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Abstract
This paper studies a new computational method for the approximate solution of the space
fractional advection–dispersion equation in sense of Caputo derivatives. In the first method,
a time discretization is accomplished via the compact finite difference, while the fourth kind
shiftedChebyshev polynomials are used to discretize the spatial derivative. The unconditional
stability and convergence order of the method are studied via the energy method. Three
examples are given for illustrating the effectiveness and accuracy of the new scheme when
compared with existing numerical methods reported in the literature.

Keywords Space fractional advection–dispersion equation · Compact finite difference ·
Chebyshev collocation method · Error analysis

Mathematics Subject Classification 34K37 · 91G80 · 97N50

1 Introduction

Fractional calculus (FC) can be viewed as the generalization of classical calculus to non-
integer orders (Podlubny 1998; Oldham and Spanier 1974; Milici et al. 2018). In recent
years, FC has gained considerable popularity and importance in various fields of science
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Table 1 The parameters for
advection–dispersion equation

Parameter Description

R Retardation factor

DL Longitudinal dispersion coefficient

De Effective diffusion coefficient

αL Dynamic dispersivity

ν Average flow velocity

C Concentration of the tracer

ξ Space coordinate

τ Time coordinate

and engineering including economics, optimal control, materials, chemistry, physics, and
social science (Ortigueira and Machado 2020; Tenreiro Machado and Lopes 2019; Rigi and
Tajadodi 2019; Mahmoudi et al. 2019). In fact, due to the adequacy of fractional derivatives
for capturing memory effects, many physical systems can be well described by means of
fractional differential equations (Toubaei et al. 2019; Golbabai et al. 2019b, a; Nikan et al.
2020).

We consider the general advection–dispersion equation that is naturally utilized to explain
the transient transport of solutes as

R
∂C(ξ, τ )

∂τ
=

[
DL

∂2

∂ξ2
− ν

∂

∂ξ

]
C(ξ, τ ), (1)

where DL = De + αLν, DL > 0, and ν > 0. Table 1 lists the required parameters and
variables for the equation (1).

Fractional space derivatives are applied for modeling anomalous diffusion or dispersion,
where a particle spreads at a rate inconsistent with the classical Brownian motion model.
The model (1) is based on the Fick’s law, which describes the transport of passive tracers
carried through a fluid flow in a porous medium (Liu et al. 2004). The FADE is a fundamental
equation of motion that is used for modeling water flow movement (Hu et al. 2016), material
transport and diffusion (Hernandez et al. 1995). For convenience and without losing the
generality, let us introduce dimensionless space, time, and concentration variables by

x = ξ

L
, t = τ

L/ν
, u = C

C0
,

respectively. Then the dimensionless advection–dispersion equation (ADE) can be rewritten
as

∂u(x, t)

∂t
= γ

∂2u(x, t)

∂x2
− μ

∂u(x, t)

∂x
·, (2)

where the constants γ and μ are the dispersion coefficient and the average fluid veloc-
ity, respectively. In virtue of the non-local importance of fractional derivatives, we suggest
fractional order in Eq. (2) is used in the groundwater hydrology for modeling transport phe-
nomena. The space fractional advection–dispersion equation (SFADE) is obtained from the
classical equation by replacing the first-order and the second-order spatial derivatives by
fractional derivatives termed in Caputo sense of order α ∈ (1, 2] and β ∈ (0, 1], respectively.
The SFADE is presented as

∂u(x, t)

∂t
= γDα

x u(x, t) − μDβ
x u(x, t) + q(x, t). (3)
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In addition, the advection–dispersion equation (ADE) of integer or fractional orders is
widely utilized in environmental engineering and aviation (Liu et al. 2016), as well as in the
marine (Farahani et al. 2015), chemical (Colla et al. 2015) and metallurgy (Zaib and Shafie
2014) areas. Therefore, the development of efficient numerical schemes for solving ADE is
important both from the theoretical and practical point of views.

Hereafter we outline some preliminary concepts of fractional derivatives that are useful in
the subsequent discussion (Podlubny 1998; Oldham and Spanier 1974; Milici et al. 2018).

Definition 1 The fractional derivative of Caputo type can be defined as

Dβ
x u(x, t) =

⎧⎪⎨
⎪⎩

1
Γ (n−β)

∫ x
0 (x − τ)n−β−1 ∂nu(τ,t)

∂τ n
dτ, n − 1 < β ≤ n ∈ N,

∂nu(x,t)
∂xn , β = n.

Remark 1 Some important properties of the Caputo derivative Dβ
x are as listed:

1. Dβ
x xα = Γ (1+α)

Γ (1+α−β)
xα−β, 0 < β < α + 1, β > −1,

2. Dβ
x (γ f (x, t) + ηu(x, t)) = γDβ

x f (x, t) + ηDβ
x u(x, t),

3. Dβ
xDn

x u(x, t) = Dβ+n
x u(x, t) �= Dn

xDβ
x u(x, t).

In this article, we propose an numerical approach for computing the approximate solution of
the SFADE as follows:

∂u(x, t)

∂t
= γDα

x u(x, t) − μDβ
x u(x, t) + q(x, t), (4)

with the initial condition

u(x, 0) = f (x), 0 < x < L (5)

and boundary conditions

u(0, t) = υ0(t), u(L, t) = υ1(t), 0 < t ≤ T , (6)

in which 0 < β ≤ 1, 1 < α ≤ 2.
Several numerical algorithms have been proposed for solving the SFADE. Ervin and Roop

(2007) investigated an approach for FADE using the variational iteration method on bounded
domain. Su et al. (2010) used the weighted average finite difference method. Khader and
Sweilam (2014) adopted the Legendre collocation method. Saw and Kumar (2018, 2019)
applied the Chebyshev collocation methods to obtain the approximation solution of the
SFADE. Safdari et al. (2020a, b) adopted the spectral collocation method for solving SFADE.
Aghdam et al. (2020) formulated a spectral collocation method to approximate SFADE.

The rest of this paper has the following organization. Section 2 presents the operational
matrices of the fourth kind Chebyshev polynomials (FKCP) for fractional derivative. Sec-
tion 3 describes the approximation of the fractional operator Dα

x u(x, t) and implements the
Chebyshev collocation approach to solve (4). The fourth kind shifted Chebyshev polynomi-
als (FKSCP) and the compact finite difference are implemented to discretize the SFADE in
the spatial and temporal variable, respectively. Section 4 discusses error analysis and upper
bounds of time-discrete approach. Section 5 presents two numerical examples illustrating
effectiveness and accuracy of the new scheme. Finally, Sect. 6 includes the main conclu-
sions.
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2 Some properties of the FKSCP

The FKCP Wi (x) defined in the domain [−1, 1] are orthogonal polynomials of degree i as
follows:

Wi (x) = 22i(2i
i

) P
(

1
2 , −1

2

)
i (x),

where P(r ,s)
i (x) is a Jacobi polynomial orthogonal corresponding to the weight function

ω(r ,s)(x) = (1 − x)r (1 + x)s over [−1, 1], such that

P(r ,s)
i = Γ (r + i + 1)

i !Γ (r + s + i + 1)

i∑
m=0

(
i

m

)
Γ (r + s + i + m + 1)

Γ (r + m + 1)
×

(
x − 1

2

)m

.

Wi (x) can be organized

Wi (x) = Ii

i−1∑
k=0

k∑
ξ=0

Ki,k,ξ × xk−ξ , x ∈ [−1, 1], i = 1, 2, . . . ,

where

Ii = (22i−2)Γ (i + 0.5)(i − 1)!
(2i − 2)! , Ki,k,ξ = (−1)ξΓ (i + k)

2kk! × (i − k − 1)Γ (k + 1.5)
×

(
k

ξ

)
.

The polynomialsWi (x) on [−1, 1] corresponding to the weight function are orthogonal with
the inner product as

〈Wm(x),Wn(x)〉 =
∫ 1

−1

√
1 − x

1 + x
Wm(x)Wn(x)dx =

{
0, m �= n,

π, m = n.

In the domain [0, 1], the SPCFK W∗
i (x) = Wi (2x − 1) can be defined as follows:

W∗
i (x) = Ii

i−1∑
k=0

k∑
ξ=0

Ki,k,ξ × 2k × xk−ξ , x ∈ [0, 1], i = 1, 2, . . . ·

These polynomials are orthogonal in the domain [0, 1] with respect to
√

1−x
x :

〈W∗
m(x),W∗

n (x)〉 =
∫ 1

0

√
1 − x

x
W∗

m(x)W∗
n (x)dx =

{
0, m �= n,
π
2 , m = n.

Let g(x) be a square-integrable function in [0, 1]. Then g(x) may be extended in terms of
W∗

i (x) as

g(x) =
N∑
i=0

ciW∗
i (x), x ∈ [0, 1], (7)

where the coefficients ci , i = 0, 1, . . . , N are defied by

ci = 2

π

∫ 1

0

√
1 − x

x
g(x)W∗

i (x)dx . (8)
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The fractional derivative ofW∗
i (x) is formulated based on the linearity of the Caputo defini-

tion
Dω(W∗

i (x)) = 0, i = 0, 1, . . . , �ω	 − 1, ω > 0, (9)

where �ω	 denotes the ceiling part ofω. The closed formulation ofDω(W∗
i (x)) can bewritten

as

Dω(W∗
i (x)) =

i−�ω	∑
k=0

k∑
ξ=0

Nω,�ω	
i,k,ξ × xk−ξ−ω+�ω	, x ∈ [0, 1], i = 0, 1, . . . , (10)

and Nω,�ω	
i,k,ξ is defined by

Nω,�ω	
i,k,ξ = 22i × (i)! × Γ (i + 0.5)

(2i)! × (i − k − �ω	)! × (k + �ω	)! × Γ (i + k + �ω	 + 1)

Γ (k + �ω	 + 1.5)

× (−1)ξ ×
(
k + �ω	

ξ

)
× Γ (k − ξ + �ω	 + 1)

Γ (k − ξ − ω + �ω	 + 1)
·

Using the properties listed in Remark 1 and combining Eqs. (7), (9) and (10), we have

Dω(g(x)) =
N∑

i=�ω	

i−�ω	∑
k=0

k∑
ξ=0

ci × Nω,�ω	
i,k,ξ × xk−ξ−ω+�ω	, x ∈ [0, 1]. (11)

3 Numerical scheme

For discretizing (4), we consider the nodes t j = jδt ( j = 0, 1, . . . , M) in the time domain
[0, T ], where tn satisfies 0 = t0 < t1 < · · · < tM = T with mesh length δt = T /M for
some positive integer M and define the collocation points {xr−1}N+1−�υ	

r=1 using the roots of
the SCPSK U∗

N+1−�υ	(x). Based on the Taylor formula of u(x, t) ∈ C
3(0, 1), we have

∂u(xr , t j )

∂t
= Pδτu(xr , t j ) + δτ

2

∂2u(xr , t j )

∂t2
+ O(δτ 2), (12)

where Pδτu(xr , t j ) = u j
r −u j−1

r
δτ

. Now, discretizing (4) in the grid points (xr , t j ) and by
substituting (12), it yields

Pδτu(xr , t j ) + Tj = γ
∂αu(xr , t j )

∂xα
− μ

∂βu(xr , t j )

∂xβ
+ q(xr , t j ), (13)

with

Tj = δτ

2

∂2u(xr , t j )

∂t2
+ O(δτ 2)

and notice that

∂2u(xr , t j )

∂t2
= γ Pδτ

∂αu(xr , t j )

∂xα
− μPδτ

∂βu(xr , t j )

∂xβ
+ Pδτq(xr , t j ). (14)

Substituting Eq. (14) in Tj and as well as in Eq. (13), one obtains

Pδτu(xr , t j ) = γ
∂αu(xr , t j )

∂xα
− μ

∂βu(xr , t j )

∂xβ
+ q(xr , t j )

− δτ

2

(
γ Pδτ

∂αu(xr , t j )

∂xα
− μPδτ

∂βu(xr , t j )

∂xβ
+ Pδτq(xr , t j )

) + · · · .

(15)
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Let us define u(xr , t j ) = U j
r , q(xr , t j ) = q j

r . Then we get the semi-discrete scheme as

U j
r − δτ

2
γ

∂αU j
r

∂xα
+ δτ

2
μ

∂βU j
r

∂xβ
= U j−1

r − δτ

2
γ

∂αU j−1
r

∂xα
+ δτ

2
μ

∂βU j−1
r

∂xβ
+ δτ

2
(q j

r +q j−1
r )+R j (x)δτ3,

(16)
whereR j (x) stands for a truncation term. It follows that, for fully discretizing (4), we need

to approximate the Caputo derivative in ∂αU j
r

∂xα and ∂βU j
r

∂xβ using the result of Eq. (11). In the
Chebyshev collocation scheme, the approximate solution u(x, t) can be represented as

uN (x, t j ) =
N∑
i=0

ui (t j )W∗
i (x). (17)

In view of relations (11), (16) and (17), we have

N∑
i=0

u
j
i W∗

i (x) − δτ

2

N∑
i=�α	

u
j
i ×

(
γ

i−�α	∑
k=0

k∑
ξ=0

Nα,�α	
i,k,ξ × xk−ξ−α+�α	

+ μ

i−�β	∑
k=0

k∑
ξ=0

Nβ,�β	
i,k,ξ × xk−ξ−β+�β	

)

=
N∑
i=0

u
j−1
i W∗

i (x) − δτ

2

N∑
i=�α	

u
j−1
i ×

(
γ

i−�α	∑
k=0

k∑
ξ=0

Nα,�α	
i,k,ξ × xk−ξ−α+�α	

+ μ

i−�β	∑
k=0

k∑
ξ=0

Nβ,�β	
i,k,ξ × xk−ξ−β+�β	

)

+ δτ

2
(q(x, t j ) + q(x, t j−1)),

(18)

where u j
i represents the coefficients at the point t j .With the roots of the FKSCP, {xr }N+1−�υ	

r=1 ,
we collocate Eq. (18) as follows:

N∑
i=0

u
j
i W∗

i (xr ) − δτ

2

N∑
i=�α	

u
j
i ×

(
γ

i−�α	∑
k=0

k∑
ξ=0

Nα,�α	
i,k,ξ × xk−ξ−α+�α	

r

+ μ

i−�β	∑
k=0

k∑
ξ=0

Nβ,�β	
i,k,ξ × xk−ξ−β+�β	

r

)

=
N∑
i=0

u
j−1
i W∗

i (xr ) − δτ

2

N∑
i=�α	

u
j−1
i ×

(
γ

i−�α	∑
k=0

k∑
ξ=0

Nα,�α	
i,k,ξ × xk−ξ−α+�α	

r

+ μ

i−�β	∑
k=0

k∑
ξ=0

Nβ,�β	
i,k,ξ × xk−ξ−β+�β	

r

)

+ δτ

2
(q(xr , t j ) + q(xr , t j−1)).

(19)

Substituting the boundary conditions given in Eq. (6) into (17), we obtain the �υ	 equations
N∑
i=0

(−1)iui (t) = υ0(t),
N∑
i=0

(2i + 1)ui (t) = υ1(t). (20)
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Equation (19), together with �ν	 equations of the boundary conditions (20) lead N + 1 of
algebraic equations that can be obtained the unknowns ui , i = 0, 1, . . . , N .

4 Error analysis

This section examines the time-discrete scheme in terms of unconditional stability and con-
vergence issues. Assume that Ω represents an a bounded and open domain in R

2. First, let
us introduce the functional spaces endowed with standard norms and inner product

〈u(x), v(x)〉 =
∫

Ω

u(x)v(x)dx, u, v ∈ L2(Ω),

which induces the norm ‖u(x)‖2 = 〈
u(x), u(x)

〉 1
2 and let us define

Hs(Ω) = {u ∈ L2(Ω),
dsu

dxs
∈ L2(Ω)}.

Now, relation (16) can be rearranged according to the expression

Uk − δτ

2

(
γ aDα

x U
k − μaDβ

x U
k
)

= Uk−1 + δτ

2

(
γ aDα

x U
k−1 − μaDβ

x U
k−1

)
+ δτ

2
(qk + qk−1), k = 1, 2, . . . , M .

(21)

We some lemmas that are introduced in the following (Ervin et al. 2007).

Lemma 1 Assume that 1 < α < 2. Then for any u, ν ∈ H
α
2 (Ω) it holds that

〈aDα
x u, ν〉 = 〈aD

α
2
x u, xD

α
2
b ν〉, 〈xDα

b u, ν〉 = 〈xD
α
2
b u, aD

α
2
x ν〉.

Lemma 2 Let α > 0 be given. Then it follows that

〈aDα
x u, xDα

b u〉 = cos(απ)‖aDα
x u‖2L2(Ω) = cos(απ)‖xDα

b u‖2L2(Ω).

Now, we need to prove the following lemma:

Lemma 3 For 1 < α ≤ 2 and the functions g(x), aDα
x g(x) ∈ Hα(Ω), there exists a suffi-

ciently small δτ such that

‖g(x) + δτ

2
aDα

x g(x)‖ ≤ ‖g(x)‖.

Proof By virtue of the nature of the inner product, one can arrive at

‖g(x) + δτ

2
aDα

x g(x)‖2 ≤
〈
g(x) + δτ

2
aDα

x g(x), g(x) + δτ

2
aDα

x g(x)

〉

= ‖g(x)‖2 + δτ 〈aD
α
2
x g(x), xD

α
2
b g(x)〉 + δτ 2

4
‖aDα

x g(x)‖2.
From Lemma 2 and knowing that 1 < α ≤ 2, we obtain

〈aD
α
2
x g(x), xD

α
2
b g(x)〉 = cos

(α

2
π

)
‖aD

α
2
x g(x)‖2 < 0,
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thus, by choosing a small enough δτ that guarantees

〈aD
α
2
x g(x), xD

α
2
a g(x)〉 + δτ

4
‖aDα

x g(x)‖2 < 0.

Finally, we obtain

‖g(x) + δτ

2
aDα

x g(x)‖2 ≤ ‖g(x)‖2,
which proves the theorem. ��
Lemma 4 If Uk ∈ H1(Ω), k = 1, 2, . . . , M, and U 0 be the solution of the time-discretized
scheme (21) and the initial condition, respectively, then

‖Uk‖ ≤ ‖U 0‖ + max
0≤r≤N

δτ

2
(‖qkr ‖ + ‖qk−1

r ‖). (22)

Proof We will prove above result by principle of mathematical induction. First, when k = 1,
we have

U 1− δτ

2

(
γ aDα

x U
1−μaDβ

x U
1
)

= U 0 + δτ

2

(
γ aDα

x U
0 −μaDβ

x U
0
)

+ δτ

2
(q1+q0). (23)

Taking the inner product of Eq. (23) by U 1, one can obtain

‖U 1‖2 − δτ

2

(
γ 〈aDα

x U
1,U 1〉 − μ〈aDβ

x U
1,U 1〉

)

= 〈U 0,U 1〉 + δτ

2

(
γ 〈aDα

x U
0,U 1〉 − μ〈aDβ

x U
0,U 1〉

)

+ δτ

2
(〈q1,U 1〉 + 〈q0,U 1〉).

(24)

From Lemmas 1 and 2, it is clear that

〈aDα
x U

1,U 1〉 = 〈aD
α
2
x U

1, xD
α
2
b U

1〉 = cos
(α

2
π

)
‖aD

α
2
x U

1‖2 ≤ 0, ∀ 1 < α ≤ 2,

〈aDβ
x U

1,U 1〉 = 〈aD
β
2
x U

1, xD
β
2
b U

1〉 = cos

(
β

2
π

)
‖aD

β
2
x U

1‖2 ≥ 0, ∀ 0 < β ≤ 1.

Regarding Lemma 3 and the Schwarz inequality, we have

〈
U0,U1〉 + δτ

2
〈aDα

x U
0,U1〉 = 〈

U0 + δτ

2
aDα

x U
0,U1〉 ≤ ∥∥U0 + δτ

2
aDα

x U
0∥∥∥∥U1∥∥ ≤ ∥∥U0∥∥∥∥U1∥∥.

The aforesaid relation can be rewritten as

‖U 1‖ ≤ ‖U 0‖ + max
0≤r≤N

δτ

2
(‖q1r ‖ + ‖q0r ‖).

Suppose that the theorem is true for all j

‖U j‖ ≤ ‖U 0‖ + max
0≤r≤N

δτ

2
(‖q j

r ‖ + ‖q j−1
r ‖), j = 1, 2, . . . , k − 1.

Taking the inner product of Eq. (23) by Uk , we have

‖Uk‖2 − δτ

2

(
γ 〈aDα

x U
k,Uk〉 − μ〈aDβ

x U
k,Uk〉

)

= 〈Uk−1,Uk〉 + δτ

2

(
γ 〈aDα

x U
k−1,Uk〉 − μ〈aDβ

x U
k−1,Uk〉

)

+ δτ

2
(〈qk,Uk〉 + 〈qk−1,Uk〉).
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From the Schwarz inequality and Uk ∈ H1(Ω), we have the following inequality:

‖Uk‖ ≤ ‖Uk−1‖ + max
0≤r≤N

δτ

2
(‖qkr ‖ + ‖qk−1

r ‖).

Therefore, Lemma 4 is proven by induction on k. ��
Next theorem proves the stability of relation (16).

Theorem 1 The time semi-discretization (16) is unconditionally stable.

Proof Let us consider that Û j
r , j = 1, 2, . . . , M, is an approximate solution of (16), with

the initial condition Û 0
r = u(x, 0). Then the error ε j = U j

r − Û j
r satisfies

ε j − δτ

2

(
γ aDα

x ε j − μaDβ
x ε j ) = ε j−1 + δτ

2

(
γ aDα

x ε j−1 − μaDβ
x ε j−1).

Using the aforesaid equation and Lemma 4, it follows that

‖ε j‖ ≤ ‖ε0‖, j = 1, 2, . . . , M .

This shows that the scheme (16) is unconditionally stable. ��
Theorem 2 Let ε j = u(x, t j )−U j , j = 1, 2, . . . , M, be the errors associated with Eq. (16).
Then we obtain that

‖ε j‖ ≤ Cxδτ
2,

where Cx > 0 is depends on x.

Proof First, we obtain the following weak form using Eq. (16) as

‖ε j‖2 − δτ

2

(
γ 〈aDα

x ε j , ε j 〉 − μ〈aDβ
x ε j , ε j 〉) = 〈ε j−1, ε j 〉 + δτ

2

(
γ 〈aDα

x ε j−1, ε j 〉
−μ〈aDβ

x ε j−1, ε j 〉) + δτ 3〈R j (x), ε j 〉.
for j = 1, 2, . . . , M .
Based on the Lemmas 1, 2 ,3 and Cauchy–Schwarz inequality, we conclude that

‖ε j‖2 ≤ ‖ε j−1‖‖ε j‖ + (δτ )3‖R j (x)‖‖ε j‖.
So, one can get

‖ε j‖ − ‖ε j−1‖ ≤ (δτ )3‖R j (x)‖, �⇒ ‖ε j‖ − ‖ε j−1‖ ≤ C(δτ )3. (25)

Summing for j from 1 to M , we obtain

M∑
j=1

(
‖ε j‖ − ‖ε j−1‖

)
≤

M∑
j=1

C(δτ )3.

From the above relation, we can conclude

‖εM‖ − ‖ε0‖ ≤ CM(δτ )3,

since ‖ε0‖ = 0 and δτ = T
M , we have

‖εM‖ ≤ Cxδτ
2,

where Cx = CT . The proof of Theorem 2 is completed. ��
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Table 2 The maximum norm error L∞ obtained with the proposed method and those in Khader and Sweilam
(2014); Saw and Kumar (2018, 2019) with α = 2, β = 1, N = 3 and M = 400 at T = 1 for Example 1

x Khader and Sweilam (2014) Saw and Kumar (2018) Saw and Kumar (2019) Proposed method

0 4.48378 × 10−3 2.19788 × 10−5 2.19788 × 10−5 1.30104 × 10−18

0.1 4.47966 × 10−3 2.41687 × 10−5 2.41687 × 10−5 2.22286 × 10−9

0.2 4.20132 × 10−3 2.60334 × 10−5 2.60333 × 10−5 4.35339 × 10−9

0.3 3.69517 × 10−3 2.75122 × 10−5 2.75122 × 10−5 6.24096 × 10−9

0.4 3.00756 × 10−3 2.85448 × 10−5 2.85448 × 10−5 7.73497 × 10−9

0.5 2.18488 × 10−3 2.90705 × 10−5 2.90705 × 10−5 8.68481 × 10−9

0.6 1.27351 × 10−3 2.90289 × 10−5 2.90289 × 10−5 8.93986 × 10−9

0.7 0.31983 × 10−3 2.83595 × 10−5 2.83594 × 10−5 8.34952 × 10−9

0.8 0.62979 × 10−3 2.70016 × 10−5 2.70016 × 10−5 6.76317 × 10−9

0.9 1.52897 × 10−3 2.48949 × 10−5 2.48949 × 10−5 4.03020 × 10−9

1.0 2.33134 × 10−3 2.19787 × 10−5 2.19788 × 10−5 0

5 Numerical examples

In this section,wepresent the numerical results of the proposedmethodon three test problems.
Moreover, we will test the accuracy of proposed method for different values of N , M at final
times T . In addition, the computational order (denoted by Cδτ ) is computed by the formula

Cδτ =
log

(
E1
E2

)

log
(

δτ 1
δτ 2

) ,

where E1 and E2 are the errors corresponding to grids with time steps δτ 1 and δτ 2, respec-
tively.

Example 1 Consider the following SFADE

∂u(x, t)

∂t
= ∂αu(x, t)

∂xα
− ∂βu(x, t)

∂xβ
+ e−2t

(
2(xβ − xα) − α! + Γ (α + 1)

Γ (α − β + 1)
xα−β − β!

)

with boundary and initial conditions

u(x, 0) = xα − xβ,

u(0, t) = u(1, t) = 0.

The analytical solution of this problem is u(x, t) = e−2t (xα − xβ).

Tables 2–6 list the results for Example 1, with various values of M and N at different values
of T . Tables 2 and 3 make a comparison between the obtained results with the techniques
described in (Khader and Sweilam 2014; Saw and Kumar 2018, 2019) at T = 1 and T = 2.
We verify that the proposedmethod achieves superior accuracy than the techniques described
in (Khader and Sweilam 2014; Saw and Kumar 2019, 2018). Table 4 includes the maximum
norm error L∞ yielded by the proposedmethod for N = 5 and various values ofM, at T = 1.
Table 5 reports that the computational order of the method in the time variable is approxi-
mately O(δτ 2) which is in accordance with the theoretical results. Table 6 demonstrates the
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Table 3 The maximum norm error L∞ with the proposed method and those in Khader and Sweilam (2014);
Saw and Kumar (2018, 2019) with α = 2, β = 1, M = 400 and N = 5 at T = 2 for Example 1

x Khader and Sweilam (2014) Saw and Kumar (2018) Saw and Kumar (2019) Proposed method

0 2.72649 × 10−5 2.19788 × 10−5 2.19788 × 10−5 1.37146 × 10−18

0.1 3.45589 × 10−5 2.41644 × 10−5 2.41644 × 10−5 2.59266 × 10−9

0.2 3.80967 × 10−5 2.60588 × 10−5 2.60588 × 10−5 5.12222 × 10−9

0.3 3.80910 × 10−5 2.75808 × 10−5 2.75808 × 10−5 7.30415 × 10−9

0.4 3.51428 × 10−5 2.86516 × 10−5 2.86516 × 10−5 8.89583 × 10−9

0.5 3.00926 × 10−5 2.91965 × 10−5 2.91965 × 10−5 9.70550 × 10−9

0.6 2.38712 × 10−5 2.91470 × 10−5 2.91470 × 10−5 9.60120 × 10−9

0.7 1.73512 × 10−5 2.84434 × 10−5 2.84434 × 10−5 8.51976 × 10−9

0.8 1.11982 × 10−5 2.70362 × 10−5 2.70362 × 10−5 6.47569 × 10−9

0.9 0.57215 × 10−5 2.48887 × 10−5 2.48887 × 10−5 3.57017 × 10−9

1.0 0.07256 × 10−5 2.19788 × 10−5 2.19788 × 10−5 1.11172 × 10−18

Table 4 Themaximum norm error L∞ obtained with the proposedmethodwith N = 5 at T = 1 of Example 1

x M = 100 M = 200 M = 400 M = 800 M = 1600

0 9.92807 × 10−18 1.24162 × 10−17 9.52764 × 10−18 1.12178 × 10−17 8.27644 × 10−18

0.1 7.66048 × 10−8 1.91519 × 10−8 4.78800 × 10−9 1.19700 × 10−9 2.99251 × 10−10

0.2 1.51345 × 10−7 3.78375 × 10−8 9.45946 × 10−9 2.36487 × 10−9 5.91218 × 10−10

0.3 2.15813 × 10−7 5.39551 × 10−8 1.34889 × 10−8 3.37223 × 10−9 8.43058 × 10−10

0.4 2.62841 × 10−7 6.57124 × 10−8 1.64282 × 10−8 4.10707 × 10−9 1.02677 × 10−9

0.5 2.86762 × 10−7 7.16930 × 10−8 1.79234 × 10−8 4.48056 × 10−9 1.12022 × 10−9

0.6 2.83680 × 10−7 7.09224 × 10−8 1.77307 × 10−8 4.43270 × 10−9 1.10817 × 10−9

0.7 2.51726 × 10−7 6.29338 × 10−8 1.57336 × 10−8 3.93340 × 10−9 9.83351 × 10−10

0.8 1.91332 × 10−7 4.78345 × 10−8 1.19587 × 10−8 2.98969 × 10−9 7.47423 × 10−10

0.9 1.05485 × 10−7 2.63721 × 10−8 6.59308 × 10−9 1.64827 × 10−9 4.12069 × 10−10

1.0 1.29780 × 10−17 4.51945 × 10−19 2.70462 × 10−17 1.12495 × 10−18 4.24973 × 10−17

computational order at the final times T ∈ {2, 10}. Figure 1 illustrates the numerical solution
and the maximum norm error L∞ with N = 7 and M = 400 at T = 1. Figure 2 draws the
behaviour of the maximum norm errors L∞ when adopting N = 3 and N = 7 for various
values of M at T = 2. Figure 3a includes the behaviour of the maximum norm error L∞
and L2-norm when choosing M = 400, and various values N at T = 1. Figure 3b plots the
maximum norm error L∞ for N = 5 and various values M at T = 1. Figure 4 represents
the behaviour of the maximum norm errors L∞ for different values of {α, β}, at T = 1.

Example 2 Consider the following SFADE

∂u(x, t)

∂t
= ∂1.5u(x, t)

∂x1.5
− 2

∂u(x, t)

∂x
+ x(x − 1)(2t − 1) + 2t(t − 1)(2x − 1) − 4

√
xt(t − 1)√

π
,

(26)
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Table 5 The maximum norm error L∞, computational orders and CPU time with N = 7 at T = 1 for
Example 1

M N = 7
L∞ Cδτ L2 Cδτ CPU time

100 2.86772 × 10−7 6.46683 × 10−7 7.34264

200 7.16954 × 10−8 1.99995 1.61676 × 10−7 1.99995 9.53502

400 1.79240 × 10−8 1.99999 4.04194 × 10−8 1.99999 11.05831

800 4.48101 × 10−9 2.00000 1.01049 × 10−8 2.00000 14.80701

1600 1.12025 × 10−9 2.00000 2.52622 × 10−9 2.00000 17.07253

Table 6 The maximum norm error L∞ and computational orders with N = 3 at the final times T ∈ {2, 10}
for Example 1

M N = 7 CPU time
L∞ Cδτ L2 Cδτ

T = 2 100 1.43012 × 10−7 3.23805 × 10−7 2.15304

200 3.57582 × 10−8 1.99979 8.09629 × 10−8 1.99979 3.04520

400 8.93986 × 10−9 1.99995 2.02415 × 10−8 1.99995 4.60738

800 2.23499 × 10−9 1.99870 5.06041 × 10−9 1.99999 7.50869

1600 5.58748 × 10−10 1.99999 1.26511 × 10−9 2.00000 10.8204

T=10 100 4.00498 × 10−13 9.06805 × 10−13 2.57012

200 1.00485 × 10−13 1.99481 2.27517 × 10−13 1.99482 3.15760

400 2.51440 × 10−14 1.99870 5.69305 × 10−14 1.99870 4.90863

800 6.28741 × 10−15 1.99967 1.42358 × 10−14 1.99968 7.91053

1600 1.57194 × 10−15 1.99992 3.55916 × 10−15 1.99992 11.3501

Fig. 1 The approximate solution (left panel) and the maximum norm error L∞ (right panel) with M = 400
and N = 7 at T = 1 for Example 1
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Fig. 2 The maximum error norms L∞ with {α = 1.9, β = 1} and different values of N and M at T = 2 for
Example 1

Fig. 3 a The maximum norm errors L∞ with {α = 1.9, β = 0.9} and N = 3 at T = 1 for Example 1. b The
maximum norm error L∞ with {α = 1.9, β = 0.9}, and M = 400 and N ∈ {3, 5, 7, 9} at T = 1 for Example
1

with boundary and initial conditions

u(x, 0) = 0, u(0, t) = u(1, t) = 0, t > 0, (27)

such that the analytical solution is u(x, t) = xt(x − 1)(t − 1).

Table 7 makes the comparison between the numerical and the analytical solutions for various
values of T ∈ {0.3, 06, 0.9}, showing that the method rapidly converges to the analytical
solution. Figure 5 plots the behaviour of the maximum norm error for different values of
{α, β} at T = 10.
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Fig. 4 The behavior of the approximate solutions for α ∈ {1.5, 1.6, 1.7, 1.8, 1.9}, β = 1 (left panel) and
β ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, α = 1.5 (right panel) for Example 1

Table 7 The analytical and approximate solutions with α = 1.5 and β = 1 at various values of T ∈
{0.3, 0.6, 0.9} of Example 2

x ue(x, 0.3) un(x, 0.3) ue(x, 0.6) un(x, 0.6) ue(x, 0.9) un(x, 0.9)

0 0 0 0 0 0 0

0.1 0.0189 0.0189 0.0216 0.0216 0.0081 0.0081

0.2 0.0336 0.0336 0.0384 0.0384 0.0144 0.0144

0.3 0.0441 0.0441 0.0504 0.0504 0.0189 0.0189

0.4 0.0504 0.0504 0.0576 0.0576 0.0216 0.0216

0.5 0.0525 0.0525 0.0600 0.0600 0.0225 0.0225

0.6 0.0504 0.0504 0.0576 0.0576 0.0216 0.0216

0.7 0.0441 0.0441 0.0504 0.0504 0.0189 0.0189

0.8 0.0336 0.0336 0.0384 0.0384 0.0144 0.0144

0.9 0.0189 0.0189 0.0216 0.0216 0.0081 0.0081

1.0 0 0 0 0 0 0

Example 3 Consider the following SFADE

∂u(x, t)

∂t
= Γ (1.8)x1.2 × ∂1.2u(x, t)

∂x1.2
− Γ (2.8)x0.2 × ∂0.2u(x, t)

∂x0.2
− (x2 − x3) sin(t)

− 6x3 cos(t)(
Γ (2.8)

Γ (3.8)
− Γ (1.8)

Γ (2.8)
),

(28)
with boundary and initial conditions

u(x, 0) = x2 − x3, u(0, t) = u(1, t) = 0, t > 0, (29)

which the analytical solution is u(x, t) = (x2 − x3) cos(t).

Table 8 demonstrates the computational order at the final times T ∈ {1, 2} which is in
accordance with the theoretical results.
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Fig. 5 The approximate solutions of Example 2 for β ∈ {0.5, 0.6, 0.7, .8, 0.9}, α = 1 (left panel) and
α ∈ {1.1, 1.2, 1.3, 1.4}, β = 1 (right panel) at final time T = 10

Table 8 The maximum norm error L∞ and computational orders with N = 5 the final times T ∈ {1, 2} for
Example 3

M N = 5 CPU time
L∞ Cδτ L2 Cδτ

T = 1 10 2.59787 × 10−5 5.30970 × 10−5 1.57071

20 6.49462 × 10−6 2.00001 1.32746 × 10−5 1.99996 2.02579

40 1.62365 × 10−6 2.00000 3.31866 × 10−6 1.99999 3.01237

80 4.05912 × 10−7 2.00000 8.29667 × 10−7 2.00000 4.50421

160 1.01478 × 10−7 2.00000 2.07417 × 10−7 2.00000 6.96402

320 2.53695 × 10−8 2.00000 5.18542 × 10−8 2.00000 8.02486

T = 2 10 1.63619 × 10−4 3.39673 × 10−4 1.62140

20 4.08041 × 10−5 2.00355 8.46956 × 10−5 2.00379 2.29706

40 1.01948 × 10−5 2.00089 2.11600 × 10−5 2.00095 3.40972

80 2.54830 × 10−6 2.00022 5.28913 × 10−6 2.00024 4.80439

160 6.37050 × 10−7 2.00006 1.32223 × 10−6 2.00006 6.20796

320 1.59261 × 10−7 2.00001 3.30554 × 10−7 2.00001 8.59014

6 Conclusion

This paper proposed a newmethod for solving the SFADE. The numerical algorithm involves
two steps. First, the compact finite difference is applied to discretize the time derivative.
Second, the FKSCP is implemented to approximate the space fractional derivatives. The error
analysis of the proposed method was investigated in L2 space. To illustrate the applicability
and validity of the new scheme, illustrative examples were provided. The numerical results
verify well the theoretical analysis.
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