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Abstract
In the field of sensitivity analysis, Sobol’ indices are widely used to assess the importance
of the inputs of a model to its output. Among the methods that estimate these indices,
the replication procedure is noteworthy for its efficient cost. A practical problem is how
many model evaluations must be performed to guarantee a sufficient precision on the Sobol’
estimates. The present paper tackles this issue by rendering the replication procedure iterative.
The idea is to enable the addition of new model evaluations to progressively increase the
accuracy of the estimates. These evaluations are done at points located in under-explored
regions of the experimental designs, but preserving their characteristics. The key feature
of this approach is the construction of nested space-filling designs. For the estimation of
first-order indices, a nested Latin hypercube design is used. For the estimation of closed
second-order indices, two constructions of a nested orthogonal array design are proposed.
Regularity and uniformity properties of the nested designs are studied.

Keywords Orthogonal array · Iterative estimator · Sensitivity analysis · Sobol’ indices ·
Space-filling designs

Mathematics Subject Classification 49Q12 · 05B15

1 Introduction

Manymathematicalmodels encountered in applied sciences involve numerous poorly-known
inputs. It is important for the practitioner to understand how the output uncertainty can be
apportioned to the uncertainty in the inputs. Oneway to do so is to perform a global sensitivity
analysis in which statistical methods allow one to calculate importance measures. Among
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the large number of available approaches, the variance-based method introduced by Sobol’
(1993) relies on the calculation of sensitivity measures called Sobol’ indices. The method is
based on a variance decomposition of the model output into fractions which can be attributed
to sets of inputs, assuming that the uncertainty on the sets of inputs is modeled by independent
probability distributions. The influences of each set are summarized by the Sobol’ indices
which are scalars between 0 and 1. The higher the index the more influential the set. One
can distinguish first-order indices that estimate the main effect of each set of inputs from
higher order indices that estimate the corresponding order of interactions between sets of
inputs. Various procedures have been proposed in the literature (see Saltelli et al. (2008) for
a survey) to estimate Sobol’ indices. They all rely on the choice of both an estimator of the
Sobol’ index and a design of experiments, simply referred to as design, that contains the
points on which the model is evaluated. One key limitation of these methods is a need for a
significant number of model evaluations to ensure a proper exploration of the input space.
This comes at the price of rapidly being prohibitive.

The present paper offers a practical solution to this limitation through the introduction of
an iterative method, referred to as iterative replication procedure. This procedure is designed
to control the number of points on which the model is evaluated, adding new points at each
iteration and stopping as soon as the Sobol’ indices estimates have reached a convergence
criterion. Such a procedure is possible as the formula of the Sobol’ index estimator can be
written iteratively. The proposed method relies on specific experimental designs referred as
replicated designs.

The notion of replicated designs was introduced by McKay et al. (1979). Later on, Mara
and Joseph (2008) combine these designs with “pick-freeze” estimators (Sobol’ 1993) to
estimate first-order Sobol’ indices. This procedure, called replication procedure, has been
further studied and generalized in Tissot and Prieur (2015) to the estimation of closed second-
order indices. This last generalization relies on the construction of designs called orthogonal
arrays (OA) (see Hedayat et al. 1999). The replication procedure has the notable advantage of
requiring the construction of only two designs, thus considerably reducing the estimation cost
of more classical methods. To better control the estimation cost, the replication procedure
can be rendered iterative through the addition of new points at each iteration.

Adding new points is straightforward when the initial design is composed with indepen-
dent and uniformly distributed points. Even in this framework, the issue of choosing the
final sample size is crucial and has been addressed by several authors in the last decade.
In Sarrazin et al. (2016), the authors define quantitative criteria to assess different types of
convergence of GSA results, i.e. convergence of sensitivity indices, ranking and screening.
In Sheikholeslami et al. (2019) (see also references therein), the authors combine agglom-
erative hierarchical clustering with bootstrapping and introduce a new robustness measure
that enables an objective assessment of GSA convergence, even for high-dimensional input
parameter space. In Terraz et al. (2017), the authors combine iterative statistics and in transit
processing to compute sensitivity indices without any intermediate storage. However, in the
replication procedure as introduced in Tissot and Prieur (2015), the initial design possesses
either a structure of Latin hypercube or orthogonal arraywhether first- or closed second-order
Sobol’ indices are estimated. Hence, the need for a sampling strategy that preserves these
structures along the iterations.

For the estimation of first-order Sobol’ indices, the proposed approach takes advantage
of an algorithm for the construction of nested Latin hypercubes introduced by Qian (2009).
Dealing with the case of closed second-order indices is less straightforward. It requires
nested orthogonal arrays whose construction procedure is neither limited by the input space
dimensions or its discretization. Up to our knowledge, such a procedure has never been
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proposed as existing algorithms do not meet these requirements (Qian et al. 2009b, a; Dey
2012). Two construction approaches are discussed in the present paper, both preserving a
proper exploration of the input space. Each construction starts with an initial orthogonal array
and updates it sequentially by adding a fixed number of new points.

The paper is organized as follows. Backgrounds on Sobol’ indices are given in Sect. 2.
The estimator formula and its iterative version are detailed. The replication procedure is
described in Sect. 3, both for the estimation of first- and closed second-order indices. Section
4 is dedicated to the iterative replication procedure.A focus on the construction of space filling
designs, both nested and replicated, is made: nested Latin hypercube for first-order indices,
nested orthogonal arrays for second-order indices. The last section presents the numerical
analysis. First, regularity anduniformity properties of the nested designs are studied. Then, the
iterative replication procedure is illustrated on a toy example and an engineering application.

2 Iterative estimation of Sobol’ indices

2.1 Definition of Sobol’ indices

Consider the following model defined from a black box perspective:

f :
{

R
d → R

x = (x1, . . . , xd) �→ y = f (x)
(1)

where y is the output of the model f , x the input vector and d the dimension of the input
space. Denote by � the proper (strict) inclusion symbol and by ⊆ the inclusion symbol.

Let (�,A , P) be a probability space. The uncertainty on the inputs is modeled by a
random vector X = (X1, . . . , Xd) whose components are independent. Let u ⊆ {1, . . . , d},
Xu denotes a vector with components X j , j ∈ u. Let PX = PX1 ⊗ · · · ⊗ PXd be the
distribution of X . Assuming that f ∈ L

2(PX ), themodel f can then be uniquely decomposed
into summands of increasing dimensions (functional ANOVA decomposition Sobol’ 1993;
Hoeffding 1948),

f (X) = f0 +
∑
j

f j (X j ) +
∑
k<l

fk,l(Xk, Xl) + · · · + f1,...,d(X1, . . . , Xd), (2)

where E[ fu(Xu) fw(Xw)] = 0, ∀ (u, w) ⊆ {1, . . . , d}2, u �= w. Denote Y = f (X), this
implies that f0 = E[Y ] and that the components are mutually orthogonal with respect to PX .
Let u ⊆ {1, . . . , d}, each component is defined by:

fu(Xu) = E[Y |Xu] −
∑
v�u

fv(Xv).

The functional decomposition can be used to measure the global sensitivity of the output Y to
Xu . Let σ 2 = Var[Y ]. By squaring and integrating Eq. (2), due to orthogonality constraints,
one gets:

σ 2 =
∑
j

σ 2
j +

∑
k<l

σ 2
k,l + · · · + σ 2

1,...,d , (3)

where:
σ 2
u = Var[ fu(Xu)] = Var[E[Y |Xu]] −

∑
v�u

σ 2
v .
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Then, it is natural to define, for each u ⊆ {1, . . . , d}, the Sobol’ index Su as:

Su = σ 2
u

σ 2 .

Let |u| denote the cardinal of u. The Sobol’ index Su measures the contribution to σ 2 of
the interaction of order |u| between the X j , j ∈ u. Dividing Eq. (3) by σ 2, the following
equality is obtained:

1 =
∑

u⊆{1,...,d},u �=∅

Su . (4)

A straightforward implication of Eq. (4) is the following: if the sum of the first-order indices
is close to 1 then the model is free of interaction effects. One can also define for each
u ⊆ {1, . . . , d} the closed Sobol’ index Su by:

Su = Var[E[Y |Xu]]
σ 2 .

The closed Sobol’ index Su measures the contribution of the X j , j ∈ u, by themselves or
in interaction with each other, to the variance σ 2 of the model output. As an example, if
u = {k, l}, k �= l, then,

Sk,l = Sk,l + Sk + Sl . (5)

Most of the time, no explicit formulation of Sobol’ indices is available. These last must
therefore be estimated.

2.2 Estimation of Sobol’ indices

This sections briefly reviews the estimation procedure for closed Sobol’ indices Su , u ⊆
{1, . . . , d} (see, e.g., Sobol’ 1993). Consider X and X ′ two independent vectors distributed
as the input vector. Let u ⊆ D and denote by −u its complementary set in D . The hybrid
point W = (Xu : X ′−u) is defined by Wj = X j if j ∈ u and Wj = X ′

j otherwise. The
associated model outputs are defined by Y = f (X), Yu = f (Xu : X ′−u).

As underlined in Janon et al. (2014, Lemma 1.2), the Sobol’ index Su can be expressed
as a correlation coefficient between Y and Yu ,

Su = Cov(Y , Yu)

Var[Y ] . (6)

Most of the estimation procedures proposed in the literature are based on Eq. (6), replacing
both the numerator and the denominator by one of their numerous estimators (see Prieur
and Tarantola 2017 for a survey). The present paper focuses on the estimator introduced in
Homma and Saltelli (1996), as it was proven in Janon et al. (2014) to have optimal asymptotic
variance properties. More precisely, consider two designs of size n,

P = {X i }ni=1, P ′ = {X ′
i }ni=1.

P (resp .P ′) is a matrix where each row is a point X i = (Xi,1, . . . , Xi,d) (resp. X ′
i ) of the

input space and each column contains n realizations Xi, j of each input X j , j = 1, . . . , d . A
third designPu = {X i,u : X ′

i,−u}ni=1 is constructed fromP andP ′ by columns substitution.
By evaluating the model with P and Pu , n realizations of Y and Yu are obtained, denoted
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by {Yi }ni=1 and {Yi,u}ni=1. Then, the estimation of Su reads:

Ŝu =
1

n

∑n
i=1 YiYi,u −

(
1

n

∑n
i=1 Yi

) (
1

n

∑n
i=1 Yi,u

)

1

n

∑n
i=1(Yi )

2 −
(
1

n

∑n
i=1 Yi

)2 . (7)

The main drawback of the aforementioned procedure is the high number of model evalu-
ations required. Estimating all first-order (resp. all closed second-order) Sobol’ indices costs
n(d +1) (resp. n(

(d
2

)+1)) model evaluations. The larger n, the more accurate the estimation
of the indices.

In Saltelli (2002, Theorem 2), subtle combinatorial arguments are used, which allow the
estimation of all first-order and closed second-order indices (among others) at a linear cost
of n(2d + 2) model evaluations.

More recently, the replication procedure–procedure based on replicated designs—has been
proposed to get rid of the dependence in the input space dimension d . All first-order and all
closed second-order Sobol’ indices are estimated with 4n model evaluations (see Mara and
Joseph 2008; Tissot and Prieur 2015).

2.3 Iterative scheme

For the sake of both storage ability and computational cost, it is interesting to design an
iterative scheme for the estimation of Sobol’ indices. The underlying procedure consists in
sequentially adding new points to perform new model evaluations and stopping once the
estimates have reached a convergence criterion. The iterative scheme relies on an iterative
version of Eq. (7) and operates as follows.

Consider a pair of nested designs
(
P�,P

′
�

)
l≥0. Denote by B�, � ≥ 0, a block, that is a

set of points on which the model is evaluated. The two nested designs are built by blocks
concatenation, according to the following scheme:

{
P−1 = ∅

P� = P�−1 ∪ B�
,

{
P ′−1 = ∅

P ′
� = P ′

�−1 ∪ B ′
�

, � ≥ 0. (8)

At iteration �, the new blocks B� and B ′
� contain each m� new points and n� = ∑�

k=0 mk

denotes the common size of P� and P ′
�. Keeping the notation introduced in Sect. 2.2,

P� = {X i }n�

i=1, P ′
� = {X ′

i }n�

i=1, Pu
� = {X i,u : X ′

i,−u}n�

i=1 for u ⊆ {1, . . . , d}.

The model evaluations obtained with P� and Pu
� read:

�⋃
k=0

{Y i }nki=nk−1+1,

�⋃
k=0

{Y i
u}nki=nk−1+1 ,

with n−1 = 0. Then, Su is estimated with:

Ŝ
(�)

u = φ� − ψ�ξ�

V�

, (9)
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Algorithm 1 Iterative estimation of Sobol’ indices

1: � ← 0, Ŝ(0)
u ← 0, test ← true

2: P0 ← B0,P
′
0 ← B′

0
3: while test do
4: for u ⊂ D do
5: Compute {Y i }nli=nl−1+1 and {Y i

u}nli=nl−1+1 from Bl and B′
l

6: Evaluate Ŝ(�)
u with (9)

7: end for
8: test ← stopping criterion
9: P�+1 ← P� ∪ B�+1

P ′
�+1 ← P ′

�
∪ B′

�+1
10: � ← � + 1
11: end while
12: Return the Sobol’ estimates

where φ�, ψ�, ξ� and V� are defined by the following recursive formulae:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n� = n�−1 + m�,

n�φ� = n�−1φ�−1 +
n�∑

i=n�−1+1
Y iY i

u,

n�ψ� = n�−1ψ�−1 +
n�∑

i=n�−1+1
Y i ,

n�ξ� = n�−1ξ�−1 +
n�∑

i=n�−1+1
Y i
u,

n�V� = n�−1(V�−1 + ψ2
�−1) +

n�∑
i=n�−1+1

(Y i )2 − n�ψ
2
� ,

and n−1 = 0, φ−1 = 0, ψ−1 = 0, ξ−1 = 0, V−1 = 0. It is important to note that the
expressions of φ�, ψ�, ξ� and V� only involve the model evaluations obtained with the latest
couple of replicated blocks. Hence, the opportunity to store only the last subset of model
evaluations instead of the whole set.

Algorithm 1 summarizes the main steps of the iterative scheme. The setD at step 4 equals
either {1, . . . , d} or {(k, l) ∈ {1, . . . , d}2; k < l} whether first-order or closed second-order
indices are estimated. In any case, the cost of this iterative procedure equals 2× ∑K

k=0 mk if
stopped at step K .

Stopping criterion The form of the stopping criterion, variable test in Algorithm 1, is
based on a reasonable heuristic convergence criterion. At each iteration � ≥ 1, the following
quantity is evaluated:

e(�) =
∣∣∣̂S(�)

u − Ŝ
(�−1)
u

∣∣∣ , (10)

where |.| denotes the absolute value function. Equation (10) reads as the positive difference
between two consecutive estimation of a Sobol’ index. Let �0 and �max be two positive inte-
gers. The former defines a number of consecutive iterations, the latter defines the maximum
number of iterations allowed in Algorithm 1. Let ε > 0, the algorithm stops at then end of
step � ≥ �0 if:

� = �max − 1 or ∀ u ∈ D : e(�−(�0−1)) < ε, . . . , e(�) < ε. (11)
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In other words, Eq. (11) checks if all the Sobol’ estimates have stopped significantly varying
over the last �0 iterations or if a maximum number of iterations has been reached. The
parameters ε, �0 and �max have to be tuned adequately.

At this point, the iterative scheme is generic enough that it could be combined with most
of the classical estimation procedures. The main contribution of this paper is to adapt the
present iterative scheme for the replication procedure, resulting in an iterative version of the
replication procedure. In this particular framework, the iterative scheme needs to be tuned
so that at each iteration, the designsP� andP ′

� preserve the structure of the designs used in
the replication procedure. This is the topic of Sects. 3 and 4. The former briefly reviews the
original replication procedure while the latter introduces its iterative version.

3 Replication procedure

Without loss of generality, the inputs X1, . . . , Xd are assumed to be independent random
variables uniformly distributed on [0, 1]. Note that the replication procedure can easily be
generalized to any marginal distributions through many procedures, for instance the Smirnov
transform (see Devroye 1986 for others approaches). The replication procedure owns its
name to the nature of the designs it relies on, the so-called replicated designs:

Definition 1 Let P = {X i }ni=1 and P ′ = {X ′
i }ni=1 be two non-identical designs in [0, 1]d .

P andP ′ are two replicated designs of order p, if for any u ⊂ {1, . . . , n} such that |u| = p,
there exists a permutation πu of {1, . . . , n} such that ∀i ∈ {1, . . . , n}, xi,u = x′

πu(i),u .

Example Consider the two designs:

P =

⎛
⎜⎜⎝
0.08 0.46 0.21
0.15 0.77 0.43
0.89 0.30 0.05
0.70 0.23 0.95

⎞
⎟⎟⎠ , P ′ =

⎛
⎜⎜⎝
0.89 0.30 0.95
0.15 0.23 0.21
0.70 0.46 0.43
0.08 0.77 0.05

⎞
⎟⎟⎠ .

P and P ′ are two replicated designs of order 1. Indeed, for any j ∈ {1, . . . , d}, the j-th
columns ofP andP ′ share the same unordered set of values. In particular, the permutation
π1 = (4, 2, 1, 3) orders the first column of P ′ into the first column of P .

The key point of the replication procedure is to use the permutation πu of Definition 1 to
mimic the vector {Yi,u}ni=1 of Eq. (7). This is done as follows. Denote by {Yi }ni=1 and {Y ′

i }ni=1
the two sets of model evaluations obtained withP andP ′, respectively. From Definition 1,
it results that,

Y ′
πu(i) = f (X ′

πu(i),u : X ′
πu(i),−u),= f (X i,u : X ′

πu(i),−u).

Hence, while Yi is evaluated on X i , Y ′
πu(i)

is evaluated on X ′
πu(i), where the components

indexed by i ∈ u are frozen and the d − |u| other components are resampled. Therefore, the
Sobol’ index Su can be estimated by applying Eq. (7) with Y ′

πu(i)
in place of Yi,u without

requiring furthermodel evaluations. Applying this combinatorial trickwith all u, it is possible
to estimate all closed Sobol’ indices {Su}u⊆{1,...,d},|u|=p by evaluating the model on the set
of 2n points contained in P ′ ∪ P .

In Tissot and Prieur (2015), the authors suggest the use of two replicated Latin hypercube
designs to estimate all first-order Sobol’ indices, and the use of two replicated orthogonal
arrays of strength two to estimate all closed second-order Sobol’ indices. The choice and
description of such designs in discussed below.
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3.1 Estimation of first-order indices

Different strategies can be applied to build two replicated designs of order 1. In Mara and
Joseph (2008), P and P ′ are composed with i.i.d points. In Tissot and Prieur (2015), the
authors propose to use Latin hypercube designs insuring most of the time a better exploration
of the input space:

Definition 2 (Latin hypercube design) Denote by 
n the set of all the permutations of
{1, . . . , n} and let π1, . . . , πd be d independent random variables uniformly distributed on

n . P = {X i }ni=1 is a Latin hypercube design if:

X i =
(

π1(i) −Ui,1

n
, . . . ,

πd(i) −Ui,d

n

)
, (12)

where the Ui, j are independent random variables uniformly distributed on [0, 1] and inde-
pendent of the π j .

To estimate all first-order Sobol’ indices, the authors in Tissot and Prieur (2015) first create a
Latin hypercube design P , in the sense of Definition 2 above. They then create a replicated
design,P ′, by permuting independently the values of each column ofP . A nice property is
that the replicated design P ′ is also a Latin hypercube design. The designs P and P ′ are
replicated designs of order 1.

3.2 Estimation of closed second-order indices

The generalization of the replication procedure to the estimation of closed second-order
indices was introduced in Tissot and Prieur (2015). It requires the construction of two repli-
cated designs of order two. The construction in Tissot and Prieur (2015) relies on orthogonal
arrays of strength two. The definition of an orthogonal array given in Hedayat et al. (1999,
Definition 1.1) is recalled hereafter:

Definition 3 (Orthogonal array) A n × d array A = {Ai }ni=1, Ai = (Ai,1, . . . , Ai,d), with
values from a set S of cardinality q is said to be an orthogonal array with q levels, strength t
(0 ≤ t ≤ d) and index λ if every n× t sub-array of A contains each t-tuple based on S exactly
λ times as a row. The orthogonal array A satisfies n = λqt . It is denoted by OAλ(q, d, t).

The construction of two replicated designs P and P ′ of order two proposed in Tissot and
Prieur (2015) starts with the construction of an orthogonal array A with q levels, strength
t = 2 and index λ = 1. The q levels are then substituted by 1, . . . , q . Then, A′ is obtained by
permuting independently the values of each column of A. Denote by♦ the operator achieving
this rearrangement:

A′ = ♦(A, {π1, . . . , πd}) ⇔ A′
i = (

π1(Ai,1), . . . , πd(Ai,d)
)
, i = 1, . . . , n. (13)

Construction procedures for orthogonal arrays can be found, e.g., in Hedayat et al. (1999).
In some sense, A and A′ are replicated designs of order two, except that they are not

valued in [0, 1]d but in {1, . . . , q}d . Both designsP andP ′ are obtained from A and A′ by
a randomization procedure, described in Definition 4 below.

Definition 4 (Randomized replicatedorthogonal arrays)Let A = {Ai }q
t

i=1 be anOA1(q, d, t).
Denote by 
q the set of all the permutations of {1, . . . , q} and let π1, . . . , πd be d indepen-

dent random variables uniformly distributed on 
q . P = {X i }q
t

i=1 and P ′ = {X ′
i }q

t

i=1 are
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two replicated orthogonal arrays if:

X i =
(
Ai,1 −UAi,1,1

q
, . . . ,

Ai,d −UAi,d ,d

q

)
,

X ′
i =

(
A′
i,1 −UA′

i,1,1

q
, . . . ,

A′
i,d −UA′

i,d ,d

q

)
,

(14)

where the Ui, j are independent random variables uniformly distributed on [0, 1] and inde-
pendent of the π j .

LetP andP ′ be two randomized replicated orthogonal arrays built on A = {Ai }q
2

i=1, an
OA1(q, d, 2). Based on P and P ′, the replication procedure can be applied to estimate all
closed second-order Sobol’ indices with 2n model evaluations, with n = q2.

Then, both sets of all first-order and all closed second-order indices can be estimated at a
cost of 2n + 2q2 model evaluations.

4 Iterative replication procedure using replicated pair of nested
designs

This sectiondescribes how the iterative schemeofSect. 2.3 (algorithm1) canbe appliedwithin
the replication framework ; at the cost that, at each step �, the pair of designs

(
P�,P

′
�

)
has to be replicated. For the estimation of first-oder indices, a replicated pair of nested Latin
hypercube designs is used. Its construction relies on an algorithm proposed by Qian (2009)
and is detailed in Sect. 4.1. As for the estimation of closed second-order indices, a replicated
pair of nested orthogonal arrays of strength two is used. Its construction is presented in Sect.
4.2.

4.1 Latin hypercube designs, replicated and nested

Recent developments inLatinHypercubeSampling (LHS) enable sample size extension using
Hierarchical Latin Hypercube Sampling (HLHS) (Sarrazin et al. 2016; Sallaberry et al. 2008;
Vorechovsky et al. 2013). Given a LHS of size n, the strata of each sample component are
further divided into t +1 strata (one containing the original sample) and the new components
are randomly paired as in a typical LHS implementation. Parameter t is referred to as the
refinement factor and the sample size after r sample size extensions is n × (t + 1)r .

In the present paper, we rather focus on the algorithm introduced in Qian et al. (2009,
Section 5), which offers a practical solution to iteratively augment the number of points of a
Latin hypercube design while preserving its Latin hypercube structure. The resulting design,
called nested Latin hypercube design, is partitioned into blocks that define multiple layers
(see also Rennen et al. 2010 for the construction of nested maximin LHS).

As an illustration, a two-dimensional nested Latin hypercube design with three layers is
presented in Fig. 1. Each layer possesses a Latin hypercube structure in a grid progressively
refined. An important point to note is that the number of layers (therefore blocks) partitioning
the design and the layer size have to be specified beforehand. This intrinsically defines the
maximum number of iterations �max in Algorithm 1 as well as the discretization of the input
space at each iteration.

For the estimation of first-order indices, the two nested designsP� andP ′
� of Eq. (8) are

created from block concatenation and replicated as follows. First, the block B� is constructed
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(a) (b) (c)

Fig. 1 Nested Latin hypercube design with three layers (a–c). The symbols (circle, square, triangle) identify
the new points (i.e the blocks) added at each iteration

using the algorithm in Qian (2009). Then, the associated block B ′
� is replicated following the

process described in Sect. 3.1, that is by permuting independently the values in each column
of B�. This single operation guarantees that at each iteration � ≥ 0, the two designs P� and
P ′

� possess a structure of Latin hypercube and are two replicated designs of order 1. In the
present paper, the size considered for P� and P ′

� is a power of two. Thus, the smallest size
one can select for P� and P ′

� equals 2
�+1.

4.2 Randomized orthogonal arrays of strength two, replicated and nested

Asmentioned in Sect. 3.2, the replication procedure requires two replicated orthogonal arrays
of strength two for the estimation of closed second-order indices. Therefore, a nested version
of these designs has to be devised to use the iterative scheme of Eq. (8). Various construction
strategies have already been proposed in the literature, in Qian et al. (2009a, b) and Dey
(2012) notably. The strategies proposed in these papers have at least one of the following
restrictions:

– The size of the initial design is rather large, hence at each step, only a too large number
of new points can be added.

– The construction deals only with specific values of the input space dimension d .
– The discretization is not the same in each dimension, more precisely only one dimension

is finely discretized at the expense of the others.

An alternative approach is presented in this section, free from all these limitations. The
nested orthogonal array built is an OAλ(q, d, 2) where λ > 1. It can be partitioned into λ

OA1(q, d, 2), from which one can sample λ blocks by applying the randomization process
detailed in Definition 4.

As in the construction of nested Latin Hypercube, the idea of the present approach is
to fix the final input space discretization beforehand. In other words, this defines the final
d-hypercube that will be progressively filled with λ row-wised distinct OA1(q, d, 2). By
row-wised distinct it is to be understood that if two OA1(q, d, 2) among the λ are chosen
then they do not share a common row. More precisely, two rows are said distinct if they differ
in at least one component. A visual interpretation of a row is proposed in Fig. 2, where each
row of an orthogonal array is viewed as a sub-hypercube. This figure illustrates the example
of an OA3(3, 3, 2), partitioned into three distinct OA1(3, 3, 2), each, respectively, plotted
in each subfigure.
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(a) (b) (c)

Fig. 2 OA3(3, 3, 2) that can be partitioned into three distinct OA1(3, 3, 2). a First OA1(3, 3, 2). b Second
OA1(3, 3, 2). c Third OA1(3, 3, 2)

Algorithm 2 Accept–reject method for the construction of A�

1: Set bool ← false
2: while !bool do
3: Sample π1, . . . , πd in 
q
4: Construct A� = ♦(A0, {π1, . . . , πd }) with (13)
5: for k = 0, . . . , � − 1 do
6: boolk ← rows(A�) ∩ rows(Ak ) == ∅

7: end for
8: bool ← ∀k : boolk
9: end while

The present approach to build the sequence of nested randomized orthogonal array of
strength two P� and P ′

� follows the following steps:

1. First, construct an initial OA1(q, d, 2) noted A0.
2. Then at each step � ≥ 1, a new OA1(q, d, 2), noted A�, is constructed from A0. Two

methods may be used to ensure that A� is distinct from Ak , 0 ≤ k < �. They will be
referred as the accept–reject and the algebraic methods and are detailed below.

3. Substituting A� for A in Definition 4, i.e. by randomization of the OA, one can obtain
the two blocks B� and B ′

�. These two blocks define the new points on which the model
will be evaluated. The fact that the OA’s are distinct ensures that these points are located
in unexplored regions of the input space.

As a result, P� and P ′
� both have a structure of OA�(q, d, 2) and are replicated designs of

order 2. Additionally, their size equal (� + 1) × q2. The accept–reject and the algebraic
methods differ on the way A� is constructed. This last step is detailed hereafter for each
method.

Method1: accept–reject The pseudo-code described inAlgorithm2details the construction
of A�. It uses the operator ♦ defined in Eq. (13). The idea is to randomly construct a new
orthogonal array from A0 using ♦ and to test if its rows are distinct from those of the
previous orthogonal arrays constructed; namely A�−1, A�−2, . . . , A0. Note that this test
become computationally expensive for small input space dimensions as the probability of
acceptation decreases faster.
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Method 2: Algebraic method From now on, the set S of the q levels of an orthogonal array
(see Definition 3) is identified with the Galois field of order q , denoted by GF(q), where q
is a prime number or a power of a prime number (q = pα , p prime and α ∈ N).

Define the following set:

C =
{
g = (0, 0, g3, . . . , gd) | ∀i ≥ 3, gi ∈ GF(q)

}
� GF(q)d .

The pseudo-code described in Algorithm 3 below details the construction of A�. ⊕ denotes
the addition in GF(q)d .

Algorithm 3 Algebraic method for the construction of A�

1: Choose g� ∈ C

2: Construct A� = g�A0 = {
g� ⊕ A0i

}q2
i=1, A0i = (A0i,1, . . . , A0i,d )

3: C ← C \ {g�}

The idea of the algebraic method is to construct a partition of the discretized input space
and select A� from this partition. A� is viewed as a coset of A0 and is drawn from the set C .
Proposition 1 below guarantees that A� constructed in Variant 3 is an OA1(q, d, 2).

Proposition 1 Consider A0 an OA1(q, d, 2) based on GF(q)d . The results are as follows:

i) ∀g ∈ GF(q)d , gA0 is an OA1(q, d, 2)
ii) ∀g, g′ ∈ C, such that g �= g′, gA0 ∩ g′A0 = ∅. In other words, the sets {gA0} form a

partition of GF(q)d .

Proof (i) Let g = (g1, . . . , gd) ∈ GF(q)d . Consider A0k, A0l two columns of A0. Denote
by E the group (GF(q),+). Since gk E × gl E is isomorph to E × E , the 2-tuples
(A0i,k + gk, A0i,l + gl) obtained after addition are all two by two distinct.

(ii) The proof can be found in Stinson and Massey (1995) where an orthogonal array is
regarded as a “systematic linear code”.

The main advantage of the algebraic method is that the maximum number of blocks
one can construct is known beforehand. Indeed, as a consequence of Proposition 1-(ii), the
maximum number of blocks one can construct equals the cardinality ofC , that is qd−2. If this
upper bound is reached, the blocks A0, A1, . . . , Aqd−2−1 form a partition of the discretized
input space.

5 Numerical tests and illustrations

The first part of this section focuses on the space-filling properties of the nested design used
in our iterative replication procedure. Then, two applications of the proposed algorithm are
detailed, on a test function and on an engineering example.

5.1 Space-filling properties

Three criteria are selected to study the properties of nested designs: maximin (Jonshon et al.
1990), emst (euclidean minimal spanning tree Franco et al. 2009) and L2 star discrepancy
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Fig. 3 (Color online)
Interpretation graph of the emst
criterion. The i.i.d. uniform
sampling is used as the reference
distribution

(Morokoff and Caflisch 1994). The maximin criterion returns the minimum distance among
all pairs of points of a design. It can be interpreted as follows: the higher the value, the more
regular the scattering of design points. The emst criterion can be interpreted using a (μ, σ )

graph (see Fig. 3), called interpretation graph. A minimal spanning tree is constructed from
the design, then mean (μ) and standard deviation (σ ) of the tree edges lengths are evaluated.
A value of the emst criterion is represented as a point in the (μ, σ ) graph. The i.i.d. uniform
sampling is used as a reference. A design having a higher value for μ and a smaller value
for σ than those of a uniform design is said more regular. Maximin and emst criteria provide
together a good estimation of a design regularity. The L2 star discrepancy criterion measures
the uniformity property of a design. The smaller the value, the more uniform the design.

5.1.1 Nested LHd in low-dimensional space

First, space-filling properties of the nestedLatin hypercube design (nestedLHd) are compared
with those of (i) a uniform design (obtained through i.i.d uniform sampling) and (ii) a Latin
hypercube design (LHd).

Figure 4 shows the results obtained with the three criteria for each design.The input space
dimension d equals 5. The sizes n of each design equal (23, 24, . . . , 210). For the nested
LHd, these sizes correspond to those of design P� augmented over 8 consecutive steps.
Results for the LHd and the nested LHd are overall similar and both better than results for
the uniform design. As such, the iterative replication procedure comes with no loss in terms
of space-filling properties of the designs.

Remark Oneother class of designswell suited for the estimation offirst-order Sobol’ indices
are low discrepancy sequences. These sequences are points sets sampled so as to approximate
as close as possible a uniform distribution and are known to achieve both uniformity and
regularity properties. Such sequences could be used in the iterative replication procedure in
place of nested Latin hypercube designs. This alternative has recently been studied in Gilquin
et al. (2017).

5.1.2 Nested LHd in high-dimensional space

The comparison conducted in the last section is repeated anew with an input space of dimen-
sion 20. The size n of each design equals (25, . . . , 210). Since the discrepancy criterion
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(a) (b)

(c)

Fig. 4 (Color online) Results of maximin, star discrepancy and emst criteria over 100 repetitions for different
sizes n of the designs used for the estimation of first-order indices. Logarithmic scales are used for the y-axis
of graphs (a, b)

requires the number of points to be greater than the input space dimension, the first design
size equals 25. Figure 5 shows the results obtained with the three criteria for each design.

The results are more mitigated. For the maximin and discrepancy criteria the three designs
perform close to identical. The emst criterion shows that LHd and nested LHd perform
better for small design sizes. Remark that the three criteria studied are subject to the “curse
of dimensionality” as distances provide poorer contrasts between point neighbors in high-
dimensional spaces. This phenomenon is a possible explanation as to why the results appear
so similar.

5.1.3 Nested randomized OA of strength two

A third comparison is carried out between the following designs: (i) uniform design, (ii)
“non-iterative” OA, (iii) accept–reject and (iv) algebraic. Design (ii) refers to the orthogonal
array used in Tissot and Prieur (2015). Designs (iii) and (iv) refer to the design constructed
with either the accept–reject or the algebraicmethod of Sect. 4.2. The input space dimension
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(a) (b)

(c)

Fig. 5 (Color online) Results of maximin, star discrepancy and emst criteria over 100 repetitions for different
sizes n of the designs used for the estimation of first-order indices. A logarithmic scale is used for the y-axis
of graph (b)

still equals 5. The level q of the nested OA equals 8. Figure 6 shows the results obtained
with each of the three criteria.

For the sake of visualization, results are represented only for the following sizes of the
designs: (2×82, 3×82, 5×82, 8×82, 11×82, 16×82). In terms of emst and discrepancy
criteria, the “non-iterative” OA gives the best results while results for the accept–reject and
algebraic designs are similar. The algebraic design gives better results for the maximin
criterion than the accept–reject design but shows a greater disparity for the emst criterion.

The main conclusion is that the algebraic design possesses regularity and uniformity
properties overall slightly better than those of the accept–reject design. These two designs
possess slightly worse space-filling properties than their counterpart used in Tissot and Prieur
(2015). This difference can be explained by the lack of progressive discretization of the inputs
in both the algebraic and the accept–reject method. However, that is largely offset by the
possibility to perform an iterative estimation of the indices.
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(a) (b)

(c)

Fig. 6 (Color online) Results of maximin, emst and star discrepancy criteria over 100 repetitions for different
sizes n of the designs used for the estimation of closed second-order indices. A logarithmic scale is used for
the y-axis of graph (b)

5.2 Application to a toy example

The iterative replication procedure is tested and compared to the classical replication proce-
dure using the Bratley et al. function (Bratley and Niederreiter 1992),

f (X1, . . . , Xd) =
d∑

i=1

(−1)i
i∏

k=1

Xk,

where X1, . . . , Xd are independent random variables uniformly distributed on [0, 1]. Both
first- and closed second-order Sobol’ indices are estimated with each procedure. Both pro-
cedures are repeated r = 100 times to get samples of estimates. The input space dimension
is d = 6. Since f has an analytical expression, theoretical values of the Sobol’ indices can
be precisely calculated through symbolic integrals evaluations.

Recall �0 and �max the two parameters of the stopping criterion defined by Eq. (11). Let K
be any integer such that �0 ≤ K ≤ �max − 1. Let rK denote the number of repetitions where
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the estimation procedure stopped at step K , then
∑�max−1

K=�0
rK = r = 100. Let α ∈ (0, 1)

and q̃α denote the empirical quantile of order α defined by:

q̃α = inf { v ∈ N, v ≥ �0, r�0 + · · · + rv ≥ αr } .

To reach a fair comparison, Su is also estimated r = 100 timeswith the classical replication
procedure where the size of the two replicated designs equals the size of the designs Pq̃1/2
and P ′̃

q1/2
in the iterative procedure.

On the choice of the hyper-parameters The proposed iterative procedure possesses three
hyper-parameters: ε, �0 and �max. Consider a budget of 2N evaluations, half of it used for
the estimation of the first-order indices and the other half used for the estimation of the
closed second-order indices. The choice of these parameters is discussed hereafter from a
practitioner’s perspective.

�max should be set according to the budget of evaluations. For the estimation of first-order
indices, let n0 = 2p , p ≥ 1, be the size of designs P0 and P ′

0. The formula reads,

�max = �log2(N ) − p�,
where �·� is the floor function. For the estimation of closed second-order indices, let n0 =
pq2, p ≥ 1, be the size of designs P0 and P ′

0. The formula reads,

�max = �N/(2q2) + 1 − p�.
In practice, p = 1 and q ∈ {8, 11} offers a good compromise between the number of layers
available and the number of points contained within each layer.

�0 is used to counteract plateau effects thatmay occur during iterations. From experiments,
�0 ∈ {2, 3} seems to be a good empirical prescription. Depending on the number of layers at
hand, the value of �0 can be set higher.

ε is the tolerance for differences between consecutive estimates. The choice ε is the least
straightforward. On the one hand, ε must be small enough to avoid poor precision. On the
other hand, choosing ε too small will most certainly exhaust the budget of evaluations. In
the examples hereafter (except the first one), the order of magnitude of ε is 10−2 for the
estimation of first-order indices. Since most of the time, the number of layers available for
the estimation of closed second-order indices is bigger, the order of magnitude of ε can be
reduced to 10−3. If the practitioner has a large budget (say 106 to 107 points), the values for
ε can be further decreased (∝ 10−4).

5.2.1 Estimation of first-order indices

A small value for �max is selected to highlight that the iterative replication procedure can
performaswell as the classical one for a restricted budget of evaluation points. The parameters
of the stopping criterion (Eq. 11) are set as follows: ε = 0.15, �0 = 2 and �max = 9. The size
of designs P� and P ′

� at the end of the procedure can range from 23 up to 29. Note that
ε is deliberately set higher than prescribed given the small number of layers and the limited
budget of points.

Figure 7a shows a barplot representation of the rK obtained. Figure 7b shows boxplots
of the estimates obtained with the two replication procedures: iterative (black boxplots) and
classical (grey boxplots).

The two methods give overall similar results. Hence, there is no drawback to render the
replication procedure iterative for the estimation of the first-order Sobol’ indices. Further-
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(a) (b)

Fig. 7 a Distribution of the rK , K = 2, . . . , 8 for the estimation of first-order indices. The black bar
corresponds to K = q̃0.5. b (Color online) Boxplots of first-order Sobol’ indices estimated r = 100 times
with both the iterative replication procedure and the classical one. The dotted horizontal lines refer to the true
values of the indices. True values of indices S5 and S6 are identical

more, Fig. 7a shows that the number of model evaluations can be decreased by adopting
a sequential approach. One can calculate the number of model evaluations saved in Algo-
rithm 1. This gain corresponds to the ratio of �max to the iteration at which the procedure
stopped. For this example, themedian gain equals 9/8 = 1.125 and themaximumgain equals
9/7 = 1.29.

5.2.2 Estimation of closed second-order indices

The parameters of the stopping criterion are set as follows: ε = 3×10−3, �0 = 3 and �max =
100. The initial orthogonal array A0 used to augment designs P� and P ′

� is constructed by
setting q = 8. The size of designs P� and P ′

� at the final step of Algorithm 1 range from
4 × 82 up to 100 × 82.

Figure 8 shows barplots representation of the rK obtained when applying the iterative
replication procedure with either the algebraic method or the accept–reject method. Results
show that using the accept–reject method allow saving more iterations but the discrepancy
is very thin.

Figure 9 gives the boxplots representation of the estimates obtained with the classical
replication procedure (left boxplots) and with the iterative version, using either the algebraic
method (middle boxplots) or the accept–reject method (right boxplots). Only the estimates
of closed second-order indices higher than 0.1 are shown.

The main observation is that the three methods give overall similar results. Hence, the
iterative replication procedure comes at no loss.

As for the case of first-order indices, one can calculate the number of model evaluations
saved using the iterative replication procedure. Table 1 gives the gain at iterations q̃0.25, q̃0.5
and q̃0.75. Results show that the number of model evaluations can be further decreased by
adopting a sequential approach for the estimation of closed second-order indices. When the
input space dimension is small (d ≤ 4), the number of blocks is rather limited. As such, the
algebraic method should be preferred to the accept–reject one.
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(a) (b)

Fig. 8 Distribution of the rK , K = 3, . . . , 99,when the iterative replication procedure is appliedwith either (a)
the algebraic method or (b) the accept–reject method. For each graph, the black bar corresponds to K = q̃0.5

(a) (b)

Fig. 9 (Color online) Boxplots of closed second-order Sobol’ indices estimated r = 100 times with the
iterative replication procedure and the classical one. For each index Su , the left boxplot refers to the classical
procedure, the boxplot in the middle (resp. on the right) refers to the iterative procedure using the algebraic
(resp. accept–reject) method. The horizontal dotted lines refer to the true values of the indices

Table 1 Gain of the iterative
replication procedure using either
the algebraic or the accept–reject
construction, if it stops at step q̃α

with α = 0.25, 0.5 or 0.75

α Construction q̃α Gain= �max
q̃α

0.25 Algebraic 76 1.32

Accept–reject 76 1.32

0.5 Algebraic 84 1.19

Accept–reject 82 1.22

0.75 Algebraic 91 1.10

Accept–reject 88 1.14
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Table 2 Winter wheat dry matter model-inputs and associated distributions

Inputs Distribution Range of variation Description

Eb Uniform [0.9, 2.8] Radiation use efficiency

Eimax Uniform [0.9, 0.99] Ratio max. of intercepted to incident radiation

K Uniform [0.6, 0.8] Coefficient of extinction

Lmax Uniform [3, 12] Maximal value of the leaf area index

A Uniform [0.0035, 0.01] No physical interpretation

B Uniform [0.0011, 0.0025] No physical interpretation

TI Uniform [700, 1100] Temperature threshold

C Discrete uniform {1, . . . , 14} Climate factor

5.3 Engineering application

Asimple cropmodelwill be used in this section to illustrate the iterative replication procedure.
The crop model measures on a daily basis the above-ground winter wheat dry matter since
sowing. The dry matter is calculated as a function of the cumulative daily temperature and
the daily photosynthetically active radiation (a detailed description of the equations can be
found in Monod et al. Monod et al. 2006, Section 2.2).

The quantity of interest (i.e., the output of the model) considered here is the dry matter at
harvest. This output is subject to sources of uncertainties characterizing the daily climate and
the ground. In the present study, the 8 input parameters listed in Table 2 are considered. The
climate factor follows a discrete uniform distribution. 14 sets of annual climate data were
gathered. The value of the climate factor allows to select one of the 14 climate data sets at
random. The parameters A and B hold no physical interpretations.

The iterative replication procedure using the algebraic method is applied to estimate
first-order and closed second-order Sobol’ indices of the height input parameters.

For the first-order indices, The parameters of the stopping criterion (Eq. (11)) are: ε =
0.05, �0 = 2 and �max = 13. The size of the two replicated designs equals 8 at first and then
are doubled at each iteration up to 215 = 32 768. Figure 10 shows values of the 8 first-order
estimates along the iterations.

It can be observed that the iterative replication procedure stopped at the 10-th iteration,
which implies a cost of 2× 4096 = 8192 model evaluations. Eb is the most influential input
trough its main effect, followed by (in order): A, B, Lmax and Eimax . The remaining inputs,
K and C have negligible main effects (lower than 0.01).

As the sum of the first-order estimates equals 0.88 it is interesting to estimate the closed
second-order indices. To do so, the parameters of the stopping criterion (Eq. (11)) are fixed
as follows: ε = 5 × 10−3, �0 = 3 and �max = 100. The size of the two replicated designs
equals 112 = 121 at first and then, 121 points are added at each iteration up to 12 100 points.
By subtracting the first second-order estimates to the closed second-order indices, a rough
estimation of unclosed second-order indices can be obtained (see Eq. (5)). Figure 11 shows
values of the fivemost influential unclosed second-order estimates along the iterations. These
estimates correspond to those whose values are higher than 0.01 at the end of the procedure.

It can be observed that the iterative replication procedure stopped at the 43-th iteration,
which implies a cost of 2 × 5203 = 10 406 model evaluations. Five of the height inputs are
influential through second-order interactions, namely: K , Lmax, A, B,C . In particular, A is
influential through three different second-order interactions. The interaction effects of inputs
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Fig. 10 (Color online)Values of thefirst-order Sobol’ indices estimatedwith the iterative replication procedure,
in function of the iterations

Fig. 11 (Color online) Values of the five most influential unclosed second-order Sobol’ estimates obtained
with the iterative replication procedure, in function of the iterations

A and B have also been highlighted in Monod et al. (2006) by means of the estimation of
total effect Sobol’ indices.

Overall, the main effects and second-order interactions captured with the iterative repli-
cation procedure match well (qualitatively speaking) the results of the study performed in
Monod et al. (2006).
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6 Conclusion

The present paper proposed a new approach rendering the replication procedure iterative to
estimate first-order or closed second-order Sobol’ indices. An iterative formula for the Sobol’
index estimator was introduced. The iterative procedure presented consists in augmenting the
two replicated designs with new sets of points through the construction of nested space-filling
designs. For the case of closed second-order indices, twomethods were proposed to construct
a randomized nested orthogonal array of strength two: an algebraic method and an accept–
reject method. The iterative replication procedure was compared to the classical replication
procedure of Tissot and Prieur (2015). The comparison focused on the space-filling properties
of the designs and on the precision of the Sobol’ indices estimates.

The replication procedure proposed in Tissot and Prieur (2015) is known to be highly
efficient in terms of number of simulations. Yet the results in this paper showed that it is
possible to further decrease the number of simulations by adopting an iterative scheme.
More precisely, the nested designs proposed here gave the same order of precision on Sobol’
indices as the replicated designs used in Tissot and Prieur (2015) but with a random number
of simulations of much smaller expectation. Furthermore, the space-filling properties of the
nested designs constructed were overall as good as the one of the replicated designs used in
Tissot and Prieur (2015).

For the case of first-order indices, considering Sobol’ sequences could improve the nested
designs (Gilquin et al. 2017). For the case of closed second-order indices, the proposed
methodology could be further improved by working on the set C (Sect. 4.2, Algorithm 3). A
more deterministic choice of the g ∈ C could lead to a better exploration of the input space.
A future perspective would be to define a more refined stopping criterion than the current
one.
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