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Abstract
Within the field of multilinear algebra, inverses and generalized inverses of tensors based on
theEinstein product have been investigated over the past fewyears. The notion of theweighted
Moore–Penrose inverses of even-order tensors in the framework of the Einstein product was
introduced recently (Ji andWei in Front Math China 12(6):1319–1337, 2017). In this article,
we introduce the weighted Moore–Penrose inverse of an arbitrary-order tensor. We also
investigate the singular value decomposition and full-rank decomposition of arbitrary-order
tensors using reshape operation. Derived representations are used for two purposes: (1) to
obtain a few new characterizations and representations of weighted Moore–Penrose inverse
of arbitrary-order tensors; (2) to explore various necessary and sufficient conditions for the
reverse-order law for the inverse to hold. In addition to these, we discuss applications of
singular value decomposition and the Moore–Penrose inverse of an arbitrary-order tensor to
a few 3D color image processing.

Keywords Weighted Moore–Penrose inverse · Tensor · Matrix · Tensor decomposition ·
Einstein product · Reverse-order law

Mathematics Subject Classification 65F45 · 15A69 · 15A09

Communicated by Ke Chen.

B Ratikanta Behera
ratikanta.behera@ucf.edu

Sandip Maji
majisandip.378@gmail.com

R. N. Mohapatra
Ram.Mohapatra@ucf.edu

1 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

2 Department of Mathematics and Statistics, Indian Institute of Science Education and Research Kolkata,
Mohanpur, Nadia, West Bengal, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-020-01328-y&domain=pdf
http://orcid.org/0000-0002-6237-5700


284 Page 2 of 34 R. Behera et al.

1 Introduction

1.1 Background andmotivation

Tensors or hypermatrix are multidimensional generalizations of vectors and matrices, and
have attracted tremendous interest in recent years (see Kolda and Bader 2009; Martin and
Loan 2008; Ragnarsson and Loan 2012;Qi 2005; Shao 2013). Indeed,multilinear systems are
closely related to tensors and such systems are encountered in a number of fields of practical
interest, i.e., signal processing (see Lathauwer et al. 2000; Sidiropoulos et al. 2017; Coppi
and Bolasco 1989), scientific computing (see Beylkin andMohlenkamp 2005; Shi et al. 2013;
Brazell et al. 2013), data mining (Chew et al. 2007), data compression and retrieval of large
structured data (see de Silva and Lim 2008; Che et al. 2018). Further, the Moore–Penrose
inverse of tensors plays an important role in solving suchmultilinear systems (see Behera and
Mishra 2017; Jin et al. 2017;Ma et al. 2019) and the reverse-order law for theMoore–Penrose
inverses of tensors yields a class of interesting problems that are fundamental in the theory of
generalized inverses of tensors (see Panigrahy et al. 2020; Sahoo and Behera 2020). In view
of these, multilinear algebra is drawing more and more attention from researchers (see Jin
et al. 2017; Bader and Kolda 2006; Martin and Loan 2008; Kruskal 1977; Lathauwer et al.
2000), specifically, the recent findings in (see Behera and Mishra 2017; Brazell et al. 2013;
Ji and Wei 2017; Panigrahy et al. 2020; Stanimirović et al. 2020; Sun et al. 2016; Behera
et al. 2020), motivate us to study this subject in the framework of arbitrary-order tensors.

Let CI1×···×IN (RI1×···×IN ) be the set of order N and dimension I1 × · · · × IN tensors
over the complex (real) field C(R). Let A ∈ C

I1×···×IN be a multiway array with N th
order tensor, and I1, I2, . . . , IN be dimensions of the first, second,. . ., N th way, respectively.
Indeed, a matrix is a second-order tensor, and a vector is a first-order tensor. We denote
R

m×n to be the set of all m × n matrices with real entries. Note that throughout the paper,
tensors are represented in calligraphic letters like A, and the notation (A)i1...iN = ai1...iN

represents the scalars. Each entry of A is denoted by ai1...iN . The Einstein product (see
Einstein 2007) A∗NB ∈ C

I1×···×IM ×K1×···×KL of tensors A ∈ C
I1×···×IM ×J1×···×JN and

B ∈ C
J1×···×JN ×K1×···×KL is defined by the operation ∗N via

(A∗NB)i1...iM k1...kL =
∑

j1... jN

ai1...iM j1... jN b j1... jN k1...kL . (1)

The Einstein product is not commutative but associative, and distributes with respect to tensor
addition. Further, cancellation does not work but there is a multiplicative identity tensor I.
This type of product of tensors is used in the study of the theory of relativity (Einstein 2007)
and also used in the area of continuum mechanics (Lai et al. 2009).

On the other hand, one of the most successful developments in the world of linear algebra
is the concept of Singular Value Decomposition (SVD) of matrices (Ben-Israel and Greville
1974). This concept gives us important information about a matrix such as its rank, an
orthonormal basis for the column or row space, and reduction to a diagonal form (Tian
and Cheng 2004). Recently, this concept is also used in low rank matrix approximations
(Grasedyck 2004; Ishteva et al. 2011; Ye 2005). Since tensors are natural multidimensional
generalizations of matrices, there are many applications involving arbitrary-order tensors.
Further, the problem of decomposing tensors is approached in a variety of ways by extending
the SVD, and extensive studies have exposed many aspects of such decomposition and its
applications (see, for example, Chen et al. 2017; Kolda and Bader 2009; Kruskal 1977;
Lathauwer et al. 2000; Sidiropoulos et al. 2017; Liang and Zheng 2019). However, the

123



Weighted Moore–Penrose inverses of arbitrary-order tensors Page 3 of 34 284

existing framework of SVD of tensors appears to be insufficient and/or inadequate in several
situations.

The aim of this paper is to present a proper generalization of the SVD of arbitrary-order
tensors under Einstein tensor product. In fact, the existing form (Brazell et al. 2013) of the
SVD is well suited for square tensors, which is defined as follows:

Definition 1 (Definition 2.8, Brazell et al. 2013): The transformation defined as
f : TI ,J ,I ,J (R) −→ MI J ,I J (R) with f (A) = A and defined component wise as

(A)i j i j (A)[i+( j−1)I ][i+( j−1)I ],
f

(2)

where TI ,J ,I ,J (R) = {A ∈ RI×J×I×J : det( f (A)) �= 0}. In general, for any even order
tensor, the transformation is defined as f : TI1,...,IN ,I1,...,JN (R) −→ MI1...IN ,J1...JN (R)

(A)i1...iN j1... jN (A)[
i1+∑N

k=2(ik−1)
∏k−1

l=1 Il ][ j1+∑N
k=2( jk−1)

∏k−1
l=1 Jl

].
f

(3)

Using the above Definition and Theorem 3.17 in Brazell et al. (2013), we obtain the SVD
of a tensor A ∈ R

I×J×I×J , which can be extended only to any square tensor, i.e., for
A ∈ R

I1×I2×···×IN ×I1×I2×···×IN . Extension of the SVD for an arbitrary-order tensor using
this method (Brazell et al. 2013) is impossible, since f is not a homomorphism for even-order
and/or arbitrary-order tensors. In fact, the Einstein product is not defined for the following
two even-order tensors,A ∈ R

I1×I2×J1×J2 and B ∈ R
I1×I2×J1×J2 , i.e.,A∗2 B is not defined.

Therefore, our aim in this paper is to find the SVD for any arbitrary order tensors using
reshape operation, which is discussed in the next section.

In addition, recently there has been increasing interest in analyzing inverses and general-
ized inverses of tensors based on different tensor products (see Sahoo et al. 2020; Ji and Wei
2018; Jin et al. 2017; Brazell et al. 2013; Sun et al. 2016). The representations and properties
of the ordinary tensor inverse were introduced in Brazell et al. (2013). This interpretation
is extended to the Moore–Penrose inverse of tensors in Sun et al. (2016) and investigated
for a few characterizations of different generalized inverses of tensors via Einstein prod-
uct in Behera and Mishra (2017). Appropriately, Behera and Mishra (2017) posed the open
question: “Does there exist a full rank decomposition of tensors ? If so, can this be used
to compute the Moore–Penrose inverse of a tensor”? It is worth mentioning that Liang and
Zheng (2019) investigated this question and discussed the computation of Moore–Pensore
inverse of tensors using full rank decomposition.

In this paper, we study singular value decomposition and full-rank decomposition
of arbitrary-order tensors through reshape operation. Derived representations are usable
in generating corresponding representations of the Moore–Penrose inverse and weighted
Moore–Penrose inverse arbitrary-order tensors. However, until now, these decomposition
and representation have been limited to special kinds of tensors. The multiplication of two
tensors with arbitrary-order is impossible with existing tensor multiplication techniques. The
multiplication of two tensors A ∗ B for A,B ∈ RN1×N2×···×Np using t-product (see Braman
2010; Liang and Zheng 2019; Martin et al. 2013) requires N1 = N2. Further, if N1 = N2

and others are different, then product is not possible. For example, if A ∈ R2×3×4×5 and
B ∈ R2×3×7×8 then A ∗ B is not defined. The drawback of multiplication of two arbitrary-
order tensors using the Einstein product is mentioned a previous paragraph. Hence, SVD
and full-rank decomposition (see Brazell et al. 2013; Sun et al. 2016; Liang and Zheng
2019) of arbitrary-order tensors are not possible in several applications. The main advantage
of the reshaping operation of tensors is to establish a general framework for multiplying
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arbitrary-order tensors. The beauty of the reshape operation is that the number of elements
are rearranged from the tensor case into the matrix case and vice versa. Thus, it gives us the
freedom and flexibility to choose the order of the tensors. For example, consider a tensor
A ∈ R3×4×5×6×7. Then the tensor can be represented in a different form of tensor and
matrices.

• The tensor B1 = reshape(A) ∈ R12×5×6×7, i.e., transform the fifth-order tensor to the
fourth-order tensor.

• The tensor B2 = reshape(A) ∈ R5×7×6×3×4, i.e., transform the fifth-order tensor to
the fifth-order tensor with different size.

• The matrix B3 = reshape(A) ∈ R60×42, i.e., transform the fifth-order tensor to the
matrix.

• The matrix B4 = reshape(A) ∈ R21×120, i.e., transform the fifth-order tensor to the
matrix.

A summary of the main facets of this discussion may be listed in the following way:

1. We have studied singular value decomposition and full-rank decomposition of arbitrary-
order tensors through reshape operation. Then the weighted Moore–Penrose inverse of
an arbitrary tensor is introduced.

2. We have further studied the range- and null-space of tensors. We have also added a few
characterizations of the Moore–Penrose inverse and weighted Moore–Penrose inverse of
arbitrary-order tensors via the Einstein product to the existing theory.

3. We have discussed some necessary and sufficient conditions for the reverse-order law to
hold for weighted Moore–Penrose inverses of arbitrary-order tensors.

4. Application of singular value decomposition and the Moore–Penrose inverse to a few 3D
color images is presented.

Recently, Panigrahy andMishra (2020) investigated theMoore–Penrose inverse of a prod-
uct of two tensors via Einstein product. Using such theory of Einstein product, Stanimirović
et al. (2020) also introduced some basic properties of the range and null space of multidi-
mensional arrays, and the effective definition of the tensor rank, termed as reshaping rank.
Recently, Sahoo et al. (2020) added a few results on reshape operation of a tensor to the exist-
ing theory. In this respect, Panigrahy et al. (2020) obtained a few necessary and sufficient
conditions for the reverse order law for the Moore–Penrose inverses of tensors, which can
be used to simplify various tensor expressions that involve inverses of tensor products (Ding
andWei 2016). Since then, many authors investigate the reverse order law for various classes
of generalized inverses of tensors (Che and Wei 2020; Panigrahy and Mishra 2020; Sahoo
and Behera 2020). At the same time, the representations of the weighted Moore–Penrose
inverse (Ji andWei 2017) of an even-order tensor was introduced via the Einstein product. In
this context, we focus our attention on exploring some characterizations and representation
of weighted Moore–Penrose inverses of arbitrary-order tensors.

In this paper, we study the weighted Moore–Penrose inverse of an arbitrary-order tensor.
This study can lead to the enhancement of the computation of SVD and full rank decompo-
sition of arbitrary-order tensor using reshape operation. With that in mind, we discuss some
identities involving the weighted Moore–Penrose inverses of tensors and then obtain a few
necessary and sufficient conditions of the reverse order law for the weighted Moore–Penrose
inverses of arbitrary-order tensors via the Einstein product.
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1.2 Outline

We organize the paper as follows: In the next subsection, we introduce some notations and
definitions which are helpful in proving the main results of this paper. In Sect. 2, we provide
the main results of the paper. To do so, we introduce SVD and full rank decomposition of an
arbitrary-order tensor using reshape operation. Within this framework, the Moore–Penrose
and the generalized weighted Moore–Penrose inverse for arbitrary-order tensor is defined.
Furthermore, we obtain several identities involving the weighted Moore–Penrose inverses of
tensors via Einstein product. Section 3 contains a few necessary and sufficient conditions of
the reverse-order law for the weighted Moore–Penrose inverses of tensors.

1.3 Notations and definitions

For convenience, we first briefly explain a few essential facts about the Einstein prod-
uct of tensors, which are found in Behera and Mishra (2017), Brazell et al. (2013) and
Sun et al. (2016). For a tensor A = (ai1...iM j1... jN ) ∈ C

I1×···×IM ×J1×···×JN , the tensor
B = (b j1... jN i1...iM ) ∈ C

J1×···×JN ×I1×···×IM is said to be conjugate transpose of A, if
b j1... jN i1...iM = ai1...iM j1... jN and B is denoted by A∗. When b j1... jN i1...iM = ai1...iM j1... jN ,
B is the transpose of A, denoted by AT . The Frobenius norm ||.||F is defined ( Sun et al.
2016) as follows:

||A||F =
⎛

⎝
∑

i1...iN j1... jN

|ai1...iN j1... jN |2
⎞

⎠

1
2

for A ∈ C
I1×···×IN ×J1×···×JN .

The definition of the diagonal tensor is borrowed from Sun et al. (2016), and is obtained
by generalizing Definition 3.12, Brazell et al. (2013).

Definition 2 A tensor D ∈ C
I1×···×IM ×J1×···×JN with entries di1...iM j1... jN

is called a diagonal tensor if di1...iM j1... jN = 0, when[
i1 + ∑M

k=2(ik − 1)
∏k−1

l=1 Il ] �= [ j1 + ∑N
k=2( jk − 1)

∏k−1
l=1 Jl

]
.

Now we recall the definition of an identity tensor below.

Definition 3 (Definition 3.13, Brazell et al. 2013) A tensor IN ∈ C
J1×···×JN ×J1×···×JN with

entries (IN )i1i2···iN j1 j2··· jN = ∏N
k=1 δik jk , where

{
δik jk =1, ik = jk,

0, ik �= jk .

is called a unit tensor or identity tensor.

Note that throughout the paper, we denote IM ,IL and IR as identity tensors in the
spaceCI1×···×IM ×I1×···×IM ,CK1×···×KL×K1×···×KL andCH1×···×HR×H1×···×HR , respectively.
Further, a tensor O denotes the zero tensor if all the entries are zero. A tensor A ∈
C

I1×···×IN ×I1×···×IN is Hermitian if A = A∗ and skew-Hermitian if A = −A∗. Subse-
quently, a tensor A ∈ C

I1×···×IN ×I1×···×IN is unitary if A∗NA∗ = A∗∗NA = IN , and
idempotent if A∗NA = A. In the case of tensors of real entries, Hermitian, skew-Hermitian
and unitary tensors are called symmetric (see Definition 3.16, Brazell et al. 2013), skew-
symmetric and orthogonal (see Definition 3.15, Brazell et al. 2013) tensors, respectively.
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Next we present the definition of the reshape operation, which was introduced earlier in
Stanimirović et al. (2020). This is a more general way of rearranging the entries in a tensor
(it is also a standard Matlab function), as follows:

Definition 4 (Definition 3.1, Stanimirović et al. 2020): The 1–1 and onto reshape map, rsh,
is defined as
rsh : CI1×···×IM ×J1×···×JN −→ C

I1···IM ×J1···JN with

rsh(A) = A = reshape(A, I1 · · · IM , J1 · · · JN ), (4)

where A ∈ C
I1×···×IM ×J1×···×JN and the matrix A ∈ C

I1···IM ×J1···JN . Further, the inverse
reshaping is the mapping defined as rsh−1 : CI1···IM ×J1···JN −→ C

I1×···×IM ×J1×···×JN with

rsh−1(A) = A = reshape(A, I1, · · · , IM , J1, · · · , JN ), (5)

where the matrix A ∈ C
I1···IM ×J1···JN and the tensor A ∈ C

I1×···×IM ×J1×···×JN .

Further, Lemma 3.2 in Stanimirović et al. (2020) defined the rank of a tensor,A, denoted by
rshrank(A) as

rshrank(A) = rank(rsh(A)). (6)

Continuing this research, Stanimirović et al. (2020) discussed the homomorphism properties
of the rsh function, as follows:

Lemma 1 (Lemma 3.1 Stanimirović et al. 2020) Let A ∈ C
I1×···×IM ×J1×···×JN and B ∈

C
J1×···×JN ×K1×···×KL be given tensors. Then

rsh(A∗NB) = rsh(A)rsh(B) = AB ∈ C
I1···IM ×K1···KL , (7)

where A = rsh(A) ∈ C
I1···IM ×J1···JN , B = rsh(B) ∈ C

J1···JN ×K1···KL .

An immediate consequence of the above Lemma is the following:

A∗NB = rsh−1(AB), i .e., rsh−1(AB) = rsh−1(A)∗N rsh−1(B). (8)

Existence of SVD of any square tensor is discussed in Brazell et al. (2013). Using this
framework, Ji and Wei (2017) defined Hermitian positive definite tensors, as follows:

Definition 5 (Definition 1, Ji and Wei 2017) For P ∈ C
I1×···×IN ×I1×···×IN , if there exists a

unitary tensor U ∈ C
I1×···×IN ×I1×···×IN such that

P = U ∗N D ∗N U∗, (9)

where D ∈ C
I1×···×IN ×I1×···×IN is a diagonal tensor with positive diagonal entries, then P

is said to be a Hermitian positive definite tensor.

Further, Ji and Wei (2017) defined the square root of a Hermitian positive definite tensor, P
as follows:

P1/2 = U ∗N D1/2 ∗N U∗,

where D1/2 is the diagonal tensor, which obtained fromD by taking the square root of all its
diagonal entries. Notice thatP1/2 is always non-singular and its inverse is denoted byP−1/2.

we now recall the definition of the range and the null space of arbitrary order tensors.

Definition 6 ( Definition 2.1, Stanimirović et al. 2020): The null space and the range space
of a tensor A ∈ C

I1×···×IM ×J1×···×JN are defined as follows:

N (A) = {X : A ∗N X = O ∈ C
I1×···×IM }, and R(A) = {A ∗N X : X ∈ C

J1×···×JN }.
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It is easily seen thatN (A) is a subspace ofCJ1×···×JN andR(A) is a subspace ofCI1×···×IM .
In particular, N (A) = {O} if and only if A is left invertible via ∗M operation and R(A) =
C

I1×···×IM if and only if A is right invertible via ∗N operation.

2 Main results

Mathematical modelling of problems in science and engineering typically involves solving
multilinear systems; this becomes particularly challenging for problems having an arbitrary-
order tensor. However, the existing framework onMoore–Penrose inverses of arbitrary-order
tensor appears to be insufficient and/or inappropriate. It is thus of interest to study the theory
of Moore–Penrose inverse of an arbitrary-order tensor via the Einstein product.

2.1 Moore–Penrose inverses

One of the most widely used methods is the SVD to compute Moore–Penrose inverse. Here
we present a generalization of the SVD via the Einstein product.

Lemma 2 Let A ∈ C
I1×···×IM ×J1×···×JN with rshrank(A) = r . Then the SVD for tensor A

has the form
A = U∗MD∗NV∗, (10)

where U ∈ C
I1×···×IM ×I1×···×IM and V ∈ C

J1×···×JN ×J1×···×JN are unitary tensors, and
D ∈ C

I1×···×IM ×J1×···×JN is a diagonal tensor, defined by

(D)i1···iM j1··· jN =
{

σI > 0, ifI = J ∈ {1, 2, . . . , r},
0, otherwise,

where I = [i1 + ∑M
k=2(ik − 1)

∏k−1
l=1 Il ] and J = [ j1 + ∑N

k=2( jk − 1)
∏k−1

l=1 Jl ].
Proof Let A = rsh(A) ∈ C

I1···IM ×J1···JN . In the context of the SVD of the matrix A, one can
write A = U DV ∗, where U ∈ C

I1···IM ×I1···IM and V ∈ C
J1···JN ×J1···JN are unitary matrices

and D ∈ C
I1···IM ×J1···JN is a diagonal matrix with

(D)I ,J =
{

σI > 0, ifI = J ∈ {1, 2, . . . , r},
0, otherwise

From relations (7) and (8), we can write

A = rsh−1(A) = rsh−1(U DV ∗)
= rsh−1(U )∗Mrsh−1(D)∗N rsh−1(V ∗) = U∗MD∗NV∗, (11)

where U = rsh−1(U ),V = rsh−1(V ) and D = rsh−1(D). Further, U∗MU∗ =
rsh−1(UU∗) = rsh−1(I ) = IM and V∗NV∗ = rsh−1(V V ∗) = rsh−1(I ) = IN gives
A = U∗MD∗NV∗, where U and V are unitary tensors and D diagonal tensor. ��
Remark 1 The authors of the paper Liang and Zheng (2019) has proved Theorem 3.2 for a
square tensor. Here we proved for an arbitrary-order tensor.

Continuing this study, we recall the definition of the Moore–Penrose inverse of tensors
in C

I1×···×IM ×J1×···×JN via the Einstein product, which was introduced in Liang and Zheng
(2019) for arbitrary-order.
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Definition 7 LetA ∈ C
I1×···×IM ×J1×···×JN . The tensor X ∈ C

J1×···×JN ×I1×···×IM satisfying
the following four tensor equations:

(1) A∗NX∗MA = A;
(2) X∗MA∗NX = X ;
(3) (A∗NX )∗ = A∗NX ;
(4) (X∗MA)∗ = X∗MA

is called the Moore–Penrose inverse of A, and is denoted by A†.

Similar to the proof of Theorem 3.2 in Sun et al. (2016), we have the existence and
uniqueness of theMoore–Penrose inverse of an arbitrary-order tensor inCI1×···×IM ×J1×···×JN

as follows.

Theorem 1 The Moore–Penrose inverse of an arbitrary-order tensor, A ∈
C

I1×···×IM ×J1×···×JN exists and is unique.

By straightforward derivation, the following results can be obtained, which also hold
(Lemmas 2.3, 2.6) in Behera and Mishra (2017) for even-order tensor.

Lemma 3 Let A ∈ C
I1×···×IM ×J1×···×JN . Then

(a) A∗ = A†∗MA∗NA∗ = A∗∗MA∗NA†;
(b) A = A∗NA∗∗M (A∗)† = (A∗)†∗NA∗∗MA;
(c) A† = (A∗∗MA)†∗NA∗ = A∗∗M (A∗NA∗)†.

FromStanimirović et al. (2020),we present the relation of range space ofmultidimensional
arrays which will be used to prove next Lemma.

Lemma 4 (Lemma2.2, Stanimirović et al. 2020) Let A ∈ C
I1×···×IM ×J1×···×JN , B ∈

C
I1×···×IM ×K1×···×KL . ThenR(B) ⊆ R(A) if and only if there existsU ∈C

J1×···×JN ×K1×···×KL

such that B = A∗NU .

We now discuss the important relation between range and Moore–Penrose inverse of an
arbitrary order tensor, which are mostly used in various section of this paper.

Lemma 5 Let A ∈ C
I1×···×IM ×J1×···×JN and B ∈ C

I1×···×IM ×K1×···×KL . Then

(a) R(B) ⊆ R(A) ⇔ A ∗N A† ∗M B = B,
(b) R(A) = R(B) ⇔ A ∗N A† = B ∗L B†,
(c) R(A) = R[(A†)∗] and R(A∗) = R(A†).

Proof (a) Using the fact that R(A ∗N U) ⊆ R(A) for two tensors A and U in appropriate
order, one can concludeR(B) ⊆ R(A) from A ∗N A† ∗M B = B. Applying Lemma 4,
we conclude B = A ∗N P from R(B) ⊆ R(A), where P ∈ C

J1×···×JN ×K1×···×KL .
Hence, A ∗N A† ∗M B = A ∗N A† ∗M A ∗N P = B.

(b) From (a), we haveR(A) = R(B) if and only ifA∗N A†∗MB = B andB∗LB†∗MA = A
which implies B† = B†∗MA∗NA†. ThenA ∗N A† = B ∗L B† ∗M A ∗N A† = B ∗L B†.

(c) Using Lemma 3 [(b), (c)], one can conclude that R(A) ⊆ R[(A†)∗] and R[(A†)∗] ⊆
R(A) respectively. This follows R(A) = R[(A†)∗]. Further, replacing A by A∗ and
using the fact (A∗)† = (A†)∗ we obtain R(A∗) = R(A†).

��
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Using the fact thatR(A ∗N B) ⊆ R(A) for two tensorsA and B and the Definition-7, we
get

R(A ∗N B ∗L B†) = R(A ∗N B), (12)

where A ∈ C
I1×···×IM ×J1×···×JN and B ∈ C

J1×···×JN ×K1×···×KL . Now using the method as
in the proof of Lemma 5, one can prove the next Lemma.

Lemma 6 Let A ∈ C
I1×···×IM ×J1×···×JN and B ∈ C

K1×···×KL×J1×···×JN . Then

(a) R(B∗) ⊆ R(A∗) ⇔ B ∗N A† ∗M A = B,
(b) R(A∗) = R(B∗) ⇔ A† ∗M A = B† ∗L B,

(c) R(A ∗N B†) = R(A ∗N B∗).

Consider A, B, X ∈ C
I1×···×IN ×I1×···×IN and all are invertible, the following equation:

B∗N (A∗NX∗NB)−1∗NA = X−1 (13)

is called the cancellation property of product of tensors (A,B,X ). When the ordinary inverse
is replaced by generalized inverse with suitable order, this cancellation property is not true
in general.

Example 1 Consider tensors A = (ai jkl) ∈ R
3×2×2×2, B = (bi jkl) ∈ R

3×2×3×2 and X =
(xi jkl) ∈ R

2×2×3×2 such that

ai j11 =
⎛

⎝
0 0
0 −1
1 −1

⎞

⎠ , ai j21 =
⎛

⎝
0 0

−1 0
1 −1

⎞

⎠ , ai j12 =
⎛

⎝
1 1
1 −1
0 1

⎞

⎠ , ai j22 =
⎛

⎝
−1 0
1 −1
1 0

⎞

⎠ ,

bi j11 =
⎛

⎝
1 1
0 1
0 1

⎞

⎠ , bi j21 =
⎛

⎝
0 0
0 0
0 0

⎞

⎠ , bi j31 =
⎛

⎝
0 1
0 0
1 0

⎞

⎠ ,

bi j12 =
⎛

⎝
0 0
0 0
1 1

⎞

⎠ , bi j22 =
⎛

⎝
0 0
0 1
1 1

⎞

⎠ = bi j32,

and

xi j11 =
(−1 1

−1 0

)
, xi j21 =

(
0 −1

−1 0

)
, xi j31 =

(
0 0
0 0

)
,

xi j12 =
(

0 0
−1 −1

)
, xi j22 =

(
1 −1

−1 1

)
, xi j32 =

(−1 0
0 −1

)
.

Then

(X †)i j11 =
⎛

⎝
−1/3 2/3
−4/9 1/9
0 −5/9

⎞

⎠ , (X †)i j21 =
⎛

⎝
−1/3 −1/3
−1/9 −2/9
0 1/9

⎞

⎠ ,

(X †)i j12 =
⎛

⎝
1/3 1/3

−5/9 −1/9
0 −4/9

⎞

⎠ , (X †)i j22 =
⎛

⎝
1/3 −2/3
1/9 2/9
0 −1/9

⎞

⎠

and

(B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j11 =
⎛

⎝
−1/3 2/3
0 −1/3
1/3 −1

⎞

⎠ ,
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(B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j21 =
⎛

⎝
−1/3 −1/3
0 −1/3
1/3 0

⎞

⎠ ,

(B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j12 =
⎛

⎝
1/3 1/3
0 −2/3

−4/3 −1

⎞

⎠ ,

(B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j22 =
⎛

⎝
1/3 −2/3
0 1/3

−4/3 0

⎞

⎠ .

Hence,
X † �= B ∗2 (A ∗2 X ∗2 B)† ∗2 A.

In this context, we concentrate to characterize all triples (A,B,X ) which satisfy

X † = B∗R(A∗MX∗NB)†∗LA, (14)

whereX ∈ C
I1×···×IM ×J1×···×JN ,A ∈ C

K1×···×KL×I1×···×IM andB ∈ C
J1×···×JN ×H1×···×HR .

The first result obtained below deals with the necessary condition of this properties.

Lemma 7 Let X ∈ C
I1×···×IM ×J1×···×JN , A ∈ C

K1×···×KL×I1×···×IM and B ∈
C

J1×···×JN ×H1×···×HR .
If X † = B ∗R (A ∗M X ∗N B)† ∗L A, then X = A† ∗L A ∗M X and X = X ∗N B ∗R B†.

Proof Let, X † = B ∗R (A ∗M X ∗N B)† ∗L A. ThenR(X †) ⊆ R(B),R((X †)∗) ⊆ R(A∗).
Hence, from (a) and (c) in Lemma 5 and (a) in Lemma 6, we haveR(X ) ⊆ R(A∗),R(X ∗) ⊆
R((B†)∗), which implies

X = A† ∗L A ∗M X ,X = X ∗N B ∗R B†.

��
The following example shows that converse of the above theorem is not true in general.

Example 2 Consider tensors A = (ai jkl)1≤i, j,k,l≤2 ∈ R
2×2×2×2, B = A∗ and X =

(xi jkl)1≤i, j,k,l≤2 ∈ R
2×2×2×2 such that

ai j11 =
(
1 −1
0 0

)
, ai j21 =

(−1 0
0 0

)
, ai j12 =

(
0 −1
1 0

)
, ai j22 =

(
1 0
0 −1

)
,

and

xi j11 =
(
1 −1
0 0

)
, xi j12 =

(
0 1
0 0

)
, xi j21 =

(
0 0

−1 0

)
, xi j22 =

(
0 0
1 0

)
.

Then

(A†)i j11 =
(
0 −1
0 0

)
, (A†)i j21 =

(−1 −1
1 0

)
, (A†)i j12 =

(−1 −1
0 0

)
, (A†)i j22 =

(
0 −1
0 −1

)
.

Thus, we have
A† ∗2 A ∗2 X = X and X ∗2 B ∗2 B† = X .

But
B ∗2 (A ∗2 X ∗2 B)† ∗2 A �= X †,
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where

(B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j11 =
(
1 1
1
2

1
2

)
, (B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j21 =

(
0 0

− 1
2

1
2

)
,

(B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j12 =
(
0 1
0 0

)
, (B ∗2 (A ∗2 X ∗2 B)† ∗2 A)i j22 =

(
0 −1
0 0

)
,

(X †)i j11 =
(
1 1
0 0

)
, (X †)i j21 =

(
0 0

− 1
2

1
2

)
,

(X †)i j12 =
(
0 1
0 0

)
, (X †)i j22 =

(
0 0
0 0

)
.

However, the converse of Lemma 7 holds under the assumption of additional condition which
is stated below.

Lemma 8 Let X ∈ C
I1×···×IM ×J1×···×JN ,A ∈ C

K1×···×KL×I1×···×IM and B ∈
C

J1×···×JN ×H1×···×HR . If X = A† ∗L A ∗M X= X ∗N B ∗R B† along with the condition
K = A†∗L(A∗MX )∗N (A∗MX )†∗LA and L = B∗R(X∗NB)†∗M (X∗NB)∗RB† are Hermi-
tian, then X † = B ∗R (A ∗M X ∗N B)† ∗L A.

Proof Let W = B ∗R (A ∗M X ∗N B)† ∗L A.
Now, X ∗N W ∗M X = (A† ∗L A ∗M X ∗N B ∗R B†) ∗N B ∗R (A ∗M X ∗N B)† ∗L A ∗M

(A† ∗L A ∗M X ∗N B ∗R B†).

= A† ∗L [(A ∗M X ∗N B) ∗R (A ∗M X ∗N B)† ∗L (A ∗M X ∗N B)] ∗R B†.

= A† ∗L (A ∗M X ∗N B) ∗R B† = X .
Further,W∗MX ∗N W = B∗R (A∗MX ∗N B)†∗LA∗MX ∗N B∗R (A∗MX ∗N B)†∗LA = W .
Again K = X ∗N W and L = W ∗M X are Hermitian. Hence, W = X †. ��

From Lemma 7 It is clear that if X † = B∗R(A∗MX∗NB)†∗LA, then R(A∗MX ) =
R(A∗MX∗NB),which implies that (A∗MX∗NB)∗R(A∗MX∗NB)† = A∗MX∗N (A∗MX )†.
It is easy to verify thatX∗NX † = K andX †∗MX = L, and bothK andL both are Hermitian.
Therefore, a necessary and sufficient condition for the cancellation law can be stated as

Theorem 2 Let X ∈ C
I1×···×IM ×J1×···×JN ,A ∈ C

K1×···×KL×I1×···×IM and B ∈
C

J1×···×JN ×H1×···×HR .
X † = B ∗R (A ∗M X ∗N B)† ∗L A if and only if X = A† ∗L A ∗M X= X ∗N B ∗R B† and
both K = A†∗L(A∗MX )∗N (A∗MX )†∗LA and L = B∗R(X∗NB)†∗M (X∗NB)∗RB† are
Hermitian.

We now proceed to discuss a few necessary and sufficient conditions for the cancellation law.

Corollary 1 Let X ∈ C
I1×···×IM ×J1×···×JN ,A ∈ C

K1×···×KL×I1×···×IM and B ∈
C

J1×···×JN ×H1×···×HR , and X † = B ∗R (A ∗M X ∗N B)† ∗L A if and only if both the
equations

X † = (A∗MX )†∗LA and X † = B∗R(X∗NB)† are satis f ied. (15)

Proof By taking B = I in Theorem 2, we have X † = (A ∗M X )† ∗L A if and only if
A† ∗L (A∗MX )∗N (A∗MX )† ∗L A is Hermitian and X = A† ∗L A ∗M X . Similarly, with
the special case A = I in Theorem 2, we get X † = B ∗R (X ∗N B)† if and only if
B∗R(X∗NB)†∗M (X∗NB)∗RB† is Hermitian and X = X ∗N B ∗R B†. Using the fact of
Theorem2 one can prove the required result. ��
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Using Lemmas 5 and 6 in Corollary 1 one obtain the following result.

Theorem 3 Let X ∈ C
I1×···×IM ×J1×···×JN , A ∈ C

K1×···×KL×I1×···×IM and B ∈
C

J1×···×JN ×H1×···×HR , then

X † = B ∗R (A ∗M X ∗N B)† ∗L A
if and only if

(A∗MX )† = X †∗MA†, (X∗NB)† = B†∗NX †, X = A†∗LA∗MX and X = X∗NB∗RB†.

Proof Suppose that X † = B ∗R (A ∗M X ∗N B)† ∗L A. Then from Corollary 1,
X † = (A∗MX )†∗LA and X † = B∗R(X∗NB)†.
Now, R(X ) = R[(X †)∗] = R[A∗ ∗L {(A ∗M X )†}∗] = R(A∗ ∗L A ∗M X ) and R(X ∗) =
R(X †) = R[B ∗R (X ∗N B)†] = R[B ∗R (X ∗N B)∗] = R(B ∗R B∗ ∗N X ∗).

Therefore,R(X ∗N X ∗ ∗M A∗) ⊆ R(X ) = R(A∗ ∗L A ∗M X ) ⊆ R(A∗), i.e.,R(X ∗N

X ∗ ∗M A∗) ⊆ R(A∗) andR(A∗∗LA∗MX ) ⊆ R(X ) implies that (A ∗M X )† = X † ∗M A†.
R(X ) ⊆ R(A†) implies A† ∗L A ∗M X = X . Similarly, from R(X ∗) = R(B∗RB∗∗NX ∗)
it follows that (X ∗N B)† = B† ∗N X †, X = X ∗N B ∗R B†.

Conversely, using Lemma 5(c), Lemma6(a) in the fact
R[(X †)∗] = R(X ) ⊆ R(A†) = R(A∗) and R(X †) = R(X ∗) ⊆ R[(B†)∗] = R(B).

One has X † = X †∗MA†∗LA and X † = B∗RB†∗NX †.
Now, (A∗M X )†∗L A = X †∗M A†∗L A = X † andB∗R (X ∗N B)† = B∗R B†∗N X † = X †.
then by Corollary 1 proof is done. ��

2.2 WeightedMoore–Penrose inverse

Weighted Moore–Penrose inverse of even-order tensor,A ∈ C
I1×···×IK ×J1×···×JK was intro-

duced in Ji and Wei (2017), very recently. Here we have discussed weighted Moore–Penrose
inverse for an arbitrary-order tensor via Einstein product, which is a special case of general-
ized weighted Moore–Penrose inverse.

Definition 8 Let A ∈ C
I1×···×IM ×J1×···×JN , and a pair of invertible Hermitian tensors M ∈

C
I1×···×IM ×I1×···×IM and N ∈ C

J1×···×JN ×J1×···×JN . A tensor Y ∈ C
J1×···×JN ×I1×···×IM is

said to be the generalized weighted Moore–Penrose inverse of A with respect to M and
N , if Y satisfies the following four tensor equations:

(1) A ∗N X ∗M A = A;
(2) X ∗M A ∗N X = X ;
(3) (M ∗M A ∗N X )∗ = M ∗M A ∗N X ;
(4) (N ∗N X ∗M A)∗ = N ∗N X ∗M A.

In particular, when bothM, N are Hermitian positive definite tensors, the tensor Y is called
the weighted Moore–Penrose inverse of A and denote by A†

M,N .

However, the generalized weighted Moore–Penrose inverse Y does not always exist for any
tensor A, as shown below with an example.

Example 3 Consider tensors A = (ai jk) ∈ R
2×3×2 and M = (ai jkl) ∈ R

2×3×2×3 with

N = (ni j ) ∈ R
2×2 such that

ai j1 =
(

1 0 1
−1 2 1

)
, ai j2 =

(
2 0 3
2 0 1

)
and N =

(
2 0
0 −1

)
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with

mi j11 =
(
2 0 0
0 0 0

)
, mi j12 =

(
0 2 0
0 0 0

)
, mi j13 =

(
0 0 1
0 0 0

)
,

mi j21 =
(

0 0 0
−1 0 0

)
, mi j22 =

(
0 0 0
0 1 0

)
, mi j23 =

(
0 0 0
0 0 3

)
.

Then we have

AT ∗2 M ∗2 A =
(
9 12
12 16.

)

This showsAT ∗2M∗2A is not invertible. Consider the generalizedweightedMoore–Penrose
inverse Y ∈ R

2×2×3 of the given tensor A is exist, then using relation (1) and relation (3) of
Definition 8, we have

A ∗1 Y ∗2 M−1 ∗2 YT ∗1 AT ∗2 M ∗2 A = A. (16)

Since (AT ∗2 A)−1 ∗1 AT ∗2 A = I, then A is left cancellable, now (16) becomes

Y ∗2 M−1 ∗2 YT ∗1 AT ∗2 M ∗2 A = I, (17)

this follows that AT ∗2 M ∗2 A is invertible, which is a contradiction.

At this point, one may be interested to know when does the generalized weighted Moore–
Penrose inverse exist? The answer to this question is explained in the following theorem.

Theorem 4 Let A ∈ C
I1×···×IM ×J1×···×JN . If both M ∈ C

I1×···×IM ×I1×···×IM and N ∈
C

J1×···×JN ×J1×···×JN are Hermitian positive definite tensors. Then generalized weighted
Moore–Penrose inverse of an arbitrary-order tensor A exists and is unique, i.e., there exist
a unique tensor X ∈ C

J1×···×JN ×I1×···×IM , such that

X = A†
M,N = N−1/2 ∗N (M1/2 ∗M A ∗N N−1/2)† ∗M M1/2, (18)

where M1/2 and N 1/2 are square roots of M and N , respectively, satisfy all four relations
of Definition 8.

One can prove the above theorem, using Theorem 1 in Ji and Wei (2017) and Theorem 1.
Further, it is known that identity tensors are always Hermitian and positive definite; therefore,
for any A ∈ C

I1×···×IM ×J1×···×JN , A†
IM ,IN

exists and A†
IM ,IN

= A†, which is called the
Moore–Penrose inverse ofA. Specifically, if we takeM = IM orN = IN in Eq. (18), then
the following identities are hold.

Corollary 2 Let A ∈ C
I1×···×IM ×J1×···×JN . Then

(a) A†
M,IN

= (M1/2 ∗M A)† ∗M M1/2,

(b) A†
IM ,N = N−1/2 ∗N (A ∗N N−1/2)†.

Using Definition 8 and following Lemma 2 in Ji and Wei (2017), one can write
(A†

M,N )
†
N ,M = A and (A†

M,N )∗ = (A∗)†N−1,M−1 , where A is any arbitrary-order tensor.
Now we define weighted conjugate transpose of a arbitrary-order tensor, as follows.

Definition 9 Let M ∈ C
I1×···×IM ×I1×···×IM and N ∈ C

J1×···×JN ×J1×···×JN are Hermitian
positive definite tensors, the weighted conjugate transpose of A ∈ C

I1×···×IM ×J1×···×JN is
denoted by A#

N ,M and defined as A#
N ,M = N−1 ∗N A∗ ∗M M.

123



284 Page 14 of 34 R. Behera et al.

Next we present the properties of the weighted conjugate transpose of any arbitrary-order
tensor, A ∈ C

I1×···×IM ×J1×···×JN , as follows.

Lemma 9 Let A ∈ C
I1×···×IM ×J1×···×JN , B ∈ C

J1×···×JN ×K1×···×KL and Hermitian pos-
itive definite tensors M ∈ C

I1×···×IM ×I1×···×IM , P ∈ C
K1×···×KL×K1×···×KL and N ∈

C
J1×···×JN ×J1×···×JN . Then

(a) (A#
N ,M)#M,N = A,

(b) (A∗NB)#P,M = B#
P,N ∗NA#

N ,M.

Adopting the result of Lemma 9(b) and the definition of the weighted Moore–Penrose
inverse, we can write the following identities.

Lemma 10 Let A ∈ C
I1×···×IM ×J1×···×JN , and M ∈ C

I1×···×IM ×I1×···×IM , N ∈
C

J1×···×JN ×J1×···×JN are Hermitian positive definite tensors. Then

(a) (A#
N ,M)

†
N ,M = (A†

M,N )#M,N ;
(b) A = A∗NA#

N ,M∗M (A#
N ,M)

†
N ,M = (A#

N ,M)
†
N ,M∗NA#

N ,M∗MA;
(c) A#

N ,M = A†
M,N ∗MA∗NA#

N ,M = A#
N ,M∗MA∗NA†

M,N .

Using Lemma 3.17 in Panigrahy et al. (2020) on two invertible tensors B ∈
C

I1×···×IM ×I1×···×IM and C ∈ C
J1×···×JN ×J1×···×JN , one can write the following identities:

(B∗MA)†∗MB∗MA = A†∗MA and A ∗N C∗N (A∗NC)† = A∗NA†, (19)

whereA is the arbitrary-order tensor, i.e.,A ∈ C
I1×···×IM ×J1×···×JN . By Eq. (19) and Corol-

lary 2, we get following results.

Lemma 11 Let A ∈ C
I1×···×IM ×J1×···×JN , and M ∈ C

I1×···×IM ×I1×···×IM , N ∈
C

J1×···×JN ×J1×···×JN be a pair of Hermitian positive definite tensors. Then

(a) A†
M,IN

∗M A = (M1/2 ∗M A)† ∗M M1/2 ∗M A = A† ∗M A,

(b) A ∗N A†
IM ,N = A ∗N N−1/2 ∗N (A ∗N N−1/2)† = A ∗N A†,

(c) (A†
M,IN

)∗ = M1/2 ∗M [A∗ ∗M M1/2]†,

(d) (A†
IM ,N )∗ = (N−1/2 ∗N A∗)† ∗N N−1/2.

The considerable amount of conventional and important facts with the properties concern-
ing the range space of arbitrary-order tensor, the following theorem obtains the well-formed
result.

Theorem 5 Let U ∈ C
I1×···×IM ×J1×···×JN , V ∈ C

J1×···×JN ×K1×···×KL . Let M ∈
C

I1×···×IM ×I1×···×IM and N ∈ C
K1×···×kL×K1×···×KL be a pair of Hermitian positive definite

tensors. Then

(U∗NV)
†
M,N = [(U†

M,IN
)∗∗NV]†M−1,N ∗M (V†

IN ,N ∗NU†
M,IN

)∗∗L [U∗N (V†
IN ,N )∗]†M,N−1 .

Proof Let X = (U†)∗ ∗N V and Y = U ∗N (V†)∗. From Lemma 6(c), we get

R(X ∗) = R[(U ∗N V)∗] and R(Y) = R(U ∗N V).

Now, using Lemmas 6(b) and 5(b) along with the fact (V†)∗ = V ∗L V† ∗N (V†)∗, we obtain

X † ∗M (V† ∗N U†)∗ ∗L Y† = X † ∗M (U†)∗∗NV ∗L V† ∗N (V†)∗ ∗L Y†
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= X † ∗M X ∗L V† ∗N (V†)∗ ∗L Y†

= (U ∗N V)† ∗M Y ∗L Y† = (U ∗N V)†.

Replacing U and V byM1/2∗MU and V ∗L N−1/2, respectively, on the above result, we get

[(M1/2 ∗M U) ∗N (V ∗L N−1/2)]†
= {[(M1/2 ∗M U)†]∗ ∗N V ∗L N−1/2}† ∗M [(M1/2 ∗M U)†]∗ ∗N [(V ∗L N−1/2)†]∗ ∗L

{M1/2 ∗M U∗N [(V ∗L N−1/2)†]∗}†
= [M−1/2 ∗M (U†

M,IN
)∗ ∗N V ∗L N−1/2]† ∗M M−1/2 ∗M (U†

M,IN
)∗ ∗N (V†

IN ,N )∗ ∗L

N 1/2 ∗L [M1/2 ∗M U ∗N (V†
IN ,N )∗ ∗L N 1/2]†.

Substituting the above result in Eq. (18), we get the desired result. ��
Further, in connection with range space of arbitrary-order tensor, the following theorem

collects some useful identities of weighted Moore–Penrose inverses.

Theorem 6 Let U ∈ C
I1×···×IM ×J1×···×JN , V ∈ C

J1×···×JN ×K1×···×KL and W ∈
C

K1×···×KL×H1×···×HR . If A = U∗NV∗LW , and M ∈ C
I1×···×IM ×I1×···×IM and N ∈

C
H1×···×HR×H1×···×HR are Hermitian positive definite tensors. Then

(a) A†
M,N = X †

IN ,N ∗NV∗LY†
M,IL

, where X = (U∗NV∗LV†)†∗MA and Y =
A∗R(V†∗NV∗LW)†;

(b) A†
M,N = X †

IL ,N ∗LV∗∗NV∗LV∗∗NY†
M,IN

, where X = [U∗N (V†)∗]†∗MA and Y =
A∗R[(V†)∗∗LW]†.

Proof (a) From Eq. (18), we have

A†
M,N = N−1/2∗R[U1∗NV∗LW1]†∗MM1/2,

where U1 = M1/2∗MU and W1 = W∗RN−1/2. On the other hand, by Eq. (12), we have

R(X ∗) = R[(V∗LW)∗∗N (U∗NV∗LV†)∗∗M {(U∗NV∗LV†)∗}†]
= R(A∗) and R(Y) = R(A).

Also by Lemma 5(c), we get

R[(X †)∗] ⊆ R[(U∗NV∗LV†)†] = R[(U∗NV∗LV†)∗] and R(Y†) ⊆ R(V†∗NV∗LW).

Thus, using Lemmas 5(a, b) and 6(a, b), we have

X †∗NV∗LY† = X †∗N (U∗NV∗LV†)†∗M (U∗NV∗LV†)∗NV∗L(V†∗NV∗LW)∗R

(V†∗NV∗LW)†∗NY†

= A†∗MY∗NY† = A†. (20)

Replacing U by U1 and W by W1 in Eq. (20) and then using Lemma 11(a, b), we get

A†
M,N = N−1/2∗R[(U1∗NV∗LV†)†∗MM1/2∗MA∗RN−1/2]†∗NV∗L

[M1/2∗MA∗RN−1/2∗R(V†∗NV∗LW1)
†]†∗MM1/2

= N−1/2∗R[(U∗NV∗LV†)†∗MA∗RN−1/2]†∗NV
∗L [M1/2∗MA∗R(V†∗NV∗LW)†]†∗MM1/2

= X †
IN ,N ∗NV∗LY†

M,IL
.

123



284 Page 16 of 34 R. Behera et al.

(b) Following Lemma 3(b) and Eq. (12), we get
R(A) = R(Y) andR(X ∗) = R[(V∗∗NV ∗L W)∗ ∗L (U ∗N (V†)∗)∗ ∗M {(U ∗N (V†)∗)∗}†] =
R(A∗). Also using Lemma 5(c)

R[(X †)∗] ⊆ R[{U ∗N (V†)∗}∗] and R(Y†) ⊆ R[(V†)∗ ∗L W].
Using Lemmas 5(a, b) and 6(a, b), we obtain

X †∗LV∗∗NV∗LV∗∗NY† = X † ∗L [U ∗N (V†)∗]† ∗M [U ∗N (V†)∗]∗LV∗∗NV∗LV∗∗N

[(V†)∗ ∗L W] ∗R [(V†)∗ ∗L W]† ∗N Y†

= X † ∗L [U ∗N (V†)∗]† ∗M A∗R[(V†)∗ ∗L W]† ∗N Y†

= A†∗MA∗R[(V†)∗ ∗L W]† ∗N Y† = A†. (21)

Let U1 = M1/2∗MU, W1 = W∗RN−1/2 and A1 = U1∗NV∗LW1. Then using Eq. (21)
and Lemma 11(a, b), we can write

A†
1 = [{U1∗N (V†)∗}†∗MA1]†∗LV∗∗NV∗LV∗∗N [A1∗R{(V†)∗∗LW1}†]†

= [{U∗N (V†)∗}†∗MA∗RN−1/2]†∗LV∗∗NV∗LV∗∗N [M1/2∗MA∗R{(V†)∗∗LW}†]†.
Therefore, A†

M,N = N−1/2∗RA†
1∗MM1/2 = X †

IL ,N ∗LV∗∗NV∗LV∗∗NY†
M,IN

. ��

Theorem 7 Let U ∈ C
I1×···×IM ×J1×···×JN , V ∈ C

J1×···×JN ×K1×···×KL and W ∈
C

K1×···×KL×H1×···×HR . Also let M ∈ C
I1×···×IM ×I1×···×IM and N ∈ C

H1×···×HR×H1×···×HR

be a pair of Hermitian positive definite tensors. Then

(a) (U ∗N V ∗L W)
†
M,N = [(U†

M,IN
)∗ ∗N V ∗L W]†M−1,N ∗M (U†

M,IN
)∗ ∗N V ∗L

(W†
IL ,N )∗∗R[U ∗N V ∗L (W†

IL ,N )∗]†M,N−1 ;

(b) (U ∗N V ∗L W)
†
M,N = [{(U ∗N V)

†
M,IL

}∗ ∗L W]†M−1,N ∗M [(U ∗N V)
†
M,IL

]∗ ∗L V† ∗N

[(V ∗L W)
†
IN ,N ]∗ ∗R [U ∗N {(V ∗L W)

†
IN ,N }∗]†M,N−1 .

Proof (a) Let A = U∗NV∗LW , X = (U†)∗∗NV∗LW and Y = U∗NV∗L(W†)∗.
Using Lemma 6(c), we get

R(X ∗) = R(A∗) and R(Y) = R(A).

Further, using the fact thatW† = W† ∗N (W†)∗ ∗N W∗, and Lemma 5(b) and Lemma 6(b),
we can write

X † ∗M (U†)∗ ∗N V ∗L (W†)∗ ∗R Y† = X † ∗M (U†)∗ ∗N V ∗L W ∗R W† ∗L (W†)∗ ∗R Y†

= A†∗MY∗RY† = A†.

Using the above result to [(M1/2 ∗M U)∗NV∗L(W∗RN−1/2)]† and following Lemma
11[(c),(d)] we get

(U ∗N V ∗L W)
†
M,N

= N−1/2∗R{[(M1/2 ∗M U)†]∗ ∗N V ∗L W ∗R N−1/2}† ∗M [(M1/2 ∗M U)†]∗ ∗N V ∗L

[(W ∗R N−1/2)†]∗ ∗R [M1/2 ∗M U ∗N V ∗L {(W ∗R N−1/2)†}∗]†∗MM1/2

= N−1/2∗R[M−1/2 ∗M (U†
M,IN

)∗ ∗N V ∗L W ∗R N−1/2]† ∗M M−1/2 ∗M (U†
M,IN

)∗ ∗N

V ∗L (W†
IL ,N )∗ ∗R N 1/2 ∗R [M1/2 ∗M U ∗N V ∗L (W†

IL ,N )∗ ∗R N 1/2]†∗MM1/2

= [(U†
M,IN

)∗ ∗N V ∗L W]†M−1,N ∗M (U†
M,IN

)∗ ∗N V ∗L (W†
IL ,N )∗∗R
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[U ∗N V ∗L (W†
IL ,N )∗]†M,N−1 .

(b) Let A = U∗NV∗LW , X = [(U ∗N V)†]∗ ∗L W and Y = U ∗N [(V ∗L W)†]∗. Using
Lemma 6(c), we get

R(X ∗) = R(A∗), R(Y) = R(A) and

R[{(U∗NV)†}∗]∗ = R[(U∗NV)†] = R[(U∗NV)∗] ⊆ R(V∗).

From Lemma 3(a), one can write [(V∗LW)†]∗ = (V∗LW)∗R(V∗LW)†∗N [(V∗LW)†]∗.
Now using Lemma 5(b) and Lemma 6(b), we obtain

X †∗M [(U∗NV)†]∗ ∗L V† ∗N [(V ∗L W)†]∗ ∗R Y†

= X † ∗M [(U ∗N V)†]∗ ∗L V† ∗N V ∗L W ∗R (V ∗L W)† ∗N [(V ∗L W)†]∗∗RY†

= X † ∗M X ∗R (V ∗L W)† ∗N [(V ∗L W)†]∗ ∗R Y†

= A† ∗M U ∗N [(V ∗L W)†]∗ ∗R Y† = A†.

Replacing U and W by M1/2∗MU and W∗RN−1/2, respectively, on the above result, we
have

[(M1/2 ∗M U) ∗N V ∗L (W ∗R N−1/2)]†
= [{(M1/2 ∗M U ∗N V)†}∗ ∗L W ∗R N−1/2]† ∗M [(M1/2 ∗M U ∗N V)†]∗ ∗L V†

∗N [(V ∗L W ∗R N−1/2)†]∗ ∗R [M1/2 ∗M U ∗N {(V ∗L W ∗R N−1/2)†}∗]†
= {M−1/2∗M [(U ∗N V)

†
M,IL

]∗ ∗L W ∗R N−1/2}† ∗M M−1/2 ∗M [(U ∗N V)
†
M,IL

]∗ ∗L V†

∗N [(V ∗L W)
†
IN ,N ]∗ ∗R N−1/2 ∗R [M1/2 ∗M U ∗N {(V ∗L W)

†
IN ,N }∗ ∗R N 1/2]†.

Substituting the above result in Eq. (18) one can get the desired result. ��
Theorem 8 Let U ∈ C

I1×···×IM ×J1×···×JN , V ∈ C
J1×···×JN ×K1×···×KL and W ∈

C
K1×···×KL×H1×···×HR . If A = U∗NV∗LW , and M ∈ C

I1×···×IM ×I1×···×IM , N ∈
C

H1×···×HR×H1×···×HR be a pair of Hermitian positive definite tensors, then

A†
M,N = X †

IN ,N ∗NV∗LY†
M,IL

,

where X = U†∗MA and Y = A∗RW†.

Proof Let U1 = M1/2∗MU and W1 = W∗RN−1/2. It is known, from Eq. (18),

A†
M,N = N−1/2∗R(U1∗NV∗LW1)

†∗RM−1/2.

Now using Eq. (12) we have R(X ∗) = R[(U ∗N V ∗L W)∗ ∗N (U∗)†] = R(A∗) and
R(Y) = R(A). Also, from Lemma 5 (c), we have

R[(X †)∗] = R(X ) ⊆ R(U†) = R(U∗) and
R(Y†) = R(Y∗) = R[(A ∗R W†)∗] = R[(U ∗N V ∗L (W ∗R W†))∗]

= R[(W ∗R W†)∗ ∗L (U ∗N V)∗]
= R(W ∗R W† ∗L (U ∗N V)∗) ⊆ R(W).

Using Lemmas 5(a, b) and 6(a, b), we get

X † ∗N V ∗L Y† = X † ∗N U† ∗M U ∗N V ∗L W ∗R W† ∗L Y†

= A† ∗N Y ∗L Y† = A†. (22)
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Using Lemma 11(a, b) one can conclude

(U1∗NV∗LW1)
† = [U†

1∗MM1/2∗MA∗RN−1/2]†∗NV∗L [M1/2∗MA∗RN−1/2∗RW†
1 ]†

= [U†∗MA∗RN−1/2]†∗NV∗L [M1/2∗MA∗RW†]†.
Hence, A†

M,N = N−1/2∗R[U†∗MA∗RN−1/2]†∗NV∗L [M1/2∗MA∗RW†]†∗MM1/2

= X †
IN ,N ∗NV∗LY†

M,IL
.

Hence, the proof is complete. ��
By Lemma 11(a, b) and Eq. (18), and Eq. (22), we have

Corollary 3 Let U ∈ C
I1×···×IM ×J1×···×JN , V ∈ C

J1×···×JN ×K1×···×KL and W ∈
C

K1×···×KL×H1×···×HR . Let A = U∗NV∗LW . Let M ∈ C
I1×···×IM ×I1×···×IM , N ∈

C
H1×···×HR×H1×···×HR , P ∈ C

J1×···×JN ×J1×···×JN and Q ∈ C
K1×···×KL×K1×···×KL are Her-

mitian positive definite tensors. Then the weighted Moore–Penrose inverse of A with respect
to M and N satisfies the following identities:

(a) A†
M,N = (U†

IM ,P∗MA)
†
P,N ∗NV∗L(A∗RW†

Q,IR
)
†
M,Q,

(b) A†
M,N = [(U∗NV∗LV†

P,IL
)
†
M,P∗MA]†P,N ∗NV∗L [A∗R(V†

IN ,Q∗NV∗LW)
†
Q,N ]†M,Q.

2.3 The full rank decomposition

The tensors and their decompositions originally appeared in 1927, (Hitchcock 1927). The
idea of decomposing a tensor as a product of tensors with a more desirable structure may well
be one of the most important developments in numerical analysis such as the implementation
of numerically efficient algorithms and the solution of multilinear systems (Kolda and Bader
2009; Che and Wei 2019; Martin and Loan 2008; Kolda 2001). As part of this section, we
focus on the full rank decomposition of a tensor. Unfortunately, It is very difficult to compute
tensor rank. But the authors of in Stanimirović et al. (2020) introduced an useful and effective
definition of the tensor rank, termed as reshaping rank. With the help of reshaping rank, We
present one of our important results, full rank decomposition of an arbitrary-order tensor.

Theorem 9 Let A ∈ C
I1×···×IM ×J1×···×JN . Then there exist a left invertible tensor F ∈

C
I1×···×IM ×H1×···×HR and a right invertible tensor G ∈ C

H1×···×HR×J1×···×JN such that

A = F∗RG, (23)

where rshrank(F) = rshrank(G) = rshrank(A) = r = H1 · · · HR. This is called the full
rank decomposition of the tensor A.

Proof Let the matrix A = rsh(A) ∈ C
I1···IM ×J1···JN . Then we have, rank(A) = r. Suppose

that the matrix A has a full rank decompositions, as follows:

A = FG, (24)

where F ∈ C
I1···IM ×H1···HR is a full column rank matrix and G ∈ C

H1···HR×J1···JN is a full
row rank matrix. From Eqs. (8) and (24), we obtain

rhs−1(A) = rhs−1(FG) = rhs−1(F) ∗R rhs−1(G), (25)

whereF = rsh−1(F) ∈ C
I1×···×IM ×H1×···×HR and G = rsh−1(G) ∈ C

H1×···×HR×J1×···×JN .

It follows that
A = F∗RG,
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where F ∈ C
I1×···×IM ×H1×···×HR is the left invertible tensor and G ∈ C

H1×···×HR×J1×···×JN

is a right invertible tensor. ��
The prove of the above theorem was proved earlier (see Lemma 2.3(a), Liang and Zheng
2019) indifferentway.Here, we have provided another proofwithout using reshape operation.
Further, the authors of in Liang and Zheng (2019) computed the Moore–Penrose inverse of
a tensor using full rank decomposition of tensors as follows:

Lemma 12 (Theorem 3.7, Liang and Zheng 2019) If the full rank decomposition of a tensor
A ∈ C

I1×···×IM ×J1×···×JN is given as Theorem 9, then

A† = G∗ ∗R (F∗ ∗M A ∗N G∗)−1 ∗R F∗. (26)

Now, the following theorem expressed the weighted Moore–Penrose inverse of a tensor
A ∈ C

I1×···×IM ×J1×···×JN in form of the ordinary tensor inverse.

Theorem 10 If the full rank decomposition of a tensor A ∈ C
I1×···×IM ×J1×···×JN is given by

Eq. (23), then the weighted Moore–Penrose inverse of A can be written as

A†
M,N = N−1∗NG∗∗R(F∗∗MM∗MA∗NN−1∗NG∗)−1∗RF∗∗MM,

where M ∈ C
I1×···×IM ×I1×···×IM and N ∈ C

J1×···×JN ×J1×···×JN are Hermitian positive
definite tensors.

Proof From Eq. (18), we have

A†
M,N = N−1/2∗N (M1/2∗MA∗NN−1/2)†∗MM1/2 = N−1/2∗NB†∗MM1/2,

where B = (M1/2∗MF)∗R(G∗NN−1/2), and M & N are Hermitian positive definite
tensors. Here B is in the form of full rank decomposition, as both M1/2 and N 1/2 are
invertible. Now, from Lemma 12, we get

B† = (G∗NN−1/2)∗∗R[(M1/2∗MF)∗∗M (M1/2∗MF)

∗R(G∗NN−1/2)∗N (G∗NN−1/2)∗]−1∗R(M1/2∗MF)∗

= N−1/2∗NG∗∗R(F∗∗MM∗MA∗NN−1∗NG∗)−1∗RF∗∗MM1/2.

Therefore, A†
M,N = N−1∗NG∗∗R(F∗∗MM∗MA∗NN−1∗NG∗)−1∗RF∗∗MM. ��

In particular when the arbitrary-order tensor, A is either left invertible or right invertible,
we have the following results.

Corollary 4 Let a tensor A ∈ C
I1×···×IM ×J1×···×JN has the full rank decomposition.

(a) If the tensor A is left invertible, then A†
M,N = N−1∗N (A∗∗MM∗M

A∗NN−1)−1∗NA∗∗MM.
(b) If the tensor A is right invertible, then A†

M,N = N−1∗NA∗∗M (M∗M

A∗NN−1∗NA∗)−1∗MM.

It is easy to see that the full rank factorizations of a tensor A ∈ C
I1×···×IM ×J1×···×JN are

not unique: if A = F ∗R G is one full rank factorization, where F ∈ C
I1×···×IM ×H1×···×HR

is the left invertible tensor and G ∈ C
H1×···×HR×J1×···×JN is the right invertible tensor, then

there exist a invertible tensor P of appropriate size, such that A = (F ∗R P) ∗R (P−1 ∗R G)

is another full rank factorization. The following theorem represents the result.
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Theorem 11 Let A ∈ C
I1×···×IM ×J1×···×JN with rshrank(A) = r = H1H2 · · · HR. Then A

has infinitely many full rank decompositions. However if A has two full rank decompositions,
as follows:

A = F∗RG = F1∗RG1,
where F, F1 ∈ C

I1×···×IM ×H1×···×HR and G, G1 ∈ C
H1×···×HR×J1×···×JN , then there exists

an invertible tensor B such that

F1 = F∗RB and G1 = B−1∗RG.

Moreover,

F†
1 = (F∗RB)† = B−1∗RF† and G†

1 = (B−1∗RG)† = G†∗RB.

Proof Suppose the tensor, A ∈ C
I1×···×IM ×J1×···×JN has two full rank decompositions, as

follows:

A = F∗RG = F1∗RG1, (27)

where F, F1 ∈ C
I1×···×IM ×H1×···×HR and G, G1 ∈ C

H1×···×HR×J1×···×JN . Then

F∗RG∗NG†
1 = F1∗RG1∗NG†

1 .

Substituting M = IM and N = IN in Corollary 4(b) we have G1∗NG†
1 = IR .

Therefore, F1 = F∗R(G∗NG†
1), similarly we can find G1 = (F†

1∗MF)∗RG.

Let rsh(G) = G = reshape(G, r , J1 · · · JN ) and rsh(G1) = G1 = reshape(G1, r , J1
· · · JN ). Then rsh(G∗NG†

1) = GG†
1 ∈ C

r×r and

r = rshrank(F1) = rshrank(F∗R(G∗NG†
1)) ≤ rshrank(G∗NG†

1) = rank(GG†
1) ≤ r

Hence, GG†
1 is invertible as it has full rank. This concluded G∗NG†

1 = rsh−1(GG†
1) is

invertible. Similarly, F†
1∗MF is also invertible. Let B = G∗NG†

1 and C = F†
1∗MF . Then

C∗RB = F†
1∗MF∗RG∗NG†

1 = F†
1∗MF1∗RG1∗NG†

1 = IR

is equivalent to C = B−1. Therefore,

F1 = F∗RB and G1 = B−1∗RG.

Further

F†
1 = ((F∗RB)∗∗MF∗RB)−1∗R(F∗RB)∗

= B−1∗R(F∗∗MF)−1∗R(B∗)−1∗RB∗∗RF∗

= B−1∗R(F∗∗MF)−1∗RF∗ = B−1∗RF†.

Similarly G†
1 = G†∗RB. ��

3 Reverse order law

In this section, we present various necessary and sufficient conditions of the reverse-order
law for the weighted Moore–Penrose inverses of tensors. The first result obtained below
addresses the sufficient condition for reverse-order law of tensor.
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Theorem 12 Let A ∈ C
I1×···×IM ×J1×···×JN and B ∈ C

J1×···×JN ×K1×···×KL . Let M ∈
C

I1×···×IM ×I1×···×IM , and N ∈ C
K1×···×KL×K1×···×KL be a pair of Hermitian positive defi-

nite tensors. If R(B) = R(A∗), then

(A∗NB)
†
M,N = B†

IN ,N ∗NA†
M,IN

.

Proof Let X = A† ∗M A ∗N B and Y = A ∗N B ∗L B†. Using Lemma 5(c), we get

R[(X †)∗] = R[(A† ∗M A)∗ ∗N B] ⊆ R(A∗)
and R(Y†) = R(B ∗L B† ∗N A∗) ⊆ R(B).

Similarly, from Eq. (12), we have

R(X ∗) = R(B∗ ∗N A∗ ∗M (A∗)†) = R[(A ∗N B)∗] and R(Y) = R(A ∗N B).

Further, from Lemma 5[(a), (b)] and Lemma 6[(a), (b)], we obtain

X † ∗N Y† = X † ∗N X ∗L B† ∗N Y† = (A ∗N B)† ∗M Y ∗N Y† = (A ∗N B)†,

i.e.,
(A ∗N B)† = (A†∗MA∗NB)†∗N (A∗NB∗LB†)†. (28)

Let A1 = M1/2∗MA and B1 = B∗LN−1/2. Using Lemma 11(a, b), we get

X = A†
1 ∗M A1 ∗N B and Y = A ∗N B1 ∗L B†

1.

Now, replacing A and B by A1 and B1, respectively, in Eq. (28), we get

(A1∗NB1)
† = (X∗LN−1/2)†∗N (M1/2∗MY)†.

Thus, from Corollary 2, we can conclude

(A∗NB)
†
M,N = N−1/2∗L(A1∗NB1)

†∗MM1/2 = X †
IN ,N ∗NY†

M,IN
.

From the given condition and Lemma 5[(b), (c)], we have B∗LB† = A†∗MA, i.e.,

A = A∗NB∗LB† = Y and B = A†∗MA∗NB = X .

Hence, (A∗NB)
†
M,N = B†

IN ,N ∗NA†
M,IN

. ��
Further, using Theorem 3.30 in Panigrahy et al. (2020) one can write a necessary

and sufficient condition for reverse order law for arbitrary-order tensors, i.e., for A ∈
C

I1×···×IM ×J1×···×JN and B ∈ C
J1×···×JN ×K1×···×KL . Then (A∗NB)† = B†∗NA† if and

only if

A†∗MA∗NB∗LB∗∗NA∗ = B∗LB∗∗NA∗, and B∗LB†∗NA∗∗MA∗NB = A∗∗MA∗NB.

Now, utilizing the above result and the fact of Lemma 5[(a),(c)], we conclude a beautiful
result for necessary and sufficient condition for Moore–Penrose inverse of arbitrary-order
tensor as follows.

Lemma 13 Let A ∈ C
I1×···×IM ×J1×···×JN and B ∈ C

J1×···×JN ×K1×···×KL . The reverse order
law hold for Moore–Penrose inverse, i.e.,(A ∗N B)† = B† ∗N A† if and only if
R(A∗ ∗M A ∗N B) ⊆ R(B) and R(B ∗L B∗ ∗N A∗) ⊆ R(A∗).

The primary result of this paper is presented next under the impression of the properties
of range space of arbitrary-order tensor.
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Theorem 13 Let A ∈ C
I1×···×IM ×J1×···×JN ,B ∈ C

J1×···×JN ×K1×···×KL . Let M ∈
C

I1×···×IM ×I1×···×IM , N ∈ C
K1×···×KL×K1×···×KL and P ∈ C

J1×···×JN ×J1×···×JN are three
Hermitian positive definite tensors. Then

(A ∗N B)
†
M,N = B†

P,N ∗N A†
M,P

if and only if

R(A#
P,M ∗M A ∗N B) ⊆ R(B) and R(B ∗L B#

N ,P ∗N A#
P,M) ⊆ R(A#

P,M).

Proof From Eq. (18), we have (A ∗N B)
†
M,N = B†

P,N ∗N A†
M,P if and only if

N−1/2 ∗L (M1/2 ∗M A ∗N B ∗L N−1/2)† ∗M M1/2

= N−1/2 ∗L (P1/2 ∗N B ∗L N−1/2)† ∗N P1/2 ∗N P−1/2 ∗N

(M1/2 ∗M A ∗N P−1/2)† ∗M M1/2,

is equivalent to, if and only if

(Ã ∗N B̃)† = B̃† ∗N Ã†,

where Ã = M1/2 ∗M A ∗N P−1/2 and B̃ = P1/2 ∗N B ∗L N−1/2. From Lemma 13, we have

(A ∗N B)
†
M,N = B†

P,N ∗N A†
M,P

if and only if

R(Ã∗ ∗M Ã ∗N B̃) ⊆ R(B̃) and R(B̃ ∗L B̃∗ ∗N Ã∗) ⊆ R(Ã∗), (29)

which equivalently if and only if

R(P1/2 ∗N A#
P,M ∗M A ∗N B ∗L N−1/2) ⊆ R(P1/2 ∗N B ∗L N−1/2)

and R(P1/2 ∗N B ∗L B#
N ,P ∗N A#

P,M ∗M M−1/2) ⊆ R(P1/2 ∗N A#
P,M ∗M M−1/2).

Hence, (A ∗N B)
†
M,N = B†

P,N ∗N A†
M,P if and only if

R(A#
P,M ∗M A ∗N B) ⊆ R(B) and R(B ∗L B#

N ,P ∗N A#
P,M) ⊆ R(A#

P,M).

This completes the proof. ��

As a corollary to Theorem 13, we present another reverse order law for the weighted
Moore–Penrose inverse of arbitrary-order tensor.

Corollary 5 Let A ∈ C
I1×···×IM ×J1×···×JN ,B ∈ C

J1×···×JN ×K1×···×KL . Let M ∈
C

I1×···×IM ×I1×···×IM , N ∈ C
K1×···×KL×K1×···×KL and P ∈ C

J1×···×JN ×J1×···×JN are three
Hermitian positive definite tensors. Then

(A ∗N B)
†
M,N = B†

P,N ∗N A†
M,P

if and only if

A†
M,P ∗M A ∗N B ∗L B#

N ,P ∗N A#
P,M = B ∗L B#

N ,P ∗N A#
P,M

and B ∗L B†
P,N ∗N A#

P,M ∗M A ∗N B = A#
P,M ∗M A ∗N B.
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Proof From Theorem 13, Eq. (29) and Lemma 5(a), we have (A ∗N B)
†
M,N = B†

P,N ∗N

A†
M,P if and only if

(P1/2 ∗N B ∗L N−1/2) ∗L (P1/2 ∗N B ∗L N−1/2)† ∗N P1/2 ∗N A#
P,M ∗M A ∗N B ∗L N−1/2

= P1/2 ∗N A#
P,M ∗M A ∗N B ∗L N−1/2

and

(P1/2 ∗N A#
P,M ∗M M−1/2) ∗N (P1/2 ∗N A#

P,M ∗M

M−1/2)† ∗N P1/2 ∗N B ∗L B#
N ,P ∗N A#

M,P ∗M M−1/2

= P1/2 ∗N B ∗L B#
N ,P ∗N A#

P,M ∗M M−1/2,

i.e., if and only if

B ∗L B†
P,N ∗N A#

P,M ∗M A ∗N B = A#
P,M ∗M A ∗N B and

[(M1/2 ∗M A ∗N P−1/2)† ∗M (M1/2 ∗M A ∗N

P−1/2)]∗ ∗N P1/2 ∗N B ∗L B#
N ,P ∗N A#

M,P ∗M M−1/2

= P1/2 ∗N B ∗L B#
N ,P ∗N A#

P,M ∗M M−1/2,

i.e., if and only if

B ∗L B†
P,N ∗N A#

P,M ∗M A ∗N B = A#
P,M ∗M A ∗N B

and A†
M,P ∗M A ∗N B ∗L B#

N ,P ∗N A#
P,M = B ∗L B#

N ,P ∗N A#
P,M.

This completes the proof. ��
Theorem 14 Let A ∈ C

I1×···×IM ×J1×···×JN ,B ∈ C
J1×···×JN ×K1×···×KL . Let M ∈

C
I1×···×IM ×I1×···×IM , N ∈ C

K1×···×KL×K1×···×KL and P ∈ C
J1×···×JN ×J1×···×JN are posi-

tive definite Hermitian tensors. Then

(A∗NB)
†
M,N = B†

P,N ∗NA†
M,P

if and only if

(A†
M,P∗MA∗NB)

†
P,N = B†

P,N ∗NA†
M,P∗MA and

(A∗NB∗LB†
P,N )

†
M,P = B∗LB†

P,N ∗NA†
M,P .

Proof Suppose, (A∗NB)
†
M,N = B†

P,N ∗NA†
M,P . Now one can write

(A†
M,P∗MA∗NB)∗L(B†

P,N ∗NA†
M,P∗MA)∗N (A†

M,P∗NA∗NB) = A†
M,P∗MA∗NB.

Further, we can write

(B†
P,N ∗NA†

M,P∗MA)∗N (A†
M,P∗MA∗NB)∗L(B†

P,N ∗NA†
M,P∗MA)

= B†
P,N ∗NA†

M,P∗MA.

Also , [P∗N (A†
M,P∗MA∗NB)∗L(B†

P,N ∗NA†
M,P∗MA)]∗

= [(P∗NA†
M,P∗MA)∗NP−1∗N (P∗NB∗LB†

P,N )∗NP−1∗N (P∗NA†
M,P∗MA)]∗

= (P∗NA†
M,P∗MA)∗NP−1∗N (P∗NB∗LB†

P,N )∗NP−1∗N (P∗NA†
M,P∗MA)

= P∗N (A†
M,P∗MA∗NB)∗L(B†

P,N ∗NA†
M,P∗MA),
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and [N∗L(B†
P,N ∗NA†

M,P∗MA)∗N (A†
M,P∗MA∗NB)]∗

= [N∗L(B†
P,N ∗NA†

M,P )∗MA∗NB)]∗
= N∗L(B†

P,N ∗NA†
M,P∗MA)∗N (A†

M,P∗MA∗NB).

Hence,
(A†

M,P∗MA∗NB)
†
P,N = B†

P,N ∗NA†
M,P∗MA.

By similar arguments one can also show that(A∗NB∗LB†
P,N )

†
M,P = B∗LB†

P,N ∗NA†
M,P .

Conversely, for proving converse, first we prove a identity.
From Eq. (18) and Eq. (28), we have

(A∗NB)
†
M,N

= N−1/2∗L [(M1/2∗MA∗NP−1/2)∗N (P1/2∗NB∗LN−1/2]†∗MM1/2

= N−1/2∗L [(M1/2∗MA∗NP−1/2)†∗N (M1/2∗MA∗NP−1/2)∗N (P1/2∗NB∗LN−1/2)]†
∗N [(M1/2∗MA∗NP−1/2)∗N (P1/2∗NB∗LN−1/2)∗N (P1/2∗NB∗LN−1/2)†]†∗MM1/2

= N−1/2∗L [P1/2∗NA†
M,P∗MA∗NB∗LN−1/2]†∗NP1/2∗NP−1/2∗N

[M1/2∗MA∗NB∗LB†
P,N ∗NP−1/2]†∗MM1/2

= (A†
M,P∗MA∗NB)

†
P,N ∗N (A∗NB∗LB†

P,N )
†
M,P .

Further, using the given hypothesis and above identity, we can write

(A∗NB)
†
M,N = (B†

P,N ∗NA†
M,P∗MA)∗N (B∗LB†

P,N ∗NA†
M,P )

= (B†
P,N ∗NA†

M,P∗MA)∗N (A†
M,P∗MA∗NB)∗L(B†

P,N ∗N

A†
M,P∗MA)∗NA†

M,P
= B†

P,N ∗NA†
M,P .

This completes the proof. ��
In the next theorem, we develop the characterization for the weighted Moore–Penrose

inverse of the product of arbitrary-order tensors A and B, as follows.

Theorem 15 Let A ∈ C
I1×···×IM ×J1×···×JN ,B ∈ C

J1×···×JN ×K1×···×KL . Let M ∈
C

I1×···×IM ×I1×···×IM , N ∈ C
K1×···×KL×K1×···×KL and P ∈ C

J1×···×JN ×J1×···×JN are three
Hermitian positive definite tensors. Then

(A ∗N B)
†
M,N = (B1)

†
P,N ∗N (A1)

†
M,P ,

where A1 = A ∗N B1 ∗L (B1)
†
P,N and B1 = A†

M,P ∗M A ∗N B.

Proof

A ∗N B = A ∗N A†
M,P ∗M A ∗N B = A ∗N B1

= A ∗N B1 ∗L (B1)
†
P,N ∗N B1 = A1 ∗N B1. (30)

A†
M,P ∗M A1 = A†

M,P ∗M A ∗N A†
M,P ∗M A ∗N B ∗L (B1)

†
P,N

= B1 ∗L (B1)
†
P,N . (31)
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A†
M,P ∗M A1 = A†

M,P ∗M A1 ∗N (A1)
†
M,P ∗M A1

= B1 ∗L (B1)
†
P,N ∗N (A1)

†
M,P ∗M A1. (32)

From (31) and and the above equality, we have

P ∗N B1 ∗L (B1)
†
P,N = [P ∗N B1 ∗L (B1)

†
P,N ] ∗N P−1 ∗N [P ∗N (A1)

†
M,P ∗M A1].

Therefore,

P ∗N B1 ∗L (B1)
†
P,N = [P ∗N B1 ∗L (B1)

†
P,N ]∗

= P ∗N (A1)
†
M,P ∗M A1 ∗N B1 ∗L (B1)

†
P,N

= P ∗N (A1)
†
M,P ∗M A1.

Hence,

B1 ∗L (B1)
†
P,N = (A1)

†
M,P ∗M A1 = A†

M,P ∗M A1. (33)

Let X = A ∗N B and Y = (B1)
†
P,N ∗N (A1)

†
M,P . Using (30) and (33) we obtain

X ∗L Y ∗M X = A ∗N B ∗L (B1)
†
P,N ∗M (A1)

†
M,P ∗N A1 ∗N B1

= A1 ∗N B1 ∗L (B1)
†
P,N ∗N B1 ∗L (B1)

†
P,N ∗N B1 = X ,

Y ∗M X ∗L Y = (B1)
†
P,N ∗N B1 ∗L (B1)

†
P,N ∗N B1 ∗L (B1)

†
P,N ∗N (A1)

†
M,P = Y,

M ∗M X ∗L Y = M ∗M A1 ∗N (A1)
†
M,P ∗M A1 ∗N (A1)

†
M,P = (M ∗M X ∗L Y)∗

and

N ∗L Y ∗M X = N ∗L (B1)
†
P,N ∗N B1 ∗L (B1)

†
P,N ∗N B1 = (N ∗L Y ∗M X )∗.

Hence, X †
M,N = Y , i.e., (A ∗N B)

†
M,N = (B1)

†
P,N ∗N (A1)

†
M,P . ��

We shall present the following example as a confirmation of the above Theorem.

Example 4 Let A1 = A ∗2 B1 ∗1 (B1)
†
P,N and B1 = A†

M,P ∗1 A ∗2 B, where A =
(ai jk) ∈ R

3×2×4, B = (bi jk) ∈ R
2×4×3, M = (mi j ) ∈ R

3×3, N = (ni j ) ∈ R
3×3 and

P = (pi jkl) ∈ R
2×4×2×4 such that

ai j1 =
⎛

⎝
−1 2
1 −1
0 1

⎞

⎠ , ai j2 =
⎛

⎝
1 0
0 0
1 0

⎞

⎠ , ai j3 =
⎛

⎝
2 0
1 1
0 0

⎞

⎠ , ai j4 =
⎛

⎝
3 2
1 −1
0 1

⎞

⎠ ,

bi j1 =
(−1 2 1 1

0 1 1 0

)
, bi j2 =

(
0 1 1 1
1 1 0 1

)
, bi j3 =

(
0 1 1 1
1 1 0 1

)
,

M =
⎛

⎝
3 0 1
0 2 0
1 0 2

⎞

⎠ , N =
⎛

⎝
1 1 0
1 2 0
0 0 1

⎞

⎠ ,

pi j11 =
(
1 0 0 1
0 0 0 0

)
, pi j12 =

(
0 1 0 0
0 0 0 0

)
pi j13 =

(
0 0 1 0
1 0 0 0

)
, pi j14 =

(
1 0 0 3
0 0 1 0

)

pi j21 =
(
0 0 1 0
2 0 0 0

)
, pi j22 =

(
0 0 0 0
0 2 2 1

)
pi j23 =

(
0 0 0 1
0 2 5 0

)
, pi j24 =

(
0 0 0 0
0 1 0 1.

)
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Then A1 = (ãi jk) ∈ R
3×2×4, B1 = (b̃i jk) ∈ R

2×4×3, (A1)
†
M,P = (xi jk) ∈ R

2×4×3

and (B1)
†
P,N = (yi jk) ∈ R

3×2×4 such that

ãi j1 =
⎛

⎝
−1 2
0 −1
0 1

⎞

⎠ , ãi j2 =
⎛

⎝
1 0
0 1
1 0

⎞

⎠ , ãi j3 =
⎛

⎝
2 0
1 1
0 0

⎞

⎠ , ãi j4 =
⎛

⎝
3 2
1 −1
0 1

⎞

⎠ ,

b̃i j1 =
(−0.3450 1.0728 0.7438 0.4134

−0.2067 1.1965 −0.4265 −0.8661

)
,

b̃i j2 =
(−0.3319 1.7409 1.0320 0.4483

−0.2242 1.1004 −0.3217 −0.5167

)
,

b̃i j3 =
(
1.5109 4.0568 0.2402 −0.6376
0.3188 1.2533 0.0873 −0.3755

)
, xi j1 =

(−0.2052 −0.1339 0.1514 0.1194
−0.0597 −0.1616 0.0247 0.1936

)
,

xi j2 =
(

0.0218 0.4469 0.1470 0.0582
−0.0291 0.5066 −0.1587 −0.4178

)
, xi j3 =

(
0.4236 0.9360 −0.0146 −0.2038
0.1019 0.2271 0.0553 −0.0378

)
,

yi j1 =
⎛

⎝
0.4783 −1.6522

−0.5217 1.3478
0.1304 −0.0870

⎞

⎠ , yi j2 =
⎛

⎝
−0.5217 0.6522
0.4783 −0.3478
0.1304 0.0870

⎞

⎠ , yi j3 =
⎛

⎝
−0.3043 0.6522
0.6957 −0.3478

−0.1739 0.0870

⎞

⎠ ,

yi j4 =
⎛

⎝
−0.7826 −1.6522
1.2174 1.3478

−0.3043 −0.0870

⎞

⎠ .

Thus,

(A ∗2 B)
†
M,N =

⎛

⎝
−0.4783 0.6522 −0.0435
0.5217 −0.3478 −0.0435

−0.1304 0.0870 0.2609

⎞

⎠ = (B1)
†
P,N ∗2 (A1)

†
M,P .

Hence, (A ∗2 B)
†
M,N = (B1)

†
P,N ∗2 (A1)

†
M,P .

Further, using Lemma 4 in Ji and Wei (2017) on an arbitrary-order tensor A ∈
C

I1×···×IM ×J1×···×JN with Hermitian positive definite tensors M ∈ C
I1×···×IM ×I1×···×IM

and N ∈ C
J1×···×JN ×J1×···×JN one can write the following identity:

R(A†
M,N ∗M A) = R(A#

N ,M). (34)

Using the above identity, a sufficient condition for the reverse order law for weightedMoore–
Penrose inverse of tensor is presented next.

Corollary 6 Let A ∈ C
I1×···×IM ×J1×···×JN ,B ∈ C

J1×···×JN ×K1×···×KL . Let M ∈
C

I1×···×IM ×I1×···×IM , N ∈ C
K1×···×KL×K1×···×KL and P ∈ C

J1×···×JN ×J1×···×JN are posi-
tive definite Hermitian tensors. If

R(B) ⊆ R(A#
P,M) and N (B#

N 1/2,P1/2) ⊆ N (A),

then
(A ∗N B)

†
M,N = B†

P,N ∗N A†
M,P .

Proof From Theorem15 we have, (A ∗N B)
†
M,N = (B1)

†
P,N ∗N (A1)

†
M,P , where

A1 = A ∗N B1 ∗L (B1)
†
P,N and B1 = A†

M,P ∗M A ∗N B.
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From Eq. (34) and given hypothesis, we have

R(A†
M,P ∗M A) = R(A#

P,M) ⊇ R(B)

So there exists P ∈ C
J1×···×JN ×K1×···×KL such that B = A†

M,N ∗M A ∗N P . Now,

B1 = A†
M,N ∗M A ∗N B = A†

M,N ∗M A ∗N P = B.

Hence, A1 = A ∗N B ∗L B†
N ,P .

Further, we have, N (B#
N 1/2,P1/2) ⊆ N (A), which is equivalent to

R(P−1/2 ∗N A∗) = R(A∗) ⊆ R[(B#
N 1/2,P1/2)

∗] = R[(N−1/2 ∗L B∗ ∗N P1/2)∗].
Then from Lemma 6 (a), we have

(A ∗N P−1/2) ∗N (N−1/2 ∗L B∗ ∗N P1/2)† ∗L (N−1/2 ∗L B∗ ∗N P1/2) = A ∗N P−1/2,

which equivalently

(A ∗N P−1/2) ∗N [(P1/2 ∗N B ∗L N−1/2) ∗L (P1/2 ∗N B ∗L N−1/2)†]∗ = A ∗N P−1/2,

that is
A ∗N B ∗L N−1/2 ∗L (P1/2 ∗N B ∗L N−1/2)† ∗N P1/2 = A,

i.e.
A1 = A ∗N B ∗L B†

N ,P = A.

Hence, (A ∗N B)
†
M,N = B†

N ,P ∗N A†
M,N . ��

We next present another characterization of the product of arbitrary-order tensors, as
follows:

Theorem 16 Let A ∈ C
I1×···×IM ×J1×···×JN and B ∈ C

J1×···×JN ×K1×···×KL .
Let M ∈ C

I1×···×IM ×I1×···×IM , N ∈ C
K1×···×KL×K1×···×KL and P ∈ C

J1×···×JN ×J1×···×JN

are three Hermitian positive definite tensors. Then

(A ∗N B)
†
M,N = (B1)

†
P,N ∗N (A1)

†
M,P ,

where A1 = A∗NB∗LB†
P,IL

and B1 = (A1)
†
M,P∗MA1∗NB.

Proof Let X = A∗NB and Y = (B1)
†
P,N ∗N (A1)

†
M,P . Now we have

A∗NB = A∗NB∗LB†
P,IL

∗NB = A1∗NB = A1∗N (A1)
†
M,P∗MA1∗NB = A1∗NB1. (35)

Now, using Eq. (35), we obtain

X∗LY∗MX = A1∗NB1∗L(B1)
†
P,N ∗NB1 = X , (36)

Y∗MX∗LY = (B1)
†
P,N ∗NB1∗L(B1)

†
P,N ∗N (A1)

†
M,P = Y, (37)

N∗LY∗MX = N∗L(B1)
†
P,N ∗NB1 = (N∗LY∗MX )∗. (38)

Further, using the following relations

B1∗LB†
P,IL

= (A1)
†
M,P∗MA1 and B1∗LB†

P,IL
= B1∗L(B1)

†
P,N ∗N (A1)

†
M,P∗MA1,

we have
(A1)

†
M,P∗MA1 = B1∗L(B1)

†
P,N .
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It concludes that

M∗MX∗LY = M∗MA1∗N (A1)
†
M,P = (M∗MX∗LY)∗. (39)

From the relations (36)–(39) validates Y = X †
M,N . Hence, (A ∗N B)

†
M,N = (B1)

†
P,N ∗N

(A1)
†
M,P . This completes the proof. ��

The significance of the properties of range and null space of arbitrary-order tensors, the
last result achieved the sufficient condition for the triple reverse order law of tensor.

Theorem 17 Let U ∈ C
I1×···×IM ×J1×···×JN , V ∈ C

J1×···×JN ×K1×···×KL and
W ∈ C

K1×···×KL×H1×···×HR . LetM ∈ C
I1×···×IM ×I1×···×IM andN ∈ C

H1×···×HR×H1×···×HR

be a pair of Hermitian positive definite tensors. If

R(W) ⊆ R[(U∗NV)∗] and R(U∗) ⊆ R(V∗LW).

Then
(U∗NV∗LW)

†
M,N = W†

IL ,N ∗LV†∗NU†
M,IN

.

Proof Let A = U∗NV∗LW, W1 = (U∗NV)†∗MA and U1 = A∗R(V∗LW)†. From Eq.
(12), we get

R(U1) = R(A) and R(W∗
1 ) = R(A∗).

Also from Lemma 5(c), we get

R[(W†
1 )

∗] = R(W1) ⊆ R[(U ∗N V)†] = R[(U ∗N V)∗]
and R(U†

1 ) = R(U∗
1 ) ⊆ R[(V∗LW)†]∗ = R(V∗LW).

Applying Lemmas 5(a, b) and 6(a, b), we have

W†
1 ∗L V† ∗N U†

1 = W†
1 ∗L W1 ∗R (V ∗L W)† ∗N U†

1 = A†∗MU1∗NU†
1 = A†,

which is equivalent to

(U∗NV∗LW)† = [(U∗NV)†∗MA]†∗LV†∗N [A∗R(V∗LW)†]†. (40)

Replacing U and W by M1/2∗MU and W∗RN−1/2 in Eq. (40) along with using Eq. (18)
and Lemma 11(a, b) we have

A†
M,N = N−1/2∗R[(M1/2∗MU∗NV)†∗MM1/2∗MA∗RN−1/2]†∗LV† ∗N

[M1/2∗MA∗RN−1/2∗R(V∗LW∗RN−1/2)]†∗MM1/2

= N−1/2∗R[W1∗RN−1/2]†∗LV†∗N [M1/2∗MU1]†∗MM1/2,

= (W1)
†
IL ,N ∗LV†∗N (U1)

†
M,IN

.

Applying Lemma 5[(a),(c)] and Lemma 6(a) in the given condition, we get

W = (U∗NV)†∗M (U∗NV)∗LW = W1 and U = U∗N (V∗LW)∗R(V∗LW)† = U1.

Hence, (U∗NV∗LW)
†
M,N = W†

IL ,N ∗LV†∗NU†
M,IN

. ��

4 Applications

This section is devoted to the application of the SVD and the Moore–Penrose inverse of
tensor in a few 3D color images.
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Fig. 1 a and f are true images. The reconstructions of images using SVD based on the Einstein product of
tensor: b and g 05 singular values; c and h 15 singular values; d and i 25 singular values; e and j 200 singular
values

4.1 SVD for color images

The singular value decomposition is an attractive algebraic transform for image processing.
According to Lemma 2 the tensor A splits into a set of linearly independent components,
each of them bear their own energy contribution, i.e., a tensor represents the orthonormal
tensors U and V along with a diagonal tensor D comprised by singular values of A. Thus,
the tensor A can be represented in term of rshrank(A), i.e.,

A =
r∑

i=1

σiUi ∗1 VT
i = σ1U1 ∗1 VT

1 + σ2U2 ∗1 VT
2 + · · · + σrUr ∗1 VT

r (41)

where r = rshrank(A), V1,V2, · · · ,VN be the frontal slices of V and U1,U2, · · ·UM be the
frontal slices of U such that the tensors

V = [V1,V2, · · ·VN ], U = [U1,U2, · · ·UM ], and r = rshrank(A).

It is well known that singular values are arranged in decreasing order and thus the last
terms of the singulars values have the least effect on the image. To benefit from this property
we use it for reducing space to store the image on the computer. For more details on SVD, the
reader is encouraged to see the following papers formatrices (Shim andCho 1981; Lyra-Leite
et al. 2012) and the use of t-product tensors (Kilmer et al. 2013; Kilmer and Martin 2011).
Consider a positive number k such that k ≤ r . Hence, without going to the very last singular
value we can compress the image. Truncating (41) sums after the first k terms, we obtain

Ak = σ1U1 ∗1 VT
1 + σ2U2 ∗1 VT

2 + · · · + σkUk ∗1 VT
k .

To illustrate the accuracy and efficiency of the SVD, we take into account t-product
based SVD (see Kilmer et al. 2013; Kilmer and Martin 2011) and the Einstein product-
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Fig. 2 The reconstructions of images using SVD based on t-product of tensor: a and e 05 singular values; b
and f 15 singular values; c and g 25 singular values; d and h 200 singular values

based SVD. We consider two 400 × 512 × 3 color 3D images in Fig. 1a, f. Considering
only five singular values of the associated tensor, we reconstruct the original image using
the Einstein product-based SVD, and present in Fig. 1b, g. In the same manner, Fig. 1c,
h are reconstructed with 15 singular values. Figure 1d, i has been reconstructed using 25
singular values. We have to increase the number of singular values to reconstruct the image
as well as the original image. Finally, Fig. 1e, j is reconstructed with 200 singular values.
Similarly, we have reconstructed images using t-product based SVD in Fig. 2. To determine
the effectiveness of our reconstruction, we evaluate

Relative error = ‖A − Ak‖F

‖A‖F
,

where Ak is the reconstruction image and

‖A‖2F =
I1∑

i1=1

· · ·
IM∑

iM =1

J1∑

j1=1

· · ·
JN∑

jN =1

a2
i1...iM j1... jN

. (42)

To measure the quality of reconstruction between the original image A and the SVD
compressed images Ak with different tensor product (the Einstein product and t-product),
we determine the relative error in Fig. 3 and conclude that t-product-based SVD gives more
accurate result compare to theEinstein product. But the drawback of the t-product is “multipli-
cation of arbitrary order tensors”. However, themain aim of this paper is to focus on arbitrary
order tensors; hence, we consider reshape operation-based SVD with Einstein product for
our study.
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Fig. 3 Relative error (between compressed and original images) with the used number of singular values

Fig. 4 a and d true images; b and e blurred noisy images; c and f reconstruction images
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4.2 Moore–Penrose inverse for color images

We now discuss the reconstruction of an arbitrary-order image using the Moore–Penrose
inverse of a tensor. The discrete model for a color image is represented asA∗2X = B,where
the tensor B is the blurred image, often corrupted by the noise from the true image X . A is
known as blurring tensor. The authors ofHuang et al. (2019) have discussed the tensor form of
the global GMRES,MINIRES, SYMMLQ iterative methods to find the approximate solution
of the ill-posed system. Further, a few iterativemethods (called LSQR, and LSMR) have been
discussed in Huang and Ma (2020). The t-product based on the Moore–Product inverse may
gives more accurate result, as SVD. Here our purpose is not to compare our tensor-based
approach to other tensor-based method, but rather to contribute to a few characterizations of
the weighted Moore–Penrose inverses of tensors and study the reverse-order laws for this
inverse. We use the Einstein product based the Moore–Penrose inverse to reconstruct the
original image with the help of blurring tensor A and blurred image B. We consider two
blurring 256×256×3 colour images B form original imageX . Then we have added random
perturbations to B with the noise level of 0.001 percent and shown our results in Fig. 4b, e.
Two original images are also shown in Fig. 4a, d. Using least square solution A† ∗2 B, we
have reconstructed the true images, and the resulting images are displayed in Fig. 4c, f.

5 Conclusion

In this paper, a novel SVD and full rank-decomposition of arbitrary-order tensors using
reshape operation is developed. Using this decomposition, we have studied the Moore–
Penrose and general weighted Moore–Penrose inverse for arbitrary-order tensors via the
Einstein product. Further, singular value decomposition has been use for 3D color image
reconstruction and an application of Moore–Penrose inverse of tensors of arbitrary-order
tensor is demonstrated in a colour image deblurring. We have also added some results on
the range and null spaces to the existing theory. Then we discuss a few characterizations of
cancellation properties for Moore–Penrose inverse of tensors. In addition to these, we have
discussed the reverse-order laws for weighted Moore–Penrose inverses. In the future, it will
be more interesting to express additional identities of weighted Moore–Penrose inverse in
terms of the ordinary Moore–Penrose inverse for arbitrary-order tensor.
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