x) generated by our method (C) P> (z) generated by Duan et al. (1999)

2 2 2

1 1 1

0 0 0

1 El 1

2 2 2

i 05 1 15 2 i 05 1 15 2 2 05 1 15 2

(d) first derivative of R3(x) (e) first derivative of Ry4(x) (f) first derivative of P (x)

Fig. 2 Constrained interpolation curves for the 2D data set given in Table 2 and the corresponding graphics
of their first derivatives
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TDaul::re: zt ;P?Z%)lggata setgivenin 1 5 3 4 5
X 0.00 0.50 1.00 1.50 2.00
g 0.93 0.13 0.73 0.33 0.53
fi 1.00 0.20 0.80 0.40 0.60
g 1.07 0.27 0.87 0.47 0.67

-0.3

- 05 0 05 1 1 05 0 05 1
(a) Rs(x) generated by our method (b) P3(x) generated by Duan et al. (2006) (c) Reg(x) generated by Zhu (2018)
2 2 2
1 1 1
0 0 0
1 El 1
2 -2 2
El 05 0 05 1 -1 05 0 05 1 -1 05 0 05 1
(d) first derivative of Rs(z) (e) first derivative of P3(z) (f) first derivative of Rg(x)

Fig. 3 Constrained interpolation curves for the 2D data set given in Table 3 and the corresponding graphics
of their first derivatives

Table 3 A 2D data set

i 1 2 3 4 5 6 7 8

Xi —1.0000 —0.7143 —0.4286 —0.1429 0.1429 0.4286 0.7143 1.0000
8i 0.0600 —0.2389 —0.1716 0.2600 0.2600 —0.1716 —0.2389 0.0600
fi 0.1000 —0.1989 —0.1316 0.3000 0.3000 —0.1316 —0.1989 0.1000

gf 0.1400 —0.1589 —0.0916 0.3400 0.3400 —0.0916 —0.1589 0.1400

R3(x) and R4(x) lie strictly between the two piecewise linear interpolants g(x) and g*(x)
and both of them reach the desired C! continuity. However, it is obvious that P, (x) does not
lie strictly between the two given piecewise linear curves g(x) and g*(x). The reason is that
the constraint conditions of inequality group given in Duan et al. (1999) have no solution for
the data set given in Table 2, so that there are no positive parameters meeting the conditions
to make the curve P, (x) lie between the two given piecewise lines in this case, which implies
that the constraint conditions given in Duan et al. (1999) have particular requirements for
given data set.

Figure 3 shows the comparisons among the constrained interpolation curve R5(x) gener-
ated by our method, the constrained interpolation curve P3(x) generated by the method given
in Duan et al. (2006) and the constrained interpolation curve Rg(x) generated by the method
given in Zhu (2018) for the same 2D data set given in Table 3. The free control parameters
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for generating Rs(x) are set with all p; = 0. And the parameters for generating P3(x) are
set with all ; = B; = 0.4 and L = 0.5. The curve Rg(x) is constructed using the automatic
algorithm for generating C2 constrained interpolation curves developed in Zhu (2018). From
the result, we can see that all the three curves Rs5(x), P3(x) and Rg(x) lie strictly between
the two given piecewise linear curves g(x) and g*(x). It is obvious that the constrained
interpolation curves Rs5(x) and Rg(x) are slightly different in their shapes. And for the same
symmetry data set given in Table 3, the resulting constrained interpolation curves Rs(x) and
Rg(x) are more symmetrical about the ordinate axis than the constrained interpolation curve
P3 ()C ) .

4 Region control of the interpolation surfaces

In this section, we want to develop simple schemes so that the C! interpolation surface S(x, y)
given in (3) can lie strictly between two piecewise bi-cubic blending linear interpolation
surfaces.

Let{(xi, yi, Gij),i = 1,2,. =12,....om} i,y Fi )i =1,2,...,
n,j=12,.. m}and{(x,,y,,G )l =1 2,.. ,n,j =1,2,...,m} be three given
sets of data pomts defined over the rectangular domain [a, b] x [c, d] and satisfy G; ; <
F; <G1J,Vi,j.

We say that the interpolation surface S(x, y) of the data set {(x,-, vi, Fi j),i=1,2,...,
n, j=1,2,..., m}lies strictly between two piecewise bi-cubic blending linear interpolation
surfaces G(x, y) and G*(x, y) ifforany (x, y) € wij,i=1,2,...,n—=1j=12,...,m—
1, the following constrains hold

Gx,y) <S(x,y) <G (x,y), (11)
where
G(x,y) = (01® 02)G)(x,y)
=(016) (x, y) + (Q26) (x, y) — (@1 0206) (x, y),
G*(x,y) = ((Q1 ® 02) G*) (x,y)
= (01G*) (x,y) + (02G*) (x,y) — (0102G*) (x, ),
and

(016) (x,y) :=[G(xi,y) G (xi41,¥) ] [Z?g;] ’

b
(026) (x,y) := [G(x,y)) G(x,yj+D ] [b?g;]
. lj+1 bo(s)
(Q1026) (x,y) == [bO(t) bl(t)] |:G i+1.j Git+1 j+1] |:b1(s)i|
(016°) 03 1= [ 65,3 6" ano ] [ 140 |
i ! bi(t)
@y =0 e [2]
J J+ bi(s)
(Q102G%) (x, ) :=[bo(1) bi(1) ] | s G *l o bO(S)
G1+l j Gl+l ,j+1 bl(S)
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with A = x;11 — x;, hj =yjr1 =yt =& —x)/hi, s =(y— y;)/h’;, and

Gx,yj) =0 =0G;i;+1Git1j, Gx,yj+1) =1 —=1)Gi j+1+1Git1 j+1,
Gxi,y) =0 =95)Gij+5Gij+1, Gxit1,y) =1 —=5)Git1,j +5Git1,j+1,
G*(x, )’j) =0-0 G;k,j +ZG;F+1,]'» G*(x, )’j+1) =0-0 G;k7j+1 +tG;:_1'j+17

G*(xi,y) == (1 =) G ; +5G7 ;1. G*(xip1,y) == (1 =) Gy ; + SG?+1,]'+1'

To develop simple sufficient data-dependent constraints on the local control parameters
so that the generated interpolation surface S(x, y) can lie strictly above G (x, y), without loss
of generality, forany (x, y) € m; j,1 <i <n—1,1 < j < m—1, werewrite the expression
of S(x, y) — G(x, y) as the following form

S(x,y)—G(x,y)
=bo(t) [F(xi,y) — G(xi. )]+ b1 (1) [F(xig1. y) — G(xig1.y)]
+bo(s) [F(x, y)) = G(x, )|+ b1(s) [F(x, yj11) — G(x, yj41)]
—bo(t)bo(s) (Fi,j — Gij) — bo)bi(s) (Fi,j+1 — Gi j+1)
—bi1(1)bo(s) (Fis1,j — Git1,j) — b1 (b1 (s) (Fip1,j+1 — Git1,j+1)

1 1
= bo(s) |:F(x, vj) = G(x,yj) — Ebo(f) (Fi.j—Gij) — Ebl(l‘) (Fis1,j — Gi+1,j):|
1
+ b1 (s) [F(x, Vji+1) = G(x, yj+1) — Ebo(t) (Fi.j+1 — Gij+1)

1
—5b1(t) (Fit1,j+1 — Gi+1,j+1)]

1 1
+ bo(1) [F(xi, ¥) =G, y) — Ebo(S) (Fi.j — Gij) —Ebl(s) (Fij+1 — Gi,j+1)]
1
+ b1(7) |:F(xi+l7 ) = G(xiy1,y) — Ebo(s) (Fis1,j — Gis1,j)

1
_Ebl(s) (Fi1,j+1 — Gi+1,j+1)i| .

Since both of the two functions bg(w) and by (w) are strictly positive for any w € (0, 1),
we can see that S(x, y) — G(x, y) > Oforany (x, y) € m; ; if the following constraints hold

1 1
Fx,yj) = G, yj) = Sbo(®) (Fi,j — Gij)— Sbi® (Fi+1,j — Giy1,j) > 0.
1 1
Fx.yj+1) = G yj+1) = 5b0(0) (Fij+1—Gi j+1) — 7010 (Fit1,j41 = Gig1,j+1) > 0,
1 1
F(xisy) = Gxi,y) = 5bo() (Fi j = Gij)— 3016 (Fi.j+1 = Gi jy1) >0,

1 1
Fxit1,9) = Gxit1.¥) = 5bo(s) (Fit1,j — Gig1,j) — 70109 (Fit1,j41 — Gig1,j+1) > 0.
(12)

For F(x,y;) = G(x,y)) = 3b0(®) (Fi,j = Gi j) — 3b1(1) (Fi1,j — Git1,7), we have
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1 1
F(x,y;) —G(x,y;) — Ebo(l) (Fi,j—Gij)— Ebl(l) (Fit1,j — Gis1,))

3 0o Bir(1 — )57k
uf ;=02 + 1 (=0 4o 12

where
1 X
Bip = Ui (Fi,j -Gij),
I . . 1
Biy = E[Tz] (Fij = Gij) +2u} (FtJ Gi+1»j+hiDi,j>]+ 3 uf ; (Fij—Gij),
1
BiZ—E[Ti)fj (EJ—G,J)+4M ( ij GiJrlJ_i_h?Dl{j)_le,j (Fi,j—G,‘,j)]
+ [Tffj (Fit1,j — Git1,j) +v7 (Fi+1,j —Gij—h f+1,j>
3
~5ut (Frvny = G )|+ (R = ).
X X X X 3 X
Bz = |t'; (Fij — Gij) +uj (FiJ = Giy1j+ I Di,j) R (Fi.j = Gij)
1
+3 [tffj (Fit1,j = Git1,j) +4v7 <Fi+1,j -Gij— thfH,j)
—u} ; (Fiv1,j — Gi+1,./')] + 0 (Fit1,j = Git,j)
1
Bia =5 [ (Fisrj = Givrj) + 207 (Fivny = Giy = 0D}y )|
1
+ EU;C’j (Fis1,j — Gi1,j) »
1

Bis = Evfﬁj (Fiy1j — Git1j)-

—G;, j > 0,Vi, j, from the above expressions, it is obvious that the conditions

Since F; ;
> 0 together with B;, > 0,r = 1,2, 3, 4 are sufficient to ensure

Ti)fj>0ulj>0vlj
F(x.y)) = G(x.y)) = 3b0) (Fij = Gij) = 3010) (i1, = Gi1,j) > 0.
It is clear that 7;' >0, uj > 0,07 ;>0 together with the following conditions are

sufficient to ensure Blr >0, r= 1,2, 3, 4,

i)+ 20 ; (Fij = G + 1D} ) 2 0,

l+l J Gt+l j) +4U ( i+1,j — Gi, J hXDlirl j) MXJ (FiJr]vj - Gi+l,j) >0,

o
T \J

lXj (Fl} G
' (Fij — Gij) +4uj (F, j— Git,j +h?Df,j) —v}; (Fij—Gij) 20,
3
o (Fij = Gig) +uf ; (Fuj = Gisny + DL ) = Svf (Fuy = Giy) 2 0,
3
T (Fir1,j = Gisr ) + 07 <F1+l j—Gij—hiDi J> ZM{J- (Fi+1,j — Gig1,j) = 0,

Fit, j Gt+l j) +2U ( i+1,j Gij hy D,X+1 ]> > 0.
(13)
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Further, we cansee thatif F; j —Git1,j+hi D} ; < Oand Fiyy,j—Gi j—hiD;, ; <0,
the following conditions are sufficient to ensure the constrains (13) hold
X X X 3 X
T (Fi.j — Gi )+4u (Fz j— Git1,j +hj Di,j) ~ Y (Fij=Gij) =0
3
o) (Fivny = Givrj) + 408 (Finy = Giy = D} ) = 41 (Firrj = Git1,j) 2 0.
(14)

Moreover, for Fi j — Giy1,j +hiD; ; = 0and Fiyy j — Gi j —hi Dy, ; = 0, itis easy

to check that the following condmons are sufficient to ensure the constralns (13) hold

3
7t (Fij — Gij) — 5”?‘,,- (Fij = Gij) =0,
s)

3
sui ; (Fiyr,j = Gig1,j) = 0.

o (Fisrj — Gigrj) — 5

From the above analysis, we can immediately obtain the following sufficient conditions to
ensure the positivity of F(x, y;)— G (x, y;))—bo(t) (Fi,j=Gi ;) —3b1(t) (Fit1,;—Gis1,)

ur . >0, v, >0,
. (E,j—Gi+1,j+thﬁj)+3 .

i,j
! Fij—Gij

4t Fiy1,j — Gij —hiDfy, ; +§u’-‘» §u4_ év?‘- + o
n Fiy1,j = Giy,j 27 haa o
(16)

where ]l <i<n—-1,1<j <m,and pij, piy’j > () serve as free control parameters.

In the same way, we can also derive similar conditions to ensure F (x, y;j+1)—G(x, yj+1)—
300t (Fijs1 — Gij41) — 3010 (Fiprj+1 — Gig1,j41) > 0, F(xi,y) — G(xi,y) —
300(s) (Fi.j — Gij) — 5b1(s) (Fijs1 — Gij+1) > 0 and F(xis1,y) — G(xig1,y) —
%bo(S) (Fis1,j — Gis1,j) — %b1(S) (Fit1,j+1 — Gig1,j4+1) > O.

In conclusion, the following conditions are sufficient to ensure S(x,y) — G(x,y) >
0(V(x,y) €mj)

uf,k > 0, vfﬁk > 0,
Fix — Giy1x +hiD; 3
: . k
rixkzmax{—4ufk< ! ”)4-7?‘
’ ' Fix—Gix '
Fiy1x—Gix — hj‘Dj‘H,k) 3., 3., 3vx }
k
Fiv10—Giy1k !

F;j—Gijm+hD .\ 3
7 . =max { —4u; ; d d LS A I S
J J Fj—Gj 9L
(Fz,,+1 Grj— h};D{j+1> 3y 3, 3,
2

= - y
l,j’zul»j’zvl,j +/01,j,
)

Frjv1 — G jy1

where k = j, j+ 1, =i,i+1,and pfk, ,olyj > ( serve as free control parameters.
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For any (x, y) € m;, ;, we further rewrite the expression of G*(x, y) — S(x, y) as follows

G* (x,y) = 8 (x, ) = bo(®) [G* (xi, ) = Fxi, )] +b1(8) [G* (41, ¥) — Fxigr, )]
+bo(s) [G*(x, y)) = FCe, y)] 4+ b1(s) [G7(x, yj41) — Fx, yj11)]
= bo®bo(s) (G = Fij) = bobi(s) (G} i1 = Fijn)

—bi(bo(s) (Giyy; — Fiv1,j) —b1@®bi(s) (G jy1—Fiv1.j+1
J J

1
= bo(s) [G*(x, ¥) = F.yp=3bo0) (G; = Fi )

1
—3b10 (Gip s~ Fm,,-)]

1
+b1(8) |G (x,yj41) — F(x,yj41) — Ebo(t) (G;Hl - Fi,j+1)

1
_Ebl(t) (Gf+1_j+1 - Fi+1,j+l):|

[ 1 1
00| G i) = Flai ) = 5006) (G = i) = 50160 (G o ﬂ,,+1)]

1
610 | G* (i1, 3) = i 3) = 3b066) (Gl j = Fien,y)

1
—Ebl(s) (G;‘k+1,j+l - Fi+1,j+l>} :
Similarly, since both of the two functions bg(w) and b (w) are strictly positive for any

w € (0, 1), we can see that for any (x, y) € m; j, G*(x,y) — S(x,y) > 0 if the following
constraints hold

1 1
G*(x,yj) — F(x,yj) — Ebo(t) <G,’-‘,j- - Fz]> - Ebl(l) (G}ﬁrl,j - Fi+1,j> >0,
* 1 * 1 *
G (e v = FO ) = 50000 (G5 = Figin) = 35100 (G i = Fian i) > 0,

1 1
G (i) = Flxiv ) = 5000) (GF = Fi) = 3016 (G s = it ) > 0,

1 1
G*(i1.3) = FCxig1.3) = 3506) (G = Fivny ) = 50160 (Gl ja = Fian ) > 0.
(18)

ForG*(x, yj) = F(x,v)) = $bo(t) (G = Fij) = 3610) (G, = Fisn,; ) wehave

1 1
G*(r.y)) = FGxoyp) = 560 (GFj = Fig) = 5610 (Giony = i)

Yoo Bi (1= ke
N ul (=02 41 (L= 1+ 12

where

1
Bjy = 5”?,; (G?,j - Fi,j) ’
1 1
B =5 [ (61— Fis) + 208 (G = Fiug = D3 )|+ 50t (G = ).
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=5 [ (61 = Fi) +4ut; (Gl = By = hiD) ) = vty (GEy = F) |
[ (Grany = Firns) + 085 (GLy = Fonj +hEDE )
3
_Euf‘j (Gl+l i Fi+l,j)] (G* i ])

3=t (Gf,j - le.i) i ( iy~ Fig = thf,j) - 3 (G* £ /)]

+ ! [Ti)fj ( N Fi+l,j) +4v; (G;'k,j —Fipj+ h?DfH,j)
(i1 = Firng) |+ (Firny = Ginny).

o= 5 (703 (G = Fiens) + 200, (G = Frors DL )

1
+ Evf,j ( N Fi+1,j> ,

Since G;"j F;j > 0, Vi, j, from the above expressions, we can see that the conditions

‘L'ixj > 0, uj‘j > 0, vl > 0 together with Bi*r > 0,r = 1,2, 3, 4 are sufficient to ensure

G*(x,yj) — F(x,y;) — 1bo(t) (G*i,; — Fi.;) — 3b1(t) (G*i11,; — Fiy1,j) > O.

It is clear that tix o> O ut >0, v} ;=0 together with the following conditions are

sufficient to ensure B}, > 0,r =1,2,3,4,

7 (G l/) +2uj (G:'k+l,j Fij = hi D} ) 0,
G, —F, ) +du (G;-"+1_j —Fj - h'i‘Djfj> —v; (G;jj - F,j) >0,
3

Gl = Fug) bty (Gl = Fop = D3 ) = 5o (67 = Fig) 2 0,

3
,X, (Gz+1 j~ Fir, /) + Uf,_/ (G;‘k,j — Fiyj + thfH,_/) - E”f,_/ (G?H,j - Fi+1,./‘) =0,

N><

iJ
x
T \J

“x

i,j GH—I J FH‘I J) +4vij (G = Fiq, J +h Dt+l j) ul‘:j (G;’k+l,j - FH‘IJ) >0,

Gy — Fin J) +2v7 (G?,j —Fiyj + thfH,_/) =0.

x
l Jj

(19)

Further, wecanseeth::ltlfG;“+1 —ht D“‘. < Oand G} i~ Fiq, j+hT Dl+1 ;< 0,

the following conditions are sufﬁment to ensure the constrains (19) hold

3
o (Gt = Fuj) + 4 (Grary — Fiy — D) = Sol (61— Fij) 20,

3
T ( R Fi+1.j) +4v; (G — Fiy1,j +hi Diy, /> 2“?‘,]' (G?Jr],j - FH—LJ’) > 0.
(20)

In addition, for Gz*+1 hXD" i = 0and G} Fiy1,j+ht Dz+1j > 0, it can be

easy to check that the followmg condmons are sufﬁc1ent to ensure the constrains (19) hold
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3
T (Gﬁj - Fw’) ~ 5V (G?,j - Fw‘) >0,
3
T (G?H,j - EH,J‘) - 5”?,;’ ( T Fi+Lj) = 0.
From the above analysis, we can immediately obtain the following sufficient conditions
for G*(x, y;) = F(x,v)) = $bo) (GF; = Fij) = 3010) (Gfyy j = Finj) > 0

2

G* Fi j

4yt G;F,j_FiJrlvj—i_hiDz{b-l,j 3 3 3 o
U e 23 s 3 [ TP
(22)

G* F; '—h’.‘D’.‘. 3
rz')szmax{—4u’-".( i+l : 1,1)_1_1){.

wherel <i<n-—1,1<j <m,and ,ol j pl R > () serve as free control parameters.
In the same way, we can derive similar sufficient conditions for G* (x, yjr1) —

F@,yjen) = 300) (67 1 = Fijt) =301 (Gl iy = Fisnn ) > 0, G* (i, )
— Fi.y) = 3b0) (G = Fis) = 3016 (GF g = Fijar) > 0 and G*(xig1. ¥)
— Firt, ) = 300) (Gl j = Freng) = 30160 (Gl iy = Finjn) > 0.

In conclusion, the following conditions are sufficient to ensure G*(x, y) — S(x,y) >
0(Vx,y) €emij)

X X
Ui > 0, Vi > 0,
1k — Fik —hi Dy 3
rl.’szmax{ 4ulk( s ~ i ' +5 e
1
- l+1k+h Dz+lk 3 3 3
—4v; —F + Euf,k» Euj"k, Evz{k + P
l+1 k i+1,k
b y
up ;> 0, v >
G} Fj—h.Dj,
77 = max { —4u’ Litl il 3vy
lL,j — I ] PYNE
o JJ Glj Fr 2L
Yy
_4vy‘ Gl,j_Fl,]+l+thl’j+l +§uyw§uy"§vy‘ +pyA’
Lj Gl —Fijwi 27Ljr L 9 L LJ

(23)
where k = j, j+ 1,1l =i,i+1,and pﬁk, p,":j > ( serve as free control parameters.
Summarizing the above discussion, combining (17) with (23), we can see that the following
explicit conditions are sufficient to ensure G(x, y) < S(x,y) < G*(x,y) V(x,y) € 7 j,
i=12,....n—-1,j=1,2,....m—1)
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X

up >0, v >0,
Fix — Giy1x +hi Df 3
tl?‘k:max{—4ufk( ! Fl G ! "k)—l—fvfk,
' ' ik — Gik ’
Fiv16 — G —hy Dl+1 k> 3 X

2
Fiv1x— Gig1k 2

Giyia — Fik — hiDjy n 3
Giy—Fik 270

I Gl — Fivik +hi Dy L3 3,03 3 o
e G;k+l,k_Fi+l,k 2 lk’z ’k’ 2 tk i k>

Fr.j —Grjy1+ hiDly,j
Fr; — G

v (Frivi =G —hiDi )\ 3,
— 4Ulj UL
’ Frj+1— G jt1 2"
Yy
y (Glj1—Fij—h;Dp; 3,
—duy * YL
2 sz —F 2L
. (Gf = Fijri+h.D]; 3y 3. 3
i e R T +0)
L+~ Frjn 2"t 3t 2
(24)
wherek=1,2,...,m,l=1,2,...,n,and p;‘k, ,olyj > (0 serve as free control parameters.

We shall give some graphic examples to show that the proposed C'! interpolation
surface S(x,y) given in (3) can be constrained strictly between two piecewise bi-cubic
blending linear interpolation surfaces. The corresponding first partial derivatives D; . T DZ.v i

are computed by (4), and (5). In the following figures, for all possible i, j, the data points
(xi, yj, Fi j) have been marked with solid black dots, (x;, y;, Gi ]) with hollow blue dots,

and (x;, y;, G;, ;) withred blue dots. And the resulting C ! constrained interpolation surfaces
Sn(x,y), N =1,2,...,6have been marked with yellow color.

Example 1 In this example, the data set {(xi,y,-, Fijp),i=12,...,6,j=12,...,6}
is given in Table 4. The data sets {(x,,y,, Gij)i=12,...,6j=12,...,6} and
{(x,,y,,G )1_12 ,6,j=1,2,. 6}areg1venbyG,]_Flj—O6 G* =
Fij +0. 6, Vz j. Figure 4a shows the 1nterpolat10n surface Si(x, y) generated usrng the
sufficient conditions (24) with all u}, = v, = uly = vly = land p}; = Pz =0.
Figure 4d shows the 1nterp01at10n surface Sy (x, y) generated by changing the free control

parameters,o andplj i=3,4,j=3,4from0to 1.2.

Example 2 In this example, the data set {(xi,y,-, Fijp),i=12,...,7,j=12,...,7}
is given in Table 5. The data sets {(x,-,y,, Gij)i=12,...,7j=12,...,7}and

{(x,,y,,G )1_12 1,7 =1,2,. .,}areglvenbyG,J_Flj—OZ G* =
Fi j +0. 2, Vz j. Figure 5a shows the 1nterp01at10n surface S3(x, y) generated usrng the
sufficient conditions (24) with all u}, = v, = uly = vly = land p}; = ,ol = 0.

Figure 5d shows the 1nterp01at10n surface S4 (x,y) generated by changing the free control
parameters ,o . and ,o ,1=3,4,5,j=3,4,5,fromO to 1.
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Laubslse a;ln g;hael ‘3(130(1121:;1 set given in v/x 3 2 _1 1 ) 3
-3 2.5 4.8077 4.9 0.1 0.1923 2.5
-2 0.1923 2.5 3.7 1.3 2.5 4.8077
-1 0.1 1.3 2.5 2.5 3.7 4.9
1 4.9 3.7 2.5 2.5 1.3 0.1
2 4.8077 2.5 1.3 3.7 2.5 0.1923
3 2.5 0.1923 0.1 4.9 4.8077 2.5

S )

X y X y
(d) Ga(z,y), S2(z,y) and G5 (z,y) (e) xz-view of (d) (f) yz-view of (d)

Fig.4 Interpolation surfaces for examples 1

Table 5 The 3D data set given in Abbas et al. (2014)

y/x -3 -2 -1 0 1 2 3
-3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401
) 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583
-1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078
0 1.0400 1.0403 1.1753 2.0400 1.1753 1.0403 1.0400
1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078
2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583
3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401

Example 3 In this example, the data set {(xi,y,-, Fip,i=12,...,7,j=12,...,7}
is given in Table 6. The data sets {(xi,yi, Gijp)i=12...,7, j:l 2, ...,7} and

{(xi, yi, G? )1_12 ,7,)=1,2,. 7}areg1venbyG,j_ 10 G* =
F; j +10, Vz j. Figure 6a shows the mterpolatlon surface S3(x,y) generated using the suf-
ficient conditions (24) with all u¥ k= = = =u L = land pl = pl = 0. Figure 6d

shows the 1nterpolat10n surface S4 (x, y) generated by changlng the free control parameters
l’j andpi’j,l =3,4,5,j=3,4,5from0 to 0.8.
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We conclude from Figs. 4, 5 and 6 that using the sufficient conditions (24), we can
generate interpolation surfaces lying strictly between two given piecewise bi-cubic blending
linear interpolation surfaces and the shape of the resulting interpolation surfaces can be
locally adjusted using the free control parameters.

5 Conclusion

Based on the C! rational interpolation splines in one and two dimensions given in Qin et al.
(2016), simple and explicit sufficient conditions have been developed for generating C'
interpolation curves and surfaces with region control. The numerical results show that our
method is effective and practical. What’s more, in our work, the constraint conditions are
explicit so that it is easy to apply, while the conditions given in Duan et al. (1999, 2000,
2005) and Duan et al. (2006) are non-explicit. There are still some problems that deserve
further study, for example, the construction of monotonicity- and/or convexity-preserving
interpolation surfaces with C! continuity. These will be our future work.
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