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Abstract

Within the field of multilinear algebra, inverses and generalized inverses of tensors based on
the Einstein product have been investigated over the past few years. The notion of the weighted
Moore—Penrose inverses of even-order tensors in the framework of the Einstein product was
introduced recently (Ji and Wei in Front Math China 12(6):1319-1337, 2017). In this article,
we introduce the weighted Moore—Penrose inverse of an arbitrary-order tensor. We also
investigate the singular value decomposition and full-rank decomposition of arbitrary-order
tensors using reshape operation. Derived representations are used for two purposes: (1) to
obtain a few new characterizations and representations of weighted Moore—Penrose inverse
of arbitrary-order tensors; (2) to explore various necessary and sufficient conditions for the
reverse-order law for the inverse to hold. In addition to these, we discuss applications of
singular value decomposition and the Moore—Penrose inverse of an arbitrary-order tensor to
a few 3D color image processing.
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1 Introduction
1.1 Background and motivation

Tensors or hypermatrix are multidimensional generalizations of vectors and matrices, and
have attracted tremendous interest in recent years (see Kolda and Bader 2009; Martin and
Loan 2008; Ragnarsson and Loan 2012; Qi 2005; Shao 2013). Indeed, multilinear systems are
closely related to tensors and such systems are encountered in a number of fields of practical
interest, i.e., signal processing (see Lathauwer et al. 2000; Sidiropoulos et al. 2017; Coppi
and Bolasco 1989), scientific computing (see Beylkin and Mohlenkamp 2005; Shi et al. 2013;
Brazell et al. 2013), data mining (Chew et al. 2007), data compression and retrieval of large
structured data (see de Silva and Lim 2008; Che et al. 2018). Further, the Moore—Penrose
inverse of tensors plays an important role in solving such multilinear systems (see Behera and
Mishra 2017; Jinet al. 2017; Ma et al. 2019) and the reverse-order law for the Moore—Penrose
inverses of tensors yields a class of interesting problems that are fundamental in the theory of
generalized inverses of tensors (see Panigrahy et al. 2020; Sahoo and Behera 2020). In view
of these, multilinear algebra is drawing more and more attention from researchers (see Jin
et al. 2017; Bader and Kolda 2006; Martin and Loan 2008; Kruskal 1977; Lathauwer et al.
2000), specifically, the recent findings in (see Behera and Mishra 2017; Brazell et al. 2013;
Ji and Wei 2017; Panigrahy et al. 2020; Stanimirovi¢ et al. 2020; Sun et al. 2016; Behera
et al. 2020), motivate us to study this subject in the framework of arbitrary-order tensors.

Let ClrxxIn(RIXINYy pe the set of order N and dimension I; X --- x Iy tensors
over the complex (real) field C(R). Let A € C/'*"*IN be a multiway array with Nth
order tensor, and /1, I», ..., Iy be dimensions of the first, second,. . ., Nth way, respectively.
Indeed, a matrix is a second-order tensor, and a vector is a first-order tensor. We denote
R™*" to be the set of all m x n matrices with real entries. Note that throughout the paper,
tensors are represented in calligraphic letters like A, and the notation (A);,. iy = @ij..iy
represents the scalars. Each entry of A is denoted by a;, ;,. The Einstein product (see
Einstein 2007) AxyB € Chx-xInxKix—xK. of tensors A € CH**ImxJixxJy apd
B e C/rxxInxKixxKL jq defined by the operation #y via

(AsNB)iy.iprky .k, = Z iy ing jro Oy jnky k- nH

JiJN

The Einstein product is not commutative but associative, and distributes with respect to tensor
addition. Further, cancellation does not work but there is a multiplicative identity tensor Z.
This type of product of tensors is used in the study of the theory of relativity (Einstein 2007)
and also used in the area of continuum mechanics (Lai et al. 2009).

On the other hand, one of the most successful developments in the world of linear algebra
is the concept of Singular Value Decomposition (SVD) of matrices (Ben-Israel and Greville
1974). This concept gives us important information about a matrix such as its rank, an
orthonormal basis for the column or row space, and reduction to a diagonal form (Tian
and Cheng 2004). Recently, this concept is also used in low rank matrix approximations
(Grasedyck 2004; Ishteva et al. 2011; Ye 2005). Since tensors are natural multidimensional
generalizations of matrices, there are many applications involving arbitrary-order tensors.
Further, the problem of decomposing tensors is approached in a variety of ways by extending
the SVD, and extensive studies have exposed many aspects of such decomposition and its
applications (see, for example, Chen et al. 2017; Kolda and Bader 2009; Kruskal 1977;
Lathauwer et al. 2000; Sidiropoulos et al. 2017; Liang and Zheng 2019). However, the
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existing framework of SVD of tensors appears to be insufficient and/or inadequate in several
situations.

The aim of this paper is to present a proper generalization of the SVD of arbitrary-order
tensors under Einstein tensor product. In fact, the existing form (Brazell et al. 2013) of the
SVD is well suited for square tensors, which is defined as follows:

Definition 1 (Definition 2.8, Brazell et al. 2013): The transformation defined as
fiTr 0. 0@®R) — My, 15 [R) with f(A) = A and defined component wise as

f
(Aijij — (Ai+G-DIL+G-DIT» (2)
where T;.7.7.7(R) = {A € RI>>I>J : det(f(A)) # 0}. In general, for any even order
tensor, the transformation is defined as f : Ty, 1y.1p....0n R) —> My, 1y 5.0y R)

(Aiy iy jiojn SEAN (A)[. (3)

i+ e D TS, B+ S Ge-D TS 4]

Using the above Definition and Theorem 3.17 in Brazell et al. (2013), we obtain the SVD
of a tensor A € RI*TXIXJ which can be extended only to any square tensor, i.e., for
A e RivxIyxexIyxlixlx-xIy Extension of the SVD for an arbitrary-order tensor using
this method (Brazell et al. 2013) is impossible, since f is not a homomorphism for even-order
and/or arbitrary-order tensors. In fact, the Einstein product is not defined for the following
two even-order tensors, A € RI*D2XN1xD gnd B ¢ RIXDXNXD 6 - A%, Bis not defined.
Therefore, our aim in this paper is to find the SVD for any arbitrary order tensors using
reshape operation, which is discussed in the next section.

In addition, recently there has been increasing interest in analyzing inverses and general-
ized inverses of tensors based on different tensor products (see Sahoo et al. 2020; Ji and Wei
2018; Jin et al. 2017; Brazell et al. 2013; Sun et al. 2016). The representations and properties
of the ordinary tensor inverse were introduced in Brazell et al. (2013). This interpretation
is extended to the Moore—Penrose inverse of tensors in Sun et al. (2016) and investigated
for a few characterizations of different generalized inverses of tensors via Einstein prod-
uct in Behera and Mishra (2017). Appropriately, Behera and Mishra (2017) posed the open
question: “Does there exist a full rank decomposition of tensors ? If so, can this be used
to compute the Moore—Penrose inverse of a tensor” ? It is worth mentioning that Liang and
Zheng (2019) investigated this question and discussed the computation of Moore—Pensore
inverse of tensors using full rank decomposition.

In this paper, we study singular value decomposition and full-rank decomposition
of arbitrary-order tensors through reshape operation. Derived representations are usable
in generating corresponding representations of the Moore—Penrose inverse and weighted
Moore—Penrose inverse arbitrary-order tensors. However, until now, these decomposition
and representation have been limited to special kinds of tensors. The multiplication of two
tensors with arbitrary-order is impossible with existing tensor multiplication techniques. The
multiplication of two tensors A x 8 for A, B € RN1*N2xXNp ysing t-product (see Braman
2010; Liang and Zheng 2019; Martin et al. 2013) requires N; = N,. Further, if N| = N,
and others are different, then product is not possible. For example, if A € R?*3*4*3 and
B € R?*3*7x8 then A % B is not defined. The drawback of multiplication of two arbitrary-
order tensors using the Einstein product is mentioned a previous paragraph. Hence, SVD
and full-rank decomposition (see Brazell et al. 2013; Sun et al. 2016; Liang and Zheng
2019) of arbitrary-order tensors are not possible in several applications. The main advantage
of the reshaping operation of tensors is to establish a general framework for multiplying
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arbitrary-order tensors. The beauty of the reshape operation is that the number of elements
are rearranged from the tensor case into the matrix case and vice versa. Thus, it gives us the
freedom and flexibility to choose the order of the tensors. For example, consider a tensor
A € R¥3*#x3x6x7 Then the tensor can be represented in a different form of tensor and
matrices.

e The tensor B) = reshape(A) € RI2x5x6x7 i e transform the fifth-order tensor to the
fourth-order tensor.

e The tensor By = reshape(A) € RI*7*6x3x4 i e transform the fifth-order tensor to
the fifth-order tensor with different size.

e The matrix B3 = reshape(A) € RO0x42 i e . transform the fifth-order tensor to the
matrix.

e The matrix By = reshape(A) € R?'¥120 je. transform the fifth-order tensor to the
matrix.

A summary of the main facets of this discussion may be listed in the following way:

1. We have studied singular value decomposition and full-rank decomposition of arbitrary-
order tensors through reshape operation. Then the weighted Moore—Penrose inverse of
an arbitrary tensor is introduced.

2. We have further studied the range- and null-space of tensors. We have also added a few
characterizations of the Moore—Penrose inverse and weighted Moore—Penrose inverse of
arbitrary-order tensors via the Einstein product to the existing theory.

3. We have discussed some necessary and sufficient conditions for the reverse-order law to
hold for weighted Moore—Penrose inverses of arbitrary-order tensors.

4. Application of singular value decomposition and the Moore—Penrose inverse to a few 3D
color images is presented.

Recently, Panigrahy and Mishra (2020) investigated the Moore—Penrose inverse of a prod-
uct of two tensors via Einstein product. Using such theory of Einstein product, Stanimirovié
et al. (2020) also introduced some basic properties of the range and null space of multidi-
mensional arrays, and the effective definition of the tensor rank, termed as reshaping rank.
Recently, Sahoo et al. (2020) added a few results on reshape operation of a tensor to the exist-
ing theory. In this respect, Panigrahy et al. (2020) obtained a few necessary and sufficient
conditions for the reverse order law for the Moore—Penrose inverses of tensors, which can
be used to simplify various tensor expressions that involve inverses of tensor products (Ding
and Wei 2016). Since then, many authors investigate the reverse order law for various classes
of generalized inverses of tensors (Che and Wei 2020; Panigrahy and Mishra 2020; Sahoo
and Behera 2020). At the same time, the representations of the weighted Moore—Penrose
inverse (Ji and Wei 2017) of an even-order tensor was introduced via the Einstein product. In
this context, we focus our attention on exploring some characterizations and representation
of weighted Moore—Penrose inverses of arbitrary-order tensors.

In this paper, we study the weighted Moore—Penrose inverse of an arbitrary-order tensor.
This study can lead to the enhancement of the computation of SVD and full rank decompo-
sition of arbitrary-order tensor using reshape operation. With that in mind, we discuss some
identities involving the weighted Moore—Penrose inverses of tensors and then obtain a few
necessary and sufficient conditions of the reverse order law for the weighted Moore—Penrose
inverses of arbitrary-order tensors via the Einstein product.
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1.2 Outline

We organize the paper as follows: In the next subsection, we introduce some notations and
definitions which are helpful in proving the main results of this paper. In Sect. 2, we provide
the main results of the paper. To do so, we introduce SVD and full rank decomposition of an
arbitrary-order tensor using reshape operation. Within this framework, the Moore—Penrose
and the generalized weighted Moore—Penrose inverse for arbitrary-order tensor is defined.
Furthermore, we obtain several identities involving the weighted Moore—Penrose inverses of
tensors via Einstein product. Section 3 contains a few necessary and sufficient conditions of
the reverse-order law for the weighted Moore—Penrose inverses of tensors.

1.3 Notations and definitions

For convenience, we first briefly explain a few essential facts about the Einstein prod-
uct of tensors, which are found in Behera and Mishra (2017), Brazell et al. (2013) and
Sun et al. (2016). For a tensor A = (@j...ipj1..jx) € ClxsxduxJixxJy *the tensor
B = (bj,..jyir.iv) € CIrxxInxhixxIu s said to be conjugate transpose of A, if
bjl---jNil---iM = Qiyipgjijn and B is denoted by A*. When bjlu-jNilu-iM = Qiy.ipjre-JN>
B is the transpose of A, denoted by AT . The Frobenius norm ||.||r is defined ( Sun et al.
2016) as follows:

||~A||F — Z |ai1,,,iNj1,,‘jN|2 for Ae (CI]XWXINXJ]X"'XJN.
i1...iNj1---JN
The definition of the diagonal tensor is borrowed from Sun et al. (2016), and is obtained
by generalizing Definition 3.12, Brazell et al. (2013).

Definition 2 A tensor D € C/1>*/uxJixXJN with entries d;, i, j,.
is called a diagonal tensor if d;; i\, j;...jy = 0, when

[i1+ Tt = DTIZ! 1) # L+ G = DTS 4]

-JN

Now we recall the definition of an identity tensor below.

Definition 3 (Definition 3.13, Brazell et al. 2013) A tensor Zy € C/1X >IN xJix-xJIN with
entries (IN)iliz-“ilejzij = Hllcv:l 6ikjk’ where

Sivjn =1, ik = Jjk,
0, ik # Jk-

is called a unit tensor or identity tensor.

Note that throughout the paper, we denote Zj;,7; and Zr as identity tensors in the
space Chix-xIyxiy ><~~~><IM’ CKix XKL XKy XX KL, gnq CH1 % xHrx H) ><~~~><HR’ respectively.
Further, a tensor O denotes the zero tensor if all the entries are zero. A tensor A €
ChxsxInxDix-xIyN ig Hermitian if A = A* and skew-Hermitian if A = —A*. Subse-
quently, a tensor A € C/1X*INxIvxXIN s ypitary if AxyA* = A*xyA = Iy, and
idempotent if Axy A = A. In the case of tensors of real entries, Hermitian, skew-Hermitian
and unitary tensors are called symmetric (see Definition 3.16, Brazell et al. 2013), skew-
symmetric and orthogonal (see Definition 3.15, Brazell et al. 2013) tensors, respectively.
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Next we present the definition of the reshape operation, which was introduced earlier in
Stanimirovi¢ et al. (2020). This is a more general way of rearranging the entries in a tensor
(it is also a standard Matlab function), as follows:

Definition 4 (Definition 3.1, Stanimirovic¢ et al. 2020): The 1-1 and onto reshape map, rsh,
is defined as
rsh - QI xlyxJix-xJy Ch-Im>xJ1IN with

rsh(A) = A =reshape(A, Iy --- Iy, J1--- JN), “4)

where A € Cl>xImxJixxJIN and the matrix A € Cl"Im*Ji"IN  Further, the inverse
reshaping is the mapping defined as rsh~! : C/vImxJidn s ClixxIyxJixxIN with

rsh™'(A) = A=reshape(A, I, -+ . Iy, Ji, -+ . ). )
where the matrix A € CHIm>xJ1In and the tensor A € CIrx - xImxJixxJy

Further, Lemma 3.2 in Stanimirovi¢ et al. (2020) defined the rank of a tensor, .4, denoted by
rshrank(A) as
rshrank(A) = rank(rsh(A)). (6)

Continuing this research, Stanimirovic et al. (2020) discussed the homomorphism properties
of the rsh function, as follows:

Lemma1 (Lemma 3.1 Stanimirovi¢ et al. 2020) Let A € CH>xXImxNix=xXIy qud B
CIrxxInxKix-xKL be aiven tensors. Then

rsh(AxyB) = rsh(A)yrsh(B) = AB € CliImxKi-Ki (7
where A = rsh(A) € Clv-IuxJi-JIv B = rsh(B) € C/1-IvxKiKp
An immediate consequence of the above Lemma is the following:
AsxyB=rsh ' (AB), i.e., rsh™'(AB) = rsh™'(A)xyrsh™ (B). ®)

Existence of SVD of any square tensor is discussed in Brazell et al. (2013). Using this
framework, Ji and Wei (2017) defined Hermitian positive definite tensors, as follows:

Definition 5 (Definition 1, Ji and Wei 2017) For P € ClxxIvxIixxIN if there exists a
unitary tensor If € C/1>xINxIixxIN guch that

P=UxnDxyU", )

where D € Clrx-xInxIix-xIn js 5 diagonal tensor with positive diagonal entries, then P
is said to be a Hermitian positive definite tensor.

Further, Ji and Wei (2017) defined the square root of a Hermitian positive definite tensor, PP
as follows:
P2 = 1 x5 DY? 5y U*,

where D!/? is the diagonal tensor, which obtained from D by taking the square root of all its
diagonal entries. Notice that P'/? is always non-singular and its inverse is denoted by P~!/2.
we now recall the definition of the range and the null space of arbitrary order tensors.

Definition 6 ( Definition 2.1, Stanimirovic et al. 2020): The null space and the range space
of a tensor A € CI1¥*Im>xJix-xJN are defined as follows:

NA) ={X: Axy X =0 e CIVoXIny - and R(A) = {Axy X X e CI<xIny,
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It is easily seen that A/(A) is a subspace of C/1> <N and JR(A) is a subspace of C/1>*1u
In particular, N'(A) = {O} if and only if A is left invertible via *j; operation and R(A) =
ChxxIu if and only if A is right invertible via %y operation.

2 Main results

Mathematical modelling of problems in science and engineering typically involves solving
multilinear systems; this becomes particularly challenging for problems having an arbitrary-
order tensor. However, the existing framework on Moore—Penrose inverses of arbitrary-order
tensor appears to be insufficient and/or inappropriate. It is thus of interest to study the theory
of Moore—Penrose inverse of an arbitrary-order tensor via the Einstein product.

2.1 Moore-Penrose inverses

One of the most widely used methods is the SVD to compute Moore—Penrose inverse. Here
we present a generalization of the SVD via the Einstein product.

Lemma?2 Let A € CloxxImxJixxIn \ith pshrank(A) = r. Then the SVD for tensor A
has the form
A =UsxyDxyV*, (10)

where U e CHx>xuxlixxlu gy e CHXXINXIXXIN gre ynitary tensors, and
D e ChxxImxIxxIN js q diagonal tensor, defined by

(D)ivoivr it = or>0,ifl =Je{l,2,...,r},
M T, otherwise,
where I = [iy + Y25 (i — D[T=) Bl and J = [y + Y aes Gk — DTTZT i

Proof Let A = rsh(A) € ChIv>xJiIn 1p the context of the SVD of the matrix A, one can
write A = UDV*, where U € CltIux1tIu and V e C/1/N*/1/N are unitary matrices
and D € CliIm>J1+I¥ is a diagonal matrix with

_for>0ifI =T e(1,2,....r),
D)1y = { 0, otherwise

From relations (7) and (8), we can write
A=rsh™"(A) = rsh " (UDV?¥)
= rsh Y (U)xprsh™ " (D)xnrsh™ (V) = Usy Dy V*, (11)

where U = rsh™'(U),V = rsh™"(V) and D = rsh™"(D). Further, UxyU* =
rsh™" (UU*) = rsh™'(I) = Ty and VxyV* = rsh™ " (VV*) = rsh™'(I) = Iy gives
A = UxpyDxyV*, where U and V are unitary tensors and D diagonal tensor. O

Remark 1 The authors of the paper Liang and Zheng (2019) has proved Theorem 3.2 for a
square tensor. Here we proved for an arbitrary-order tensor.

Continuing this study, we recall the definition of the Moore—Penrose inverse of tensors
in ClxxImxJixxJx yia the Einstein product, which was introduced in Liang and Zheng
(2019) for arbitrary-order.
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Definition 7 Let A € Clx > IuxJ1xXJN The tensor X € C/1< >IN xI1xxIu satisfying
the following four tensor equations:

(1) AxyXxpy A = A,
2) XxpyAxyX = X;
B) (AxyX)* = Axy X;
4 (Xxpy A)* = Xxy A

is called the Moore-Penrose inverse of A, and is denoted by At

Similar to the proof of Theorem 3.2 in Sun et al. (2016), we have the existence and
uniqueness of the Moore—Penrose inverse of an arbitrary-order tensor in C/1 %X s xJix-xJy
as follows.

Theorem 1 The Moore—Penrose inverse of an arbitrary-order tensor, A €
Chox Iy xixXJIN exists and is unique.

By straightforward derivation, the following results can be obtained, which also hold
(Lemmas 2.3, 2.6) in Behera and Mishra (2017) for even-order tensor.

Lemma3 Let A € Clrx X ImxJixXIN Thep

(a) A* = ATspy Axy A* = A*spyy Axy AT
(b) A = Ay A%y (A*)T = (A" Ty A%y A;
(c) AT = (A*sp AT sy A* = A%y (Axy A%

From Stanimirovic et al. (2020), we present the relation of range space of multidimensional
arrays which will be used to prove next Lemma.

Lemma4 (Lemma2.2, Stanimirovié et al. 2020) Let A e Clx=>ImxJixxIv B ¢
ChxxIuxKixxKL Then R(B) C R(A) ifand only if there existsU € CT1X X INxKix--xKy
such that B = AxyU.

We now discuss the important relation between range and Moore—Penrose inverse of an
arbitrary order tensor, which are mostly used in various section of this paper.

Lemma5 Let A € ClrxxluxJixxXIy gung B e CIx > IuxKixxKL Tpep

(@) R(B) CRA) © Axy A sy B= 5,
(b) RA) =RMB) & Axy AT =B+ BT,
(c) R(A) = R[(AN*] and R(A*) = RAD).

Proof (a) Using the fact that R(A xy U) C R(A) for two tensors A and U in appropriate
order, one can conclude R(B) € R(A) from A xy A’ %) B = B. Applying Lemma 4,
we conclude B = A sy P from R(B) C R(A), where P € Clr>>InxKixxKp
Hence, A sy AT %y B= Axy AT 5y Axy P = B.

(b) From (a), we have R(A) = R(B) ifand only if Asy ATsy B = Band By Bi sy A = A
which implies BT = B %), Ay AT. Then Axy AT = By B sy Axy AT = Bx BT

(c) Using Lemma 3 [(b), (c)], one can conclude that 93(A4) < R[(A")*] and R[(AT)*] <
R(A) respectively. This follows R(A) = R[(AT)*]. Further, replacing A by A* and
using the fact (A*)" = (AT)* we obtain R(A*) = R(AT).

O
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Using the fact that R(A xn B) € R(A) for two tensors .4 and B and the Definition-7, we
get

R(A*y B B = R(Axy B), (12)

where A € ClXxIuxJixxIn and B e C/1* >IN xKixxKL Now using the method as
in the proof of Lemma 5, one can prove the next Lemma.

Lemma6 Let A € CloxoxIuxDixxIn gng B ¢ CKiXXKLxixXIy Then
(a) R(B*) CR(A*) & By AT xy A= B,
(b) RA*) =RB*) & AT %y A=B" % B,
(¢) R(A*y BT = R(A =y B).
Consider A, B, X € Clix-xIyxIixxIy gnd all are invertible, the following equation:

By (Asy Xy B) ey A = &7 (13)

is called the cancellation property of product of tensors (A, B, X'). When the ordinary inverse
is replaced by generalized inverse with suitable order, this cancellation property is not true
in general.

Example 1 Consider tensors A = (a;jx) € R3x2x2x2 3 — (bijr) € R3%2x3x2 gand x =
(xijki) € R2x2x3%2 gych that

00 0 0 11 -1 0
aijin =|0-1],aj21=1-1 0 |,a2=|1-1],an2=|1 -1},
1 -1 1 —1 01 1 0
11 00 01
bijit = |01}, bijpi=100], bijz31=(00],
01 00 10
00 00
bijiz=100], bijoo=101] =byjz,
11 11
and
(11 (0 -1 - _ (00
Xij11 = —10)’ Xij21 = 10 ) Xij31 = 00/’
(0 0 (1 - ~_(-10
Xij12 = 11 s Xij22 = 11 > Xij32 = 0 -1/
Then
—1/3 2/3 ~1/3 -1/3
AHin = -4/9 1/9 |, XDz = | =179 =2/9],
0 -5/9 0 1/9
13 173 1/3 —2/3
XN =-5/9-1/9], XN ={1/9 2/9
0 —4/9 0 —1/9
and
~1/3 2/3
By (A2 X2 B) s A= 0 —1/3],
1/3 -1
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~1/3 —1/3
By (A X 52 B) g Ayjm = | 0 —1/3],
1/3 0
| 1/3 13
(B (A2 X % B) %9 A)jjia = 0 -2/3],
—4/3 —1
| 173 —2/3
(Bxy (Axy X %) B)' %o A)ijn = 0 1/3
—4/3 0

Hence, .
XT £ By (Axo X %0 B)T 5y A

In this context, we concentrate to characterize all triples (A, B, X’) which satisfy
X1 = Big(Aspy Xy B) 5 A, (14)

where X € Clix-xIux X'"XJN,.A e CKixxKpxhixxIy gnq B e /1% xJInxHyxxHg
The first result obtained below deals with the necessary condition of this properties.

Lemma7 Let X € (CIIX“'XIMXJIX'“X‘]N, A € (CKIX“'XKLXIIXMXIM and B €
C]]X--~><JN><H1><-~-><HR

XY =Bxg (Asy X sy B) s A then X = AT s, Asyy X and X = X «y Bxg BT
Proof Let, XT = Bxp (Axy X sy B)T %1 A. Then R(XT) € R(B), R(XT)*) € R(A*).
Hence, from (a) and (c) in Lemma 5 and (a) in Lemma 6, we have R(X) C R(A*), R(X*) C
R((B")*), which implies

X =A% Axpy X, X = X sy Bxg B

The following example shows that converse of the above theorem is not true in general.

Example 2 Consider tensors A = (ajjki)1<i,jki<2 € R2X2x2X2 B — A% and X =
(Xijri)1<i,j k<2 € R2%2x2x2 gych that

1=y (=10y _fo-1\ (10
ajj11 = 00 ,4ij21 = 00 ,4ij12 = 10 ,Aij22 = 0—-1)°
1 -1 01 00 00
xijn =\ o |%in2=\go) ¥t ={_1¢9) ¥2=\0)
Then

AN = (8 _01> (AN = <_11 _01> (AN = <_01 _01> (AN = (8 :i) .

Thus, we have

and

AT s Asg X =X and X% B B = X.

But
By (Asr X5 B) %y A £ X7,
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where
; 11 ; 00
Brr (Axa X2 B) 0 A)ijii = | 1 1), Bra (A X B) o A)ijr = 1 1),
212 212
) 01 : 0-1
(B x2 (A*3 X %3 B)' %2 A)jj1o = 00)> B* (Ax2 X %3 B)' #2 A)jjor = 00 )

" 00

XN = ):(X‘)iﬂl = (_1 l>’
22
(XN)ij1n = (8 é) (X )ijm = <8 8) :

However, the converse of Lemma 7 holds under the assumption of additional condition which
is stated below.

Lemma8 Let X € ChxxIuxJixxIy g ¢ CKixexKpxhixexIu  gng B ¢
CloxxInxHixxHr i x = AV s Asy X=X sy Bxg BY along with the condition
K = Asp (Asp X))y (A X) g A and £ = Bxg (X sy B) sy (X y B)x g BT are Hermi-
tian, then XT = B xg (Axp X sy B) %1 A

Proof Let W = Bxg (Axy X #y B) % A.

Now, X sy Wxpy X = (.AJr *LA*MX*NB*RBT)*NB*R (A *py X xnN l’j’)T s, A%y
(./4Jr *L A *M X XN B *R B-‘L).

= A" sy [(Axp X sy B) kg (Asxpy X sy B #p (Axy X sy B)] g B

= A" sp (Axy X sy B) s B =

Further, Wiy Xsky W = Bkg (Askpy Xy B) g Aspg Xk Big (As g Xy B) g A = W.
Again K = X xy W and £ = W %) X are Hermitian. Hence, W = Xt O

From Lemma 7 It is clear that if X7 = Baxg(Asxy XxnB) %A, then R(Axy X) =
R (A ps Xy B), which implies that (As s Xy B)s g (Aseps Xy B) T = Asep Xy (Aspr )7,
Itis easy to verify that X'y X" = Kand X% X = £, and both K and £ both are Hermitian.
Therefore, a necessary and sufficient condition for the cancellation law can be stated as

Theorem2 Let X e ChxxXmxlixexiy A ¢ CKioxoxKixhixxly gpd B e
(C./]X--»XJNXHIX-»-XHR.

=Bxgp (Axpy X xnN B’)T>a<LAifandonlyifX:AT xp Axpy X=X xy Bxg B and
both K = ATsp (A X))y (Axpy X)) 5 A and £ = Bxg(XsyB) sy (XxnB)xp BT are
Hermitian.

We now proceed to discuss a few necessary and sufficient conditions for the cancellation law.

Corollary1 Let X e Chx=xluxJixxiv A g CKox-xKixlix-xlu gnd B e
ClrexInxHixxHr - qnd X7 = B sp (A sy X sy B) 1 A if and only if both the
equations

Xt = (A*MX)T*L.A and X7 = B>1<R(X>x<1\/l’>’)Jr are satisfied. (15)

Proof By taking B = 7 in Theorem 2, we have X7 = (A %) X)" %, A if and only if
AT sp (A X)sn (A X)) %, A is Hermitian and X = AT %7 A %y X. Similarly, with
the special case A = T in Theorem 2, we get X7 = B xp (X sy B)! if and only if
B (X B) T (X yB)*r BT is Hermitian and X = X %y B % BT. Using the fact of
Theorem?2 one can prove the required result. O
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Using Lemmas 5 and 6 in Corollary 1 one obtain the following result.

Theorem3 Let X e ChxxIuxJixexIy g ¢ CKixoxKixhixexIy gpg B e
(lex--»xJNlex-uxHR, then

X' =Bxg (Asxy Xy B) #1 A
if and only if
(Asxy )T = XV AT, (XxnyB) = By X7, X = ATsp Axyy X and X = XxyBxgB'.

Proof Suppose that Xt = Bxg (Axy X #y B)T %1 A. Then from Corollary 1,

X1 = (A X) s Aand X7 = Big(XxyB)F.

Now, R(X) = RI(XT*] = RIA* sz {(A sy X)T1] = RA* %1 A%y X) and R(X*) =
RXT) = RIBxg (X sy B)T] = RIB xg (X sy B)*] = R(B xg B sy X*).

Therefore, R(X *y X* % A*) C R(X) = R(A* %1 Axp X) C R(AY), ie., R(X *y
X* %y A*) € R(A*) and R(A*sp Asp X) € R(X) implies that (A sy X)T = XT %y AT
R(X) € R(AT) implies A" s, A sy X = X. Similarly, from R(X*) = R(BxgB sy X*)
it follows that (X xy B)' = BT «y X7, X = X xy Bxg BT,

Conversely, using Lemma 5(c), Lemma6(a) in the fact
RIX)*] = R(X) S RAT) = R(A*) and R(XT) = R(x*) € RI(BN)*] = R(B).

One has X7 = XTxp AT, A and X1 = BxgBisy X7,
Now, (Axp X) g A= XTxp AT A= XTand Bxg (X sy B)' = Bsg Bl sy X7 = X7,
then by Corollary 1 proof is done. O

2.2 Weighted Moore-Penrose inverse

Weighted Moore—Penrose inverse of even-order tensor, A € C/1*x/kxJixXJK yag intro-
duced in Ji and Wei (2017), very recently. Here we have discussed weighted Moore—Penrose
inverse for an arbitrary-order tensor via Einstein product, which is a special case of general-
ized weighted Moore—Penrose inverse.

Definition 8 Let A € Cl< > IuxJixxJyN and a pair of invertible Hermitian tensors M €
(CI]><~--><IM><I|><-~-X1M andN c C]IX"'XJNXJIX"'XJN. A tensor y c (C]]x--~><JN><I|><~--xIM is
said to be the generalized weighted Moore—Penrose inverse of .4 with respect to M and
N, if Y satisfies the following four tensor equations:

(D) Axy X xy A=A

Q) X xpy Axy X = X

B) M xpy Ay X)) = Mxpy Axy X;

4) WV xy X sy A" =N sy X 5y A.

In particular, when both M, A are Hermitian positive definite tensors, the tensor ) is called
the weighted Moore-Penrose inverse of .A and denote by Aj\/t g

However, the generalized weighted Moore—Penrose inverse ) does not always exist for any
tensor .4, as shown below with an example.

Example 3 Consider tensors A = (a;ji) € R2%3x2 and M = (aijk) € R2X3x2x3 yith
N =) € R2%2 guch that

101 203 20
""f'1=<—121>’“’72=(201> and N=<o —1)
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200 020 001
mijin =\ go0) ™i2=\g00) ™iB3=\000)"

000 000 000
mi1 =\ _100) ™i2={g10) ™iz=\p03)

AT*ZM*QA:(Q 12)

with

Then we have

12 16.

This shows AT s M, A is not invertible. Consider the generalized weighted Moore—Penrose

inverse ) € R2X2X3 of the given tensor A is exist, then using relation (1) and relation (3) of
Definition 8, we have

Asp Yo M i YT 5p AT 59 My A= A (16)
Since (AT % A)~! %; AT %, A = T, then A is left cancellable, now (16) becomes
Vo Mg VT 5) AT 59 My A=1T, (17)

this follows that A7 %, M =, A is invertible, which is a contradiction.

At this point, one may be interested to know when does the generalized weighted Moore—
Penrose inverse exist? The answer to this question is explained in the following theorem.

Theorem 4 Let A € CHxxImxJix=xIN_[f both M e Cl>xIuxlixxIu gnd N e
CIrxxINX I XXIN qre Hermitian positive definite tensors. Then generalized weighted
Moore—Penrose inverse of an arbitrary-order tensor A exists and is unique, i.e., there exist
a unique tensor X € CJ<xINxlxXIu gych that

X = Al = NPy MYy Asy N7V Ty M2, (18)
where M2 and N'V/? are square roots of M and N, respectively, satisfy all four relations
of Definition 8.

One can prove the above theorem, using Theorem 1 in Ji and Wei (2017) and Theorem 1.
Further, itis known that identity tensors are always Hermman and posmve definite; therefore,
for any A e ClxxIuxJix-xJy AIM 7, exists and AIM Iy = = AT, which is called the
Moore—Penrose inverse of .A. Specifically, if we take M = Zj; or N' = Zy in Eq. (18), then
the following identities are hold.

Corollary 2 Let A € Clx>xIuxJixxIy Then
(@ Al g, = M 5y )T sy M2,
b) AL =Ny (Asxy N7V

Usmg Definition 8 and following Lemma 2 in Ji and Wei (2017), one can write
(A M. /\/) Nom =Aand (.A A= (AH' -1 1> Where A is any arbitrary-order tensor.
Now we define welghted conjugate transpose of a arbitrary-order tensor, as follows.

Definition 9 Let M e ClxxImxlix—xlu and N' e C/1x*INxJixXIN are Hermitian
positive definite tensors, the weighted conjugate transpose of A € C/1XxImxJixxJn jg
denoted by Aif,/vl and defined as Af\f,/\/t =NV sy A% 5y M.
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Next we present the properties of the weighted conjugate transpose of any arbitrary-order
tensor, A € C/1>>x I xJixxJIn aq follows.

Lemma9 Let A € CloxxImxJixexiy g o Clx-xInxKixxKL gnd Hermitian pos-

itive definite tensors M e CH>*>xImxIpc-xly p g CKix-xKixKix-xKi gng N e
(C]]x--~><JN><J1><~--xJN Then

(@) (A )hnw = A

(b) (AsyBYh =B v AR

Adopting the result of Lemma 9(b) and the definition of the weighted Moore—Penrose
inverse, we can write the following identities.

Lemma10 Let A e Clo>xluxJixexIn agnd M e Chxxluxliexly =\ g
CIrxxINxXIxXIN qre Hermitian positive definite tensors. Then

@ (A )l = A b
() A=Ay AR k(AR 0N = (A A0 v AR o As
(©) Aj*\/’M = A-{/-\A,N*MA*NA#/#\/,M = Aﬁ\/,M*MA*NAj\/{,N'

Using Lemma 3.17 in Panigrahy et al. (2020) on two invertible tensors B €
ClixexdyxlixxIy ang ¢ e CIr<*InxJ1xxIyv gne can write the following identities:

By A sy By A = ATy A and A sy Cxy (AxnC)T = Axy AT, (19)

where A is the arbitrary-order tensor, i.e., A € Cl>X*IuxJixxJv By Eq. (19) and Corol-
lary 2, we get following results.

Lemmal1l Let A e Cloxluxoesdygng Mo Cloexdwxdpexdu =\ e
ClrxxINX I XXIN be g pair of Hermitian positive definite tensors. Then

@ Al g, A= M7y A sy M2 sy A= AT 5y A,
(b) Asy AL = Asy N7V 2y (Asy N7V = Axy A,
© (Al g0 = M2y [A* 5y MV,

@ (AL, )= W2y ATy 712

The considerable amount of conventional and important facts with the properties concern-
ing the range space of arbitrary-order tensor, the following theorem obtains the well-formed
result.

Theorem5 Let U € Clix-xIuxJixexIy y g ClixexINxKixxKL 1ot M €
Clocxtuxlixxlu gqpd N e CKixxkixKixxKi be q pair of Hermitian positive definite
tensors. Then

UNV gy = (U 2,5V i Vg w7 ) 5N VE DT
Proof Let X = U")* %y Vand Y = U *y (V')*. From Lemma 6(c), we get
RX*) = R[U *n§ V)*] and R(Y) = RU xx V).
Now, using Lemmas 6(b) and 5(b) along with the fact (V)* = Vs VT sy (VT)*, we obtain
Xy VT sy U 5p YT = X sy U 50V 52 Vs (V) * 5, V7

@ Springer f b/v\/\



Weighted Moore-Penrose inverses of arbitrary-order tensors Page 150f34 284

= X5y Xxp Vg W 5 DT
= UV xn Y V' = U V)
Replacing ¢/ and V by M!/2% U and V %, N ~1/2, respectively, on the above result, we get

(M2 sp Uy 5y Vs, N7V
= {[MY2 5y U T 5y Ve, N7V2 sy LMY 54 LT sy [V 5, NTV2)T1% 5
(MY 0 U [V 5, N7V
= M2y Uy 7)) 58 VL N2 sy M7V 2y Ul 7 ) 5 (V)7 5L
N2 s IMP sy Uy (V) 50 N2

Substituting the above result in Eq. (18), we get the desired result. O

Further, in connection with range space of arbitrary-order tensor, the following theorem
collects some useful identities of weighted Moore—Penrose inverses.

Theorem6 Let U € Clxxluxixxiyv —y g ClixoxIvxKixxKi gng W e

CROCxKexHpexHr pf A = Usy VW, and M e CIo>xImxtoexiu gnd N e
CHi<xHrx HixxHr qrp Hermitian positive definite tensors. Then
@ Ay = X ANVELYL 7, where X = Uy Vs V) TayA and Y =
Asxg(Visy Vi W) .
) Al n = XF, FL VRNV V5V 1 where X = [Usy (V) 1T xy A and Y =
Asxg[(VH* 5 W'
Proof (a) From Eq. (18), we have
Aj\/t,N = N_I/Z*R[Z/ll*NV*Lwl]T*MMI/z,
where U; = MY 2%y and Wy = WirN ~1/2. On the other hand, by Eq. (12), we have
RX*) = RIOVs W) sy Uy Vi V) sl U Vi VY
= RA*) and RQ) = R(A).
Also by Lemma 5(c), we get
RIS RIUsn V=LV ] = RIUsn V=L V)] and RQT) € ROV Ty VL),
Thus, using Lemmas 5(a, b) and 6(a, b), we have
Xy Ve YT = XTay Usy Vi V) g sy Vi V) sy Vi VT sy Vi W) g
Vs Vi W) ey VF
= ATsp Vet = AT 20)

Replacing U by U1 and W by W in Eq. (20) and then using Lemma 11(a, b), we get
Aj\/{,/\/ = N7V 25 (WU n VL V) T MY 2500 Ak g N7V 2] Ty Vi,
MY 254 A g N TV 25 o VT sy Ve W) T gy M2
= N7V 2sp[Usn Ve V) T syp Ase g N V2 T sy v
sk M4y Ax g (Vs y Vi W) TPy M2
=X A HENVELY ) 7 -
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(b) Following Lemma 3(b) and Eq. (12), we get
R(A) = R(D) and R(X*) = RIV*5n VL W) s Uy VN s {U sy (V)] =
R(A*). Also using Lemma 5(c)

RIXT*T S RUU =y VH*PT and RQT) € RIOV* %, W1
Using Lemmas 5(a, b) and 6(a, b), we obtain
XT*LV**NV*LV**N)/T = XT sr [U *n (VT)*]T AlZETY, (VJ'.)*]*LV**NV*LV**N
[V 5 Wxg [(V)* 52 WIT 5y VT
= X s U sy VT 5 Asp[(VD* 5 WIT 5y VT
= AT s Asg [V 5 WIT 5y V7 = AT, 1)

Let Uy = MY P2spytd, W) = WepN ™2 and A| = Uy Vs, Wi. Then using Eq. (21)
and Lemma 11(a, b), we can write

AT = [ty O s AT Vo sy Vs Vo LA R LT e 1) 1
= [{Usn VY Y s pg A g N V2 5 Vs Vi, Vs MY 250 A g (VT *5 W T
Therefore, Aj\/t,/\/ = N_I/Z*RAJ{*MMI/z = X;L,N*LV**NV*LV**NJJ;\A,IN- O

Theorem7 Let U e Clx-xImxJixxIv g CIxxInxKixxKi gnd W e
CKIX"'XKLXHlx“'XHR.AISO let M € (CIIX“'XIMXIIX“'XIM and N e (CH1><~~><HR><H1><~~~><HR

be a pair of Hermitian positive definite tensors. Then
@ U Vs Wi = Uz, #v Vxr WIL s Uiy 70" 5v Y ose
Wi N ERIU N V 5 V3, A T s )
*y Vkp = *N 7 L L1 kM (U sy 7, T V' sy
(b) Wy VAL W) gy = H@Uxn W g7, AL WE 1 o [N V) g 7, T 5LV
[V kL W) T s Uy {05 T (T
Proof (a) Let A = Uxy V¥ W, X = U sy Vi W and Y = Usy Vi, WT)*.
Using Lemma 6(c), we get
RAX™) = R(A*) and RQ) = R(A).

Further, using the fact that W™ = W' sy OV")* xy W*, and Lemma 5(b) and Lemma 6(b),
we can write

X s WD 5y Vrr OV s VT = 2T 5y N 5y Vrr W WHs, OVH* 5 VT
= .A+>!<M:))>I<RyT = AT.

Using the above result to [MY2Z sy Uy Vi, W N~Y5)]T and following Lemma
11[(c),(d)] we get

U *N V =, W)j\/t,/\f
= N7V 25 (IM 25y LT 5y Vo Wog N7V ey (MY 50 LT 5y V 5,
[V xg N7V g MY s U sy Vo, {(OV 5 NV T M2
= N7V 25 M7V 5y (UJT\AJN)* *n Vorr Wag N7V s MTV2 5y (L{;LV[’IN)* *y

Vg OWr ) kr NV g MY sy Uy Vo, OVE, () g N2 1Ty M2

= (U 7,)" %8 VL WL L Uy 7,07 53 Vi OV, () 5k
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U n Vo OVE (DT

(b) Let A = Usy Vg W, X = [(U sy V)TT* 5 Wand Y = U =y [(V %, W)T]*. Using
Lemma 6(c), we get
R(X™) = R(AY), RQ) =R(A) and
RUUNV) VT = RIUsN )T = RIUsNV)*T S RO,
From Lemma 3(a), one can write [(Vx; W) 1% = (Vg W)xg Wk W) s [(Vsp, W) T,
Now using Lemma 5(b) and Lemma 6(b), we obtain
Xem [ Uy V)T 5, Vs [V 5 W) T 55 Y
= X0 [Un V)T L Vsey Vi Wokg (Vs W) sy [V 51, W) TR )"
=X s Xxg Ve W) sy [V W) 5 VT
= A sy Uy [V W) xg YT = AT,
Replacing ¢/ and W by M!/2x 14 and Wixr N ~1/2, respectively, on the above result, we
have
(M2 g Uy sy Vo, W g N™YHIT
= M2 sy Uy VYTV e p W N7V sy [OMY2 sy Uy V)T 5, VF
s [V Wap NV T s IMYZ sy Uy (V5 W g N2 T
= (M7 sy [ Uy Wiy 7, 150 Wor N7V s MV g (@ W g 7 17 50 VT
[V s WL TR NTV2g MY g Uy (V51 W)TIN,N}* wg N2,
Substituting the above result in Eq. (18) one can get the desired result. O
Theorem8 Ler U e Chxxluxlixxiy v g ClixxIvxKixexKi gng W e
(CK1><~~><KL><H1><~~><HR’ If A = Uy VLW, and M € (Cllx...xIMxllx...xIM’ N €
CHix<xHrxHixxHr be g pair of Hermitian positive definite tensors, then
T ¥ ¥
AM,N = XIN,N*NV*LJ)M,IL’
where X = U sy Aand Y = Ax g,
Proof LetU; = MY %s U and W, = WskgrN ~1/2 Tt is known, from Eq. (18),

Al = N 2 p Uy Vi W) g M2

¥

Now using Eq. (12) we have R(X™*) = R[U xny V xp W)* xy (U")'] = R(A*) and
R(Y) = R(A). Also, from Lemma 5 (c), we have
RXT)*] = R(X) € RUT) = RU*) and
ROT) = RO*) = RIA g WH*] = RIU 5 V 5 W 5 WH)*]
= RIW xg WH* 5 U 2y V)*]
= ROV sg W' s U x5 V)*) € ROV).
Using Lemmas 5(a, b) and 6(a, b), we get
at xny Vokp y-}- =t kN UT sy U xy Vxp W xpg WT EYs y-{-
= AT sy Vg Y= AT (22)
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Using Lemma 11(a, b) one can conclude
Uiy VW) | = (U kg Mg Ao g N T2 s Ve M Py A g N 7125 g W 1T
= U sy A g N TV sy Ve [MY 250p A g W
Hence, Aj\/{,/\/ = N7V 24U 5 pg A g N T2 sy Vit MY 20 A gV T gy M2

=Xl VeVl g
Hence, the proof is complete. O

By Lemma 11(a, b) and Eq. (18), and Eq. (22), we have

Corollary3 Let U e Clo-xluxJixxIy y g Clox-xInxKixxKe gng W e

CRixxKixHixeoxHr Lot A = Usy Ve W. Let M € Clxxluxlixxly \f ¢
(CH|><~--><HR><H1><-~-><HR) P e (CJ1><~--><JN><J1><-»-><JN andQ c CK]X-"XKLXKIX-”XKL are Her-

mitian positive definite tensors. Then the weighted Moore—Penrose inverse of A with respect
to M and N satisfies the following identities:

@ Al = Uy, pru A sy Ve (AW 207 o
() Al = [UrN VLV 7)) prr AL\t N VELIARR(VE oxn VAN G i o

2.3 The full rank decomposition

The tensors and their decompositions originally appeared in 1927, (Hitchcock 1927). The
idea of decomposing a tensor as a product of tensors with a more desirable structure may well
be one of the most important developments in numerical analysis such as the implementation
of numerically efficient algorithms and the solution of multilinear systems (Kolda and Bader
2009; Che and Wei 2019; Martin and Loan 2008; Kolda 2001). As part of this section, we
focus on the full rank decomposition of a tensor. Unfortunately, It is very difficult to compute
tensor rank. But the authors of in Stanimirovic et al. (2020) introduced an useful and effective
definition of the tensor rank, termed as reshaping rank. With the help of reshaping rank, We
present one of our important results, full rank decomposition of an arbitrary-order tensor.

Theorem 9 Let A € CH>-xImxNixXIy Then there exist a left invertible tensor F €
ChxsxIuxHixxXHR gnd q right invertible tensor G € CHU< X HRXJDXXIN gych that

A = F*rg, (23)

where rshrank(F) = rshrank(G) = rshrank(A) = r = Hy --- Hg. This is called the full
rank decomposition of the tensor A.

Proof Let the matrix A = rsh(A) € Cli"IM>*JiJN Then we have, rank(A) = r. Suppose
that the matrix A has a full rank decompositions, as follows:

A= FG, (24)

where F € ClImxHiHr g 3 fy]] column rank matrix and G € CHiHrxJi-Jy j5 3 fyll
row rank matrix. From Egs. (8) and (24), we obtain

rhs T (A) = rhs Y (FG) = ris ' (F) xg rhs 1 (G), (25)

where F = rsh~L(F) e ClvexduxHixxHg and G = rsh=1(G) € CHi*xHrxJixxJy
It follows that
A = Fxgg,
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where F e Clrx<xIuxHixxHg g the left invertible tensor and G € CH1IXxHrxJixxJy
is a right invertible tensor. O

The prove of the above theorem was proved earlier (see Lemma 2.3(a), Liang and Zheng
2019) indifferent way. Here, we have provided another proof without using reshape operation.
Further, the authors of in Liang and Zheng (2019) computed the Moore—Penrose inverse of
a tensor using full rank decomposition of tensors as follows:

Lemma 12 (Theorem 3.7, Liang and Zheng 2019) If the full rank decomposition of a tensor
A € CloxxIuxIixXJIN s aiven as Theorem 9, then

AT = G* xp (F* sy Axy G xp F*. (26)

Now, the following theorem expressed the weighted Moore—Penrose inverse of a tensor
A € CloxexIuxJixxJIN ip form of the ordinary tensor inverse.

Theorem 10 If the full rank decomposition of a tensor A € CTV¢XImxJixXIN js aiyen by
Eq. (23), then the weighted Moore—Penrose inverse of A can be written as

Aj\/t,/\/ = N7 N GF s g (F sy Mg Ay N Ly G~ L g Fra M,

where M e Clr->xluxlixxlu and N g C/1**INxJ1xxIN are Hermitian positive
definite tensors.

Proof From Egq. (18), we have
AL,N = N2y Mgy sy N TV Ty MY = N1y By M2,

where B = (MY 2%y F)xg(GxyN~1/2), and M & N are Hermitian positive definite
tensors. Here B is in the form of full rank decomposition, as both M!/2 and N''/? are
invertible. Now, from Lemma 12, we get

B" = (Gxy N V2 s g (M 20y F*sepg (M0 F)
*R(GrNN TV 2) s (Gry N T2 1 L p (M2 F)*
= N V2 n G s g (F sy Mopg Ay N Ly G) " Lieg Frsepy MU,

Therefore, Aj\/l,/\/ = N 7Ly G s g (Frs g Moy Ay N "Ly GF) Lk g Fs g M. O

In particular when the arbitrary-order tensor, A is either left invertible or right invertible,
we have the following results.

Corollary 4 Let a tensor A € CIVX>XIuxJixXJIN pag the full rank decomposition.

(@) If the tensor A is left invertible, then -Aj\/t, N = N Vi (A% My
Ay N~ 7 haey A sy M.
(b) If the tensor A is right invertible, then Aj\/l, Ny = N iy A (M

Ay N "Ly A%) " Ligy M.

It is easy to see that the full rank factorizations of a tensor A € Cl1 ¥ *Im>xJ1x-XJN are

not unique: if A = F xg G is one full rank factorization, where F € C/>-xIm>xHix--xHg
is the left invertible tensor and G € CH1X - xHrxJix-xJN ig the right invertible tensor, then
there exist a invertible tensor P of appropriate size, such that 4 = (F xg P) %z (P~ %z G)
is another full rank factorization. The following theorem represents the result.
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Theorem 11 Let A € Chx > IuxixxXIN yyith yshrank(A) = r = H Hy - - - Hg. Then A
has infinitely many full rank decompositions. However if A has two full rank decompositions,
as follows:

A = FxrG = F1xrG1,

where F, Fi € ClrxxIuxHixxHr gng G G e CH>xHrXNXXIN thon there exists
an invertible tensor BB such that

Fi=FxgB and Gi = B~ xgG.
Moreover,
Fl = (FxrB)' = B 4xF" and G] = (B7'%xG)" = GTxrB.

Proof Suppose the tensor, A € C/1>X*ImxJix-XJN hag two full rank decompositions, as
follows:

A = FxrG = F1*r0G1, 27
where F, Fj € ClvxoxIuxHixxHr qnd g G € CHrxxHrxJixxJy Thep
FxrG*nG| = FixrGixnG,.

Substituting M = Zy; and N' = Z in Corollary 4(b) we have Ql*NQ}L = TZg.

Therefore, 7} = f*R(g*Ngf), similarly we can find G| = (f;r*M}')*Rg.

Let rsh(G) = G = reshape(G,r,J1---Jn) and rsh(Gy) = G| = reshape(Gy,r, Ji
.-+ Jy). Then rsh(GxnG)) = GG| € C"™" and

r =rshrank(F;) = rshrank(}'*R(g*Ng'l}')) < rshrank(g*Ngf) = rank(GG-[) <r

Hence, GG}L is invertible as it has full rank. This concluded Q>|<NQ1T = rsh’l(GGI) is
invertible. Similarly, ]_-17 *)1 F is also invertible. Let B = G Ngf and C = ]-'IT *) F. Then

C*RB = FT*M]?*RQ*NQ}L = fI*Mfl*Rgl*NgI = IR
is equivalent to C = B!, Therefore,

Fi = FxpB and G| = B~ %zG.

Further
Fl = (FxrB)* sy FxrB) " xg (FxrB)*
= B g (F sy F) Lap(BY) " Lag B sp F*
= B g (FrayF) spF* = B lsgFl.
Similarly G| = G+ B. O

3 Reverse order law

In this section, we present various necessary and sufficient conditions of the reverse-order
law for the weighted Moore—Penrose inverses of tensors. The first result obtained below
addresses the sufficient condition for reverse-order law of tensor.
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Theorem 12 Let A € CHxXImxJix=xIn gng B g CHx>xINxKixxKL Jor M €
ChoxsxuxlixxIy - qpd N e CK1x-xKLxKixxKL pe q pair of Hermitian positive defi-
nite tensors. If R(B) = R(A*), then

(A*NB)L,N = B;N,N*NAL,IN'
Proof Let X = A" sy Axy Band Y = Ay B B'. Using Lemma 5(c), we get

RIXT)*] = RIAT 1 A)* 5y Bl € R(AY)
and RO = KRB *, B xy A*) € RB).

Similarly, from Eq. (12), we have
R(X*) = KRB+ A* %41 (AT = R[(A *y B)*] and R(Y) = R(A xy B).
Further, from Lemma 5[(a), (b)] and Lemma 6[(a), (b)], we obtain
Ay Y= Xy Xoap BTy V' = (Asew B) 5o Yoy V' = (A B,

ie.,

(Axy B)' = (AT sy Ay B) sy (Axy B, BN (28)
Let A = M2%y A and By = B N ~1/2. Using Lemma 11(a, b), we get
X:AI*M/h sy B and Y = A xy B *LBT.
Now, replacing A and B by .A; and By, respectively, in Eq. (28), we get
(A B = (X N7V ey (M )T
Thus, from Corollary 2, we can conclude
(A*NB)I\/I,N = N2 (ArxnB) Ty M2 = X}MN*N))L’IN.
From the given condition and Lemma 5[(b), (c)], we have B 1B = ATxy A, ie.,
A= AsxyBxB" =Y and B= ATxyAsyB = X.
Hence, (AxnB)\, v = BY v Al 7, - O

Further, using Theorem 3.30 in Panigrahy et al. (2020) one can write a necessary
and sufficient condition for reverse order law for arbitrary-order tensors, i.e., for A €
CloexluxJix=xIv and B e Clx>IvxKixxKL Then (AxyB)" = By AT if and
only if

Al spr Ay B B sy A* = Bxp B sy A*, and Bx B sy A% sy Axy B = A*xpy Ay B.

Now, utilizing the above result and the fact of Lemma 5[(a),(c)], we conclude a beautiful
result for necessary and sufficient condition for Moore—Penrose inverse of arbitrary-order
tensor as follows.

Lemma 13 Let A € ClrxxImxJixxIn gqpg B € C/<*InxKixxKL The reverse order
law hold for Moore—Penrose inverse, i.e.,(Axy B)' = BT xy A" ifand only if
R(A* xy Axy B) € R(B) and R(B xp, B* xn A*) C R(A").

The primary result of this paper is presented next under the impression of the properties
of range space of arbitrary-order tensor.
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Theorem 13 Let A e Chx>xXux/ix-xIy B c ClixoxIvxKixxKi 1ot M €
(CI]XH-XIMXI[X“-XIM’ N c CKIX'“XKLXKIX“'XKL and P € (CJIX"'XJNX]IX"'XJN are three

Hermitian positive definite tensors. Then
(Asn By =By #v Al p
if and only if

R(AL g%y Axy B) S RMB) and RB xL By pxny Ap ) S R(AD ).

Proof From Eq. (18), we have (A xy B\, \v = B}y *n Al p if and only if

N2 5 (M2 5y Ay Bxg N™V2T s M2
= N2y (P2 sy Bap N7V2) Ty P2 ey P12 sy
(M2 5y Asy P2 T gy M2,

is equivalent to, if and only if
(Axy B =B sy AT,
where A = M2 sy Axy P~Y2 and B = PY? sy B N~1/2. From Lemma 13, we have
(Axy By = Bh v #v Ay p
if and only if
R(A* %y Axy B) € R(B) and R(B *, B xy A*) € R(A"), (29)
which equivalently if and only if
R(P'2 swn Ap g xm Axy B N712) S RPV2ay B N7172)

and R(PV? sy Bxp Bl p sy A pgxm MTY2) S ROPYZ sy A s M),

Hence, (A *y B)j\/l,/\/ = B;N *N Aj\/l,P if and only if
R(A% v #m Axy B) SRB) and R(B L By p xn A ) S R(AL ).

This completes the proof. O

As a corollary to Theorem 13, we present another reverse order law for the weighted
Moore—Penrose inverse of arbitrary-order tensor.

Corollary5 Let A e Chx-xIuxJix-xIy p o Chx-xInxKix-xKi [1or M €
(CIIX"'XIMXIIX'"XIM, = (CK1><~~~><KL><K1><-~><KL and P e (CJIX"'XJNXJIX"'XJN are three

Hermitian positive definite tensors. Then
(Axy By = Bh o #v Al p
if and only if
Aj\/l,’/) *Mm .A*N B *r Bj(/yp *N Af,f;.’M =B *r Bﬁ/yp kN A#?M

and B*LB;’N*NA#'P’M *MA*NBZA?;’M sy Axy B.
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Proof From Theorem 13, Eq. (29) and Lemma 5(a), we have (A *y B)j\/l,/\/ = B;N N
Aj\,l,p if and only if
(P2 sy Brg NV sep (PY2 sy B N7VH T sy P2 sy A‘;;,M sy Asy Bxp N71/2
=PV uy A\ km Ay B N7U2
and
(P2 sy .A?;,M sy MTU2) sy (P12 sy A’;;’M * )
M2 sy P2 sy By, 87\/,79 *y A.#/F\A,P sy M1/2
=pl2 N B Bﬁ\/,P *N A?D,M * ) M2
i.e., if and only if
B xr B;N*N A%M *MA*NB:A%’M sy Axy B and
(M2 50 Ay PTYHT sy (M2 5y Ay
PN sy P2 xy Brp By p sy Al p ke M2
=PV sy By Bl p sy A gy MTV2,
i.e., if and only if
By Bl xn Al vk Ay B= A oy Asy B
and Al p oy Asy Brp By p oy Al =B Bl p sy A .
This completes the proof. O

Theorem 14 Let A e Clix-xIux/ixxIy B o ChxxINxKix-xKL 1ot M €
(CIIX"'XIMXIIX"'XIM’ N e CKix-xKpxKyx--xKp and P € CIrx X INXI1XXIN e posi-

tive definite Hermitian tensors. Then
(AsnB) = B yoin Al p
if and only if
(Al prur Asn B = Bl sy Al pru A and
(AN BxL Bl () g p = BxL Bl \ ok Al p.
Proof Suppose, (A*NB)J;\A,N = B;D,N*N‘Ajvl,P' Now one can write
(Aj\/l,p*M-A*NB)*L(B;:,N*NAL,p*MA)*N(ALQP*NA*NB) = AL,P*MA*NB.
Further, we can write
B v Al prar ey (Al prar Ay ByxL (Bl pxn Al ptar )
= B yxn Al pruA.
Also , [Py (Al pra Ay B)xL (B \xn Al prar A"
= [(P*NALP*MA)*NPA*N(P*NB*LBL’N)*NP’1*N(P*NAL’P*MA)]*
= (Pin Al pru ey P~ ay (PrnBir By \)xnP ™ sy (Pry Al prarA)

= Py (Al pru Ay BYxL (Bl v Al prar ),

@ Springer f DMAC



284 Page24of34 R.Behera et al.

and [Nk (B;N*NA'{M’P*MA)*N (AL’P*MA*NB)]*
= Wir (Bl ot Al p)tn Ay B)]*
= N*L(B;D,N*NAjvt,P*MA)*N(Aj\/t,”P*MA*NB)~
Hence,

(Al pruAsn B, = Bl sy Al prar Al

By similar arguments one can also show that(.,4>|<1vl§'>|<LB;g,N)jVl p= [5“[{,’;J N*N-Aj\/l,p-
Conversely, for proving converse, first we prove a identity.
From Egq. (18) and Eq. (28), we have

(AxnB) g
= N71/2*L[(./\/lI/Z*MA*N'Pil/Z)*N('Pl/z*NB*LNil/Z]T*MM1/2
= Nfl/z*L[(Ml/Z*MA*Npil/Z)T*N(MI/Z*M.A*N'Pil/Z)*N(Pl/z*NB*LNil/Z)]?
* N [MY 2y Ay P25y (P 25y B L N TV 2y (P 2y B N V) T Ty M2
= J\/'_I/Q*L[PI/Z*NA;A’P*MA*NB*LN’_1/2]"'*NP1/2*N’P_1/2*N
[./\/lI/Z*MA*NB*LB;;VN*NP_I/Z]T*MM1/2
= (Aj\,l,p*MA*NB);;,N*N(A*NB*LB;,’N)L,P.
Further, using the given hypothesis and above identity, we can write
(A B) gy = B ain Al prar sy (B B v Al p)
= (B y+n Al pra sy (Al prar Ay B)xL (Bl \ 5y
Aj\/l,P*MA)*NATM,P
_nt T
= Bp x#NApg,p-
This completes the proof. O

In the next theorem, we develop the characterization for the weighted Moore—Penrose
inverse of the product of arbitrary-order tensors .4 and B, as follows.

Theorem 15 Let A € Chx>xXux/ix-xIy p o ClixoxIvxKixxKiL 1ot M €
(C11><~--><IM><I|><-~-><IM’ N € CKixxKpxKixxKp qnap e CIxXINXIXXIN qre three

Hermitian positive definite tensors. Then
(Asxn B)yne = Bb v #v (A p.
where Ay = Axy By *1 (B)} - and By = Al p %y Axy B.
Proof
Asy B = Asxy Al p oy Asy B=Axy By
= Axy By *L (Bl);N *n BL = Ap *n Bi. (30)
ATM,P *y Al = Aj\/t,P *pm Axn Aj\/{,@ sy Asxy B (Bl);?,/\/
= Bi*1 (B - 31
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Al p#m Al = Al p o Aty (AD N p 5 Ay
= Bi*L (B1)b pr #v (AD g p *ar Al (32)

From (31) and and the above equality, we have

Py Br*L (Bl)p/\/ [P xn B *L (Bl)p w1En Py [Py (-Al)j\/t,p *p Arl

Therefore,
Pan Brxp (B = [Py Br#r (B 1"
=Py (AD 0 p *m At *y Brxp (B v
=P sy (AD g p *u Al
Hence,

Bixp (B1)b = (AD g p a1 Al = Al p *ur Al (33)
Let X = Asy Band Y = (BD)b \ #v (A1)’ p. Using (30) and (33) we obtain
Xk Vxy X = Axy Bxp (Bl);:v,/\/ *M (Al)j\/t'p *n Al xy Bl
= Ay =y By #L (B %8 Bi s (BD)p %8 B = X
Viu XL Y = (B %5 Bi ¥ (B %5 Bt ¥ (B v #n (AD g p = V.
Mxpy X xp Y = M*y Ap xn (-Al)j\/[,p xp Al N (Al)j\/t,’p = My X xL V)
and
Noxp Yy X =N xp (Bl);N s Bi kL (B %5 B = (N % Y #ag X)*
Hence, XMN Y, ie., (A*NB)M/\/ (B])pN*N(-Al)Mp o
We shall present the following example as a confirmation of the above Theorem.

Example4 Let Ay = A% By %1 (B1)h  and By = Al p #1 Ax; B, where A =
(aijk) e R3x2x4’ B = (bijk) c R2X4X3, M = (mij) e RSXS7 N = (nij) c R3><3 and
P = (pij) € R2x4x2x4 gych that

-1 2 10 20 32
ajj1 = 1—1 ,adjj2 = 00 ,ajj3 = 11 » dijj4 = 1 -1 .
10 00 01

poo_(—1211 ortrry (0111
1=\ 110)22=\1101)%3=\1101)

301 110
M=|020].N=[120],

102 001

1001 0100 0010 1003
piji1 = 0000 » Pij12 = 0000 Pij13 = 1000 » Dij14 = 0010
Pij21=<

0010y {0000\ {0001\ (0000
2000) Pi2=\p221)Pi3=\0250)Pi2=\0101
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Then Aj = (d;jx) € R¥>*24, By = (biji) € RV, (Al p = (xije) € R¥H3
and (Bl);?,/\/ = (yijx) € R¥*%** such that

-1 2 10 20 32
ajj1 = 0 =) aijp=01)a3=|11),aa=|1-1],
1 10 00
5 (-034501.0728 07438 04134
i1 —0.2067 1.1965 —0.4265 —0.8661
B —0.3319 1.7409 1.0320 0.4483
2=\ —0.2242 1.1004 —0.3217 —0.5167
B 1.5109 4.0568 0.2402 —0.6376 = —0.2052 —0.1339 0.1514 0.1194
173 = 10.3188 1.2533 0.0873 —0.3755 1=\ —0.0597 —0.1616 0.0247 0.1936
o — 0.0218 0.4469 0.1470 0.0582 o 0.4236 0.9360 —0.0146 —0.2038
ij2 —0.0291 0.5066 —0.1587 —0.4178 173 7=10.1019 0.2271 0.0553 —0.0378
0.4783 —1.6522 —0.5217 0.6522 —0.3043 0.6522
vij = [ —05217 1.3478 | yijo = | 04783 —03478 | . yijs = [ 0.6957 —0.3478
0.1304 —0.0870 0.1304 0.0870 —0.1739 0.0870
—0.7826 —1.6522
Yija = 1.2174 1.3478
—0.3043 —0.0870
Thus,

—0.4783 0.6522 —0.0435
(A B)ly = [ 05217 —0.3478 —0.0435 | = (B} %2 (AD )y p-
—0.1304 0.0870 0.2609 ' '
Hence, (A *2 B)M N = (81)79/\/ *) (.A])M P

Further, using Lemma 4 in Ji and Wei (2017) on an arbitrary-order tensor A €
ChocxImxJixxJN with Hermitian positive definite tensors M e ClX>xIuxlix-xIy
and N/ € C/1xxInxJ1xXJIn gne can write the following identity:

KAy #1 A) = RAL 1) (34)

Using the above identity, a sufficient condition for the reverse order law for weighted Moore—
Penrose inverse of tensor is presented next.

Corollary6 Let A e Clx>xImxJixexiy B o CIxxInxKix-xKL Jer M €
Clocxdyxlixxlu £ g CKixxKixKixxKi gpgp e Clx-xInxJix=xIy gre posi-

tive definite Hermitian tensors. If
R(B) € RAp 0 and NBlpip pir) S N(A),

then .
(Asxn By = Bh %y Al p-

Proof From Theorem15 we have, (A *y B)j\/l,/\/ = (Bl);N *N (Al);r\/l,P’ where
Ay = Axy By (B and By = Al p sy Axy B.
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From Eq. (34) and given hypothesis, we have

KA p #1 A) = RAL 1) 2 RB)
So there exists P € C/1xx /v xKix-xKi gych that B = Aj\/t,/\/ s A sy P. Now,

By = Al xm Axy B= A\ 5 Asy P =B.
Hence, A; = Axy B *L Bj\/P.
Further, we have, A/ (5B% e pa) € N (A), which is equivalent to
RP™2 xy A*) = RA®) S RIBY 1o pi2)*] = RIN T2 g B 5y P2,
Then from Lemma 6 (a), we have
(A *y 73_1/2) *N (./\/_1/2 x; B* %y 731/2)Jr % (/\f_l/2 x; B %y 731/2) = Axy P12,

which equivalently

(A *xy 'Pil/z) kN [('Pl/2 *n B xp, ./\/71/2) k[ ('Pl/2 *n B xp, ./\/‘71/2)”>k =Axy 7371/2,

that is
Asey Bag N7V2 51 (PY2 sy Bsp N7V sy P2 = A,
i.e.
A = Axy B Bl p = A.
Hence, (A *y B)"M’N = Bj\fﬂ’ *N AL,N. O

We next present another characterization of the product of arbitrary-order tensors, as
follows:

Theorem 16 Ler A € Clix>IuxJixxIy qnq B e ClixxInxKixxKp
Let M € Cloxcxdy xdyx--xIy N € CKix--xKpxKyx--xKp and P € (CJ1>< X JINxJpxex Iy
are three Hermitian positive deﬁmte tensors. Then

Ay By n = BDp v (AD g p.
where Ay = Axy BB 7 and By = (A1), p*mArsnB.
Proof Let X = AxyBand) = (Bl);),N*N(Al)le,P' Now we have

AxyB = A*NB*LB;‘D,IL*NB = A1xyB = AI*N(AI)L’»p*MAI*NB = A1xnBi. (35)

Now, using Eq. (35), we obtain

Xk Ve X = ApsnBrsr (B \#nB1 = X, (36)
VXY = (B \tnBrar (B b kv (A p = V. 37)
NrL Vi X = Nxp (B 4y Bi = (Wi Yy ). (38)

Further, using the following relations
BispBh 7 = (AD v pru A1 and Bix Bl 7 = Bisr(B)h xn (AD g prar Al

we have
(AI)TM’p*MAl = BI*L(BI);J!N-
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It concludes that
My XY = My Ay (A p = (M XL D) . (39)
From the relations (36)—(39) validates ) = X/T\A,N' Hence, (A *y B)j\/t,N = (Bl);:,N*N
(Al)jvmg. This completes the proof. ]

The significance of the properties of range and null space of arbitrary-order tensors, the
last result achieved the sufficient condition for the triple reverse order law of tensor.

Theorem 17 Letif € CIx-xImxJixxIn 1y ¢ QI xInxKix-xKi g
W e CK'X"'XKLXHIX'"XHR.LeIM c CI]X--~><IM><I|><~--><IM andN c (CH]X-<~><HRXH|><~--)<HR

be a pair of Hermitian positive definite tensors. If
ROW) € RIUNV)*] and RU) € ROV*LW).
Then
(Z/[*NV*LW)TM,N = W}L,N*ka*NUj\/l,IN'

Proof Let A = Usy Vs W, Wi = UsyV) sy A and Uy = Axg(Vx V)T, From Eq.
(12), we get

RU) = R(A) and ROWV)) = R(AY).
Also from Lemma 5(c), we get
%[(Wr)*] =RV S RIU *x V)] = RIU x5 V)*]
and RU)) = RU) S RV )T = RV W),
Applying Lemmas 5(a, b) and 6(a, b), we have
WlT s Vs Z/IIT = WlT *L W1 s (VL W) xy Uf = AT*MUI*NUI = A"
which is equivalent to
Usn VW) = [UsN V) 5 AT 5LV sy [ A (V3 W) T (40)

Replacing ¢ and W by M2y and Wxg N ~1/? in Eq. (40) along with using Eq. (18)
and Lemma 11(a, b) we have

‘Aj\/l,/\/ = ./\/’_1/2>I<R[(./\/l1/2>I<MZ/{>X<1\]V)T*M/\/l1/2>X<M.A>X<R./‘\/’_1/Z]tkLVWL * N
[/\/11/2>|<M..A>i<R./\f7l/2>I<R(V>I<LVV*R./\/‘*1/2)]T>I<11/[./\/l1/2
= Nfl/z*R[V\ﬁ *RJ\/il/Z]T*LVT*N[Ml/z*Mul]T*MMl/z,
= WDL ALV Uy 7, -
Applying Lemma 5[(a),(c)] and Lemma 6(a) in the given condition, we get
W = (U*NV)T*M(U*NV)*LW =W, and U = Z/l*}\/(V>I<LVV)>I<R(V>1<LVV)+ =U.

Hence, Uy VAL V) |y = WE s Vienlly 7. . O

4 Applications

This section is devoted to the application of the SVD and the Moore—Penrose inverse of
tensor in a few 3D color images.
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Fig. 1 a and f are true images. The reconstructions of images using SVD based on the Einstein product of
tensor: b and g 05 singular values; ¢ and h 15 singular values; d and i 25 singular values; e and j 200 singular
values

4.1 SVD for colorimages

The singular value decomposition is an attractive algebraic transform for image processing.
According to Lemma 2 the tensor A splits into a set of linearly independent components,
each of them bear their own energy contribution, i.e., a tensor represents the orthonormal
tensors U and V along with a diagonal tensor D comprised by singular values of .A. Thus,
the tensor A can be represented in term of rshrank(A), i.e.,

,
A= ZO’,‘L{,' *1 Vl-T = o1U] *1 VIT + orly *1 VzT + - 4 o Uy % VrT 41
i=1
where r = rshrank(A), Vi, Vs, -+, Vn be the frontal slices of V and U, U, - - - Uy be the
frontal slices of ¢/ such that the tensors

V=NWV,V, --Vyl, U=1[U,U, - -Uy]l, and r = rshrank(A).

It is well known that singular values are arranged in decreasing order and thus the last
terms of the singulars values have the least effect on the image. To benefit from this property
we use it for reducing space to store the image on the computer. For more details on SVD, the
reader is encouraged to see the following papers for matrices (Shim and Cho 1981; Lyra-Leite
et al. 2012) and the use of t-product tensors (Kilmer et al. 2013; Kilmer and Martin 2011).
Consider a positive number k such that k < r. Hence, without going to the very last singular
value we can compress the image. Truncating (41) sums after the first k terms, we obtain

Ar = o1Uj % V1T+62Z/{2*1 V2T+"'+Uk1/{k*1 Vg.

To illustrate the accuracy and efficiency of the SVD, we take into account ¢-product
based SVD (see Kilmer et al. 2013; Kilmer and Martin 2011) and the Einstein product-
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Fig. 2 The reconstructions of images using SVD based on t-product of tensor: a and e 05 singular values; b
and f 15 singular values; ¢ and g 25 singular values; d and h 200 singular values

based SVD. We consider two 400 x 512 x 3 color 3D images in Fig. la, f. Considering
only five singular values of the associated tensor, we reconstruct the original image using
the Finstein product-based SVD, and present in Fig. 1b, g. In the same manner, Fig. 1c,
h are reconstructed with 15 singular values. Figure 1d, i has been reconstructed using 25
singular values. We have to increase the number of singular values to reconstruct the image
as well as the original image. Finally, Fig. le, j is reconstructed with 200 singular values.
Similarly, we have reconstructed images using ¢-product based SVD in Fig. 2. To determine
the effectiveness of our reconstruction, we evaluate

A — Axllp
IAlF

Relative error =

where Ay is the reconstruction image and

In
”A”F - Z Z Z Z Ay cip 1o (42)

i1=1 iy=1j1=1 JN=1

To measure the quality of reconstruction between the original image A and the SVD
compressed images Ay with different tensor product (the Einstein product and t-product),
we determine the relative error in Fig. 3 and conclude that t-product-based SVD gives more
accurate result compare to the Einstein product. But the drawback of the t-product is “multipli-
cation of arbitrary order tensors”. However, the main aim of this paper is to focus on arbitrary
order tensors; hence, we consider reshape operation-based SVD with Einstein product for
our study.
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10° T T T T T T
—©—t-product based SVD (First image)
—=&—t-product based SVD (Second image)
—*— Einstein-procuct based SVD (First image)
—<— Einstein-procuct based SVD (Second image)
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Fig.3 Relative error (between compressed and original images) with the used number of singular values

Fig.4 a and d true images; b and e blurred noisy images; ¢ and f reconstruction images
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4.2 Moore-Penrose inverse for colorimages

We now discuss the reconstruction of an arbitrary-order image using the Moore—Penrose
inverse of a tensor. The discrete model for a color image is represented as A%y X = BB, where
the tensor B is the blurred image, often corrupted by the noise from the true image X. A is
known as blurring tensor. The authors of Huang et al. (2019) have discussed the tensor form of
the global GMRES, MINIRES, SYMMLAQ iterative methods to find the approximate solution
of the ill-posed system. Further, a few iterative methods (called LSQR, and LSMR) have been
discussed in Huang and Ma (2020). The t-product based on the Moore—Product inverse may
gives more accurate result, as SVD. Here our purpose is not to compare our tensor-based
approach to other tensor-based method, but rather to contribute to a few characterizations of
the weighted Moore—Penrose inverses of tensors and study the reverse-order laws for this
inverse. We use the Einstein product based the Moore—Penrose inverse to reconstruct the
original image with the help of blurring tensor A and blurred image 3. We consider two
blurring 256 x 256 x 3 colour images 5 form original image X'. Then we have added random
perturbations to B with the noise level of 0.001 percent and shown our results in Fig. 4b, e.
Two original images are also shown in Fig. 4a, d. Using least square solution AT %, B, we
have reconstructed the true images, and the resulting images are displayed in Fig. 4c, f.

5 Conclusion

In this paper, a novel SVD and full rank-decomposition of arbitrary-order tensors using
reshape operation is developed. Using this decomposition, we have studied the Moore—
Penrose and general weighted Moore—Penrose inverse for arbitrary-order tensors via the
Einstein product. Further, singular value decomposition has been use for 3D color image
reconstruction and an application of Moore—Penrose inverse of tensors of arbitrary-order
tensor is demonstrated in a colour image deblurring. We have also added some results on
the range and null spaces to the existing theory. Then we discuss a few characterizations of
cancellation properties for Moore—Penrose inverse of tensors. In addition to these, we have
discussed the reverse-order laws for weighted Moore—Penrose inverses. In the future, it will
be more interesting to express additional identities of weighted Moore—Penrose inverse in
terms of the ordinary Moore—Penrose inverse for arbitrary-order tensor.
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