
Computational and Applied Mathematics (2020) 39:304
https://doi.org/10.1007/s40314-020-01356-8

On approximate implicit Taylor methods for ordinary
differential equations

Antonio Baeza1 · Raimund Bürger2 ·María del Carmen Martí1 · Pep Mulet1 ·
David Zorío3

Received: 27 July 2019 / Revised: 11 July 2020 / Accepted: 17 July 2020 /
Published online: 27 October 2020
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020

Abstract
An efficient approximate version of implicit Taylor methods for initial-value problems of
systems of ordinary differential equations (ODEs) is introduced. The approach, based on an
approximate formulation of Taylor methods, produces amethod that requires less evaluations
of the function that defines the ODE and its derivatives than the usual version. On the other
hand, an efficient numerical solution of the equation that arises from the discretization by
means of Newton’s method is introduced for an implicit scheme of any order. Numerical
experiments illustrate that the resulting algorithm is simpler to implement and has better
performance than its exact counterpart.

Keywords Taylor methods · implicit schemes · Explicit schemes · ODE integrators ·
Approximate formulation

Mathematics Subject Classification 65L04 · 65L05 · 65L06

B Pep Mulet
pep.mulet@uv.es

Antonio Baeza
antonio.baeza@uv.es

Raimund Bürger
rburger@ing-mat.udec.cl

María del Carmen Martí
Maria.C.Marti@uv.es

David Zorío
dzorio@ci2ma.udec.cl

1 Departament de Matemàtiques, Universitat de València, 46100 Burjassot, Spain

2 CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C,
Concepción, Chile

3 CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-020-01356-8&domain=pdf

304 Page 2 of 21 A. Baeza et al.

1 Introduction

1.1 Scope

This work is related to numerical methods for the solution of the autonomous system of
ordinary differential equations (ODEs):

u′(t) = f
(
u(t)

)
, t ∈ (t0, T],

u(t) = (u1(t), . . . , uM (t)
)T

, f (u) = (f1(u), . . . , fM (u)
)T

,
(1.1)

where derivatives of a vector of univariate scalar functions are understood component-wise,
posed along with initial data u(t0) = u0.

Taylor series methods for the numerical solution of initial-value problems of ODEs com-
pute approximations to the solution of the ODE for the next time instant using a Taylor
polynomial of the unknown. The resultingmethods are simple, since the expressions required
for the iteration are exactly computable (i.e., with no error) from the equation, and the trunca-
tion error is governed by the error term of the Taylor formula, so that the order of accuracy of
the global error of the method corresponds to the degree of the Taylor polynomial used. How-
ever, their implementation depends on the terms involved in the Taylor series, i.e., derivatives
of the right-hand side whose computation requires intensive symbolic calculus, and are spe-
cific to each individual problem.Moreover, the need for solving auxiliary nonlinear equations,
especially within the implicit versions, makes them computationally expensive, especially
as the order of accuracy required increases.

In this work, we focus on implicit Taylor methods, obtained by computing the Taylor
polynomials centered on a future time instant, and often used to solve problemswhere explicit
methods have strong stability restrictions, in particular stiff systems of ODEs (Hairer and
Wanner 1996). First of all, we apply a strategy, based on thework byBaeza et al. (2017) for the
explicit Taylor method, to efficiently approximate the derivatives of f . This approximation
inherits the ease of implementation and performance of the explicit version.

The implicit character of the method requires the solution of an auxiliary system of equa-
tions, usually by Newton’s method, which requires the computation of the Jacobian matrix.
This may be an easy task for low-order methods, but the resulting iteration can become
complicated as the order of the scheme increases. We propose a new formulation to obtain
high-order implicit Taylor schemes that are simpler to implement and more efficient than
the exact implicit Taylor methods, which compute derivatives symbolically. This is the main
novelty of this work.

That said, we remark that it is not our purpose to present a numerical scheme that can
compete with any implicit scheme in any situation, but to introduce a methodology to obtain
Rth-order implicit Taylor schemes for systems of M scalar ODEs, with arbitrarily high M ∈
N, that can be easily implemented and efficiently solved, independently of the complexity
of the function f , thus removing the leading difficulty of exact implicit Taylor methods.
Very-high-order implicit methods are a must in some problems: for instance, in dynamical
systems and mechanics, there is a need of high-order (at least, greater than 12) ODE solvers,
especially Taylor integrators, as exposed for instance by Jorba and Zou (2005), Barrio et al.
(2011), and Abad et al. (2012).

123

On approximate implicit Taylor methods... Page 3 of 21 304

1.2 Related work

Miletics and Molnárka (2004) propose an alternative based on a numerical approximation
of the derivatives of f in ODEs of the form u′ = f (u) for the explicit Taylor method
up to fourth order and in Miletics and Molnárka (2005) for the implicit version up to fifth
order. Later on, in Baeza et al. (2017), a procedure to obtain a numerical approximation of
f (u) = f ◦u was presented to generate arbitrarily high-order Taylor schemes, inspired by an
approximate Cauchy–Kovalevskaya procedure developed for systems of conservation laws
by Zorío et al. (2017), which simplifies the exact version presented by Qiu and Shu (2003).
The method presented by Baeza et al. (2017) relies on the approximate computation of the
terms that appear in the Taylor polynomials, in terms of function evaluations only, avoiding
the explicit computation of the derivatives, leading to a method which is simple to implement
and outperforms its exact counterpart for complex systems.

Further references to implicit Taylor methods addressing combinations of implicit and
explicit steps to improve stability or accuracy include Kirlinger and Corliss (1991) and Scott
(2000).

1.3 Outline of the paper

Thework is organized as follows: in Sect. 2, the basic facts about the exact Taylormethods are
reviewed. A general procedure to generate Taylor schemes of arbitrarily high-accuracy order
through Faà di Bruno’s formula (Faà di Bruno 1855) is described, as well as its corresponding
approximate version presented by Baeza et al. (2017). Section 3 is devoted to the description
of the novel formulation of implicit Taylor methods, following an idea akin to Baeza et al.
(2017). Section 4 describes an efficient implementation of the Newton iteration required
to update the solution of implicit Taylor methods. Section 5 stands for several numerical
experiments in which the approximate version of the implicit Taylor methods is compared
against its exact counterpart, as well as against the approximate explicit version. Finally, in
Sect. 6, some conclusions are drawn.

2 Taylor methods

2.1 Preliminaries

The (explicit) Rth-order Taylormethods are based on the expansion of the unknown function:

u(t + h) = u(t) + hu′(t) + h2

2
u′′(t) + · · · + hR

R! u
(R)(t) + hR+1

(R + 1)!u
(R+1)(ξ) (2.1)

with ξ belonging to the open interval I (t, t+h) defined by t and t+h. This expansion is valid
provided u1, . . . , uM ∈ CR(Ī (t, t + h)) and u(R+1)

1 , . . . , u(R+1)
M are bounded in I (t, t + h),

where Ī (t, t + h) denotes the closure of I (t, t + h). Consider an equally spaced set of N + 1
points tn = t0+nh, 0 ≤ n ≤ N , h = T /N . Dropping the last term in (2.1) and taking t = tn ,
one obtains the approximation:

u(tn + h) = u(tn+1) ≈ u(tn) + hu′(tn) + h2

2
u′′(tn) + · · · + hR

R! u
(R)(tn). (2.2)

123

304 Page 4 of 21 A. Baeza et al.

Then, (1.1) can be used to write:

u(k)(tn) = (f (u)
)(k−1)

(tn) = dk−1

dtk−1

(
f (u(t))

)
∣
∣
∣
∣
t=tn

, 1 ≤ k ≤ R. (2.3)

Consequently, the first step to apply Taylor methods is to compute these derivatives up to an
appropriate order.

2.2 Faà di Bruno’s formula

The evaluation of high-order derivatives of the function t �→ (f ◦ u)(t), which arise in (2.2),
is greatly simplified by Faà di Bruno’s formula, as stated by Baeza et al. (2017). To this end,
we recall that for a multi-index s = (s1, . . . , sr) ∈ N

r
0, one defines |s| := s1 + · · · + sr and:

(
r

s

)
:= r !

s1!s2! · · · sr ! .

Moreover, for r ∈ N, we define an index set:

Pr :=
{

s ∈ N
r
0

∣∣∣∣∣

r∑

ν=1

νsν = r

}

,

and (Dsu)(t) to be a matrix of size M × |s| whose (s1 + · · · + s j−1 + i)th column is given
by:

(
(Dsu)(t)

)
s1+···+s j−1+i = 1

j !
d j

dt j
u(t), i = 1, . . . , s j , j = 1, . . . , r . (2.4)

Finally, we denote by f (k) • A the action of the kth-order derivative tensor of f on an M × k
matrix A = (Ai j):

f (k) • A :=
M∑

i1,...,ik=1

∂k f

∂ui1 · · · ∂uik
(u)Ai1,1 · · · Aik ,k .

Proposition 1 (Faà di Bruno’s formula (Faà di Bruno 1855))
Assume that the functions f : RM → R and u : R → R

M are r times continuously
differentiable. Then:

dr

dtr
f
(
u(t)

) ≡ (f (u)
)(r)

(t) =
∑

s∈Pr

(
r

s

)((
f (u)

)(|s|) • (Dsu)
)
(t). (2.5)

Proposition 1 applies to just one scalar function f , so to obtain all components of, say,
(f (u))(k)(tn) in (2.3), wemust apply (2.5) to each of the components of f = (f1, . . . , fM)T.
Clearly, the matrix Dsu is the same for all these components.

2.3 Explicit Taylor methods

The derivatives (f (u))(k−1) can be evaluated using Faà di Bruno’s formula (2.5) (see Baeza
et al. (2017) for more details), leading to an expression of u(k)(tn) in terms of u(tn) and

123

On approximate implicit Taylor methods... Page 5 of 21 304

derivatives of f , namely:

u(k)(tn) = Gk

(
u(tn),

(
f (u)

)
(tn),

(
f (u)

)′
(tn), . . . ,

(
f (u)

)(k−1)
(tn)
)

= G̃k
(
u(tn)

)
.

(2.6)

Replacing the derivatives u(k)(tn) in (2.2) by (2.6), we obtain the expression:

u(tn+1) ≈ TR
(
u(tn), h

) = u(tn) +
R∑

k=1

hk

k! G̃k
(
u(tn)

)
. (2.7)

The Rth-order Taylor method

un+1 = TR(un, h) (2.8)

is then obtained by replacing the exact values of the solution u(tn) and u(tn+1) by their
corresponding approximations in (2.7), denoted by un and un+1, respectively. This means
that the following expression is used in (2.8):

TR(un, h) = un +
R∑

k=1

hk

k! u
(k)
n , u(k)

n := G̃k(un). (2.9)

From (2.1) and (2.9), we infer that the local truncation error is given by:

EL = hR+1

(R + 1)!u
(R+1)(ξ),

so that EL = O(hR+1) as long as u(R+1) is bounded in [t0, T]. One then obtains that the
method (2.8) has an O(hR) global error .

3 Implicit Taylor methods

3.1 Exact implicit Taylor methods

Implicit Taylormethods are based on approximating u(tn) bymeans of the Taylor polynomial
of u centered at tn+1:

u(tn) ≈ TR
(
u(tn+1),−h

)
, (3.1)

so that the value of un+1 ≈ u(tn+1) is determined as solution of the nonlinear system of
algebraic equations:

un = TR(un+1,−h). (3.2)

In the easiest case, with R = 1, one gets the implicit Euler method. As in the case of
explicit Taylor methods, the expressions of u(k)(tn+1) that appear in (3.1) can be expressed
as functions of u(tn+1) and the derivatives of f . As an example, the second-order implicit
Taylor method is given by:

un = un+1 − h f (un+1) + h2

2

(
∂ f
∂u

(un+1) f (un+1)

)
, (3.3)

where ∂ f /∂u = (∂ fi/∂u j)1≤i, j≤M is the Jacobian matrix of f (u). In what follows, the
family of methods based on (3.2) will be referred to as exact implicit Taylor methods, since
they are based on exact expressions of the derivatives of f .

123

304 Page 6 of 21 A. Baeza et al.

3.2 Approximate implicit Taylor methods

Let us briefly review approximate explicit Taylormethods as described byBaeza et al. (2017),
whose formulation will be used to motivate and introduce our novel approximate implicit
Taylor (henceforth, AIT) methods. These methods are based on computing approximations
of the derivatives in (2.2) by means of finite differences, so that u(k)(tn) is replaced by an
approximation:

v
(k)
h,n = u(k)(tn) + O(hR−k+1), k = 2, . . . , R,

resulting in an Rth-order accurate method:

vh,n+1 = vh,n +
R∑

k=1

hk

k! v
(k)
h,n,

where the approximations v
(k)
h,n are computed as follows:

v
(0)
h,n = un,

v
(1)
h,n = f (un),

v
(k+1)
h,n = �

k,
 R−k
2 �

h f
(
Pk
n(h)

)
, k = 1, . . . , R − 1.

Here, we recall that
·� denotes the so-called ceiling operator defined by
x� = min{n ∈ Z |
x ≤ n}. Moreover, Pk(ρ) is the M-component vector given by:

Pk
n (ρ) =

k∑

l=0

v
(l)
h,n

l! ρl , n = 1, . . . , M,

and �
p,q
h is the centered finite-difference operator that approximates pth-order derivatives

to order 2q on a grid with spacing h, i.e., the one that satisfies:

�
p,q
h (y) = y(p) + O(h2q)

for a sufficiently differentiable function y. (The operator �
p,q
h is understood as acting on

each component of f (Pk
n(h)) separately.)

There exist constants β
k,R
j , so that for some integers γk,R , we can write (see Zorío et al.

2017):

v
(k+1)
h,n = h−k

γk,R∑

j=−γk,R

β
k,R
j f

(
k∑

l=0

(jh)l

l! v
(l)
h,n

)

. (3.4)

Using these approximations of the derivatives, and with the notation of the previous sections,
one obtains the approximate explicit Taylor method:

un+1 = T̃R(un, h). (3.5)

For instance, the second-order approximate Taylor method is based on the approximation:

u(2)(tn) = (f (u)
)′
(tn) ≈ 1

2h

(
f
(
u(tn) + h f (u(tn))

)− f
(
u(tn) − h f (u(tn))

));
hence, the method can be written as:

un+1 = un + h f (un) + h

4

(
f (un + h f (un)

)− f
(
un − h f (un)

));

123

On approximate implicit Taylor methods... Page 7 of 21 304

that is:

T̃2(un, h) = un + h f (un) + h

4

(
f (un + h f (un)

)− f
(
un − h f (un)

))
.

Thenewmethods advanced in this contribution, namelyapproximate implicitTaylormethods,
are obtained by replacing h by −h and interchanging un and un+1 in (3.5):

un = T̃R(un+1,−h).

For the case of second order (R = 2), the implicit second-order approximate Taylor method
is:

un = T̃2(un+1,−h)

= un+1 − h f (un+1) − h

4

(
f
(
un+1 − h f (un+1)

)− f
(
un+1 + h f (un+1)

))
. (3.6)

3.3 Linear stability

The linear stability of a numerical scheme for initial-value problems of ordinary differential
equations is usually examined by applying it to the scalar linear equation:

u′ = λu, λ ∈ C, Re λ < 0. (3.7)

For the sake of completeness, we consider the non-homogeneous linear ODE:

u′ = λu + g(t), λ ∈ C,

with g sufficiently smooth. For the solution u of the ODE, we can establish by induction on
k that:

u(k) = λku +
k−1∑

j=0

λk− j−1g(j)(t),

so the explicit Taylor method reads in this case as:

un+1 =
R∑

k=0

hk

k!
(

λkun +
k−1∑

j=0

λk− j−1g(j)(tn)

)

= un

R∑

k=0

(hλ)k

k! +
R−1∑

j=0

g(j)(tn)

λ j+1

R∑

k= j+1

(hλ)k

k!

= QR(hλ)un +
R−1∑

j=0

g(j)(tn)

λ j+1

(
QR(hλ) − Q j (hλ)

)
,

where

Q j (x) =
j∑

k=0

xk

k! .

The implicit Taylor method is obtained by interchanging the roles of n and n+1 and reads
as:

un = QR(−hλ)un+1 +
R−1∑

j=0

g(j)(tn+1)

λ j+1

(
QR(−hλ) − Q j (−hλ)

)
,

123

304 Page 8 of 21 A. Baeza et al.

un+1 = 1

QR(−hλ)
un −

R−1∑

j=0

g(j)(tn+1)

λ j+1

(
1 − Q j (−hλ)

QR(−hλ)

)
. (3.8)

In particular, for g = 0, the explicit and implicit Taylor methods of order R are given by the
respective expressions:

un+1 = QR(hλ)un (3.9)

and

un+1 = 1

QR(−hλ)
un .

The exact Taylormethod of order R is stable provided that |QR(hλ)| < 1. Since Re λ < 0,
this condition is usually satisfied on a bounded domain only (as can be inferred from R = 1,
in which case (3.9) is the explicit Euler method). On the other hand, the exact implicit Taylor
method is stable for those values of z = hλ that satisfy:

z ∈ S :={z ∈ C | Re z < 0, |QR(−z)|−1 < 1
} = {z ∈ C | Re z < 0, |QR(−z)| > 1

}
.

As for its exact counterpart, in Baeza et al. (2020), it is shown that the approximate explicit
Taylor method applied to (3.7) is T̃R(un, h) = QR(hλ)un , and thus, the implicit version is
T̃R(un,−h) = QR(−hλ)−1un , and, therefore, both methods have the same stability region
as their corresponding exact versions, in particular the approximate implicit Taylor method
is absolutely stable whenever λ < 0.

4 Newton iteration

The computation of un+1 for given un using an implicit method requires the solution of
an auxiliary equation F(un+1) = 0, which is often approximated by Newton’s method. In
this section, we address the computation of the elements required for Newton’s method for
both the exact and approximate implicit Taylor methods, which will lead to a new, more
efficient formulation for the approximate scheme. Although line-search strategies (Dennis
andSchnabel 1996) for dampingNewton iteration can be used to enhance global convergence,
we have not used them in our experiments.

4.1 Exact implicit Taylor method

As an example, let us consider the scalar nonlinear problem:

u′ = u + u2 ⇒ u′′ = (1 + 2u)u′ = (1 + 2u)(u + u2).

The second-order exact implicit Taylor method can be written as:

un = un+1 − h(un+1 + u2n+1) + h2

2
(1 + 2un+1)(un+1 + u2n+1),

which requires the solution of the following cubic equation:

F(un+1) := un+1 − h(un+1 + u2n+1) + h2

2
(1 + 2un+1)(un+1 + u2n+1) − un = 0. (4.1)

123

On approximate implicit Taylor methods... Page 9 of 21 304

In the general case, the solution of F(un+1) = 0 by means of Newton’s method requires
the computation of the derivative F ′(un+1). In the case of (4.1) this is an easy task, but, in
general, the resulting iteration can become complicated.

To simplify the computation of the Jacobian matrix, we introduce:

zk ≈ u(k)
n+1, k = 0, . . . , R,

and use Faà di Bruno’s formula (2.5) to get the system:

un = z0 − hz1 + · · · + (−1)R
hR

R! zR,

z1 = f (z0),

zn+1 =
∑

s∈Pr

(
r

s

)
⎛

⎜
⎜
⎝

f (|s|)
1 (z0) • D̃

s
z

...

f (|s|)
M (z0) • D̃

s
z

⎞

⎟
⎟
⎠ , r = 1, . . . , R − 1,

where the definition of D̃
s
z mimics that of Dsz in (2.4), by taking into account that zk ≈

u(k)(t), namely:

(
D̃

s
z
)
s1+···+s j−1+i = 1

j ! z j , i = 1, . . . , s j , j = 1, . . . , r .

These equations can be differentiated systematically. For instance, for the case of one scalar
equation, M = 1, one gets:

∂z0

(∑

s∈Pr

(
r

s

)
f (|s|)(z0)Dsz

)
=
∑

s∈Pr

(
r

s

)
f (|s|+1)(z0)

(z1
1!
)s1 · · ·

(zr
r !
)sr

,

∂z j

(∑

s∈Pr

(
r

s

)
f (|s|)(z0)Dsz

)

=
∑

s∈Pr

s j
j !
(
r

s

)
f (|s|+1)(z0)

(z1
1!
)s1 · · ·

(z j
j !
)s j−1 · · ·

(zr
r !
)sr

.

For this scalar case and the second-order implicit Taylormethod (3.3), the system to be solved
is:

0 = z0 − hz1 + h2

2
z2 − un,

0 = f (z0) − z1,

0 = f ′(z0)z1 − z2.

(4.2)

If we rewrite system (4.2) as F(z0, z1, z2) = 0, with the function F defined by:

F(z0, z1, z2) =
⎛

⎝
F1(z0, z1, z2)
F2(z0, z1, z2)
F3(z0, z1, z2)

⎞

⎠ =

⎛

⎜⎜
⎝
z0 − hz1 + h2

2
z2 − un,

f (z0) − z1,
f ′(z0)z1 − z2

⎞

⎟⎟
⎠ ,

123

304 Page 10 of 21 A. Baeza et al.

then the corresponding Jacobian matrix is:

JF(z0, z1, z2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂F1
∂z0

∂F1
∂z1

∂F1
∂z2

∂F2
∂z0

∂F2
∂z1

∂F2
∂z2

∂F3
∂z0

∂F3
∂z1

∂F3
∂z2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
1 −h h2/2

f ′(z0) −1 0
f ′′(z0)z1 f ′(z0) −1

⎤

⎦ . (4.3)

Depending on the expression of f , the Jacobian matrix may become highly complicate,
even for low values of R. It is clear that, for higher order methods, the system to be solved
will be more complicated. For instance, for R = 4, it reads as:

0 = z0 − hz1 + h2

2
z2 − h3

6
z3 + h4

24
z4 − un,

0 = f (z0) − z1,

0 = f ′(z0)z1 − z2,

0 = f ′′(z0)z21 + f ′(z0)z2 − z3,

0 = f ′′′(z0)z31 + 3 f ′′(z0)z1z2 + z3 f
′(z0) − z4,

which results in the expression:

JF(z0, . . . , z4)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 −h
h2

2
−h3

6

h4

24
f ′(z0) −1 0 0 0

f ′′(z0)z1 f ′(z0) −1 0 0

f ′′′(z0)z21 + f ′′(z0)z2 2 f ′′(z0)z1 f ′(z0) −1 0

f (4)(z0)z31 + 3 f ′′′(z0)z1z2 3 f ′′′(z0)z21 + 3 f ′′(z0)z2 3 f ′′(z0)z1 f ′(z0) −1

+ f ′′(z0)z3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.
(4.4)

Note that the submatrix composed by the first three rows and columns of (4.4) is exactly
(4.3). It is easy to check that the Jacobian matrix corresponding to R = 3 is the submatrix of
(4.4) composed by its first four rows and columns.

4.2 Approximate implicit Taylor method

For simplicity, let us start with the second-order approximate implicit Taylor method (3.6) for
the scalar case M = 1. Similarly to the exact case, we introduce the unknowns z0 = un+1,
z1 = f (un+1), and:

z2 = 1

2

(
f
(
un+1 − h f (un+1)

)− f
(
un+1 + h f (un+1)

))
,

and one gets the system of equations:

0 = z0 − hz1 − h

2
z2 − un,

0 = f (z0) − z1,

123

On approximate implicit Taylor methods... Page 11 of 21 304

0 = 1

2
f (z0 − hz1) − 1

2
f (z0 + hz1) − z2,

so that its solution gives the terms that appear in (3.6).
If we rewrite this system as F(z0, z1, z2) = 0 with the function F defined by:

F(z0, z1, z2) =
⎛

⎝
F1(z0, z1, z2)
F2(z0, z1, z2)
F3(z0, z1, z2)

⎞

⎠ =
⎛

⎜
⎝

z0 − hz1 − h

2
z2 − un

f (z0) − z1
1
2 f (z0 − hz1) − 1

2 f (z0 + hz1) − z2

⎞

⎟
⎠ ,

then the corresponding Jacobian matrix (which is required so that Newton’s method can be
applied to this system) is now given by:

JF(z0, z1, z2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂F1
∂z0

∂F1
∂z1

∂F1
∂z2

∂F2
∂z0

∂F2
∂z1

∂F2
∂z2

∂F3
∂z0

∂F3
∂z1

∂F3
∂z2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 −h −h

2
f ′(z0) −1 0

1

2

(
f ′(z0 − hz1) − f ′(z0 + hz1)

) −h

2

(
f ′(z0 − hz1) + f ′(z0 + hz1)

) −1

⎤

⎥⎥⎥
⎦

.

4.3 General number of scalar equations

Let us now consider the general case of a system of M scalar ordinary differential equations.
From (3.4), the approximate implicit Rth-order Taylor method can be written as:

un = T̃R(un+1,−h) =
R∑

k=0

(−h)k

k! v
(k)
−h,n, (4.5)

v
(k+1)
−h,n = (−h)−k

γk,R∑

j=−γk,R

β
k,R
j f

(
k∑

l=0

j l(−h)l

l! v
(l)
−h,n

)

. (4.6)

Let us denote zk = (−h)k−1vk−h,n , so that (4.6) for k − 1 reads as:

zk =
γk−1,R∑

j=−γk−1,R

β
k−1,R
j f

(

z0 − h
k−1∑

l=1

j l

l! zl
)

and (4.5) as:

un = z0 − h
R∑

k=1

1

k! zk .

We define the function F = (F0, F1, . . . , FM)T : R
(R+1)M → R

(R+1)M by:

F0 := z0 − h
R∑

k=1

1

k! zk − un,

123

304 Page 12 of 21 A. Baeza et al.

Fk :=
γk−1,R∑

j=−γk−1,R

β
k−1,R
j f

(

z0 − h
k−1∑

l=1

j l

l! zl
)

− zk, k = 1, . . . , R.

To solve F(z) = 0 by Newton’s method, we compute the Jacobian matrix of F as the block
matrix:

JF(z) = (Fi, j (z)
)
0≤i, j≤R, where Fi, j (z) = ∂Fi

∂ z j
(z) ∈ R

M×M .

If IM denotes the M × M identity matrix, we get:

F0,0 = IM ,

F0,l = − h

l! IM , l = 1, . . . , R,

Fk,0 =
γk−1,R∑

j=−γk−1,R

β
k−1,R
j f ′

(

z0 − h
k−1∑

l=1

j l

l! zl
)

, k = 1, . . . , R,

Fk,l = −h
γk−1,R∑

j=−γk−1,R

β
k−1,R
j f ′

(

z0 − h
k−1∑

m=1

jm

m! zm
)

j l

l! ,

{
l = 1, . . . , k − 1,

k = 1, . . . , R,

Fk,k = −IM , k = 1, . . . , R,

Fk,l = 0, l = k + 1 . . . , R, k = 1, . . . , R.

Setting δ(ν) = z(ν+1) − z(ν), we may write an iteration of Newton’s method as:

JF(z(ν))δ(ν) = −F(z(ν)).

In block form and dropping ν, we get:
⎡

⎢⎢⎢
⎣

F0,0 F0,1 · · · F0,R

F1,0 F1,1 · · · F1,R
...

...
...

FR,0 FR,1 · · · FR,R

⎤

⎥⎥⎥
⎦

⎛

⎜⎜⎜
⎝

δ0
δ1
...

δR

⎞

⎟⎟⎟
⎠

= −

⎛

⎜⎜⎜
⎝

F0

F1
...

FR

⎞

⎟⎟⎟
⎠

,

which we write in compact form as:
[

F0,0 F0,1:R
F1:R,0 F1:R,1:R

](
δ0

δ1:R

)
= −

(
F0

F1:R

)
. (4.7)

Since F1:R,1:R is blockwise lower triangular with the diagonal blocks given by −IM , this
matrix is invertible and we deduce that:

δ1:R = −F−1
1:R,1:R(F1:R + F1:R,0δ0),

which, when inserted into the first equation of (4.7), yields:

δ0 = −(F0,0 − F0,1:RF−1
1:R,1:RF1:R,0

)−1(F0 − F0,1:RF−1
1:R,1:RF1:R

)
.

If we denote

A := F−1
1:R,1:RF1:R, B := F−1

1:R,1:RF1:R,0,

then we can write:

δ0 = −(F0,0 − F0,1:RB
)−1(F0 − F0,1:R A

)
, δ1:R = −(A + Bδ0

)
.

123

On approximate implicit Taylor methods... Page 13 of 21 304

Therefore, the system can be solved efficiently as long as F0,0−F0,1:RB is invertible. Recall
that the Newton iteration only requires the computation of f and f ′, in contrast with the
exact version, which requires the computation of all the derivatives of f up to order R.

4.3.1 Computational cost of AIT methods

From Sect. 4.3, we know that, for each iteration of Newton’s method, we need to compute
the vectors:

δ0 = −(F0,0 − F0,1:RB
)−1(F0 − F0,1:R A

)
, δ1:R = −(A + Bδ0

)
,

where A and B are the matrices:

A := F−1
1:R,1:RF1:R, B := F−1

1:R,1:RF1:R,0.

For the computation of A and B, we can exploit that F1:R,1:R is a blockwise lower
triangular matrix with diagonal blocks given by −IM . Hence, we can obtain for example B,
by a block forward substitution process, given by:

Bk = −Fk,0 +
k−1∑

i=1

Fk,i Bi , k = 1, . . . , R.

This algorithm requires (R2 − R)/2 products of M × M matrices.
With respect to δ0, the computation of F0,1:RB requires R products of M × M matrices,

and its LU decomposition requires O(23M
3) scalar operations. Neglecting operations with

lower order cost in M , then, we obtain that the computation of δ requires:

Cδ :=
(
R2 + R

2
+ 2

3

)
M3

scalar operations. Moreover, the formation of the blocks Fi, j requires R2 Jacobian matrices
of f , which yields, assuming a mean cost per entry of β scalar operations, R2M2β scalar
operations. In consequence, the (approximate) computational cost of each Newton iteration
for AIT methods is:

CAIT = Cδ + R2βM2 =
(
R2 + R

2
+ 2

3

)
M3 + R2βM2.

5 Numerical experiments

5.1 Preliminaries

In this section, the performance of the AIT methods is analyzed. We first compare the AIT
methodswith their exact counterparts, ITmethods, of the same order.We have only compared
the AIT with the IT methods for scalar equations since the implementation for systems of
the IT methods is extremely involved. For linear scalar equations, the implementation for
any order is performed using (3.8). These methods are compared in terms of error, numerical
order, and computational time, using some scalar problems.

We then raise two initial-value problems for systems of equations. For those problems,
the AIT methods are compared with approximate explicit Taylor (AET) methods of the same
order (Baeza et al. 2017), so as to stress the superior stability of the implicit method. In all the

123

304 Page 14 of 21 A. Baeza et al.

numerical examples, we show the numerical errors, computed with L1-norm, and the order
of the numerical method, computed by:

o(N) = log2 (|e(N)/e(N/2)|) ,

with e(N) standing for the numerical error for N time steps.

5.2 Examples 1 and 2: scalar equations

In Example 1 we consider the linear equation:

u′ = −5u + 5 sin(2t) + 2 cos(2t), u(0) = 0, (5.1)

with exact solution u(t) = sin(2t). The results for IT and AIT methods for T = 5 and
orders R ∈ {2, 3, 4, 5, 6} are collected in Table 1, where it can be seen that, with both
methods, the expected orders of convergence are recovered in all cases. Comparing with the
IT methods, we see that the approximate version attains the expected order faster than the
exact version, but produces a slightly bigger error for coarse resolutions. This fact is possibly
due to the simplicity of the equation under consideration, which produces a local truncation
error smaller than the error corresponding to the approximation of derivatives performed in
the AIT method and hinders the correct order of accuracy for the exact method whenever the
step size is not small enough.

In Example 2, we consider the more involved problem:

u′ = log

(
u + u3 + u5

1 + u2 + u4 + u6

)

, u(0) = 1, (5.2)

and compute its solution up to T = 1 for orders R ∈ {2, 3, 4, 5, 6}. The solution computed by
the AIT method with R = 6 and a resolution of 20000 points is taken as reference solution.
We can see in Table 2 that the errors for both methods are similar and the numerical order
converges to the expected values in each case. In Fig. 1, we compare the errors obtained
by each method with respect to the CPU time required to run the algorithm (left) and with
respect to the discretization step considered h (right). It can be seen that the performance
is increasingly favorable to the approximate method as the order increases, as expected.
Note that, for cases R = 5, 6, although the errors are affected by MATLAB’s computational
error, it still can be seen that the AIT method overpowers the IT method in terms of the
computational time needed to obtain an approximate solution.

5.3 Examples 3 and 4: systems of ODEs

We consider now two problems modeled by systems of ODEs, used by Akinfenwa et al.
(2013) to test stability properties and accuracy. Example 3 is a stiff nonlinear problem given
by:

{
y′ = −1002y + 1000z2,

z′ = y − z(1 + z), t > 0;
y(0) =1,

z(0) =1,
(5.3)

known as Kaps problem, with exact solution given by:

y(t) = e−2t , z(t) = e−t ,

123

On approximate implicit Taylor methods... Page 15 of 21 304

Table 1 Example 1 (linear scalar problem (5.1)): numerical errors and orders for IT and AIT methods

R = 2

IT AIT

N e(N) o(N) CPU time e(N) o(N) CPU time

10 2.62e-02 – 8.5e-02 1.38e-02 – 2.1e-02

20 9.15e-03 1.52 3.5e-02 3.63e-03 1.93 2.6e-02

40 2.86e-03 1.68 3.8e-02 9.29e-04 1.97 5.4e-02

80 8.15e-04 1.81 4.4e-02 2.35e-04 1.98 1.0e-01

160 2.19e-04 1.89 5.1e-02 5.90e-05 1.99 2.0e-01

320 5.70e-05 1.94 4.4e-02 1.48e-05 2.00 4.0e-01

640 1.45e-05 1.97 3.8e-02 3.70e-06 2.00 7.3e-01

R = 3

10 1.30e-03 – 8.8e-02 6.21e-03 – 2.9e-02

20 2.88e-04 2.17 4.3e-02 9.52e-04 2.71 3.7e-02

40 4.43e-05 2.70 5.9e-02 1.31e-04 2.86 8.0e-02

80 5.84e-06 2.92 4.5e-02 1.71e-05 2.94 1.6e-01

160 7.37e-07 2.99 5.7e-02 2.18e-06 2.97 3.0e-01

320 9.19e-08 3.00 5.1e-02 2.76e-07 2.99 5.9e-01

640 1.15e-08 3.00 4.7e-02 3.45e-08 3.00 1.13

R = 4

10 7.55e-04 – 9.9e-02 4.81e-04 – 5.4e-02

20 9.43e-05 3.00 5.9e-02 2.58e-05 4.22 7.8e-02

40 8.42e-06 3.48 5.3e-02 1.39e-06 4.22 1.4e-01

80 6.27e-07 3.75 6.1e-02 7.84e-08 4.15 2.8e-01

160 4.26e-08 3.88 4.6e-02 4.61e-09 4.09 5.4e-01

320 2.78e-09 3.94 5.2e-02 2.79e-10 4.05 1.03

640 1.77e-10 3.97 5.2e-02 1.71e-11 4.02 2.05

R = 5

10 4.32e-05 – 1.4e-01 1.50e-04 – 8.9e-02

20 2.59e-06 4.06 6.6e-02 4.87e-06 4.94 1.3e-01

40 9.73e-08 4.73 7.3e-02 1.54e-07 4.98 2.2e-01

80 3.14e-09 4.95 5.5e-02 4.86e-09 4.99 4.3e-01

160 9.75e-11 5.01 5.8e-02 1.53e-10 4.99 8.6e-01

320 3.02e-12 5.01 5.6e-02 4.78e-12 5.00 1.66

640 9.41e-14 5.00 6.9e-02 1.50e-13 5.00 3.29

R = 6

10 1.59e-05 – 1.2e-01 1.35e-05 – 1.2e-01

20 5.51e-07 4.85 1.2e-01 1.56e-07 6.43 1.7e-01

40 1.25e-08 5.46 5.7e-02 1.88e-09 6.38 3.3e-01

123

304 Page 16 of 21 A. Baeza et al.

Table 1 continued

R = 6

80 2.33e-10 5.75 6.9e-02 2.45e-11 6.26 6.4e-01

160 3.96e-12 5.88 5.9e-02 3.43e-13 6.16 1.30

320 6.47e-14 5.94 7.1e-02 5.11e-15 6.07 2.52

640 9.99e-16 6.02 7.1e-02 1.11e-16 5.52 5.04

Table 2 Example 2 (nonlinear scalar problem (5.2)): numerical errors, orders, and computational time (in
seconds) for IT and AIT methods.

R = 2

IT AIT

N e(N) o(N) CPU time e(N) o(N) CPU time

10 1.21e-03 – 3.0e-02 1.23e-03 – 4.0e-02

20 2.90e-04 2.06 6.0e-02 2.93e-04 2.07 4.0e-02

40 7.09e-05 2.03 6.0e-02 7.12e-05 2.04 4.0e-02

80 1.75e-05 2.02 6.0e-02 1.76e-05 2.02 5.0e-02

160 4.36e-06 2.01 0.11 4.36e-06 2.01 6.0e-02

320 1.09e-06 2.00 0.10 1.09e-06 2.00 0.11

640 2.71e-07 2.00 0.16 2.71e-07 2.00 0.21

1280 6.77e-08 2.00 0.26 6.78e-08 2.00 0.37

2560 1.69e-08 2.00 0.48 1.69e-08 2.00 0.75

R = 3

10 7.52e-05 – 4.0e-02 5.35e-05 – 4.0e-02

20 8.75e-06 3.10 6.0e-02 5.95e-06 3.17 4.0e-02

40 1.05e-06 3.05 8.0e-02 7.00e-07 3.09 4.0e-02

80 1.29e-07 3.03 9.0e-02 8.49e-08 3.04 5.0e-02

160 1.60e-08 3.01 0.12 1.04e-08 3.02 9.0e-02

320 1.99e-09 3.01 0.18 1.30e-09 3.01 0.13

640 2.49e-10 3.00 0.32 1.61e-10 3.01 0.25

1280 3.11e-11 3.00 0.51 2.01e-11 3.00 0.46

2560 3.88e-12 3.00 0.81 2.51e-12 3.00 0.9

R = 4

10 5.78e-06 – 6.0e-02 4.93e-06 – 3.0e-02

20 3.30e-07 4.13 0.11 2.44e-07 4.34 4.0e-02

40 1.97e-08 4.07 9.0e-02 1.36e-08 4.17 7.0e-02

80 1.20e-09 4.03 0.14 8.00e-10 4.08 7.0e-02

160 7.43e-11 4.02 0.23 4.86e-11 4.04 0.19

320 4.62e-12 4.01 0.76 3.00e-12 4.02 0.19

123

On approximate implicit Taylor methods... Page 17 of 21 304

Table 2 continued

R = 4

640 2.87e-13 4.01 0.66 1.88e-13 4.00 0.33

1280 2.33e-14 3.62 1.28 1.47e-14 3.68 0.63

2560 5.66e-15 2.04 2.17 3.77e-15 1.96 1.27

R = 5

10 4.52e-07 – 0.13 8.25e-07 – 3.0e-02

20 1.26e-08 5.17 0.18 2.31e-08 5.16 6.0e-02

40 3.71e-10 5.09 0.20 6.87e-10 5.07 6.0e-02

80 1.12e-11 5.04 0.30 2.10e-11 5.03 9.0e-02

160 3.42e-13 5.04 0.48 6.53e-13 5.01 0.13

320 4.55e-15 6.23 0.87 2.23e-14 4.87 0.23

640 8.88e-16 2.36 1.59 1.55e-15 3.84 0.46

1280 2.33e-14 -4.71 3.11 2.00e-15 − 0.36 0.87

2560 4.22e-15 2.47 6.09 2.44e-15 − 0.29 1.69

R = 6

10 3.89e-08 – 2.04 1.52e-07 – 4.0e-02

20 5.26e-10 6.21 1.26 1.35e-09 6.81 6.0e-02

40 7.62e-12 6.11 1.34 1.67e-11 6.33 8.0e-02

80 1.17e-13 6.03 1.50 2.19e-13 6.26 0.11

160 4.44e-15 4.72 1.97 1.11e-16 10.94 0.20

320 2.11e-15 1.07 2.94 2.22e-15 − 4.32 0.34

640 8.88e-16 1.25 4.92 6.66e-16 1.74 0.64

1280 2.33e-14 – 4.71 8.87 2.00e-15 − 1.58 1.27

2560 3.55e-15 2.71 16.6 2.44e-15 − 0.29 2.47

which is independent of the stiffness parameter, k = −1000 in this case. We compare the
solution at T = 5 for the approximate implicit (AIT) and approximate explicit (AET)methods
of the same order. Both schemes recover the expected order, the implicit one achieving it at
early stages, see Table 3. Note that the explicit scheme does not attain good results in terms of
accuracy, unless meshes with more than 2000 points are used. The implicit scheme achieves
the same error level as the explicit one with meshes with approximately 4 times less nodes.

Finally, in Example 4, we consider the system of ODEs:
⎧
⎪⎨

⎪⎩

x ′ = −21x + 19y − 20z,

y′ = 19x − 21y + 20z,

z′ = 40x − 40y − 40z, t > 0;

x(0) = 1,

y(0) = 0,

z(0) = −1,

(5.4)

also taken from Akinfenwa et al. (2013) and whose exact solution is given by:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(t) =1

2

(
e−2t + e−40t (cos(40t) + sin(40t))

)
,

y(t) =1

2

(
e−2t − e−40t (cos(40t) + sin(40t))

)
,

z(t) = − e−40t (cos(40t) − sin(40t)).

123

304 Page 18 of 21 A. Baeza et al.

10-2 10-1 100 101

CPU time [s]

10-10

10-8

10-6

10-4

10-2
|e

rro
r|

IT, R=2
AIT, R=2

10-4 10-3 10-2 10-1

h

10-10

10-8

10-6

10-4

10-2

|e
rro

r|

IT, R=2
AIT, R=2

10-2 10-1 100 101

CPU time [s]

10-14

10-12

10-10

10-8

10-6

10-4

|e
rro

r|

IT, R=3
AIT, R=3

10-4 10-3 10-2 10-1

h

10-14

10-12

10-10

10-8

10-6

10-4

|e
rro

r|
IT, R=3
AIT, R=3

10-2 10-1 100 101

CPU time [s]

10-15

10-10

10-5

|e
rro

r|

IT, R=4
AIT, R=4

10-4 10-3 10-2 10-1

h

10-15

10-10

10-5

|e
rro

r|

IT, R=4
AIT, R=4

10-2 10-1 100 101 102

CPU time [s]

10-16

10-14

10-12

10-10

10-8

10-6

|e
rro

r|

IT, R=5
AIT, R=5

10-4 10-3 10-2 10-1

h

10-16

10-14

10-12

10-10

10-8

10-6

|e
rro

r|

IT, R=5
AIT, R=5

10-2 10-1 100 101 102

CPU time [s]

10-16

10-14

10-12

10-10

10-8

10-6

|e
rro

r|

IT, R=6
AIT, R=6

10-4 10-3 10-2 10-1

h

10-16

10-14

10-12

10-10

10-8

10-6

|e
rro

r|

IT, R=6
AIT, R=6

Fig. 1 Example 2 (nonlinear scalar problem (5.2)): performance of the IT and the AIT methods

123

On approximate implicit Taylor methods... Page 19 of 21 304

Table 3 Example 3 (stiff nonlinear problem (5.3)): numerical errors and orders for AIT and AET methods

R = 2 R = 3

AIT AET AIT AET

N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)

80 2.12e-05 1.93 NaN – 3.31e-07 2.92 NaN –

160 5.43e-06 1.96 NaN – 4.24e-08 2.96 NaN –

320 1.37e-06 1.98 NaN – 5.37e-09 2.98 NaN –

640 3.45e-07 1.99 NaN – 6.76e-10 2.99 NaN –

1280 8.66e-08 1.99 NaN – 8.47e-11 2.99 NaN –

2560 2.17e-08 1.99 1.03e-07 NaN 1.06e-11 2.99 4.60e-11 NaN

5120 5.42e-09 1.99 2.34e-08 2.13 1.32e-12 2.99 5.75e-12 3.00

10240 1.35e-09 1.99 5.84e-09 2.00 1.66e-13 2.99 7.18e-13 3.00

R = 4

80 4.13e-09 3.92 NaN –

160 2.65e-10 3.96 NaN –

320 1.68e-11 3.98 NaN –

640 1.05e-12 3.98 NaN –

1280 6.65e-14 3.99 NaN –

2560 4.17e-15 3.99 1.07e-13 NaN

5120 2.70e-16 3.94 5.65e-15 4.24

10240 1.95e-17 3.79 3.33e-16 4.09

Table 4 Example 4 (stiff linear problem (5.4)): numerical errors and orders for AIT and AET methods

R = 2 R = 3

AIT AET AIT AET

N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)

10 5.94e-05 2.20 3.39e24 – 9.59e-06 2.45 1.24e34 –

20 1.52e-05 1.96 3.93e37 -43.40 1.62e-06 2.56 4.38e50 -54.97

40 4.10e-06 1.89 4.11e50 -43.25 2.42e-07 2.73 4.96e63 -43.37

80 1.08e-06 1.91 2.99e46 13.75 3.34e-08 2.86 1.16e46 58.57

160 2.82e-07 1.94 3.37e-03 162.6 4.39e-09 2.92 3.41e-03 161.2

320 7.22e-08 1.96 7.07e-04 2.25 5.63e-10 2.96 2.03e-04 4.07

640 1.82e-08 1.98 1.67e-04 2.08 7.12e-11 2.98 1.95e-05 3.38

R = 4 R = 5

10 1.69e-06 3.05 3.29e42 – 2.70e-07 3.86 9.71e49 –

20 1.56e-07 3.43 1.43e61 -61.91 1.28e-08 4.39 5.80e69 -65.69

40 1.20e-08 3.70 1.01e72 -36.05 4.97e-10 4.69 3.26e76 -22.42

80 8.32e-10 3.85 9.17e37 113.1 1.72e-11 4.84 4.03e19 189.0

160 5.48e-11 3.92 7.99e-04 136.4 5.69e-13 4.92 2.66e-04 77.01

320 3.51e-12 3.96 3.46e-05 4.53 1.82e-14 4.96 5.26e-06 5.66

640 2.22e-13 3.98 1.73e-06 4.32 5.79e-16 4.98 1.29e-07 5.35

123

304 Page 20 of 21 A. Baeza et al.

10-3 10-2 10-1

h

10-20

100

1020

1040

1060
|e

rro
r|

AET, R=2
AIT, R=2

10-3 10-2 10-1

h

10-20

100

1020

1040

1060

1080

|e
rro

r|

AET, R=3
AIT, R=3

10-3 10-2 10-1

h

10-20

100

1020

1040

1060

1080

|e
rro

r|

AET, R=4
AIT, R=4

10-3 10-2 10-1

h

10-20

100

1020

1040

1060

1080

|e
rro

r|

AET, R=5
AIT, R=5

Fig. 2 Example 4 (stiff linear problem (5.4)): performance of the AET and the AIT methods

As in the previous example, the explicit scheme needs more nodes to achieve the same error
level as the implicit scheme. For instance, the explicit scheme needs about 64 times more
nodes, N = 320, to obtain the same errors that the implicit scheme attains with N = 5, see
results in Table 4 and Fig. 2, proving that the use of the implicit scheme is more appropriate
when dealing with stiff problems.

6 Conclusions

This article is part of ongoing work to develop high-order efficient approximate Taylor ODE
solvers.We have reviewed the exact implicit Taylormethods forODEs and introduced a novel
strategy that allows to implement them systematically, although at the cost of differentiating
the function in the ODE up to the order of the method.

On the other hand, using the same strategy that led to approximate explicit Taylor meth-
ods for ODEs, we define approximate implicit Taylor methods, whose only requirement is
the knowledge of function derivatives to build the Jacobian matrix of auxiliary systems of
nonlinear equations, to be solved by Newton’s method.

While the numerical results essentially confirm that the novel approach introduced in this
work outperforms the exact version in terms of performance, this is not true for low-order
accuracy, as it was expected. The AIT methods are therefore expected to be useful in the
context of ODEs that require to be solved through a very-high-order implicit scheme.

Finally, it is worth pointing out that it is our purpose to further extend this analysis in the
context of PDEs, where implicit methods are needed in some underlying problems related
with them. High-order methods are being increasingly more demanded to accurately solve
some of these problems, and therefore, the AIT methods may become useful in that context.

Acknowledgements A.B., M.C.M., and P.M. are supported by Spanish MINECO grant MTM2017-
83942-P. P.M. is also supported by Conicyt/ANID (Chile), project PAI-MEC, folio 80150006. R.B. is

123

On approximate implicit Taylor methods... Page 21 of 21 304

supported by Fondecyt project 1170473; CRHIAM, Proyecto ANID/Fondap/15130015; Basal project CON-
ICYT/PIA/AFB170001; and by the INRIA Associated Team “Efficient numerical schemes for non-local
transport phenomena” (NOLOCO; 2018–2020), and D.Z. is supported by Conicyt/ANID Fondecyt/Postdoc-
torado/3170077.

References

Abad A, Barrio R, Blesa F, Rodríguez M (2012) Algorithm 924: TIDES, a Taylor series integrator for differ-
ential equation. ACM Trans Math Softw 39:article 5

Akinfenwa OA, Jator SN, Yao NM (2013) Continuous block backward differentiation formula for solving stiff
ordinary differential equations. Comput Math Appl 65:996–1005

Baeza A, Boscarino S, Mulet P, Russo G, Zorío D (2017) Approximate Taylor methods for ODEs. Comput
Fluids 159:156–166

Baeza A, Boscarino S, Mulet P, Russo G, Zorío D (2020) On the stability of approximate Taylor methods for
ODE and the relationship with Runge–Kutta schemes. arXiv:1804.03627v1

Barrio R, Rodríguez M, Abad A, Blesa F (2011) Breaking the limits: the Taylor series method. Appl Math
Comput 217:7940–7954

Dennis Jr. JE, SchnabelRB (1996)Numericalmethods for unconstrained optimization and nonlinear equations.
Classics in Applied Mathematics vol. 16, SIAM, Philadelphia

Faà di Bruno F (1855) Sullo sviluppo delle funzioni. Annali di Scienze Matematiche e Fisiche 6:479–480
Hairer E, Wanner G (1996) ,Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic

Problems. 2nd edition. Springer Series in Comput Math vol. 14
Jorba À, Zou M (2005) A software package for the numerical integration of ODEs by means of high-order

Taylor methods. Exp Math 14:99–117
Kirlinger G, Corliss GF (1991) On implicit Taylor seriesmethods for stiff ODEs, ArgonneNational Laboratory

technical report ANL/CP-74795
Miletics E,Molnárka G (2004) Taylor series method with numerical derivatives for numerical solution of ODE

initial value problems. J Comput Methods Sci Eng 4:105–114
Miletics E,Molnárka G (2005) Implicit extension of Taylor series method with numerical derivatives for initial

value problems. Comput Math Appl 50:1167–1177
Qiu J, Shu CW (2003) Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM

J Sci Comput 24:2185–2198
Scott JR (2000) Solving ODE initial value problems with implicit Taylor series methods, NASA technical

memorandum TM-2000-209400
Zorío D, Baeza A, Mulet P (2017) An approximate Lax–Wendroff-type procedure for high order accurate

schemes for hyperbolic conservation laws. J Sci Comput 71:246–273

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1804.03627v1

	On approximate implicit Taylor methods for ordinary differential equations
	Abstract
	1 Introduction
	1.1 Scope
	1.2 Related work
	1.3 Outline of the paper

	2 Taylor methods
	2.1 Preliminaries
	2.2 Faà di Bruno's formula
	2.3 Explicit Taylor methods

	3 Implicit Taylor methods
	3.1 Exact implicit Taylor methods
	3.2 Approximate implicit Taylor methods
	3.3 Linear stability

	4 Newton iteration
	4.1 Exact implicit Taylor method
	4.2 Approximate implicit Taylor method
	4.3 General number of scalar equations
	4.3.1 Computational cost of AIT methods

	5 Numerical experiments
	5.1 Preliminaries
	5.2 Examples 1 and 2: scalar equations
	5.3 Examples 3 and 4: systems of ODEs

	6 Conclusions
	Acknowledgements
	References

