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Abstract
This paper aim to propose a novel outranking method based on interval-valued Pythagorean
fuzzy linguistic set (IVPFLS) to estimate alternatives for decision makers. With the rapid
increase of the complexity, the challenges of a group of decision makers, a high degree
of uncertainty and conflicting criteria are associated with multiple criteria decision making
(MCDM) problems and few studies for these. In this regard, the outranking-VIKOR (O-
VIKOR) method with the construction of compromise solution considers “group utility” and
“individual regret” in pairwise alternatives. To fully show the compromise outranking rela-
tion, the O-VIKOR method allows decision makers reach consensus by mutual concessions
when the dominant position fromalternatives is extant. Subsequently,wedefine the credibility
formula that constitutes a complementary judgment matrix for devoting to ranking the alter-
nativesmore precision.When it is necessary to process the evaluation information ofmultiple
decision makers, the interval-value Pythagorean fuzzy linguistic entropic induced ordered
weighted averaging (IVPFLEIOWA) operator is proposed with entropic order-inducing vari-
able which includes a new interval-value Pythagorean fuzzy linguistic entropy for measuring
uncertainty to capture the interrelationship among the primary preference of decisionmakers.
Finally, a case study on site selection problem for a manufacturer is presented to illustrate
the efficiency of our proposed method and make comparative analysis with other methods.
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1 Introduction

Multiple criteria decision making (MCDM) is a significant technique to handle preference
information of decision makers on the practical decision making and widely applies in many
domains, such as investment strategy (Xian et al. 2018b), robot selection (Liu et al. 2019),
green supply chain initiatives (Zhang and Xing 2017) and energy project selection (Liang
and Xu 2017). These MCDM problems are generally considered in fuzzy environment. On
the basis of fuzzy sets (Zadeh 1965), Atanassov (1986) depicted the concept of intuition-
istic fuzzy set (IFSs) to capture imprecision information with membership function and
non-membership function. Pythagorean fuzzy set (Yager 2013) as a special type with non-
standard fuzzy set, it allows the sum of the membership degree and the non-membership
degree is over 1, nevertheless the square sum is less or equal than 1. And many fundamen-
tal studies are contributed in Pythagorean fuzzy circumstances; Yager (2014) gave some
operators on PFSs and discusses properties of Pythagorean fuzzy number (PFN) such as
membership grade. Xian et al. (2018a) investigated principal-value Pythagorean fuzzy set
(p-PFS)with the consideration of principal-value and introduced a rankingmethod to find the
idea alternative. For adapting demand of decision making, Zhang (2016) extended PFSs to
interval-valued Pythagorean fuzzy sets (IVPFSs). Because people tend to use linguistic infor-
mation indicating the preference in assessment, Du et al. (2017) proposed interval-valued
Pythagorean fuzzy linguistic number (IVPFLN) that use linguistic information with the relia-
bility degree to express evaluation for highly uncertain condition and make some research on
operators. It is not sufficient for study of measuring uncertainty on IVPFLS, but the entropy
is an useful way in this. Therefore, we develop an interval-value Pythagorean fuzzy linguistic
entropic induced ordered weighted averaging (IVPFLEIOWA) operator with interval-value
Pythagorean fuzzy linguistic entropy which can capture uncertainty in IVPFLSs and aggre-
gate evaluation information.

Generally, establishing evaluation criteria system is a sophisticated process for construct-
ing mathematical model of preference information. In the literature, researchers have utilized
a variety of MCDM methods for finding the acceptable final solution, such as aggregated
decision method (Wei 2019; Wu et al. 2019; Tang et al. 2019), bidirectional project method
(Lu et al. 2019), prospect theory (Ding et al. 2019), TOPSIS method (Xian et al. 2018b) and
VIKOR method (Chen 2018). Among these methods, the merit of the VIKOR (Vlsekriteri-
jumska Optimizacija I Kompromisno Resenje) method is dedicated to obtain the compromise
solution considering the maximum group utility and minimum individual regret for realistic
decision-making environments. Recently, some studies of VIKOR method have extended on
a variety of uncertain environmental conditions. Sanayei et al. (2010) developed an extended
VIKOR method for solving MCDM problem in fuzzy environment and applied in supplier
selection problem. Chen (2018) defined remoteness index for different ideal solution: dis-
placed or fixed, and proposed remoteness index-based Pythagorean fuzzy VIKOR methods.
For taking linguistic information into account MCDM problem, Liao et al. (2015) proposed
some hesitant fuzzy linguistic distance measures and extended to the hesitant fuzzy linguis-
tic VIKOR method based on these measures. There are many useful applications of VIKOR
method in uncertainty MCDM problems (Chen 2018; Meksavang et al. 2019; Liu and Wu
2012; Park et al. 2011). It is understood that there are some gaps on VIKOR method. While
using the form like the closest to the ideal to achieve the consensus by mutual concessions,
the VIKOR method neglects many critical information of alternatives in pairs. Because of
its characteristics, it is difficult to handle highly uncertain information.
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The outranking methods not only can avoid these drawbacks but also by pairwise com-
parison can effectively reduce the high degree of uncertainty. As for the classical method,
the outranking methods, with multiple morphologies have a significant feature that forms an
outranking relation by the action of comparing pairs on each criteria. Meanwhile, the indif-
ference information is also adequately involved in consideration, which is more in line with
realistic situation. The first outranking method called ELECTRE I (ELimination Et Choix
Traduisant la REalit I) is an effective MCDM method(Roy 1968). The ELECTRE I method
is used to compute a partial prioritization and determine a set of ponderable alternatives. And
other ELECTRE method, such as ELECTRE II, ELECTRE III, ELECTRE IV, ELECTRE
IS, ELECTRE TRI (Figueira et al. 2005), which is more elaborate than the original method.
The ELECTRE I is used for selection problem. After that, the ELECTRE II is designed by
Roy and Bertier (1973) to construct outranking relation of alternatives which one alternative
is preferred to another on each criteria. ELECTRE III was proposed to improve ELECTRE
II (Roy 1978) and provides indifference, preference and veto thresholds that is more detailed
to establish outranking relation in decision matrices. It is particularly used in quantifying the
relative importance of criteria and reduce the uncertainty of information by comparison in
pairwise. Thus, to demonstrate the applications of ELECTRE III, Papadopoulos and Kara-
giannidis (2008) used the ELECTRE III in the selection of decentralized energy systems.
Radziszewska-Zielina (2010) appliedELECTRE III to pick out themost suitable construction
enterprise for cooperation in terms of partnering relations. Hashemi et al. (2016) extended
ELECTRE III to handle interval-valued fuzzy information to determine the best investment
project. Based on ELECTRE III, Peng and Wang (2018) developed an improved outranking
method combined QUALIFLEX to enhance effective ranking capability for solving cogni-
tive information. Nevertheless, the ELECTRE III method directly negates the value which
exceeds veto thresholds in relation model, without considering the impact of this part of the
information on the final ranking and ignore the subjective will of the DMs in consensus by
mutual concessions.

Motivated by the conflict compromise of VIKOR and the pairwise comparison of ELEC-
TRE III, The outranking-VIKOR (O-VIKOR) in interval-valued Pythagorean fuzzy linguistic
environment is proposed for treating group decision making problems with high uncertainty
and conflicting criteria. The contributions of this paper can be summarized briefly as follows:

(1) The interval-value Pythagorean fuzzy linguistic entropic induced ordered weighted aver-
age operator (IVPFLEIOWA) is proposed to utilize the entropy order-inducing variable
to describe the uncertainty and the sequential position information of IVPFLS.

(2) An compromise outranking method is proposed to remedy the drawbacks in ELECTRE
III. This method has fully integration of the advantages of relation model of ELECTRE
III and the successful reaching consensus by compromise. In the proposed method, we
define the compromise outranking degree that represents the superiority of action one
over another with consensus parameter based on outranking index and veto index.

(3) Because the compromise outranking relation is difficult to obtain a complete sorting
result, a credibility formula is proposed to construct the complementary judgment matrix
and help rank the results. The advantages of thismethod are clearly illustrated inmodified
parameter analysis and comparative analyses.

The remainder of this paper is organized as follows. Section 2 briefly recalls some basic
concepts of IVPFLSs and twoMCDMmethods, VIKOR andELECTRE III. Section 3 defines
an interval-valued Pythagorean fuzzy linguistic entropy and IVPFLEIOWA operation which
considering entropy order-inducing variable. In Sect. 4, we propose O-VIKOR model and
introduce the steps for solving MCDM problems. In Sect. 5, the example that involves site
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selection to interpret the flexibility and validity of the proposed method. This section also
provides some comparative analyses to demonstrate the superior performance of the proposed
method. Section 6 presents the conclusions and outlines the aims of the future work.

2 Preliminaries

In this section, we briefly introduce some basic concepts of linguistic term sets, interval-
valued intuitionistic fuzzy set, interval-valued Pythagorean fuzzy set and interval-valued
intuitionistic fuzzy entropy.And two traditionalMCDMmethods that callVIKORandELEC-
TRE III are also briefly described.

2.1 Linguistic term sets

As practical decision making, personal preference information is fuzziness from linguistic
term sets rather than numerical numbers. Sometimes it is difficult to evaluate preference
information with numerical numbers, especially for qualitative information. Basic concept
is introduced in the following.

Definition 2.1 (Du et al. 2017) Let S = {si |i = 1, 2, . . . , t} be a linguistic term set, S is
a consecutive finite subset of ordered linguistic term set. Here the t denotes furthest value
of linguistic term set. si which subscript as i is the i th language variable of S. Let S =
{s1, s2, . . . , s9} be a linguistic term set, it can be given as follows:

S = {s1 = extremely poor, s2 = very low, s3 = poor, s4 = slightly poor,

s5 = fair, s6 = slightly good, s7 = good, s8 = very good, s9 = extremely good}.
in which si < sk iff i < k. It would be satisfied the following additional characteristics:

(1) The negation operator: Neg(si ) = sk, k = T − 1. (T + 1 is the cardinality).
(2) Maximization and Minimization operator: Max(si , sk) = si if si ≥ sk , Min (si , sk) = si

if si ≤ sk .

2.2 Interval-valued Pythagorean fuzzy linguistic set

Definition 2.2 (Zhang 2016) Let X be a fix set. An interval-valued Pythagorean fuzzy set
(IVPFS) P̃ on X is defined as:

P̃ = {〈μ̃P̃ (x), ν̃P̃ (x)
〉 |x ∈ X

}
(1)

where the function: μ̃P̃ (x) = [μL
P̃
(x), μU

P̃
(x)] ⊆ [0, 1], ν̃P̃ (x) = [νL

P̃
(x), νU

P̃
(x)] ⊆

[0, 1], 0 ≤ (μU
P̃
(x))2 + (νU

P̃
(x))2 ≤ 1 for ∀x ∈ X ; μ̃P̃ (x), ν̃P̃ (x) present degree

of interval-valued membership and degree of interval-valued non-membership, respec-

tively. The degree of interval-valued hesitancy denotes: π̃P̃ (x) = [
√
1 − μU

P̃
(x)2 − νU

P̃
(x)2,

√
1 − μL

P̃
(x)2 − νL

P̃
(x)2].

Definition 2.3 (Du et al. 2017) Let X be a fix set, S be a finite linguistic term, then the
interval-valued Pythagorean fuzzy linguistic set (IVPFLS) s̃ in X is defined as:

s̃ = {〈sα(x); [μL
s̃ (x), μU

s̃ (x)], [νLs̃ (x), νUs̃ (x)]〉 |x ∈ X
}

(2)
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where sα(x) ∈ S, the function: [μL
s̃ (x), μU

s̃ (x)] ⊆ [0, 1], [νLs̃ (x), νUs̃ (x)] ⊆ [0, 1], denoting
the degree of interval-valued membership (μL

s̃ (x) and μU
s̃ (x) is the lower and the upper

of membership) and the degree of interval-valued non-membership (νLs̃ (x) and νUs̃ (x) is the
lower and the upper of non-membership), satisfies the condition: 0 ≤ (μU

s̃ (x))2+(νUs̃ (x))2 ≤
1, ∀x ∈ X , and the degree of interval-valued hesitancy denotes:

π̃s̃(x) =
[√

1 − (μU
s̃ (x))

2 − (νUs̃ (x))
2
,

√
1 − (μL

s̃ (x))
2 − (νLs̃ (x))

2
]

⊆ [0, 1].

Definition 2.4 (Du et al. 2017) Let s̃ = (sα(x); [μL
s̃ (x), μU

s̃ (x)], [νLs̃ (x), νUs̃ (x)]), s̃1 =
(sα(x1); [μL

s̃ (x1), μU
s̃ (x1)], [νLs̃ (x1), νUs̃ (x1)]) and s̃2 = (sα(x2); [μL

s̃ (x2), μU
s̃ (x2)], [νLs̃ (x2),

νUs̃ (x2)]) be three IVPFLSs, the operational laws of interval-valued Pythagorean fuzzy lin-
guistic variable set (λ > 0) are defined as:

1. s̃1 ⊕ s̃2 = (sα(x1)+α(x2); [
√

(μL
s̃ (x1))

2 + (μL
s̃ (x2))

2 − (μL
s̃ (x1))

2
(μL

s̃ (x2))
2
,

√
(μU

s̃ (x1))
2 + (μU

s̃ (x2))
2 − (μU

s̃ (x1))
2
(μU

s̃ (x2))
2], [νLs̃ (x1)νLs̃ (x2), νUs̃ (x1)νUs̃ (x2)]);

2. s̃1 ⊗ s̃2 = (sα(x1)×α(x2); [μL
s̃ (x1)μL

s̃ (x2), μU
s̃ (x1)μU

s̃ (x2)],
[
√

(νLs̃ (x1))
2 + (νLs̃ (x2))

2 − (νLs̃ (x1))
2
(νLs̃ (x2))

2
,

√
(νUs̃ (x1))

2 + (νUs̃ (x2))
2 − (νUs̃ (x1))

2
(νUs̃ (x2))

2]);
3. λs̃ = (sλα(x); [

√
1 − (1 − (μL

s̃ (x))
2
)
λ
,

√
1 − (1 − (μU

s̃ (x))
2
)
λ], [(νLs̃ (x))λ, (νUs̃ (x))λ]);

4. s̃λ = (s(α(x))λ; [(μL
s̃ (x))λ, (μU

s̃ (x))λ], [
√
1 − (1 − (νLs̃ (x))

2
)
λ
,

√
1 − (1 − (νUs̃ (x))

2
)
λ]);

5. s̃c = (st−α(x); [νLs̃ (x), νUs̃ (x)], [μL
s̃ (x), μU

s̃ (x)]), (s̃c is the complementary set of s̃).

Definition 2.5 (Du et al. 2017) Let s̃ = (sα(x); [μL
s̃ (x), μU

s̃ (x)], [νLs̃ (x), νUs̃ (x)]), s̃1 =
(sα(x1); [μL

s̃ (x1), μU
s̃ (x1)], [νLs̃ (x1), νUs̃ (x1)]) and s̃2 = (sα(x2); [μL

s̃ (x2), μU
s̃ (x2)], [νLs̃ (x2),

νUs̃ (x2)]) be any three IVPFLSs, then the score function h(s̃) can be represent as:

h(s̃) = 1

2
×
(

(μL
s̃ (x))

2 + (μU
s̃ (x))

2

2
+ 1 − (νLs̃ (x))

2 + (νUs̃ (x))
2

2

)

× sα(x) (3)

The accuracy function a(s̃) can be represent as:

a(s̃) =
(

(μL
s̃ (x))

2 + (μU
s̃ (x))

2

2
+ (νLs̃ (x))

2 + (νUs̃ (x))
2

2

)

× sα(x) (4)

then we have

1. If h(s̃1) < h(s̃2), then s̃1 < s̃2;
2. If h(s̃1) = h(s̃2), then

(1) If a(s̃1) < a(s̃2), then s̃1 < s̃2
(2) If a(s̃1) = a(s̃2), then s̃1 = s̃2

Definition 2.6 (Du et al. 2017) Let s̃i = (sα(xi ); [μL
s̃ (xi ), μU

s̃ (xi )], [νLs̃ (xi ), νUs̃ (xi )]), (i =
1, 2, . . . , n) be a collection of the IVPFLSs, then an interval-valued Pythagorean fuzzy
linguistic ordered weighted average (IVPFLOWA) operator of dimension n is a function
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Feasible solution

Non-inferior solution

Cr
ite

ria
 1

Criteria 2

Fig. 1 The compromise solution of VIKOR

Rn ⊗ S̃n → S̃ that is associated with weight vector ω = (ω1, ω2, . . . , ωn)
T , such that

ωi ∈ [0, 1] and∑n
i=1 ωi = 1, and as follows:

LIVPFLOWA(s̃1, s̃2, . . . , s̃n) = n⊕
i=1

ωi s̃σi (5)

where s̃σi is the i th largest s̃i value of the IVPFLOWA. If ω = (1/n, 1/n, . . . , 1/n)T , then
IVPFLOWA operator reduces to then IVPFLA operator.

2.3 Twomultiple criteria decisionmakingmethods

2.3.1 VIKORmethod

As a classical method, the VIKOR is one useful MCDM method of decision techniques to
find compromise solution from a set of conflict criteria. It can consider both the group utility
and individual regret. The compromise solution by the VIKOR method is based on the form
of Ln − metric (Opricovic 1998):

L pi =
⎧
⎨

⎩

n∑

j=1

(

ω j
f +
j − fi j

f +
j − f −

j

)p
⎫
⎬

⎭

1/p

, (1 ≤ p ≤ ∞; i = 1, 2, . . . , n) (6)

where ω j ( j = 1, 2, . . . ,m) are the weights of the criterion, f + = max j fi j and f − =
min j fi j are the best and worst values, respectively. The compromise solution Fc is a feasible
solution that is the closest to the ideal solution which is shown in Fig. 1 (Qin et al. 2015).

2.3.2 ELECTRE III

ELECTRE III takes the pairwise comparison of alternatives to build the mutual outrank-
ing relation even criterion are different scale, and reduces the uncertain degree of vague

123



A novel outranking method for multiple criteria decision making… Page 7 of 30 58

information. This method is an interaction method (Yoon and Hwang 1995) that confers the
indifference and preference threshold definition to apply in determining that the contrast of
alternatives and another is equal or preference. Assume x1 and x2 are two alternatives,
then the evaluation of them are g(x1) and g(x2). Consequently, with the multi-criteria
weight ω j ( j = 1, 2, . . . ,m), evaluation of alternative x1 will be represented by the vec-
tor g(x1) = (g1(x1), g2(x1), . . . , gm(x1)). Let q(g) and p(g) expresses the indifference and
preference thresholds, respectively (Hashemi et al. 2016). If g(x1) ≥ g(x2), then g(x1) �
g(x2) + p(g(x2)) ⇔ x1Px2, g(x2) + q(g(x2)) ≺ g(x1) ≺ g(x2) + p(g(x2)) ⇔ x1Qx2
g(x2) ≺ g(x1) ≺ g(x2) + q(g(x2)) ⇔ x1 I x2, where P denotes a strong preference, Q
denotes a weak preference, I denotes indifference.

Definition 2.7 The concordance index c(x1, x2) for each pair is defined as:

c(x1, x2) =
∑n

j=1 ω j c j (x1, x2)
∑n

j=1 ω j
(7)

where ω j is the weight of j th criteria, such that ωi ∈ [0, 1] and∑n
i=1 ωi = 1; c j (x1, x2) is

the partial concordance index under j th criteria and defined as:

c j (x1, x2) =

⎧
⎪⎨

⎪⎩

0, if g j (x2) − g j (x1) ≤ q j

1, if g j (x2) − g j (x1) ≥ p j
p j+g j (x1)−g j (x2)

p j−q j
, otherwise

(8)

The discordance matrix can be calculated by veto threshold v j which allows the complete
rejection if g j (x2) − g j (x1) > v j for j th criteria.

Definition 2.8 The discordance index d(x1, x2) for each pair is defined as:

d j (x1, x2) =

⎧
⎪⎨

⎪⎩

0, if g j (x2) − g j (x1) ≤ p j

1, if g j (x2) − g j (x1) ≥ v j
g j (x2)−g j (x1)−p j

v j−p j
, otherwise

(9)

Definition 2.9 The outranking degree S(x1, x2) based on concordance index c(x1, x2) and
discordance index d(x1, x2) is defined as:

S(x1, x2) =
⎧
⎨

⎩

c(x1, x2), if d j (x1, x2) ≤ c(x1, x2),∀ j ∈ J

c(x1, x2) × ∏

j∈J (x1,x2)

1−d j (x1,x2)
1−c(x1,x2)

, otherwise (10)

where, J (x1, x2) is the group of criteria for which d j (x1, x2) > c(x1, x2).

In addition, to determine the completely ranking order of the alternatives, hierarchy of the
alternative solutions is created from the reliability matrix, and hierarchy rank is achieved by
superiority ratio for every project (Papadopoulos and Karagiannidis 2008). Another ranking
method can get a net credibility degree calculating by two value function which represents
concordance credibility degree and discordance credibility degree (Hashemi et al. 2016).

3 Interval-valued Pythagorean fuzzy linguistic entropic induced
ordered weighted averaging Operator

In this section, we propose interval-valued Pythagorean fuzzy linguistic entropic induced
ordered weighted averaging (IVPFLEIOWA) operator includes an entropy order-inducing
variable which determines order position information based on IVPFLSs.
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3.1 Interval-valued Pythagorean fuzzy linguistic entropy

The IVPFLS is based on the linguistic information part and the fuzzy information part
reflecting the evaluation of DMs and its reliability. It is essential for entropy in interval-
valued Pythagorean fuzzy linguistic environment to estimate the reliability by the degree of
membership and the degree of non-membership that both can express the hesitant of DMs.
In the case of extreme conditions: [μL

s̃ (xi ), μU
s̃ (xi )] = [νLs̃ (xi ), νUs̃ (xi )] = [0, 0], indicating

that DMs cannot make a judgment, the uncertainty of the information is largest. For the above
situation, we extend interval-valued intuitionistic fuzzy entropy in Guo and Song (2014) to
interval-valued Pythagorean fuzzy linguistic entropy, and discuss the properties.

Definition 3.1 Let S̃ be an IVPFLS, a function e: IVPFLS(S̃) → [0, 1] is defined as interval-
value Pythagorean fuzzy linguistic entropy. Then the entropy e is defined as following:

e(s̃i ) = 0.5 ×
(
1 − 1

2
(|(μL

s̃ (xi ))
2 − (νLs̃ (xi ))

2| + |(μU
s̃ (xi ))

2 − (νUs̃ (xi ))
2|)
)

×(1 + 0.5((πL
s̃ (xi ))

2 + (πU
s̃ (xi ))

2)) (11)

where e(s̃i ) ∈ [0, 1] for i = 1, 2, . . . , n; π̃s̃(xi ) is the hesitance degree of IVPFLS and can

be computed as: π̃s̃(xi ) = [
√
1 − (μU

s̃ (xi ))
2 − (νUs̃ (xi ))

2
,

√
1 − (μL

s̃ (xi ))
2 − (νLs̃ (xi ))

2].

Theorem 3.1 Let S̃ be an IVPFLS, s̃i ∈ IVPFLS. A real function e(s̃i ) ∈ [0, 1] defined by
Eq. (11) is an interval-valued Pythagorean fuzzy linguistic entropy. Assume two interval-
valued Pythagorean fuzzy linguistic entropy e(s̃1) and e(s̃2), then the entropy should satisfy
following properties:

1. e(s̃i ) = 0 iff s̃i is a crisp set;
2. e(s̃i ) = 1 iff [μL

s̃ (xi ), μU
s̃ (xi )] = [νLs̃ (xi ), νUs̃ (xi )] = [0, 0] for ∀s̃i ∈ S̃.

3. e(s̃1) ≤ e(s̃2) if s̃1 is less fuzzy than s̃2, i.e.

s̃1 ⊆ s̃2, for μL
s̃ (x2) ≤ νLs̃ (x2) and μU

s̃ (x2) ≤ νUs̃ (x2);
s̃1 ⊇ s̃2, f orμL

s̃ (x2) ≥ νLs̃ (x2) and μU
s̃ (x2) ≥ νUs̃ (x2).

4. e(s̃i ) = e(s̃ci )

Proof 1. When s̃i is crisp set, we have μL
s̃ (xi ) = μU

s̃ (xi ) = 1 or νLs̃ (xi ) = νUs̃ (xi ) = 1 for

∀s̃i ∈ S̃ , it is simple to obtain e(s̃i ) = 0.
2. Let μ̃s̃(xi ) = ν̃s̃(xi ) = [0, 0], for ∀s̃i ∈ S̃ , after calculation we have e(s̃i ) = 1.
3. For ∀s̃1, s̃2 ∈ IVPFLS, assume s̃1 ⊆ s̃2 for μL

s̃ (x2) ≤ νLs̃ (x2), μU
s̃ (x2) ≤ νLs̃ (x2),

∀s̃i ∈ S̃, we have inequality μL
s̃ (x1) ≤ μL

s̃ (x2) ≤ νLs̃ (x2) ≤ νLs̃ (x1) and μU
s̃ (x1) ≤

μU
s̃ (x2) ≤ νUs̃ (x2) ≤ νUs̃ (x1), for ∀s̃i ∈ S̃, then we have

e(s̃1) = 0.5 ×
(
1 − 1

2

(∣∣∣(μL
s̃ (x1))

2 − (νLs̃ (x1))
2
∣∣∣+
∣∣∣(μU

s̃ (x1))
2 − (νUs̃ (x1))

2
∣∣∣
))

× (1 + 0.5((πL
s̃ (x1))

2 + (πU
s̃ (x1))

2))

= 0.5 ×
(
1 − 1

2
((νLs̃ (x1))

2 − (μL
s̃ (x1))

2 + (νUs̃ (x1))
2 − (μU

s̃ (x1))
2
)

× (1 + 0.5((1 − (μL
s̃ (x1))

2 − (νLs̃ (x1))
2 + 1 − (μU

s̃ (x1))
2 − (νUs̃ (x1))

2))

= 1 + 1

4
((μL

s̃ (x1))
2 + (μU

s̃ (x1))
2) − 3

4
((νLs̃ (x1))

2 + (νUs̃ (x1))
2)
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+ 1

8
(((νLs̃ (x1))

2 + (νUs̃ (x1))
2)2 − (μL

s̃ (x1))
2 + (μU

s̃ (x1))
2)

similarity, we can get E(s̃2).then

e(s̃1) − e(s̃2) = ((μL
s̃ (x2))

2+(μU
s̃ (x2))

2−(μL
s̃ (x1))

2−(μU
s̃ (x1))

2)(1−0.5((μL
s̃ (x2))

2

+ (μU
s̃ (x2))

2 + (μL
s̃ (x1))

2 + (μU
s̃ (x1))

2)) + ((νLs̃ (x1))
2 + (νUs̃ (x1))

2

− (νLs̃ (x2))
2 − (νUs̃ (x2))

2)(3 − 0.5((νLs̃ (x1))
2 + (νUs̃ (x1))

2+(νLs̃ (x2))
2

+ (νUs̃ (x2))
2))

Since μU
s̃ (x1) ≤ νUs̃ (x1) ∧ μU

s̃ (x2) ≤ νUs̃ (x2) we can get μU
s̃ (x1) ≤ 0.5∧ μU

s̃ (x2) ≤ 0.5,

for ∀s̃i ∈ S̃. So we infer μU
s̃ (x1) + νUs̃ (x2) ≤ 1, ∀s̃i ∈ S̃. And μL

s̃ (x1) + μU
s̃ (x1) +

μL
s̃ (x2)+μU

s̃ (x2) ≤ 2, for ∀s̃i ∈ S̃. Thus we get e(s̃1) ≤ e(s̃2). Similarity as s̃1 ⊇ s̃2, for

μL
s̃1

≥ νLs̃1
and μU

s̃1
≥ νUs̃1

, ∀s̃i ∈ S̃, we also get e(s̃1) ≤ e(s̃2).
4. It is straightforward from the definition of s̃c. ��

Remark 3.1 The interval-valued Pythagorean fuzzy linguistic entropy ei (i = 1, 2, . . . , n)

is used to acquire entropy order-inducing variable ui (i = 1, 2, . . . , n) of interval-valued
Pythagorean fuzzy linguistic entropic induced ordered weighted averaging operator in
Sect. 3.2. Entropy order-inducing variable ui satisfies the descending order only if the ascend-
ing order of ei (The greater entropy ei , the smaller entropy order-inducing variable ui ).

3.2 Interval-valued Pythagorean fuzzy linguistic entropic induced ordered
weighted averaging operator

The IVPFLEIOWA operator is first proposed in this part. This operator not only consid-
ers the self-value and ordinal information of the argument variables, but also measures the
uncertainty of the argument variables with entropy order-inducing variable.

Definition 3.2 Let s̃i = (sα(xi ); [μL
s̃ (xi ), μU

s̃ (xi )], [νLs̃ (xi ), νUs̃ (xi )]), (i = 1, 2, . . . , n)

be a collection of the interval-valued Pythagorean fuzzy linguistic numbers, then an
interval-valued Pythagorean fuzzy linguistic entropic induced ordered weighted aver-
age (IVPFLEIOWA) operator of dimension n is a function En ⊗ S̃n → S̃ that has
an associated weighting vector ω = (ω1, ω2, . . . , ωn)

T , such that ωi ∈ [0, 1] and∑n
i=1 ωi = 1, and it is defined to aggregate the set of second argument of a list of n pairs

{(e1, s̃1), (e2, s̃2), . . . , (en, s̃n)} according to the following formula:

IVPFLEIOWA((u1, s̃1), (u2, s̃2), . . . , (un, s̃n)) = n⊕
i=1

ωi s̃σ̂i , (12)

where ui is entropy order-inducing variable, and s̃σ̂i is s̃î value of IVPFLEIOWA pair
{(e1, s̃1), (e2, s̃2), . . . , (en, s̃n)} having the j th ( j = 1, 2, . . . , n) largest ui , {s̃1, s̃2, . . . , s̃n}
is induced by the order-inducing value of u1, u2, . . . , un associated with them.

Theorem 3.2 Let (ei , s̃i )(i = 1, 2, . . . , n) be a collection of IVPFLEIOWApairs, s̃i in (ei , s̃i )
is referred to as the IVPFLN denoted by s̃i = (sα(xi ); [μL

s̃ (xi ), μU
s̃ (xi )], [νLs̃ (xi ), νUs̃ (xi )]),

so final aggregated value by using the IVPFLEIOWA operator is also an IVPFLN, and
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IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = n⊕
i=1

ωi s̃σ̂i

=
⎛

⎝s n∑

i=1
ωiα(xσ̂i

)
;
⎡

⎣

⎛

⎝

√√√√1 −
n∏

i=1

(1 − (μL
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠ ,

×
⎛

⎝

√√√√1 −
n∏

i=1

(1 − (μU
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠

⎤

⎦ ,

×
⎡

⎣

√√√√1 −
(

1 −
n∏

i=1

(1 − (1 − (νLs̃ (xσ̂i ))
2
))

ωi

)

,

√√√√1 −
(

1 −
n∏

i=1

(1 − (1 − (νUs̃ (xσ̂i ))
2
))

ωi

)⎤

⎦

⎞

⎠ (13)

where s̃σ̂i = (sα(xσ̂i
); [μL

s̃ (xσ̂i ), μ
U
s̃ (xσ̂i )], [νLs̃ (xσ̂i ), ν

U
s̃ (xσ̂i )]), (s̃1̂, s̃2̂, . . . , s̃n̂) → (s̃σ̂1 , s̃σ̂2 ,

. . . , s̃σ̂n ) being a permutation such that ui ≥ ui+1 in IVIFLEIOWA pair for {(e1, s̃1), (e2, s̃2),

. . . , (en, s̃n)} for ∀i = 1, 2, . . . , n − 1. ω = (ω1, ω2, . . . , ωn)
T is an associated weighting

vector with ωi ∈ [0, 1] and∑n
i=1 ωi = 1.

Proof The first result follows from Definition 2.6. In the next, we only prove Eq. (13) by
using mathematical induction on n.
For n = 2, since

s̃1 = (sα(x1); [μL
s̃ (x1), μ

U
s̃ (x1)], [νLs̃ (x1), ν

U
s̃ (x1)]),

s̃2 = (sα(x2); [μL
s̃ (x2), μ

U
s̃ (x2)], [νLs̃ (x2), ν

U
s̃ (x2)]),

then

ω1 � s̃σ̂1 ⊕ ω2 � s̃σ̂2

=
⎛

⎝[sω1α(xσ̂1
)+ω1α(xσ̂2

)];
⎡

⎣

⎛

⎝

√√√√1 −
2∏

i=1

(1 − (μL
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠ ,

⎛

⎝

√√√√1 −
2∏

i=1

(1 − (μU
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠

⎤

⎦ ,

√√√√1 −
(

1 −
n∏

i=1

(1 − (1 − (νLs̃ (xσ̂i ))
2
))

ωi

)

,

√√√√1 −
(

1 −
n∏

i=1

(1 − (1 − (νUs̃ (xσ̂i ))
2
))

ωi

)⎤

⎦

⎞

⎠
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Suppose that if Eq. (13) holds for n = k, k ∈ N , that is

ω1 � s̃σ̂1 ⊕ ω2 � s̃σ̂2 ⊕ · · · ⊕ ωk � s̃σ̂k

=
⎛

⎝s k∑

i=1
ωiα(xσ̂i

)

;
⎡

⎣

⎛

⎝

√√√√1 −
k∏

i=1

(1 − (μL
P̃σ̂i

(xs̃))
2
)
ωi

⎞

⎠ ,

⎛

⎝

√√√√1 −
k∏

i=1

(1 − (μU
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠

⎤

⎦ ,

⎡

⎣

√√√√1 −
(

1 −
k∏

i=1

(1 − (1 − (νLs̃ (xσ̂i ))
2
))

ωi

)

,

√√√√1 −
(

1 −
k∏

i=1

(1 − (1 − (νUs̃ (xσ̂i ))
2
))

ωi

)⎤

⎦

⎞

⎠

Then, when n = k + 1, using the operational laws in Definition 2.4, we have

ω1 � s̃σ̂1 ⊕ ω2 � s̃σ̂2 ⊕ · · · ⊕ ωk+1 � s̃σ̂k+1

=
⎛

⎝s k∑

i=1
ωiα(xσ̂i

)

;
⎡

⎣

⎛

⎝

√√√√1 −
k∏

i=1

(1 − (μL
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠ ,

⎛

⎝

√√√√1 −
k∏

i=1

(1 − (μU
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠

⎤

⎦ ,

⎡

⎣

√√√√1 −
(

1 −
k∏

i=1

(1 − (1 − (νLs̃ (xσ̂i ))
2
))

ωi

)

,

√√√√1 −
(

1 −
k∏

i=1

(1 − (1 − (νUs̃ (xσ̂i ))
2
))

ωi

)⎤

⎦

⎞

⎠⊕
(
sωk+1α(xσ̂k+1

);
[(√

1 − (1 − (μL
s̃ (xσ̂k+1))

2
)
ωk+1
)

,

(√
1 − (1 − (μU

s̃ (xσ̂k+1))
2
)
ωk+1
)]

,

[√
1 − (1 − (1 − (1 − (νLs̃ (xσ̂k+1))

2
))

ωk+1
),

√
1 − (1 − (1 − (1 − (νUs̃ (xσ̂k+1))

2
))

ωk+1
)

])

=
⎛

⎝sk+1∑

i=1
ωiα(xσ̂i

)

;
⎡

⎣

⎛

⎝

√√√√1 −
k+1∏

i=1

(1 − (μL
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠ ,
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⎛

⎝

√√√√1 −
k+1∏

i=1

(1 − (μU
s̃ (xσ̂i ))

2
)
ωi

⎞

⎠

⎤

⎦ ,

⎡

⎣

√√√√1 −
(

1 −
k+1∏

i=1

(1 − (1 − (νLs̃ (xσ̂i ))
2
))

ωi

)

,

√√√√1 −
(

1 −
k+1∏

i=1

(1 − (1 − (νUs̃ (xσ̂i ))
2
))

ωi

)⎤

⎦

⎞

⎠

That is , Eq. (13) holds for n = k + 1. Thus, Eq. (16) holds for all. The IVPFLEIOWA
operator has the following properties. ��
Theorem 3.3 (Commutativity) Let ((e#1, s̃

#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n )) is any permutation of the

interval-valued intuitionistic fuzzy linguistic variable ((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) then

IVPFLEIOWA((e#1, s̃
#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n ))

= IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) (14)

Proof Let

IVPFLEIOWA((e#1, s̃
#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n )) = n⊕

i=1
ωi � s̃#

σ̂i

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = n⊕
i=1

ωi � s̃σ̂i

Since ((e#1, s̃
#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n )) is any permutation of ((e1, s̃1), (e2, s̃2), . . . , (en, s̃n))

then we have s̃∗
σ̂i

= s̃σ̂i for all i(i = 1, 2, . . . , n), so

IVPFLIOWA((e#1, s̃
#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n ))

= IVPFLIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n))

��
Theorem 3.4 (Monotonicity) Let ((e#1, s̃

#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n )) and ((e1, s̃1), (e2, s̃2),

. . . , (en, s̃n)) are two interval-valued Pythagorean fuzzy linguistic variables. ω = (ω1, ω2,

. . . , ωn)
T is the weighting vector of s̃i and s̃#i (i = 1, 2, . . . , n) with ωi ∈ [0, 1] and∑n

i=1 ωi = 1. If s̃i ≤ s̃#i , for all i(i = 1, 2, . . . , n), then

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n))

≤ IVPFLEIOWA((e#1, s̃
#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n )) (15)

Proof Let

IVPFLEIOWA((e#1, s̃
#
1 ), (e#2, s̃

#
2 ), . . . , (e#n, s̃

#
n )) = n⊕

i=1
ωi � s̃#

σ̂i

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = n⊕
i=1

ωi � s̃σ̂i

Since s̃i ≤ s̃#i for all i(i = 1, 2, . . . , n). Then, we have

IVPFLEIOWA((u1, s̃1), (u2, s̃2), . . . , (un, s̃n))

≤ IVPFLEIOWA((u∗
1, s̃

∗
1 ), (u

∗
2, s̃

∗
2 ), . . . , (u

∗
n, s̃

∗
n ))

��
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Theorem 3.5 (Idempotency) Let ω = (ω1, ω2, . . . , ωn)
T be the weight vector of s̃i and

s̃#i (i = 1, 2, . . . , n)withωi ∈ [0, 1] and∑n
i=1 ωi = 1. If s̃i , s̃ ∈ S̃, for all i(i = 1, 2, . . . , n),

where s̃σ̂i = (sα(xσ̂i
); [μL

s̃ (xσ̂i ), μ
U
s̃ (xσ̂i )], [νLs̃ (xσ̂i ), ν

U
s̃ (xσ̂i )]), then

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = s̃ (16)

Proof Since s̃i=IVPFL s̃ for all i(i = 1, 2, . . . , n), let

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n))

= ω1 � s̃σ̂1 ⊕ ω2 � s̃σ̂2 ⊕ · · · ⊕ ωn � s̃σ̂n
= ω1 � s̃ ⊕ ω2 � s̃ ⊕ · · · ⊕ ωn � s̃

= (ω1 + ω2 + · · · + ωn) � s̃

According to Theorem 3.1 and
∑n

i=1 ωi = 1, we have

(ω1 + ω2 + · · · + ωn) � s̃

= I V PF

⎛

⎝s n∑

i=1
ωiα(x)

;
⎡

⎣

⎛

⎝

√√√√1 −
n∏

i=1

(1 − (μL
s̃ (x))

2
)
ωi

⎞

⎠ ,

⎛

⎝

√√√√1 −
n∏

i=1

(1 − (μU
s̃ (x))

2
)
ωi

⎞

⎠

⎤

⎦ ,

⎡

⎣

√√√√1 −
(

1 −
n∏

i=1

(1 − (1 − (νLs̃ (x))
2
))

ωi

)

,

√√√√1 −
(

1 −
n∏

i=1

(1 − (1 − (νUs̃ (x))
2
))

ωi

)⎤

⎦

⎞

⎠

=I V PF (sα(x); [μL
s̃ (x), μU

s̃ (x)], [νLs̃ (x), νUs̃ (x)])
= s̃

so, IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = s̃. ��
Theorem 3.6 (Boundedness) Let s̃m = min

i
(s̃1, s̃2, . . . , s̃n), s̃M = max

i
(s̃1, s̃2, . . . , s̃n), then

s̃m ≤ IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) ≤ s̃M (17)

Proof Since s̃m ≤ s̃i ≤ s̃M for all i(i = 1, 2, . . . , n) and
∑n

i=1 ωi = 1, using Theorems 3.1-
3.4, then

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n))

= ω1 � s̃σ̂1 ⊕ ω2 � s̃σ̂2 ⊕ · · · ⊕ ωn � s̃σ̂n ≥ ω1 � s̃m ⊕ ω2 � s̃m ⊕ · · · ⊕ ωn � s̃m

= (ω1 + ω2 + · · · + ωn) � s̃m

= s̃m

IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n))

= ω1 � s̃σ̂1 ⊕ ω2 � s̃σ̂2 ⊕ · · · ⊕ ωn � s̃σ̂n ≤ ω1 � s̃M ⊕ ω2 � s̃M ⊕ · · · ⊕ ωn � s̃M

= (ω1 + ω2 + · · · + ωn) � s̃M

= s̃M

123



58 Page 14 of 30 S. Xian et al.

so s̃m ≤ IVPFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) ≤ s̃M . ��
Remark 3.2 If ω = (ω1, ω2, . . . , ωn)

T = ( 1n , 1
n , . . . , 1

n )T , then we get the interval-value
Pythagorean fuzzy linguistic averaging (IVPFLA) operator (Du et al. 2017).

IVPFLA(s̃1, s̃2, . . . , s̃n) = n⊕
i=1

1

n
� s̃i = s̃ n∑

i=1

i
n

(18)

Remark 3.3 If μL
s̃ (xi ) = μU

s̃ (xi ), νLs̃ (xi ) = νUs̃ (xi ), for all i(i = 1, 2, . . . , n), then we get
the Pythagorean fuzzy linguistic entropic induced ordered weighted averaging (PFLEIOWA)
operator.

PFLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = n⊕
i=1

ωi � s̃σ̂i (19)

where s̃σ̂i is s̃i value of the PFLEIOWA pair {(e1, s̃1), (e2, s̃2), . . . , (en, s̃n)} having the ( j =
1, 2, . . . , n) largest ui .

Remark 3.4 If μL
s̃ (xi ) = μU

s̃ (xi ) = 1, νLs̃ (xi ) = νUs̃ (xi ) = 0 for all i(i = 1, 2, . . . , n),
then we get the fuzzy linguistic entropic induced ordered weighted averaging (FLEIOWA)
operator.

FLEIOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = n⊕
i=1

ωi � s̃σ̂i (20)

where s̃σ̂i is s̃i value of FLEIOWA pair {(e1, s̃1), (e2, s̃2), . . . , (en, s̃n)} having the j th( j =
1, 2, . . . , n) largest ui .

Remark 3.5 If ei > ei+1 for all i(i = 1, 2, . . . , n), and the ordered position of ei is the
same as the ordered position of s̃i , the interval-value Pythagorean fuzzy linguistic ordered
weighted averaging (IVPFLOWA) operator (Du et al. 2017) is obtained.

IVPFLOWA((e1, s̃1), (e2, s̃2), . . . , (en, s̃n)) = n⊕
i=1

ωi � s̃i (21)

Remark 3.6 If entropy order-inducing variable degenerates to traditional order-inducing vari-
able, we get the traditional interval-value Pythagorean fuzzy linguistic induced ordered
weighted averaging (IVPFLIOWA) operator.

4 The O-VIKORmethod in interval-value Pythagorean fuzzy linguistic
environment

4.1 The O-VIKORmodel

This section aims to propose the O-VIKOR method to solve complex MCDM problems
involving full of uncertainty and conflict criterion based on compromise outranking degree
and a novel ranking approach.

Support zi = {z1, z2, . . . , zm} be a finite set of alternatives and c = {c1, c2, . . . , cn} be
a set of criteria, the score value h j (zi ) under criteria c j is calculated by Eq. (4). Let ω =
(ω1, ω2, . . . , ωn)

T be a weight vector of criterion, such that ω j ∈ [0, 1] and∑n
j=1 ω j = 1.

and p j , q j and v j represent preference threshold, indifference threshold and veto threshold,
respectively, with the condition: 0 ≤ q j < p j < v j ≤ 1.
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4.1.1 The compromise outranking degree

This part mainly discusses how to calculate the compromise outranking degree of pairwise
alternatives. In this regard, the outranking indices and veto indices which express as group
utility for the majority and individual regret for the opponent are first defined. Subsequently,
the compromise outranking degree based on outranking index and veto index is proposed
to form the compromise outranking relation which means reaching consensus by mutual
concessions.

The compromise outranking relations are determined based on IVPFLSs. The outranking
index C and the veto index D of alternative zi over zk on criteria c j are defined as following
and the property is analyzed.

Definition 4.1 The outranking index C(zi , zk) for pairwise alternatives zi and zk is defined
as:

C(zi , zk) =

n∑

j=1
ω jC j (zi , zk)

n∑

j=1
ω j

(22)

where zk �= zi ; the partial outranking index C j (zi , zk) is presented as follows:

C j (zi , zk) =

⎧
⎪⎨

⎪⎩

0, if h j (zi ) − h j (zk) ≤ q j

1, if h j (zi ) − h j (zk) ≥ p j
h j (zi )−h j (zk )−q j

p j−q j
, otherwise

(23)

and C j (zi , zk) ∈ [0, 1], p j , q j represent preference threshold and indifference threshold.

Theorem 4.1 If h j (zi ) or h j (zk) is a fixed value, C j (zi , zk) is monotonous along the corre-
sponding cross section. Let h j (z1), h j (z2) and h j (z3) are three score value of z1, z2 and z1
under j th criteria.

(1) If h j (z1) ≥ h j (z2) ≥ h j (z3), then C j (z1, z3) − C j (z1, z2) ≥ 0.
(2) If h j (z1) ≥ h j (z2) ≥ h j (z3), then C j (z1, z3) − C j (z2, z3) ≥ 0.

Proof (1)We know C j (zi , zk) from Eq. (28) have three situations: 1, 0,
h j (zi )−h j (zk )−q j

p j−q j
. If

h j (zi ) − h j (zk) = q j , then we can obtain C j (zi , zk) = 0 = h j (zi )−h j (zk )−q j
p j−q j

. If h j (zi ) −
h j (zk) = p j , then we can obtain C j (zi , zk) = 1 = h j (zi )−h j (zk )−q j

p j−q j
.

Then, if h j (zi ) − h j (zk) < q j (or h j (zi ) − h j (zk) > p j ), we have C j (zi , zk) = 1 (or
C j (zi , zk) = 0). Thus, we can regard h j (zi )−h j (zk) as q j (or p j ) when h j (zi )−h j (zk) < q j

(or h j (zi ) − h j (zk) > p j ).
Now, if h j (z1) ≥ h j (z2) ≥ h j (z3), we can conclude

C j (z1, z3) − C j (z1, z2)

= h j (z1) − h j (z3) − q j

p j − q j
− h j (z1) − h j (z2) − q j

p j − q j
= h j (z2) − h j (z3)

p j − q j
≥ 0

(2) The proof is similar to (1). ��
Theorem 4.2 If z1 ⊇ z2 ⊇ z3, fromEq. (22)andTheorem4.1, it is obvious that the outranking
index C(zi , zk) has similar property as C(zi , zk).
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Definition 4.2 The veto index D(zi , zk) for pairwise alternatives zi and zk is defined as

D(zi , zk) =

⎧
⎪⎨

⎪⎩

0, if max[ω j (h j (zk) − h j (zi ))] ≤ ω j q j

1, if max[ω j (h j (zk) − h j (zi ))] ≥ ω jv j
max[ω j (h j (zk )−h j (zi ))]−ω j q j

ω j [v j−q j ] , otherwise
(24)

where zk �= zi ; 0 ≤ D(zi , zk) ≤ 1; q j and v j represent indifference threshold and veto
threshold.

Remark 4.1 The veto index D(zi , zk) means that zi with maximum lower score value than
another zk under a certain criteria, it forms the maximum veto relationship if the variance for
zi over zk is more than veto threshold. If this variance is less than indifference threshold, it
can be concluded that there is no veto relationship for pairwise alternatives.

Definition 4.3 The compromise outranking degree indicates to obtain the consensus by
mutual concessions. Then, the compromise outranking degree S(zi , zk) for pairwise alterna-
tives zi and zk is defined as:

S(zi , zk) =
{
C(zi , zk), if D(zi , zk) ≤ C(zi , zk)
ζC(zi , zk) + (1 − ζ )C(zi , zk)

1−D(zi ,zk )
1−C(zi ,zk )

, otherwise
(25)

where 0 ≤ S(zi , zk) ≤ 1; C(zi , zk) is the outranking index, D(zi , zk) is the veto index; ζ

is the weight vector of the outranking index which means “group utility”, and ζ ∈ [0, 1]. If
we have a larger ζ , it explains that decision makers consider a greater preference of group
utility.

4.1.2 A ranking approach of the compromise outranking degree

Since the compromise outranking degree of alternatives is determined, the compromise out-
ranking degree matrix can be constructed as the mainstay for ranking order. However, it is
a hard issue given how to suitably deal with the compromise outranking degree matrix in
the study. Therefore, we propose the credibility degree formula to transform the compromise
outranking degree matrix into the preference relation matrix to reflect the superiority among
alternatives.

Definition 4.4 Let zi and zk be two alternatives. the credibility degree formula presents the
possibility degree of zi being not less than zk which considering overall criterion is defined
as:

p(zi ≥ zk) = 0.5 × (1 + (S(zi , zk) − S(zi , zk))) (26)

where S(zi , zk) is the compromise outranking degree in pairwise and calculated by Eq. (25).

Theorem 4.3 The formula satisfies the boundness and the complementarity. Let z1 and z2
be two alternatives, then 0 ≤ p(z1 ≥ z2) ≤ 1 and p(z1 ≥ z2) + p(z2 ≥ z1) = 1. From
Eq. (26), it is obvious.

Theorem 4.4 (Transitivity) Let z1, z2 and z3 be three alternatives. If z1 ⊇ z2 ⊇ z3, it
implies S(z1, z3) ≥ S(z1, z2) ≥ S(z2, z3) and S(z3, z1) ≤ S(z2, z1) ≤ S(z3, z2), then
p(z1 ≥ z3) ≥ p(z1 ≥ z2) or p(z1 ≥ z3) ≥ p(z2 ≥ z3).
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Proof If z1 ⊇ z2 ⊇ z3, it is known that S(z1, z3) ≥ S(z1, z2) and S(z3, z1) ≤ S(z2, z1).
Meanwhile, it is easy to see that p(z1 ≥ z3) = S(z1, z3) − S(z3, z1) and p(z1 ≥ z2) =
S(z1, z2) − S(z2, z1). Thus, it is obtained that p(z1 ≥ z3) ≥ p(z1 ≥ z2). Similarly, it can be
proofed that p(z1 ≥ z3) ≥ p(z2 ≥ z3). ��
Remark 4.2 In the calculation of credibility degree, the characteristics of IVPFL information
and the preference of decision makers for conflicting attributes are fully considered. Then,
multiple sets of credibility degree p(zi ≥ zk) construct the complementary judgment matrix
PS as:

PS = (pi j )m×m =

⎡

⎢⎢⎢
⎣

0.5 p12 . . . p1m
p21 0.5 . . . p2m
...

...
. . .

...

pm1 pm2 . . . 0.5

⎤

⎥⎥⎥
⎦

(27)

From these credibility degree in pairwise, an acceptable ranking order of alternatives can
be derived. To obtain the reasonable ranking result, we use the precise solution given in (Xu
2002) as:

Y = (y1, y2, . . . , yn)
T =

⎛

⎜⎜
⎝

1
n∑

i=1
(pi1/p1i )

,
1

n∑

i=1
(pi2/p2i )

, . . . ,
1

n∑

i=1
(pin/p1n)

⎞

⎟⎟
⎠

T

(28)

4.2 Decision-making steps

Based on the above, with the integration of the preceding decision model, the steps for
addressing group decision making problems are shown in Fig. 2 and presented in the follow-
ing:

Step 1. Obtain all evaluation information of alternatives, characteristic actions and thresholds
by using IVPFLNs.

Step 2. Aggregate overall decision maker matrices with weight vector of DMs by using
IVPFLEIOWA operator from Eq. (12).

Step 3. Calculate the score value of evaluation information and determine indifference, pref-
erence thresholds and veto threshold by Eq. (4).
The performance of alternatives demand a way to evaluate certain accuracy even
fuzzy linguistic set is difficult to estimate. It would be a standard that tackles differ-
ence of pairwise to find the mutual relationship. Therefore, assume zi and zk be two
IVPFLSs, it can offer the precise evaluation values by score function from Eq. (4)
and get the following:
If h(zi ) < h(zk), then zi < zk .

Step 4. Calculate the weight vector of the criteria. As a key factor that directly influences
the decision results, the acquisition of criteria weight vector is very important. Thus,
we use the score value by Eq. (4) to calculate the attribute weights as following:

ω j =
∑m

i h j (zi )∑n
j
∑m

i h j (zi )
(29)

where h j (zi ) indicates the score value of alternatives zi .
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Determine the MCGDM 
problem in IVPFL 

environment

Sets of DMs Sets of criterion Given related parameter 
values

Determine the evaluation 
information of preference 
value and thresholds value 

given by DMs

Construct the IVPFL 
decision matrices

Construct the IVPFL 
thresholds matrices

Decision information 
input

Decision information 
process

Decision making 
process

 Aggregate decision 
matrices by IVPFLEIOWA 

operation

Calculate the score value 
hj(xi )

Calculate the outranking 
index C(xi,xk )and the veto 

index D(xi,xk )

Calculate the compromise 
degree S(xi,xk )

Calculate the credibility 
formula and construct the 
complementary judgment 

matrix Ps

Determine the ranking 
results

determine the threshold Calculate the weight vector 
of criterion

Fig. 2 The process of the O-VIKOR model

Step 5. Calculate the outranking indices and veto indices. Following steps 3 and 4, we com-
puted the outranking andveto indices of all pairwise alternatives usingEqs. (22)–(24).
Then, the outranking index and veto index matrices then can be constructed.

Step 6. Calculate the compromise outranking degree.With the step 4, we utilize the above
elements to get the compromise outranking degree according to Eq. (25).

Step 7. Calculate the credibility formula from Eq. (26) and form the complementary judg-
ment matrix PS .

Step 8. Determine the ranking of all alternatives. According to the obtained complementary
judgment matrix PS , the ranking results are computed using Eq. (28). Then, the final
results can be deduced.
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5 Numerical example and comparison

In this section, the O-VIKOR method is implemented to select the best candidate for site
location problem inChina and comparative analyses between the proposedmethod and others
are given to interpret the efficiency of our proposed method.

5.1 Numerical example

Site selection is a fundamental, strategic and critical decision making activity of an enterprise
(Pace and Shieh 2010). The problem of site selection is to select the optimal location for the
“facilities” to be set up. It is an optimization problem with broad practical significance
and a complex system engineering, which needs to comprehensively consider engineering
geology, resource environment, transportation conditions and other factors (Wu et al. 2018).
Site selection is directly related to the size of the project, the amount of investment and
construction progress, but also related to the quality of the economic and technical indicators
after the completion and operation (Boostani et al. 2018). Selecting a suitable site location,
to achieve the goals of reasonable allocation of costs and resources, the site location is an
significant issue for a manufacturer.

Many factors have been suggested as being important criteria for the location prob-
lem by researchers. To obtain a fitting ranking of site location in Chongqing, China, refer
to (Zandi and Roghanian 2013), decision makers consider six critical factors C j ( j =
1, 2, . . . , 6): (1) C1: Investment cost control; (2) C2: Expansion possibility; (3) C3:
Availability of acquirement material; (4) C4: Human resource; (5) C5: Transportation
availability; (6) C6: Climatic conditions. Then, there are four candidate locations zi (i =
1, 2, . . . , 4), which is evaluated by three decision makers Dk(k = 1, 2, 3), with fixed
decision makers’ weight vector 	 = (0.35, 0.40, 0.25)T . The information collected in
fact is limited and incomplete. If decision maker is required to give the implicit number,
there will be inaccurate information in the aggregation and treating phases. However, the
IVPFLS is very suitable for responding to the cognitive preference information of deci-
sion maker with inner hesitation and chosen to express the preference information in the
paper.

Step 1. From professional analysis and discussion, decision maker provide evaluation infor-
mation of candidate locations in the interval-valued Pythagorean fuzzy linguistic
environment shown in Tables 1, 2 and 3, and the preference threshold p j , indiffer-
ence threshold q j and veto threshold v j on each criterion shown in Table 4.

Step 2. The aggregated of preference matrices of decision makers are calculated based on
IVPFLEIOWA operator by Eq. (17) is shown in Table 5.

Step 3. Compute the score value by Eq. (3) of each IVPFLSs in Table 6.
Step 4. Determine the weights of the criteria, we can obtain the weight vector of criteria as

ω = (0.186, 0.156, 0.154, 0.181, 0.161, 0.162) using Eq. (27).
Step 5. Calculate the outranking index and veto index according to Eqs. (22)–(24), and the

matrices are shown in Tables 7 and 8.
Step 6. Following step 5, calculate the compromise outranking degree by Eq. (25) with

ζ = 0.5which represents the equal consideration of the proportion of comprehensive
outranking ratio and another ratio under the influence of veto factors, and is shown
in Table 9.

Step 7. Determine the complementary judgment matrix of the credibility degree by using
Eq. (26), the complementary judgment matrix PS is shown in Table 10.
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Table 6 The score value of
alternatives and thresholds

C1 C2 C3 C4 C5 C6

z1 3.83 3.78 1.73 3.65 5.62 3.42

z2 1.77 4.33 5.08 3.07 3.25 5.36

z3 2.61 1.97 3.11 3.53 2.10 2.82

z4 2.93 5.32 2.97 3.34 4.95 1.92

Q 0.43 0.45 0.29 0.30 0.30 0.37

P 1.50 1.54 1.70 1.58 1.58 1.72

V 2.93 3.00 3.23 2.79 2.93 3.41

Table 7 The outranking index
matrix

z1 z2 z3 z4

z1 0 0.38 0.48 0.26

z2 0.33 0 0.58 0.32

z3 0.12 0.09 0 0.06

z4 0.26 0.36 0.32 0

Table 8 The veto index matrix z1 z2 z3 z4

z1 0 0.94 0.28 0.34

z2 0.78 0 0.21 0.51

z3 1 0.81 0 1

z4 0.42 1 0.20 0

Table 9 The compromise
outranking matrix

z1 z2 z3 z4

z1 0 0.38 0.48 0.26

z2 0.33 0 0.58 0.32

z3 0.12 0.09 0 0.06

z4 0.26 0.36 0.32 0

Step 8. Derive the ranking results by Eq. (28):

y(z1) = 0.295, y(z2) = 0.319, y(z3) = 0.118, y(z4) = 0.264

According to ranking results, we can get the ranking order of alternatives is z2 >

z1 > z4 > z3, and x2 is the best option for site location.

Table 10 The complementary
judgment matrix PS

z1 z2 z3 z4

z1 0.5 0.53 0.68 0.50

z2 0.47 0.5 0.75 0.48

z3 0.32 0.25 0.5 0.37

z4 0.50 0.52 0.63 0.5
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Fig. 3 Compare difference parameter ζ of the proposed method

5.2 Influence analysis of modified parameter

The proposed method makes a choice in “group utility” and “individual regret” to get the
compromise outranking relation with the parameters ζ . As the important part, the parameters
ζ is analyzed here in detail. When satisfying the condition: D(xi , xk) > C(xi , xk), different
parameter ζ is taken to be discussed: when the DMs want both group utility and individual
one, simultaneously, then we let parameter ζ = 0.5; when the DMs are more inclined to
group utility or individual regret, then we let parameter 0.5 < ζ < 1 or 0 < ζ < 0.5; when
the DM is fully inclined to individual regret, then ζ = 0, it means veto index reaches the
maximum influence of compromise outranking degree. When the parameter ζ = 1, it means
not consider individual regret and veto threshold, then only outranking index impacts the
decision result.

Here the parameter ζ is assigned different numerical values to analyse the effect of the
ranking results. To facilitate the comparison of results, we choose the following three param-
eters to analyse: ζ = 0, 0.5, 1, and the decision results are shown in Fig. 3. Apparently, if
the parameter ζ = 0 or ζ = 0.5, we can get the same results as: z2 > z1 > z4 > z3; if
the parameter ζ = 1, we can obtain the different ranking order as: z1 > z4 > z2 > z3. The
main reason is the preference of decision makers between group utility and individual regret
according to current situation. It can be derived that the final results of site location problem
is a compromise solution.

5.3 Comparative analyses

In this section, the site locations are ranked by other previous researches including theVIKOR
method (Park et al. 2011), the interval-valued Pythagorean fuzzy linguistic aggregated oper-
ator decision method (Du et al. 2017) and the ELECTRE III (Hashemi et al. 2016). The
comparative analyses between the proposed method and those existing methods are dis-
cussed in detail, and the final results of difference methods are listed in Table 11.
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Table 11 Comparison with Refs. (Du et al. 2017; Park et al. 2011; Hashemi et al. 2016)

Method Orders of alternatives

The VIKOR method (Park et al. 2011) z2 > z4 > z1 > z3
The interval-valued Pythagorean fuzzy linguistic
aggregated operator decision method (Du et al. 2017)

z2 > z1 > z4 > z3

The ELETRE III method (Hashemi et al. 2016) z1 > z4 > z2 > z3
The O-VIKOR method (ζ = 0.5) z2 > z1 > z4 > z3
The O-VIKOR method (ζ = 0) z2 > z1 > z4 > z3
The O-VIKOR method (ζ = 1) z1 > z4 > z2 > z3

The ELECTRE III method calculates the outranking degree based on concordance index
and discordance index, but the way has certain defects. If the pairwise comparison has large
difference under criteria and even more than veto threshold, leading to discordance index
which does not consider the influence of weight vector is great. From the outranking degree
in Eq. (10), ELECTRE III directly denies the possibility of advantage in pairwise with great
difference over veto threshold, and in the case some information is ignored. However, the
veto index in the proposed method is used as one of the elements for reaching a consensus.
Whether this part information is retained is determined by how to reach consensus. As we
can see, the proposed method and ELECTRE III has the similar results for site location
problem only if the parameter ζ = 1. Through the above discussion, it can be inferred that
two methods can be transformed into each other only when the veto factor plays a minimal
role.

With the IVPFL aggregated operation decisionmethod and the VIKORmethod, the differ-
ence among all rankings is due to the essential differences is information measuring pattern
and ranking principles. The VIKORmethod in reference (Park et al. 2011) based on distance
measure by closest ideal solution for obtaining the results, whereas the proposed method
is an improved outranking method based on a compromise outranking measure for deter-
mining the results. The VIKOR method is a function model and assume the results to be
subject to complete compensation among criteria, but this process leads to information loss.
However, the proposed method is a relation model, which sufficiently considers the non-
compensation principle among criteria. Compared with the aggregated operator method (Du
et al. 2017) which emphasis on measuring the information about the alternative itself, the
proposed method is more adapted to complex and highly uncertain decision making envi-
ronment. The proposed method is also able to reduce the uncertainty in decision information
by building compromise relation in pairwise alternatives.

Based on the above analysis, the advantages of the proposed O-VIKOR method can be
summarized as follows:

(1) The proposedmethod introduces the cognitive complex linguistic information in the form
of IVPFLSs. It is efficient to express the subjective judgment and inherent uncertainty
of decision making.

(2) The proposedmethod gives IVPFLEIOWAoperator to aggregate evaluation information.
The IVPFLEIOWA operator both considers the self-value and ordinal information of the
argument variables, and measures the uncertainty of the argument variables with entropy
order-inducing variable.

(3) The proposed method is an pairwise comparison method by using interactive computing
to reduce the high degree of uncertainty. It can construct the compromise outranking
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relation which involves outranking index and veto index. Then, for obtaining convincing
results, the proposedmethod gives the credibility degree approach to handle compromise
outranking relation. Thus, it is more comprehensive to measure information than the
ELECTRE III method.

6 Conclusion

Compared with fuzzy number, intuitionistic fuzzy number, etc., interval-value Pythagorean
fuzzy linguistic information includes special characters in assessing the subjective judgment
and inherent uncertainty of decision makers. It has the ability to demonstrate fuzzy informa-
tion reliability to describe preference information of decision making for MCDM problems.
Then, the IVPFLEIOWA operator is proposed to aggregate decision matrices of preference
information. The IVPFLEIOWA operator is induced by the uncertainty of entropy order-
inducing variable for considering the self-value and ordinal information of the argument
variables. Subsequently, this paper develops the O-VIKOR method including compromise
outranking relations and ranking approach for addressing situations ofMCDMproblems. The
compromise outranking relations are discussed in detail and the corresponding outranking
indices and veto indices for IVPFLSswere obtained. Lastly, for the practicality of application,
we give a detailed procedure of the O-VIKOR method to solve complex MCDM problems.
The advantages of this method are clearly illustrated by a numerical example concerning the
site location selection. This method can overcome the shortcomings of existing methods. By
different parameter and different ranking methods, the decision making would lead to differ-
ent rankings. As discussed in the influence analysis of modified parameter and comparative
analyses, the proposed method can handle MCDM problems more flexible and practical.

Nevertheless, there is still the limitation that is the need for a large number of computation
with the increasing complexity of decision making information. In the future, the proposed
method shall consider other linguistic term sets, such as hesitant fuzzy linguistic term sets
and probabilistic linguistic term sets. And we will also consider other entropy in our method
and extend the applications to other domains.
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