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Abstract
A new fractional finite volume method is developed for the mixed convection boundary 
layer flow and heat transfer of viscoelastic fluid over a flat plate. The spatial fractional 
derivative of the Riemann–Liouville type is employed in the constitutive relation and mod-
ified Fourier’s law respectively. Nonlinear and coupled boundary layer governing equations 
are formulated with non-uniform boundary conditions. The discretized scheme combined 
with the shifted Grünwald–Letnikov formula is proved to be conditionally stable, further 
the convergence and accuracy of the numerical solutions are presented. Results demon-
strate that space fractional derivative parameters have strong effects on the velocity and 
temperature distributions. Moreover, the viscoelastic fluid with spatial fractional derivative 
performs stress relaxation with distance from the intersections of velocity profiles.

Keywords  Viscoelastic fluid · Mixed convection · Spatial fractional derivative · Finite 
volume method

Mathematics Subject Classification  76A10 · 76-10 · 65N08

1  Introduction

Mixed convection boundary layer flow and heat transfer have attracted much attention in 
the literature due to their wide applications in many industrial engineering (Ahmad et al. 
2009; Rosali et al. 2016), such as solar central receivers, heat exchangers, geothermal sys-
tems, drying processes and food industries, etc. Rashad et al. (2013) studied steady mixed 
convection boundary-layer flow past a horizontal circular cylinder embedded in a porous 
medium filled with a nanofluid. Mustafa (2017) provided an analytical treatment for mixed 
convection flow of an electrically conducting Oldroyd-B fluid adjacent to a vertical stretch-
able surface. Othman et  al. (2017) investigated mixed convection boundary layer flow 
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near stagnation point on impermeable vertical stretching/shrinking surface in nanofluid. 
Ghalambaz et  al. (2019) discussed mixed convection boundary layer flow and thermal 
behavior of nano-encapsulated phase change materials dispersed in a liquid over a vertical 
flat plate. Singh et al. (2019) analyzed the mixed convection water boundary layer flows 
over moving vertical plate with variable viscosity and Prandtl number.

In recent years, the spatial fractional derivative has been frequently applied to describe 
the mechanism of deformation and characterize nonlocal continua. Lazopoulos (2006) 
introduced fractional calculus into the continuum mechanics area describing nonlocal con-
stitutive relations. Carpinteri et al. (2011) provided a mechanical interpretation to nonlo-
cal fractional elastic model and applied it to study the strain field in a finite bar. Pan et al. 
(2016a, 2018) studied the convective flow and heat transfer of nanofluids with spatial frac-
tional derivatives in disordered porous media. Yang et al. (2018, 2020) proposed fractional 
seepage model and spatiotemporal imbibition model for non-Newtonian fluid via spatial 
fractional derivative. Belevtsov and Lukashchuk (2018) studied the symmetry properties 
of the space-fractional filtration equation with the Riesz potential through a naturally frac-
tured porous medium. Liu et  al. (2019a, b) investigated the space-fractional anomalous 
advection–diffusion through a porous medium. Chang et al. (2019) proposed and evaluated 
a spatial fractional Darcy’s law model for the flow rate of fluids in natural heterogeneous 
oil/gas reservoirs. Płociniczak (2019) considered a nonlinear and spatially nonlocal PDE 
modeling moisture evolution in a porous medium. Li and Liu (2020) investigated viscoe-
lastic fluid over a non-uniform permeable surface employing a fractional derivative model. 
Moreover, finite volume method has been employed to deal with space fractional derivative 
problem in many fluid fields, such as fractional diffusion equations (Liu et  al. 2014; Fu 
et al. 2019a, b) and fractional advection–dispersion equation (Hejazi et al. 2014; Li et al. 
2017).

Thus far, there are no researches related to investigating mixed convection boundary 
layer flow and heat transfer of viscoelastic fluid by fractional finite volume method. The 
mixed convection boundary layer flow has nonlinear convection terms, flow instability 
in the inlet boundary and coupled transport characteristic with heat transfer. This work 
purposes to develop the fractional finite volume method to solve these problems. Spatial 
fractional derivatives are employed in the constitutive relation and modified Fourier’s law. 
Nonlinear and coupled boundary layer governing equations are formulated and solved by 
fractional finite volume method, which are discretized by the shifted Grünwald-Letnikov 
formula and linear processing. The stability and convergence of the numerical scheme are 
proved, further the numerical results are validated by comparison with exact solutions of a 
special case. Effects of fractional derivative parameters and other involved parameters on 
velocity and temperature fields are presented graphically and discussed in detail.

2 � Mathematical formulation

Consider unsteady mixed convection flow of an incompressible viscoelastic fluid over a 
flat plate. The x-coordinate is measured along the surface of the plate, and y-coordinate is 
normal to the surface, which is shown in Fig. 1. The fluid and plate are at the same tem-
perature T∞ initially. After a time t > 0 , the surface of the plate is maintained at a constant 
temperature Tw . The velocity of the uniform free stream flowing vertically upwards over 
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the plate is U∞ . It is assumed that the Boussinesq approximation is valid and thermal dis-
persion effect is neglected. Under these assumptions, the boundary layer governing equa-
tions are:

subject to the initial and boundary conditions:

where u and v are the velocity components in the x- and y- direction, respectively, � is the 
density of the fluid, �xy is the shear stress component, g is the acceleration due to gravity, �f  
is the thermal expansion coefficient, cp is the specific heat capacity at constant pressure and 
Q is the heat flux.

The constitutive relation and modified Fourier’s law with spatial fractional derivatives 
are employed for the viscoelastic fluid. The Riemann–Liouville fractional derivative is 
defined as the derivative of the fractional integral (Kilbas et al. 2006), which has been quite 
frequently used in the description of viscoelasticity in non-Newtonian fluid flow by replac-
ing the time derivative of an integer order (Makris et al. 1993; Tan et al. 2003; Yin and Zhu 
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t ≤ 0 ∶ u = U∞, v = 0, T = T∞; t > 0 ∶

⎧⎪⎨⎪⎩

u = U∞, T = T∞ at x = 0;

u = 0, v = 0, T = Tw at y = 0;

u → U∞, T → T∞ as y → ∞.

Fig. 1   Physical model and coordinate system
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2006; Fetecau et al. 2009; Pan et. al 2016b; Li and Liu 2020). Thus, the fractional relation-
ship between the shear stress component and velocity gradient is given by:

where 𝜇̃ is the generalized dynamic viscosity with unit of kg ⋅m�−2
⋅ s−1 , � is the velocity 

fractional derivative parameter with the Riemann–Liouville definition (Podlubny 1999):

where Γ() is the gamma function. The order of � characterizes the dependence of vis-
coelastic moduli on the direction of shear at neighboring material points (Hanyga and 
Seredyńska 2012).

Similarly, the modified Fourier’s law with space-nonlocality is based on power ker-
nels resulting in fractional differential operators in space coordinates (Povstenko 2015):

where k̃ is the generalized thermal conductivity with a unit of J ⋅m�−2
⋅ s−1 ⋅ K−1 , � is the 

temperature fractional derivative parameter that accounts for anomalous heat transport in 
nonlocal spatial distribution (Sumelka 2014). The constitutive relation and heat conduction 
law with spatial fractional derivatives are not local differential function but are affected by 
global field gradient in the nearby layers or even faraway layers from the particular single 
point.

Equations (1)–(3) are nondimensionalized by the following dimensionless variables:

where 𝜐̃f = 𝜇̃∕𝜌 is the generalized kinematic viscosity ( m�+1
⋅ s−1 ), L is the length of the 

plate, Re is the Reynolds number, Gr is the Grashof number, � is the mixed convection 
parameter that 𝜆 > 0 is for a heated plate and 𝜆 < 0 for a cooled plate, respectively, Pr is the 
Prandtl number. It deserves to be mentioned that the x-coordinate and vertical velocity are 
nondimensionalized by a factor of Re, hence both coordinates and velocity components are 
of the same order of magnitude.

Dimensionless governing equations are obtained (for simplicity, the dimensionless 
mark “*” is omitted hereafter):
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The dimensionless initial and boundary conditions become:

t ≤ 0 ∶ u = 1, v = 0, 𝜃 = 0; t > 0 ∶

⎧
⎪⎨⎪⎩

u = 1, 𝜃 = 0 at x = 0;

u = 0, v = 0, 𝜃 = 1 at y = 0;

u → 1, 𝜃 → 0 as y → ∞.

3 � Numerical technique

In this section, we develop the finite volume method combined with the shifted Grünwald-
Letnikov formula to solve Eqs. (7)–(9). The computational domain is divided into discrete 
control volumes and Fig. 2 shows the collocated grid system. P denotes the general nodal 
point, then the neighbor points and side faces of the control volume are referred and 
described in the figure. The space step sizes in the x and y directions are identified by Δx 
and Δy , respectively, while the time step is denoted as Δt . Note Aw = Ae = Δy , 
An = As = Δx , ΔV = Δx ⋅ Δy , where A represents the face area of the control volume and 
ΔV  is its volume. We define tk = k ⋅ Δt , k = 0, 1, 2,… ,R ; xi = i ⋅ Δx , i = 0, 1, 2,… ,X ; 
yj = j ⋅ Δy , j = 0, 1, 2,… , Y  . The numerical solution at nodal point P is denoted as (
uk
i,j
, vk

i,j
, �k

i,j

)
.

To yield the discretized equation at nodal point P, the integration of Eq. (8) over a con-
trol volume augmented with a further integration over a finite time step is carried out as:

The time term is approximated by first-order backward difference scheme:

The volume integrals of the convective terms are substituted by surface integrals and 
the first-order upwind difference format is introduced to calculate velocities on the control 
volume faces, where the first velocity in each parenthesis is linearized by the value of last 
time step at tk−1 . These results give Eqs. (12)–(13) as follows:
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Fig. 2   The grid system of the 
control volume at nodal point P 
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To discretize the Riemann–Liouville derivative in the velocity diffusion term on the inter-
face of the control volume, the shifted Grünwald–Letnikov formula is employed as 0 < 𝛼 < 1 
for u = 0 at y = 0 (Liu et al. 2004):

where g(�)
0

= 1, g
(�)

I
= (−1)I

�(�−1)⋯(�−I+1)

I!
, I = 1, 2,… ,N. Thus, the integral of the spatial 

fractional derivative yields:

The source term is approximated by values of two consecutive time steps:

At last, the iteration equation at the nodal point P is obtained:
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Similar process is dealt with the temperature terms in Eq. (9). It is worth mentioning that 
the temperature boundary condition is � = 1 at y = 0 , the truncation error of the shifted Grün-
wald–Letnikov formula for temperature fractional derivative is O(Δy) + O(1) . Further, the dif-
ference of the fractional derivatives in the north and south side faces weakens the truncation 
error of the non-zero boundary. Thus, the integral of the temperature diffusion term with frac-
tional derivative is dealt similar to Eq. (16).

The vertical velocity is solved by integration of the community Eq. (7) in the following:
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4 � Theoretical analysis of the finite volume method

4.1 � Stability

The stability of the iteration Eq. (18) by finite volume method will be discussed in the fol-
lowing section with the uniform boundary conditions uk

0,j
= uk

X,j
= uk

i,0
= uk

i,Y
= 0 , 

k = 0, 1, 2,⋯ ,R . The numerical solution of Eq. (18) is denoted as uk
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 . The source term �� 
in Eq.  (8) is denoted as f k

i,j
 , which represents the function value of f (x, y, t) . Let 
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Hence, Lemma 1 is proved.

Remark 1  In the present physical problem, the horizontal velocity is positive, while the 
value of vertical velocity depends on � . When � is large enough, the vertical velocity is 
negative.

Theorem 1  Assume that uk
i,j
≥ 0 and vk

i,j
≥ 0 . Then, max1≤J≤k ��uJ��∞ ≤ ��u0��∞ + k‖f‖∞ ⋅ Δt . 

Moreover, ��uk��∞ ≤ ��u0��∞ + k‖f‖∞ ⋅ Δt , k = 1, 2, 3,… ,R.

Proof  Let |||ukix ,jy
||| = max1≤i≤X−1;1≤j≤Y−1 |||uki,j

||| . According to Lemma 1, we can obtain.

that is, max1≤J≤k ��uJ��∞ ≤ max
1≤J≤k−1

��uJ��∞ + ‖f‖∞ ⋅ Δt,
By recurrence, max1≤J≤k ��uJ��∞ ≤ ��u0��∞ + k‖f‖∞ ⋅ Δt.
Thus, Theorem 1 is proved (Li and Liu 2020).

Theorem  2  The fractional finite volume method presented by Eq.  (18) is conditionally 
stable.

Proof.  Let ũk
i,j

 be the approximate solution of Eq.  (18), the iteration error 𝜏k
i,j
= ũk

i,j
− uk

i,j
 , 

which yields

Using Theorem 1 under the assumption that uk
i,j
≥ 0 and vk
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‖‖�k‖‖∞ ≤ ‖‖�0‖‖∞, k = 1, 2, 3,… ,R,

where ‖‖�k‖‖∞ = max1≤i≤X−1;1≤j≤Y−1 |||�ki,j
|||.

Thus, Theorem 2 is proved.

Remark 2  In the present physical problem, the horizontal and vertical velocity are both 
positive as � is small. In this condition, the presented finite volume method in Eq. (18) is 
stable for different space and time steps.

4.2 � Convergence

Theorem  3  Assume that uk
i,j
≥ 0 and vk

i,j
≥ 0 . Then, the coefficient matrix of Eq.  (18) is 

strictly diagonally dominant.

Proof  By Eq. (20), we obtain at the tk−1 time step:
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g
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1
= −𝛼 < 0 , g(𝛼+1)

I
> 0 (I = 0, 2, 3,…) , we have

���u
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+ f k
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��� ≤ max1≤J≤k−1 ���u

J���∞ + ‖f‖∞ ⋅ Δt,
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k
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k
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+
Δt ⋅ Δx
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I=0,I≠1

g
(�+1)

I
�k
i,j+1−I

+ ΔV ⋅ �k−1
i,j

,

Δy ⋅ uk−1
i,j

− Δy ⋅ uk−1
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+ Δx ⋅ vk−1
i,j

− Δx ⋅ vk−1
i,j−1

= 0,
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Thus, Theorem 3 is proved.

Remark 3  Theorem 3 is a sufficient condition of convergence called bounded criterion.

Theorem  4  Let u
(
xi, yj, tk

)
 be the exact solution of the governing Eqs.  (7)–(9). Then |||u

(
xi, yj, tk

)
− uk

i,j

||| ≤ B(Δx + Δy + Δt) , where B is a positive constant.

Proof  Let the truncation error �k
i,j
= u

(
xi, yj, tk

)
− uk

i,j
 . From Eq. (18), it yields

where |||Φ
(
xi, yj, tk

)||| ≤ C(Δx + Δy + Δt) , C is a positive constant.
Applying Theorem 1, we have ���k��∞ ≤ ���0��∞ + k‖Φ‖∞ ⋅ Δt , k = 1, 2, 3,… ,R.
Notice that �0

i,j
= u

(
xi, yj, t0

)
− u0

i,j
 , that is ‖‖�0‖‖∞ = 0 , and ‖Φ‖∞ ≤ C(Δx + Δy + Δt).

Denote B = kC ⋅ Δt . Thus, Theorem 4 is proved.

4.3 � Comparison with the exact solution

To validate the accuracy of the numerical techniques, we construct suitable exact solu-
tions to the special case of the mixed convection flow with homogeneous boundary con-
ditions, where two source terms are derived inversely by the manufactured solutions:

where f
1
(x, y, t) = 2x2(1 − x)2y2(1 − y)2t + 2x3(1 − x)3(1 − 2x)y4(1 − y)4t4

||aP|| =
||||ΔV + ΔyΔt ⋅ uk−1

i,j
+ ΔxΔt ⋅ vk−1

i,j
−

Δt ⋅ Δx

Δy𝛼
g
(𝛼+1)

1

||||
=
||||ΔV + ΔyΔt ⋅ uk−1

i−1,j
+ ΔxΔt ⋅ vk−1

i,j−1
−

Δt ⋅ Δx

Δy𝛼
g
(𝛼+1)

1

||||
> ΔV + ||aW || + ||aS|| + Δt ⋅ Δx

Δy𝛼

j+1∑
I=0,I≠1

g
(𝛼+1)

I

> ||aW || + ||aS|| + Δt ⋅ Δx

Δy𝛼

j+1∑
I=0,I≠1

g
(𝛼+1)

I
.

aP�
k
i,j
= aW�

k
i−1.j

+ aS�
k
i,j−1

+
Δt ⋅ Δx

Δy�

j+1∑
I=0,I≠1

g
(�+1)

I
�k
i,j+1−I

+ ΔV ⋅ �k−1
i,j

+ Φ
(
xi, yj, tk

)
⋅ ΔV ⋅ Δt,

(21)
�u

�x
+

�v

�y
= 0,

(22)
�u

�t
+

�

�x
(uu) +

�

�y
(vu) =

�

�y

(
��u

�y�

)
+ �� + f1(x, y, t),

(23)
��

�t
+

�

�x
(u�) +

�

�y
(v�) =

1

Pr

�

�y

(
���

�y�

)
+ f2(x, y, t).
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Subject to the homogeneous initial and boundary conditions:

The manufactured exact solutions are:

Figure  3 presents the comparison between the exact solution and numerical solution 
of u∕� , which is obtained by the developed fractional finite volume method. The involved 
parameters are fixed as Pr = 5 , � = 1 , � = � = 0.5 , t = 2 and x = 1 . The space and time 
steps are Δx = Δy = 0.05 , Δt = 0.1 , respectively. The good agreement of the results vali-
dates the accuracy of the numerical technique and the calculations of the space fractional 
derivatives are effective in the following section.

−4x3(1 − x)3(1 − 2x)y(1 − y)(1 − 2y)
(
1

3
y3 −

1

2
y4 +

1

5
y5
)
t4

−x2(1 − x)2t2
[
Γ(5)y3−�

Γ(4 − �)
−

2Γ(4)y2−�

Γ(3 − �)
+

Γ(3)y1−�

Γ(2 − �)

]
− �x2(1 − x)2y2(1 − y)2t2,

f
2
(x, y, t) = 2x2(1 − x)2y2(1 − y)2t + 2x3(1 − x)3(1 − 2x)y4(1 − y)4t4

− 4x3(1 − x)3(1 − 2x)y(1 − y)(1 − 2y)
(
1

3
y3 −

1

2
y4 +

1

5
y5
)
t4

−
1

Pr
x2(1 − x)2t2

[
Γ(5)y3−�

Γ(4 − �)
−

2Γ(4)y2−�

Γ(3 − �)
+

Γ(3)y1−�

Γ(2 − �)

]
.

u(x, y, 0) = v(x, y, 0) = �(x, y, 0) = 0,

u(0, y, t) = �(0, y, t) = 0, u(x, 0, t) = v(x, 0, t) = �(x, 0, t) = 0,

u(x, 1, t) = �(x, 1, t) = 0.

u(x, y, t) = x2(1 − x)2y2(1 − y)2t2,

v(x, y, t) = −2x(1 − x)(1 − 2x)
(
1

3
y3 −

1

2
y4 +

1

5
y5
)
t2,

�(x, y, t) = x2(1 − x)2y2(1 − y)2t2.

Fig. 3   Comparison between the numerical solution and exact solution of u∕�
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5 � Results and discussion

The numerical solutions of the mixed convection flow and heat transfer with space frac-
tional derivatives are obtained. The boundary of the computational domain is chosen as 
Ymax = 20 , which is corresponding to y → ∞ . The iteration error is controlled within 10−6 . 
The effects of space fractional derivative parameters � and � , mixed convection parameter 
� and Prandtl number Pr on velocities and temperature distributions are discussed graphi-
cally in detail.

Figure 4 illustrates horizontal velocity distributions for different � at x = 1 . In the main 
region of the boundary layer, the horizontal velocity declines clearly with the rise of � . 
When � = 1 , the fractional derivative is degenerated to Newtonian model and the Newto-
nian fluid has slowest horizontal velocity. The reason is that the viscous effect of the fluid 
enhances with the increase of � and the flow slows down. However, on the edge of the 
boundary layer that is close to main stream, the horizontal velocity increases slightly as the 
velocity fractional derivative parameter rises. Vertical velocity distributions for different 
� at x = 1 are described in Fig. 5. Near the flat plate, the vertical velocity decreases with 
the augment of � . On the other hand, the vertical velocity rises as � increases in the region 
that has a certain distance from the plate. The distance between two curves reduces and the 
sensitivity of vertical velocity weakens. The Newtonian fluid as � = 1 is at the bottom first 
then rises to the biggest value. It should be noted that both horizontal and vertical velocity 
profiles intersect with each other for different � . These results demonstrate that the viscoe-
lastic fluid with spatial fractional derivative has evident stress relaxation with distance.

Figure  6 presents temperature distributions for different � at x = 1 . The temperature 
increases significantly with the augment of � , but the thermal boundary layer become 
thicker. When � = 1 the fractional derivative is simplified to normal Fourier’s law and the 
fluid has the thickest boundary layer. This phenomenon illustrates that the heat transfer 
efficiency reduces and the viscous dissipation enlarges. The viscoelastic performs shear-
thickening property as fractional derivative � increases. Horizontal velocity distributions 
for different � at x = 1 are shown in Fig. 7. As the temperature fractional derivative param-
eter rises, the horizontal velocity increases, but the momentum boundary layer thickness 
has almost no variation for different � . The fluid with Fourier’s law develops fastest and 

Fig. 4   Horizontal velocity distributions for different � at x = 1
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the horizontal velocity profile is at the top. This result implies that the temperature frac-
tional derivative parameter has a weak effect on horizontal velocity. Figure 8 depicts verti-
cal velocity distributions for different � at x = 1 . The vertical velocity declines remarkably 
with the rise of � . Moreover, the effects of �  horizontal velocity and vertical velocity are 
totally opposite. It is worth mentioning that in Figs. 5 and 8, the vertical velocities are both 
positive and the stability of the numerical results is verified.

Figure 9 shows horizontal velocity distributions for different � at x = 1 . As � increases 
from negative to positive, the external body force originated from temperature gradient 
varies from opposing effect to assisting effect respectively. Thus, the horizontal velocity 
increases with the augment of the mixed convection parameter. Vertical velocity distribu-
tions for different � at x = 1 are presented in Fig. 10. On the contrary, the vertical velocity 

Fig. 5   Vertical velocity distributions for different � at x = 1

Fig. 6   Temperature distributions for different � at x = 1
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declines evidently as the mixed convection parameter increases. The distance between 
two profiles gradually reduce, which demonstrates that vertical velocity is less sensitive to 
larger mixed convection parameter. Figure 11 describes temperature distributions for dif-
ferent Pr at x = 1 . Near the plate surface, the temperature profiles are close to each other. 
Away from the plate, with the increase of Pr, the temperature decreases and the thermal 
boundary layer thickness reduces.

Fig. 7   Horizontal velocity distributions for different � at x = 1

Fig. 8   Vertical velocity distributions for different � at x = 1
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6 � Conclusions

In this study, mixed convection boundary layer flow and heat transfer of viscoelastic 
fluid with spatial fractional derivatives are investigated. Nonlinear and coupled govern-
ing equations are formulated, which are discretized by developed finite volume method 
combined with the shifted Grünwald-Letnikov formula. The numerical scheme is proved 
to be conditionally stable and the convergence is also obtained. To validate the numeri-
cal solutions, a comparison with exact solutions of a special case is conducted. Results 
show that the viscoelastic fluid with fractional derivatives has evident stress relaxation 
and performs shear-thickening property. Effects of involved parameters on velocities 
and temperature distributions are concluded below:

Fig. 9   Horizontal velocity distributions for different � at x = 1

Fig. 10   Vertical velocity distributions for different � at x = 1
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	 (i)	 With the rise of � , the horizontal and vertical velocity first declines but increases 
later.

	 (ii)	  With the augment of � , the temperature increases significantly and the horizontal 
velocity increases, but the vertical velocity declines remarkably.

	 (iii)	 As � increases, the horizontal velocity increases but the vertical velocity declines 
evidently. With the increase of Pr, the temperature decreases.
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