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Abstract
This study aims to propose the concept of intuitionistic fuzzy parameterized intuitionistic
fuzzy soft matrices (ifpifs-matrices) and to present several of its basic properties. Therefore, it
would bepossible to improve the problem-modelling capabilities of the available intuitionistic
fuzzy parameterized intuitionistic fuzzy soft sets in the occurrence of a large number of data.
Moreover, by using ifpifs-matrices, we suggest a new soft decision-making method, denoted
by EA20, and apply it to a multi-criteria group decision-making (MCGDM) problem. We
then compare the ranking performance of EA20 for five noise-removal filters with those of
ten state-of-the-art soft decision-making methods. The results show that EA20 successfully
models performance-based value assignment problems. Finally, we discuss ifpifs-matrices
and EA20 for further research.

Keywords Intuitionistic fuzzy sets · Soft sets · Soft matrices · ifpifs-matrices ·
Multi-criteria group decision-making

Mathematics Subject Classification 03F55 · 90B50

1 Introduction

Recently, many mathematical tools have been developed to overcome problems involving
uncertainties. Fuzzy sets Zadeh (1965) and soft sets Molodtsov (1999) are among the known
mathematical tools, and so far many theoretical and applied studies have been conducted
on these concepts Atmaca (2017, 2019); Bera et al. (2017); Çağman et al. (2010, 2011b);
Çağman and Deli (2010b, 2012b); Çağman et al. (2011b); Çıtak and Çağman (2017); El-
Shafei and Al-Shami (2020); Enginoğlu et al. (2019, 2015); Enginoğlu and Memiş (2018a);
Karaaslan (2019); Maji et al. (2001a, 2003); Petchimuthu et al. (2020); Riaz and Hashmi
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(2017, 2018, 2019); Riaz et al. (2018); Riaz et al. (2020a, b); Şenel (2016, 2018a, b); Sezgin
et al. (2019a, b); Sulukan et al. (2019). However, fuzzy sets, soft sets, or their hybrid versions
cannot simply model some problems containing uncertainty. For example, if six of the data
produced by the detector x , which sends ten signals a second, are positive and four are
negative, then this case is expressed with the fuzzy value μ(x) = 0.6. Since intuitionistic
fuzzy sets are a generalization of fuzzy sets, intuitionistic fuzzy sets can model this problem
with intuitionistic fuzzy value μ(x) = 0.6 and ν(x) = 0.4. However, if six of the data
collected from the same detector are positive, three are negative, and one is corrupt, then
this case cannot be expressed with fuzzy values but with an intuitionistic fuzzy value, i.e.
μ(x) = 0.6 and ν(x) = 0.3. These examples too show that intuitionistic fuzzy sets are more
useful than fuzzy sets. Moreover, in the presence of the data received from the detectors at
different locations, soft sets are needed to attend to the problem of where to build a wind
turbine. Therefore, fuzzy soft sets, fuzzy parameterized soft sets, and fuzzy parameterized
fuzzy soft sets (fpfs-sets), which are hybrid versions of fuzzy sets and soft sets, cannot
overcome such a problem. To take advantage of intuitionistic fuzzy sets and soft sets and
overcome the abovementioned drawbacks, some hybrid versions of intuitionistic fuzzy sets
Atanassov (1986) and soft sets, such as intuitionistic fuzzy soft sets Maji et al. (2001b),
intuitionistic fuzzy parameterized soft sets Deli and Çağman (2015), and intuitionistic fuzzy
parameterized fuzzy soft sets El-Yagubi and Salleh (2013), have been introduced.

However, when a problem containing uncertainties involves a large number of data, the
aforesaid concepts are incapable of processing them. For this reason, the matrix represen-
tations of these concepts, such as soft matrices (Çağman and Enginoğlu 2010a), fuzzy soft
matrices (Çağman et al. 2011b), fuzzy parameterized fuzzy soft matrices (fpfs-matrices)
(Enginoğlu and Çağman 2020), and intuitionistic fuzzy soft matrices (Chetia and Das 2012),
have been proposed.

Since more general forms are needed for mathematical modelling of some problems con-
taining further uncertainties, Karaaslan (2016) has propounded the concept of intuitionistic
fuzzy parameterized intuitionistic fuzzy soft sets (ifpifs-sets). He has also proposed a soft
decision-making method by using ifpifs-sets and applied this method to a decision-making
problem. The application provided therein has demonstrated that ifpifs-sets can be success-
fully applied to some problems containing further uncertainties. As a result, the concept of
ifpifs-sets has allowed to model situations with parameters and objects containing intuition-
istic fuzzy uncertainties. Therefore, this concept is worth being studied. On the other hand,
since such concepts pose some disadvantages, such as long-running time and complexity, it
is of great importance to study their matrix representations.

In addition to the type of decision-making discussed in the present paper, the related
literature incorporates many studies on multi-criteria group decision-making. To exem-
plify, Garg and Kaur (2020) have proposed an extended TOPSIS method for multi-criteria
group decision-making problems in cubic intuitionistic fuzzy environment. Çalı and Balaban
(2012a) have presented a multi-criteria group decision-making method based on the integra-
tion of ELECTRE and VIKOR in the intuitionistic fuzzy environment. Enginoğlu and Arslan
(2018a) have suggested a decision-making method exploiting ifpifs-sets and have applied it
to a recruitment scenario of a company. Büyüközkan and Göçer (2017) have propounded a
new multi-criteria group decision approach using the intuitionistic fuzzy analytic hierarchy
process method and the intuitionistic fuzzy axiomatic design principles. Nan et al. (2016)
have proposed a new extended TOPSIS by using an intuitionistic fuzzy distance measure.

In Sect. 2 of the present study, we present some of the basic definitions required in the
following sections of the paper. In Sect. 3, we define the concept of intuitionistic fuzzy
parameterized intuitionistic fuzzy soft matrices (ifpifs-matrices) and investigate a number of
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its basic properties. This concept is first mentioned in the second author’s master’s thesis
(Arslan 2019). In Section 4, by using ifpifs-matrices, we propose a new and efficient soft
decision-making method, denoted by EA20 herein, which avails of some steps of two soft
decision-making methods, namely EMO18a and EMO18o, provided in (Enginoğlu et al.
2018b). Thismethod allows for selecting the optimal elements from the alternatives. InSect. 5,
to demonstrate that this method can be successfully applied to some problems involving
uncertainty in the realworld,we apply it to amulti-criteria group decision-making (MCGDM)
problem with the determination of eligible candidates for two vacant positions advertised
online. In Sect. 6, we then compare the ranking performance of EA20 with those of the ten
methods avaliable in (Enginoğlu and Memiş 2018b; Enginoğlu et al. 2018b; Enginoğlu and
Öngel 2020). Finally, we discuss ifpifs-matrices and EA20 for further research.

2 Preliminaries

In this section, we present the concepts of intuitionistic fuzzy sets (Atanassov 1986) and intu-
itionistic fuzzy parameterized intuitionistic fuzzy soft sets (Karaaslan 2016) by considering
the notations used across this study.

Throughout this paper, let U be a universal set, E be a parameter set, F(E) be the set of
all fuzzy sets over E , and μ, ν ∈ F(E). Here, a fuzzy set is denoted by {μ(x)x : x ∈ E}
instead of {(x, μ(x)) : x ∈ E}.

Definition 1 (Atanassov 1986) Let f be a function from E to [0, 1] × [0, 1]. Then, the set{
μ(x)

ν(x) x : x ∈ E
}
being the graphic of f is called an intuitionistic fuzzy set (if -set) over E .

Here, for all x ∈ E , μ(x) + ν(x) ≤ 1. Moreover, μ and ν are called the membership
function and non-membership function, respectively, and π(x) = 1− μ(x) − ν(x) is called
the degree of indeterminacy of the element x ∈ E . Obviously, each ordinary fuzzy set can

be written as
{

μ(x)

1−μ(x)x : x ∈ E
}
.

In the present paper, the set of all if -sets over E is denoted by I F(E) and f ∈ I F(E).
In I F(E), since the graph( f ) and f generate each other uniquely, the notations are inter-
changeable. Therefore, as long as it does not cause any confusion, we denote an if -set
graph( f ) by f .

Note 1 For convenience, we do not display the elements 0
1x in an if -set.

Definition 2 (Karaaslan 2016) Let α be a function from f to I F(U ). Then, the set{(
μ(x)

ν(x) x, α
(

μ(x)

ν(x) x
))

: x ∈ E
}
being the graphic of α is called an intuitionistic fuzzy param-

eterized intuitionistic fuzzy soft set (ifpifs-set) parameterized via E over U (or briefly
over U ).

Throughout this paper, the set of all ifpifs-sets over U is denoted by I F P I F SE (U ). In
I F P I F SE (U ), since the graph(α) and α generate each other uniquely, the notations are
interchangeable. Therefore, as long as it does not cause any confusion, we denote an ifpifs-set
graph(α) by α.

Note 2 For convenience, we do not display the elements (01x, 0U ) in an ifpifs-set. Here, 0U

is the empty if -set over U .
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Example 1 Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then,
α = {(

0.8
0.2x1,

{
0
0.5u1,

0.5
0.5u4

})
,
(
1
0x2,

{
0.3
0.6u2,

0.5
0.1u3

})
,(

0.1
0.7x3,

{
0.7
0 u1,

0.2
0.5u3,

0.6
0.1u4

})
,
(
0
1x4,

{
0.2
0.3u1

})}

is an ifpifs-set over U .

3 Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices

In this section, we define the concept of intuitionistic fuzzy parameterized intuitionistic fuzzy
soft matrices and introduce some of its basic properties. Both the concept and its properties
are first presented in the second author’s master’s thesis (Arslan 2019).

Definition 3 Let α ∈ I F P I F SE (U ). Then, [ai j ] is called the matrix representation of α (or
briefly ifpifs-matrix of α) and is defined by

[ai j ] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

a01 a02 a03 . . . a0n . . .

a11 a12 a13 . . . a1n . . .
...

...
...

. . .
...

...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · },

ai j :=
⎧
⎨
⎩

μ(x j )

ν(x j )
, i = 0

α
(

μ(x j )

ν(x j )
x j

)
(ui ), i �= 0

or briefly ai j := μi j
νi j . Here, if |U | = m − 1 and |E | = n, then [ai j ] has order m × n.

In this paper, as long as it does not cause any confusion, the membership and non-
membership functions of [ai j ], i.e. μi j and νi j , will be represented by μa

i j and νa
i j ,

respectively. Moreover, the set of all ifpifs-matrices parameterized via E over U is denoted
by I F P I F SE [U ] and [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ].

Example 2 The matrix representation of α provided in Example 1 is as follows:

[ai j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8
0.2

1
0

0.1
0.7

0
1

0
0.5

0
1

0.7
0

0.2
0.3

0
1

0.3
0.6

0
1

0
1

0
1

0.5
0.1

0.2
0.5

0
1

0.5
0.5

0
1

0.6
0.1

0
1

0
1

0
1

0
1

0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Definition 4 Let [ai j ] ∈ I F P I F SE [U ]. For all i and j , if μi j = λ and νi j = ε, then [ai j ] is
called (λ, ε)-ifpifs-matrix and is denoted by

[
λ
ε

]
. Here,

[
0
1

]
is called empty ifpifs-matrix and[

1
0

]
is called universal ifpifs-matrix.

123



Intuitionistic fuzzy parameterized... Page 5 of 20 325

Definition 5 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ], IE := { j : x j ∈ E}, and R ⊆ IE . For
all i and j , if

μc
i j =

{
μa

i j , j ∈ R
μb

i j , j ∈ IE \ R
and νc

i j =
{

νa
i j , j ∈ R

νb
i j , j ∈ IE \ R

then [ci j ] is called Rb-restriction of [ai j ] and is denoted by [(aRb)i j ]. Briefly, if [bi j ] = [
0
1

]
,

then [(aR)i j ] can be used instead of [(aR0
1
)
i j

]. It is clear that

(aR)i j =
{

μa
i j

νa
i j

, j ∈ R
0
1, j ∈ IE \ R

Example 3 For R = {1, 3, 4} and S = {2, 4}, R1
0-restriction and S-restrictionof [ai j ]provided

in Example 2 are as follows:

[(aR1
0
)i j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8
0.2

1
0

0.1
0.7

0
1

0
0.5

1
0

0.7
0

0.2
0.3

0
1

1
0

0
1

0
1

0
1

1
0

0.2
0.5

0
1

0.5
0.5

1
0

0.6
0.1

0
1

0
1

1
0

0
1

0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and [(aS)i j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

1
0

0
1

0
1

0
1

0
1

0
1

0.2
0.3

0
1

0.3
0.6

0
1

0
1

0
1

0.5
0.1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Definition 6 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. For all i and j , if μa
i j ≤ μb

i j and νb
i j ≤ νa

i j ,

then [ai j ] is called a submatrix of [bi j ] and is denoted by [ai j ]⊆̃[bi j ].
Definition 7 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. For all i and j , if μa

i j = μb
i j and νa

i j = νb
i j ,

then [ai j ] and [bi j ] are called equal ifpifs-matrices and is denoted by [ai j ] = [bi j ].
Proposition 1 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. Then,

i. [ai j ]⊆̃[10]
ii. [01]⊆̃[ai j ]
iii. [ai j ]⊆̃[ai j ]
iv.

([ai j ]⊆̃[bi j ] ∧ [bi j ]⊆̃[ai j ]
) ⇔ [ai j ] = [bi j ]

v.
([ai j ]⊆̃[bi j ] ∧ [bi j ]⊆̃[ci j ]

) ⇒ [ai j ]⊆̃[ci j ]
vi.

([ai j ] = [bi j ] ∧ [bi j ] = [ci j ]
) ⇒ [ai j ] = [ci j ]

Remark 1 From Proposition 1, it can be understood that the inclusion relation is a partial
ordering relation in I F P I F SE [U ].
Definition 8 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. If [ai j ]⊆̃[bi j ] and [ai j ] �= [bi j ], then [ai j ] is
called a proper submatrix of [bi j ] and is denoted by [ai j ]�̃[bi j ].
Definition 9 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. For all i and j , if μc

i j = max{μa
i j , μ

b
i j }

and νc
i j = min{νa

i j , ν
b
i j }, then [ci j ] is called union of [ai j ] and [bi j ] and is denoted by

[ai j ]∪̃[bi j ].

123



325 Page 6 of 20 S. Enginoǧlu, B. Arslan

Definition 10 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. For all i and j , if μc
i j = min{μa

i j , μ
b
i j }

and νc
i j = max{νa

i j , ν
b
i j }, then [ci j ] is called intersection of [ai j ] and [bi j ] and is denoted by

[ai j ]∩̃[bi j ].
Example 4 Assume that two ifpifs-matrices [ai j ] and [bi j ] are as follows:

[ai j ] =

⎡
⎢⎢⎢⎢⎢⎣

0.4
0.3

1
0

0.6
0.1

0.7
0

0
0.5

0.3
0

0.1
0.8

0.2
0.3

1
0

0.5
0.5

0.2
0.6

1
0

0
1

1
0

0.2
0.5

0
0.7

⎤
⎥⎥⎥⎥⎥⎦

and [bi j ] =

⎡
⎢⎢⎢⎢⎢⎣

0.7
0.1

0.9
0.1

0.8
0.2

0
1

0.6
0.3

0
1

0.3
0.5

0.2
0.1

0.1
0.5

0.3
0

0.7
0.1

0.6
0.2

0.4
0.2

0.5
0.5

0.4
0.5

1
0

⎤
⎥⎥⎥⎥⎥⎦

Then,

[ai j ]∪̃[bi j ] =

⎡
⎢⎢⎢⎢⎢⎣

0.7
0.1

1
0

0.8
0.1

0.7
0

0.6
0.3

0.3
0

0.3
0.5

0.2
0.1

1
0

0.5
0

0.7
0.1

1
0

0.4
0.2

1
0

0.4
0.5

1
0

⎤
⎥⎥⎥⎥⎥⎦

and [ai j ]∩̃[bi j ] =

⎡
⎢⎢⎢⎢⎢⎣

0.4
0.3

0.9
0.1

0.6
0.2

0
1

0
0.5

0
1

0.1
0.8

0.2
0.3

0.1
0.5

0.3
0.5

0.2
0.6

0.6
0.2

0
1

0.5
0.5

0.2
0.5

0
0.7

⎤
⎥⎥⎥⎥⎥⎦

Proposition 2 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. Then,

i. [ai j ]∪̃[ai j ] = [ai j ] and [ai j ]∩̃[ai j ] = [ai j ]
ii. [ai j ]∪̃

[
0
1

] = [ai j ] and [ai j ]∩̃
[
0
1

] = [
0
1

]
iii. [ai j ]∪̃

[
1
0

] = [
1
0

]
and [ai j ]∩̃

[
1
0

] = [ai j ]
iv. [ai j ]∪̃[bi j ] = [bi j ]∪̃[ai j ] and [ai j ]∩̃[bi j ] = [bi j ]∩̃[ai j ]
v. ([ai j ]∪̃[bi j ])∪̃[ci j ] = [ai j ]∪̃([bi j ]∪̃[ci j ]) and ([ai j ]∩̃[bi j ])∩̃[ci j ] = [ai j ]∩̃([bi j ]∩̃[ci j ])

vi. [ai j ]∪̃([bi j ]∩̃[ci j ]) = ([ai j ]∪̃[bi j ])∩̃([ai j ]∪̃[ci j ]) and
[ai j ]∩̃([bi j ]∪̃[ci j ]) = ([ai j ]∩̃[bi j ])∪̃([ai j ]∩̃[ci j ])

Proof vi. Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. Then,

[ai j ]∪̃([bi j ]∩̃[ci j ]) = [ai j ]∪̃
[
min

{
μb

i j ,μ
c
i j

}

max
{
νb

i j ,ν
c
i j

}
]

=
[
max

{
μa

i j ,min
{
μb

i j ,μ
c
i j

}}

min
{
νa

i j ,max
{
νb

i j ,ν
c
i j

}}
]

=
[
min

{
max

{
μa

i j ,μ
b
i j

}
,max

{
μa

i j ,μ
c
i j

}}

max
{
min

{
νa

i j ,ν
b
i j

}
,min

{
νa

i j ,ν
c
i j

}}
]

=
[
max

{
μa

i j ,μ
b
i j

}

min
{
νa

i j ,ν
b
i j

}
]

∩̃
[
max

{
μa

i j ,μ
c
i j

}

min
{
νa

i j ,ν
c
i j

}
]

= ([ai j ]∪̃[bi j ])∩̃([ai j ]∪̃[ci j ])
Definition 11 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. For all i and j , if μc

i j = min{μa
i j , ν

b
i j }

and νc
i j = max{νa

i j , μ
b
i j }, then [ci j ] is called difference between [ai j ] and [bi j ] and is denoted

by [ai j ]\̃[bi j ].
Proposition 3 Let [ai j ] ∈ I F P I F SE [U ]. Then, [ai j ]\̃

[
0
1

] = [ai j ] and [ai j ]\̃
[
1
0

] = [
0
1

]
.
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Remark 2 It must be noted that the difference is non-commutative and non-associative.

Definition 12 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. For all i and j , if μb
i j = νa

i j and νb
i j = μa

i j ,

then [bi j ] is complement of [ai j ] and is denoted by [ai j ]c̃ or [ac̃
i j ]. It is clear that [ai j ]c̃ =[

1
0

] \̃[ai j ].

Proposition 4 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. Then,

i.
([ai j ]c̃

)c̃ = [ai j ]
ii.

[
0
1

]c̃ = [
1
0

]
iii. [ai j ]\̃[bi j ] = [ai j ]∩̃[bi j ]c̃

iv. [ai j ]⊆̃[bi j ] ⇒ [bi j ]c̃⊆̃[ai j ]c̃

Proposition 5 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. Then, the following De Morgan’s laws are
valid:

i.
([ai j ]∪̃[bi j ]

)c̃ = [ai j ]c̃∩̃[bi j ]c̃

ii.
([ai j ]∩̃[bi j ]

)c̃ = [ai j ]c̃∪̃[bi j ]c̃

Proof i. Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. Then,

([ai j ]∪̃[bi j ])c̃ =
[
max{μa

i j ,μ
b
i j }

min{νa
i j ,ν

b
i j }

]c̃

=
[
min{νa

i j ,ν
b
i j }

max{μa
i j ,μ

b
i j }

]
=

[
νa

i j

μa
i j

]
∩̃

[
νb

i j

μb
i j

]
= [

ai j
]c̃ ∩̃ [

bi j
]c̃

Definition 13 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ]. For all i and j , if μc
i j = max{

min{μa
i j , ν

b
i j },min{νa

i j , μ
b
i j }

}
and νc

i j = min
{
max{μa

i j , ν
b
i j },max{νa

i j , μ
b
i j }

}
, then [ci j ] is

called symmetric difference between [ai j ] and [bi j ] and is denoted [ai j ]�̃[bi j ].

Proposition 6 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. Then,

i. [ai j ]�̃
[
0
1

] = [ai j ]
ii. [ai j ]�̃

[
1
0

] = [ai j ]c̃

iii. [ai j ]�̃[bi j ] = [bi j ]�̃[ai j ]
iv. [ai j ]�̃[bi j ] = ([ai j ]\̃[bi j ])∪̃([bi j ]\̃[ai j ])

Remark 3 It must be noted that the symmetric difference is non-associative.

Example 5 [ai j ]\̃[bi j ] and [ai j ]�̃[bi j ] for [ai j ] and [bi j ]provided inExample 4 are as follows:

[ai j ]\̃[bi j ] =

⎡
⎢⎢⎢⎢⎣

0.1
0.7

0.1
0.9

0.2
0.8

0.7
0

0
0.6

0.3
0

0.1
0.8

0.1
0.3

0.5
0.1

0
0.5

0.1
0.7

0.2
0.6

0
1

0.5
0.5

0.2
0.5

0
1

⎤
⎥⎥⎥⎥⎦

and [ai j ]�̃[bi j ] =

⎡
⎢⎢⎢⎢⎣

0.3
0.4

0.1
0.9

0.2
0.6

0.7
0

0.5
0.3

0.3
0

0.3
0.5

0.2
0.2

0.5
0.1

0.3
0.5

0.6
0.2

0.2
0.6

0.4
0.2

0.5
0.5

0.4
0.5

0.7
0

⎤
⎥⎥⎥⎥⎦
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Definition 14 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. If [ai j ]∩̃[bi j ] = [
0
1

]
, then [ai j ] and [bi j ] are

called disjoint.

Definition 15 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ], IE := { j : x j ∈ E}, and R ⊆ IE . For
all i and j , if

μc
i j =

{
max

{
μa

i j ,maxk∈R{νb
ik}

}
, j ∈ R

μa
i j , j ∈ IE \R

and νc
i j =

{
min

{
νa

i j ,mink∈R{μb
ik}

}
, j ∈ R

νa
i j , j ∈ IE \R

then [ci j ] is called R-relative union of [ai j ] and [bi j ] and is denoted by [ai j ]∪̃r
R[bi j ]. Here,

for brevity, “relative union” can be used instead of “IE -relative union” and denoted by
[ai j ]∪̃r [bi j ].

Definition 16 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ], IE := { j : x j ∈ E}, and R ⊆ IE . For
all i and j , if

μc
i j =

{
min

{
μa

i j ,maxk∈R{μb
ik}

}
, j ∈ R

μa
i j , j ∈ IE \R

and νc
i j =

{
max

{
νa

i j ,mink∈R{νb
ik}

}
, j ∈ R

νa
i j , j ∈ IE \R

then [ci j ] is called R-relative intersection of [ai j ] and [bi j ] and is denoted by [ai j ]∩̃r
R[bi j ].

Here, for brevity, “relative intersection” can be used instead of “IE -relative intersection” and
denoted by [ai j ]∩̃r [bi j ].

Definition 17 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ], IE := { j : x j ∈ E}, and R ⊆ IE . For
all i and j , if

μc
i j =

{
min

{
μa

i j ,maxk∈R{νb
ik}

}
, j ∈ R

μa
i j , j ∈ IE \R

and νc
i j =

{
max

{
νa

i j ,mink∈R{μb
ik}

}
, j ∈ R

νa
i j , j ∈ IE \R

then [ci j ] is called R-relative difference between [ai j ] and [bi j ] and is denoted by [ai j ]\̃r
R[bi j ].

Here, for brevity, “relative difference” can be used instead of “IE -relative difference” and
denoted by [ai j ]\̃r [bi j ].

Proposition 7 Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ] and R be a finite subset of IE . Then,

i. [ai j ]∪̃r
R[ai j ] = [ai j ] and [ai j ]∩̃r

R[ai j ] = [ai j ]
ii. [ai j ]∪̃r

R

[
0
1

] = [ai j ] and
[
0
1

] ∩̃r
R[ai j ] = [

0
1

]
iii.

[
1
0

] ∪̃r
R[ai j ] = [

1
0

]
and [ai j ]∩̃r

R

[
1
0

] = [ai j ]
iv.

(
[ai j ]∪̃r

R[bi j ]
)

∪̃r
R[ci j ] = [ai j ]∪̃r

R

(
[bi j ]∪̃r

R[ci j ]
)

and
(
[ai j ]∩̃r

R[bi j ]
)

∩̃r
R[ci j ] =

[ai j ]∩̃r
R

(
[bi j ]∩̃r

R[ci j ]
)

Proof iv. Let [ai j ], [bi j ], [ci j ] ∈ I F P I F SE [U ], R = {n1, n2, . . . , ns} and � be denote
[ai j ]∪̃r

R([bi j ]∪̃r
R[ci j ]). Then,
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� = [ai j ]∪̃r
R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎨
⎪⎩
max

{
μb

i j ,mint∈R{μc
i t }

}
, j ∈ R

μb
i j , j ∈ IE \ R

⎧
⎪⎨
⎪⎩
min

{
νb

i j ,maxt∈R{νc
i t }

}
, j ∈ R

νb
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎨
⎪⎩
max

{
μa

i j ,mink∈R

{
max

{
μb

ik ,mint∈R{μc
i t }

}}}
, j ∈ R

μa
i j , j ∈ IE \ R

⎧
⎪⎨
⎪⎩
min

{
νa

i j ,maxk∈R

{
min

{
νb

ik ,maxt∈R{νc
i t }

}}}
, j ∈ R

νa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎨
⎪⎪⎩
max

{
μa

i j ,min
{
max

{
μb

in1
,mint∈R{μc

i t }
}

, . . . ,max
{
μb

ins
,mint∈R{μc

i t }
}}}

, j ∈ R

μa
i j , j ∈ IE\R

⎧
⎪⎪⎨
⎪⎪⎩
min

{
νa

i j ,max
{
min

{
νb

in1
,maxt∈R{νc

i t }
}

, . . . ,min
{
νb

ins
,maxt∈R{νc

i t }
}}}

, j ∈ R

νa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎨
⎪⎩
max

{
μa

i j ,max
{
mink∈R

{
μb

ik

}
,mint∈R{μc

i t }
}}

, j ∈ R

μa
i j , j ∈ IE \ R

⎧
⎪⎨
⎪⎩
min

{
νa

i j ,min
{
maxk∈R

{
νb

ik

}
,maxt∈R{νc

i t }
}}

, j ∈ R

νa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎨
⎪⎩
max

{
max

{
μa

i j ,mink∈R

{
μb

ik

}}
,mint∈R{μc

i t }
}

, j ∈ R

μa
i j , j ∈ IE \ R

⎧
⎪⎨
⎪⎩
min

{
min

{
νa

i j ,maxk∈R

{
νb

ik

}}
,maxt∈R{νc

i t }
}

, j ∈ R

νa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧
⎪⎨
⎪⎩
max

{
μa

i j ,mink∈R{μb
ik }

}
, j ∈ R

μa
i j , j ∈ IE \ R

⎧
⎪⎨
⎪⎩
min

{
νa

i j ,maxk∈R{νb
ik }

}
, j ∈ R

νa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∪̃r
R [ci j ]

=
(
[ai j ]∪̃r

R [bi j ]
)

∪̃r
R [ci j ]

Remark 4 It must be noted that the relative union and relative intersection of ifpifs-matrices
are non-commutative and non-distributive.

Example 6 Relative union and R-relative intersection, for R = {1, 3}, of [ai j ] and [bi j ]
provided in Example 4 are as follows:

[ai j ]∪̃r [bi j ] =

⎡
⎢⎢⎢⎢⎢⎣

0.4
0.3

1
0

0.6
0.1

0.7
0

0
0.5

0.3
0

0.1
0.8

0.2
0.3

1
0

0.5
0.5

0.2
0.5

1
0

0.4
0.5

1
0

0.4
0.5

0.4
0.5

⎤
⎥⎥⎥⎥⎥⎦

and [ai j ]∩̃r
R[bi j ] =

⎡
⎢⎢⎢⎢⎢⎣

0.4
0.3

1
0

0.6
0.1

0.7
0

0
0.5

0.3
0

0.1
0.8

0.2
0.3

0.7
0.1

0.5
0.5

0.2
0.6

1
0

0
1

1
0

0.2
0.5

0
0.7

⎤
⎥⎥⎥⎥⎥⎦

Proposition 8 Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. Then, the following De Morgan’s laws are
valid:

i.
(
[ai j ]∪̃r

R[bi j ]
)c̃ = [ai j ]c̃∩̃r

R[bi j ]c̃

ii.
(
[ai j ]∩̃r

R[bi j ]
)c̃ = [ai j ]c̃∪̃r

R[bi j ]c̃

123



325 Page 10 of 20 S. Enginoǧlu, B. Arslan

Proof i. Let [ai j ], [bi j ] ∈ I F P I F SE [U ]. Then,

([ai j ]∪̃r
R[bi j ])c̃ =

⎡
⎢⎢⎢⎣

⎧⎨
⎩
max

{
μa

i j ,mink∈R{μb
ik }

}
, j ∈ R

μa
i j , j ∈ IE \ R

⎧⎨
⎩
min

{
νa

i j ,maxk∈R{νb
ik }

}
, j ∈ R

νa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎦

c̃

=

⎡
⎢⎢⎢⎣

⎧⎨
⎩
min

{
νa

i j ,maxk∈R{νb
ik }

}
, j ∈ R

νa
i j , j ∈ IE \ R

⎧
⎨
⎩
max

{
μa

i j ,mink∈R{μb
ik }

}
, j ∈ R

μa
i j , j ∈ IE \ R

⎤
⎥⎥⎥⎦

=
[

νa
i j

μa
i j

]
∩̃r

R

[
νb

i j

μb
i j

]

= [ai j ]c̃∩̃r
R[bi j ]c̃

Definition 18 Let [ai j ]m×n1 ∈ I F P I F SE1 [U ], [bik]m×n2 ∈ I F P I F SE2 [U ], and [cip]m×n1n2

∈ I F P I F SE1×E2 [U ] such that p = n2( j − 1)+ k. For all i and p, if μc
ip = min

{
μa

i j , μ
b
ik

}

and νc
ip = max

{
νa

i j , ν
b
ik

}
, then [cip] is called and-product of [ai j ] and [bik] and is denoted

by [ai j ]∧[bik].
Definition 19 Let [ai j ]m×n1 ∈ I F P I F SE1 [U ], [bik]m×n2 ∈ I F P I F SE2 [U ], and [cip]m×n1n2

∈ I F P I F SE1×E2 [U ] such that p = n2( j −1)+ k. For all i and p, if μc
ip = max

{
μa

i j , μ
b
ik

}

and νc
ip = min

{
νa

i j , ν
b
ik

}
, then [cip] is called or-product of [ai j ] and [bik] and is denoted by

[ai j ]∨[bik].
Definition 20 Let [ai j ]m×n1 ∈ I F P I F SE1 [U ], [bik]m×n2 ∈ I F P I F SE2 [U ], and [cip]m×n1n2

∈ I F P I F SE1×E2 [U ] such that p = n2( j − 1) + k. For all i and p, if μc
ip = min

{
μa

i j , ν
b
ik

}

and νc
ip = max

{
νa

i j , μ
b
ik

}
, then [cip] is called andnot-product of [ai j ] and [bik] and is denoted

by [ai j ]∧[bik].
Definition 21 Let [ai j ]m×n1 ∈ I F P I F SE1 [U ], [bik]m×n2 ∈ I F P I F SE2 [U ], and [cip]m×n1n2

∈ I F P I F SE1×E2 [U ] such that p = n2( j − 1) + k. For all i and p, if μc
ip = max

{
μa

i j , ν
b
ik

}

and νc
ip = min

{
νa

i j , μ
b
ik

}
, then [cip] is called ornot-product of [ai j ] and [bik] and is denoted

by [ai j ]∨[bik].
Example 7 For [ai j ] and [bik] provided in Example 4, [ai j ]∨[bik] is as follows:

[ai j ]∨[bik] =

⎡
⎢⎢⎢⎢⎣

0.7
0.1

0.9
0.1

0.8
0.2

0.4
0.3

1
0

1
0

1
0

1
0

0.7
0.1

0.9
0.1

0.8
0.1

0.6
0.1

0.7
0

0.9
0

0.8
0

0.7
0

0.6
0.3

0
0.5

0.3
0.5

0.2
0.1

0.6
0

0.3
0

0.3
0

0.3
0

0.6
0.3

0.1
0.8

0.3
0.5

0.2
0.1

0.6
0.3

0.2
0.3

0.3
0.3

0.2
0.1

1
0

1
0

1
0

1
0

0.5
0.5

0.5
0

0.7
0.1

0.6
0.2

0.2
0.5

0.3
0

0.7
0.1

0.6
0.2

1
0

1
0

1
0

1
0

0.4
0.2

0.5
0.5

0.4
0.5

1
0

1
0

1
0

1
0

1
0

0.4
0.2

0.5
0.5

0.4
0.5

1
0

0.4
0.2

0.5
0.5

0.4
0.5

1
0

⎤
⎥⎥⎥⎥⎦

Proposition 9 Let [ai j ]m×n1 ∈ I F P I F SE1 [U ], [bik]m×n2 ∈ I F P I F SE2 [U ], and
[cil ]m×n3 ∈ I F P I F SE3 [U ]. Then,
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i. ([ai j ] ∧ [bik]) ∧ [cil ] = [ai j ] ∧ ([bik] ∧ [cil ])
ii. ([ai j ] ∨ [bik]) ∨ [cil ] = [ai j ] ∨ ([bik] ∨ [cil ])

Proposition 10 Let [ai j ]m×n1 ∈ I F P I F SE1 [U ] and [bik]m×n2 ∈ I F P I F SE2 [U ]. Then,
the following De Morgan’s laws are valid:

i. ([ai j ] ∨ [bik])c̃ = [ai j ]c̃ ∧ [bik]c̃

ii. ([ai j ] ∧ [bik])c̃ = [ai j ]c̃ ∨ [bik]c̃

iii. ([ai j ] ∨ [bik])c̃ = [ai j ]c̃ ∧ [bik]c̃

iv. ([ai j ] ∧ [bik])c̃ = [ai j ]c̃ ∨ [bik]c̃

Proof i. Let [ai j ] and [bik] be two ifpifs-matrices over U . Then,

([ai j ] ∨ [bik])c̃ =
[
max{μa

i j ,μ
b
ik }

min{νa
i j ,ν

b
ik }

]c̃

=
[
min{νa

i j ,ν
b
ik }

max{μa
i j ,μ

b
ik }

]
=

[
νa

i j

μa
i j

]
∧

[
νb

ik

μb
ik

]
= [

ai j
]c̃ ∧ [

bi j
]c̃

Remark 5 It must be noted that the aforementioned products of ifpifs-matrices are non-
commutative and non-distributive. Moreover, ornot-product and andnot-product are non-
associative.

4 A soft decision-makingmethod: EA20

The available literature presents studies on decision functions, such as uni-int (max-min)
and int-uni (min-max). Çaǧman and Enginoğlu (2011a) are the first to define the uni-
int decision function in soft sets and propose the uni-int soft decision-making method.
Thereafter, Enginoğlu and Memiş (2018b) have configured this method via fpfs-matrices,
which is denoted byCE10.Moreover, Enginoğlu et al. (2018b) have propounded two new soft
decision-making methods, denoted by EMO18a and EMO18o, which are equivalent under
certain conditions to CE10, constructed by and-product (CE10a) and or-product (CE10o),
respectively. They then have shown that EMO18a and EMO18o outperform CE10a and
CE10o in terms of time, respectively. In this section, we introduce a new soft decision-making
method via ifpifs-matrices, which is denoted by EA20 and a configuration of EMO18a and
EMO18o, presented in (Enginoğlu et al. 2018b).

EA20 Algorithm Steps

Step 1. Construct two ifpifs-matrices [ai j ]m×n and [bik]m×n by considering the set of alter-
natives U = {u1, u2, . . . , um−1} and the parameters set E = {e1, e2, . . . , en}.

Step 2. Obtain the score matrix [si1] defined by si1 := μi1 − νi1

Here,

μi1 := max
{
max jmink

(
μa

i j , μ
b
ik

)
,maxkmin j

(
μa

i j , μ
b
ik

)}

and

νi1 := min
{
max jmink

(
νa

i j , ν
b
ik

)
,maxkmin j

(
νa

i j , ν
b
ik

)}
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such that i ∈ {1, 2, . . . , m −1}, Ia :=
{

j | μa
0 j �= 0 ∨ νa

0 j �=1
}
, Ib :={

k | μb
0k �= 0∨νb

0k �= 1
}
,

and

max jmink(μ
a
i j , μ

b
ik) :=

⎧⎨
⎩
max

{
max
j∈Ia

{μa
0 jμ

a
i j },min

k∈Ib
{μb

0kμ
b
ik}

}
, Ia �= ∅ and Ib �= ∅

0, otherwise

maxkmin j (μ
a
i j , μ

b
ik) :=

⎧
⎨
⎩
max

{
max
k∈Ib

{μb
0kμ

b
ik},min

j∈Ia
{μa

0 jμ
a
i j }

}
, Ia �= ∅ and Ib �= ∅

0, otherwise

max jmink(ν
a
i j , ν

b
ik) :=

⎧
⎨
⎩
min

{
max
j∈Ia

{νa
0 jν

a
i j },min

k∈Ib
{νb

0kν
b
ik}

}
, Ia �= ∅ and Ib �= ∅

0, otherwise

maxkmin j (ν
a
i j , ν

b
ik) :=

⎧⎨
⎩
min

{
max
k∈Ib

{νb
0kν

b
ik},min

j∈Ia
{νa

0 jν
a
i j }

}
, Ia �= ∅ and Ib �= ∅

0, otherwise

Step 3. Obtain the decision set {μ(uk )uk |uk ∈ U } such that μ(uk) =
sk1+|min

i
si1|

max
i

si1+|min
i

si1| .

Step 4. Choose the most suitable alternatives uk with respect to μ(uk).

5 A recruitment scenario for EA20

Recruitment poses difficulties faced by the human resources (HR) department of a company.
Among the important factors in the success or failure of the company in the future is its
workforce. A critical problem encountered by HR is to select the most suitable candidate to
meet the requirements. The recruitment problem can be considered anMCGDMproblem that
generally consists of selecting themost desirable alternatives from all the eligible alternatives.

However, it is sometimes impossible to state the criteria with crisp values (0 or 1). To
cope with this issue, intuitionistic fuzzy sets which are a generalization of fuzzy sets and
characterise linguistic variables by intuitionistic fuzzy values can be used. Some studies on
intuitionistic fuzzy MCGDM or recruitment process can be listed as (Boran et al. 2011;
Das and Kar 2014; Karaaslan 2016; Mondal and Roy 2014; Pramanik and Mukhopadhyaya
2011).

In this section, a hypothetical recruitment scenario of a company is modelled. Assume
that ten candidates, denoted byU = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10}, have applied for
two vacant positions. Let the parameter set determined by HR of the company and a member
of the board of directors appointed for this recruitment be E = {x1, x2, x3, x4, x5} such that
x1 = “experience”, x2 = “rhetoric”, x3 = “technological competence”, x4 = “age”,
and x5 = “work ethic”. Besides, let the intuitionistic fuzzy sets f1 and f2 over E determined
by these two decision-makers be

f1 :=
{
0.45
0.23x1,

0.36
0.17x2,

0.62
0.12x3,

0.27
0.34x4,

0.32
0.29x5

}
and f2 :=

{
0.26
0.41x1,

0.17
0.33x2,

0.35
0.20x3,

0.49
0.23x4,

0.28
0.25x5

}

Here, the intuitionistic fuzzy value of the parameter “age”, determined as 0.27
0.34, by HR, is

produced by defaulting to Table 1. HR, first, sets the amount of minimum sales needed for
the first three quarters of the year and the annual amount of target sales. In this study, these
values are e80000 and e100000, respectively. Then, HR evaluates the percentages of each
age range specified as “less than 30 years”, “30-40 years”, and “more than 40 years”. Finally,
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Table 1 By-percentage distribution of the employees in the three age ranges by the given sales amount for the
first three quarters

less than e80000 e80000-e100000 more than e100000

less than 30 years 7 23 70

30-40 years 10 85 5

more than 40 years 85 9 6

HR obtains the values of contribution of the parameter “age” to high success by considering
these percentages.

In the last column of Table 1, it can be observed that 70%, 5%, and 6% of the employees
within three age ranges have achieved more sales than the annual targeted amount. Since
70+5+6

300 = 0.27, the degree of the precise positive effect of the parameter “age” on success
is 0.27. Moreover, according to the first column, 7%, %10, and 85% of employees for three
age ranges have not been able to exceed the minimum sales amount in the first three quar-
ters. Hence, the degree of precise negative effect of employees on success is 0.34 because
7+10+85

300 = 0.34. Besides, since it is unclear whether employees that have achieved a total
sale of e80000-e100000 will exceed the target amount, the degree of the effect of these
employees on success is indeterminate. Therefore, the degree of indeterminacy of the age
parameter is 0.39. Consequently, the intuitionistic fuzzy value of the parameter is 0.27

0.34x4.
The intuitionistic fuzzy values of the other parameters have been obtained similarly. The
application of EA20 is as follows:

Step 1. Let two ifpifs-matrices [ai j ] and [bik], showing how suitable the candidates are for
the parameters, be as follows:

[ai j ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.45
0.23

0.36
0.17

0.62
0.12

0.27
0.34

0.32
0.29

0
0.6

0.2
0.1

0
0.4

0.4
0.2

0.3
0.4

0.8
0

0.2
0.2

0.3
0.1

0.7
0.2

0.7
0.1

0.5
0.4

0.1
0

0.1
0.6

0.1
0

0
0.3

0.1
0.5

0.6
0.2

0.3
0.5

0
0.5

0.2
0.4

0.4
0.1

0.5
0.1

0.3
0.1

0.1
0.4

0.3
0.2

0.7
0.1

0
0.2

0.1
0.5

0
0.6

0.1
0.5

0.7
0.2

0.8
0

0.7
0.1

0.5
0.3

0.2
0.2

0.6
0.2

0.5
0.1

0
0.8

0.2
0.6

0.3
0.6

0.7
0.1

0.6
0.3

0.5
0.2

0.1
0.4

0.8
0

0
0.1

0.1
0.5

0
0.6

0.6
0.2

0.3
0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and [bik] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.26
0.41

0.17
0.33

0.35
0.2

0.49
0.23

0.28
0.25

0
0.8

0.2
0.2

0.6
0

0.1
0

0.6
0.2

0.4
0.5

0
0.9

0.8
0

0.8
0.1

0.3
0

0.4
0.4

0.2
0.3

0.3
0.5

0
0.8

0.2
0.4

0.2
0

0.3
0.5

0
0.6

0.2
0.5

0.2
0

0
0.9

0
0.1

0.2
0.6

0.6
0.2

0
0.7

0.7
0.1

0.4
0.1

0
0

0.9
0

0.3
0.4

0.3
0.3

0.3
0.2

0.3
0.1

0.8
0.1

0.2
0

0.1
0.1

0
0.3

0.3
0

0.5
0.2

0.2
0.4

0.3
0.4

0
0.6

0.3
0.1

0.5
0.4

0.3
0.1

0.2
0.6

0.3
0.1

0.7
0.1

0.5
0

0.5
0.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, the candidate u4 has declared that he/she knows how to use three of the ten computer
programs determined by HR and presents their valid certificates, he/she recognises two of
the others but holds no valid certificates, and he/she does not know the other five. Therefore,

a43 = μa
43

νa
43

= 0.3
0.5. Similarly, since the candidate u3 has positive referrals from three of

his/her five previous companies, negative referrals from one, and no referral from the other,
HR has assigned 0.6

0.2 as the intuitionistic fuzzy membership value of the candidate. Thus,
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a81 = μa
81

νa
81

= 0.6
0.2. The other intuitionistic fuzzy values in the matrices are similarly obtained

by the decision-makers.

Step 2. If we apply EA20 to the [ai j ] and [bik], then the score matrix [si1] is as follows:

[si1] = [0.2100 0.3920 0.2250 0.2160 0.2820 0.4410 0.4340 0.2700 0.3150 0.2450]T

Here, since Ia = {1, 2, 3, 4, 5} and Ib = {1, 2, 3, 4, 5},

μ51=max

{
max

{
max
j∈Ia

{
μa
0 jμ

a
5 j

}
,min
k∈Ib

{
μb
0kμ

b
5k

}}
,max

{
max
k∈Ib

{
μb
0kμ

b
5k

}
,min

j∈Ia

{
μa
0 jμ

a
5 j

}}}

ν51=min

{
min

{
max
j∈Ia

{
νa
0 jν

a
5 j

}
,min
k∈Ib

{
νb
0kν

b
5k

}}
,min

{
max
k∈Ib

{
νb
0kν

b
5k

}
,min

j∈Ia

{
νa
0 jν

a
5 j

}}}

and s51 = μ51 − ν51 = 0.2940− 0.0120 = 0.2820. The other score values may be found by
a similar way.

Step 3. The decision set is as follows:

{
0.6452u1,

0.9247 u2,
0.6682 u3,

0.6544 u4,
0.7558 u5,

1 u6,
0.9892 u7,

0.7373 u8,
0.8065 u9,

0.6989 u10

}

The optimal ranking order of the ten candidates is u1 ≺ u4 ≺ u3 ≺ u10 ≺ u8 ≺ u5 ≺
u9 ≺ u2 ≺ u7 ≺ u6. The scores show that u6 and u7 are more eligible for the vacant positions
than the others. Thus, the candidates u6 and u7 are selected for the positions at stake.

6 Comparison results

In this section, we first provide the definitions of fuzzy parameterized fuzzy soft sets and
fuzzy parameterized fuzzy soft matrices by taking into account the notations used throughout
this paper.

Definition 22 (Çağman et al. 2012b; Enginoğlu 2012) Let U be a universal set, E be
a parameter set, μ ∈ F(E), and α be a function from μ to F(U ). Then, the set{(

μ(x)x, α(μ(x)x)
) : x ∈ E

}
being the graphic of α is called an fuzzy parameterized fuzzy

soft set (fpfs-set) parameterized via E over U (or briefly over U ).

In the present paper, the set of all fpfs-sets over U is denoted by F P F SE (U ). In
F P F SE (U ), since the graph(α) and α generate each other uniquely, the notations are
interchangeable. Therefore, as long as it does not cause any confusion, we denote an fpfs-set
graph(α) by α.

Definition 23 (Enginoğlu and Çağman 2020) Let α ∈ F P F SE (U ). Then, [ai j ] is called the
matrix representation of α (or briefly fpfs-matrix of α) and is defined by

[ai j ] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

a01 a02 a03 . . . a0n . . .

a11 a12 a13 . . . a1n . . .
...

...
...

. . .
...

...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
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Table 2 SSIM results for the Cameraman image

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

PSMF 0.9722 0.9454 0.9044 0.8036 0.6215 0.1178 0.0576 0.0290 0.0129

DBA 0.9883 0.9664 0.9324 0.8795 0.8167 0.7413 0.6650 0.5841 0.4858

MDBUTMF 0.9501 0.8388 0.7740 0.8249 0.9014 0.9178 0.8954 0.7864 0.4062

NAFSM 0.9797 0.9642 0.9494 0.9340 0.9198 0.8975 0.8745 0.8344 0.7246

DAMF 0.9963 0.9911 0.9844 0.9760 0.9659 0.9511 0.9323 0.9008 0.8373

Table 3 SSIM results for the Lena image

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

PSMF 0.9840 0.9631 0.9163 0.7854 0.5640 0.1115 0.0542 0.0263 0.0123

DBA 0.9758 0.9422 0.8952 0.8308 0.7549 0.6651 0.5673 0.4442 0.3458

MDBUTMF 0.9542 0.8686 0.8137 0.8449 0.8841 0.8835 0.8521 0.7392 0.3395

NAFSM 0.9838 0.9667 0.9481 0.9293 0.9055 0.8809 0.8495 0.8043 0.6868

DAMF 0.9902 0.9792 0.9652 0.9503 0.9303 0.9090 0.8788 0.8382 0.7697

such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · },

ai j :=
{

μ(x j ), i = 0
α(μ(x j )x j )(ui ), i �= 0

Here, if |U | = m − 1 and |E | = n, then [ai j ] has order m × n.

Hereinafter, the set of all fpfs-matrices parameterized via E over U is denoted by
F P F SE [U ].

Since EA20 is the first method to be proposed in I F P I F SE [U ], it is impossible to
compare this method with another. On the other hand, an fpfs-matrix can be regarded as an
ifpifs-matrix, in which the sum of the membership degree and the non-membership degree of
each entry is 1. Thus, EA20 can be compared with the state-of-the-art methods constructed
in F P F SE [U ]. Even so, the comparisons will be relative because there is no known criterion
except intuition for the validity of the results obtained by the methods used in F P F SE [U ].

Second, in order to make this comparison, we apply EA20 to a real-life problem in image
processing in addition to the hypothetical recruitment process problem given in Sect. 5. In
other words, we compare EA20 with the state-of-the-art soft decision-making methods in
F P F SE [U ], i.e. E15, ZZ16, ZZ16-2 (Enginoğlu et al. 2018b), YJ11, YJ11/2, BNS12,MR13
(NB14),MR13/2,Z14 (Enginoğlu andÖngel 2020), andEMO18o (Enginoğlu et al. 2018b), in
the problemof performance ranking of the filters used in image denoising, namelyProgressive
SwitchingMedian Filter (PSMF) (Wang andZhang 1999),Decision-BasedAlgorithm (DBA)
(Pattnaik et al. 2012), Modified Decision-Based Unsymmetrical Trimmed Median Filter
(MDBUTMF) (Esakkirajan et al. 2011), Noise Adaptive Fuzzy Switching Median Filter
(NAFSMF) (Toh and Isa 2010), and Different Applied Median Filter (DAMF) (Erkan et al.
2018), by using the Structural Similarity (SSIM) Wang et al. (2004) results of these filters
(Erkan et al. 2018) available in Tables 2 and 3 for two traditional images “Cameraman” and
“Lena”.Here, the notations, such asE15 andZZ16, denote the first letter/letters of the authors’
surnames and the last two digits of the publication years of the papers (see (Enginoğlu et al.
2018b)).
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Suppose that the success at high noise densities is more important than in the presence of
other densities (see (Enginoğlu et al. 2018a, b; Erkan et al. 2018)). In this case, the values in
Tables 2 and 3 can be represented with fpfs-matrices [ai j ] and [bik] as follows:

[ai j ] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9722 0.9454 0.9044 0.8036 0.6215 0.1178 0.0576 0.0290 0.0129
0.9883 0.9664 0.9324 0.8795 0.8167 0.7413 0.6650 0.5841 0.4858
0.9501 0.8388 0.7740 0.8249 0.9014 0.9178 0.8954 0.7864 0.4062
0.9797 0.9642 0.9494 0.9340 0.9198 0.8975 0.8745 0.8344 0.7246
0.9963 0.9911 0.9844 0.9760 0.9659 0.9511 0.9323 0.9008 0.8373

⎤
⎥⎥⎥⎥⎥⎥⎦

and

[bik] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9840 0.9631 0.9163 0.7854 0.5640 0.1115 0.0542 0.0263 0.0123
0.9758 0.9422 0.8952 0.8308 0.7549 0.6651 0.5673 0.4442 0.3458
0.9542 0.8686 0.8137 0.8449 0.8841 0.8835 0.8521 0.7392 0.3395
0.9838 0.9667 0.9481 0.9293 0.9055 0.8809 0.8495 0.8043 0.6868
0.9902 0.9792 0.9652 0.9503 0.9303 0.9090 0.8788 0.8382 0.7697

⎤
⎥⎥⎥⎥⎥⎥⎦

Moreover, the fpfs-matrices [ai j ] and [bik] can be written as the ifpifs-matrices [ci j ] and
[dik], respectively, as follows:

[ci j ] :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1
0.9

0.2
0.8

0.3
0.7

0.4
0.6

0.5
0.5

0.6
0.4

0.7
0.3

0.8
0.2

0.9
0.1

0.9722
0.0278

0.9454
0.0546

0.9044
0.0956

0.8036
0.1964

0.6215
0.3785

0.1178
0.8822

0.0576
0.9424

0.0290
0.9710

0.0129
0.9871

0.9883
0.0117

0.9664
0.0336

0.9324
0.0676

0.8795
0.1205

0.8167
0.1833

0.7413
0.2587

0.6650
0.3350

0.5841
0.4159

0.4858
0.5142

0.9501
0.0499

0.8388
0.1612

0.7740
0.2260

0.8249
0.1751

0.9014
0.0986

0.9178
0.0822

0.8954
0.1046

0.7864
0.2136

0.4062
0.5938

0.9797
0.0203

0.9642
0.0358

0.9494
0.0506

0.9340
0.0660

0.9198
0.0802

0.8975
0.1025

0.8745
0.1255

0.8344
0.1656

0.7246
0.2754

0.9963
0.0037

0.9911
0.0089

0.9844
0.0156

0.9760
0.0240

0.9659
0.0341

0.9511
0.0489

0.9323
0.0677

0.9008
0.0992

0.8373
0.1627

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

[dik] :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1
0.9

0.2
0.8

0.3
0.7

0.4
0.6

0.5
0.5

0.6
0.4

0.7
0.3

0.8
0.2

0.9
0.1

0.9840
0.0160

0.9631
0.0369

0.9163
0.0837

0.7854
0.2146

0.5640
0.4360

0.1115
0.8885

0.0542
0.9458

0.0263
0.9737

0.0123
0.9877

0.9758
0.0242

0.9422
0.0578

0.8952
0.1048

0.8308
0.1692

0.7549
0.2451

0.6651
0.3349

0.5673
0.4327

0.4442
0.5558

0.3458
0.6542

0.9542
0.0458

0.8686
0.1314

0.8137
0.1863

0.8449
0.1551

0.8841
0.1159

0.8835
0.1165

0.8521
0.1479

0.7392
0.2608

0.3395
0.6605

0.9838
0.0162

0.9667
0.0333

0.9481
0.0519

0.9293
0.0707

0.9055
0.0945

0.8809
0.1191

0.8495
0.1505

0.8043
0.1957

0.6868
0.3132

0.9902
0.0098

0.9792
0.0208

0.9652
0.0348

0.9503
0.0497

0.9303
0.0697

0.9090
0.0910

0.8788
0.1212

0.8382
0.1618

0.7697
0.2303

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we apply EA20 to [ci j ] and [dik] and the ten state-of-art soft decision-making methods
to [ai j ] and [bik], then the values of score matrices are as in Table 4:

Similarly, if we apply EA20 to [ci j ] and [dik] and the ten state-of-art soft decision-making
methods to [ai j ] and [bik], then the values of decision sets are as in Table 5:

Finally, the performance-based ranking orders of the filters for the 11 soft decision-making
algorithms are as in Table 6:

The scores show that DAMF outperforms the other methods and PSMF ≺ DBA ≺
MDBUTMF≺NAFSMF≺DAMF sorting is valid (Enginoğlu andÇağman 2020; Enginoğlu
and Memiş 2018a; Enginoğlu et al. 2018a, b; Erkan et al. (2018). The results in Table 6 show
that the ranking results obtained by EA20 confirm the results of the filters for the ten soft
decision-making methods. In other words, EA20 produces a valid ranking of the alternatives.
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Table 4 Values in the score matrices of filters for the 11 soft decision-making methods

Algorithms \ Filters PSMF DBA MDBUTMF NAFSM DAMF

E15 2.6346 5.8739 6.7645 7.6648 8.1175

ZZ16 0.0415 0.1493 0.1923 0.2308 0.2440

ZZ16-2 0.2578 0.5192 0.5663 0.6242 0.6659

YJ11 0.1434 0.3030 0.3656 0.4205 0.4393

YJ11/2 0.1493 0.3496 0.3860 0.4312 0.4627

BNS12 0.3161 1.0567 1.5551 1.9563 2.2252

MR13 (NB14) 0.1434 0.3030 0.3656 0.4205 0.4393

MR13/2 0.0351 0.1174 0.1728 0.2174 0.2472

Z14 1.3439 3.1468 3.4741 3.8804 4.1640

EMO18o 0.3214 0.4673 0.6291 0.6675 0.7536

EA20 0.3070 0.4568 0.5977 0.6529 0.7502

Table 5 Values in the decision sets of filters for the 11 soft decision-making methods

Algorithms \ Filters PSMF DBA MDBUTMF NAFSM DAMF

E15 0.3246 0.7236 0.8333 0.9442 1

ZZ16 0.1700 0.6118 0.7882 0.9462 1

ZZ16-2 0.3872 0.7797 0.8505 0.9374 1

YJ11 0.3265 0.6898 0.8323 0.9572 1

YJ11/2 0.3227 0.7557 0.8343 0.9319 1

BNS12 0.1420 0.4749 0.6989 0.8791 1

MR13 (NB14) 0.3265 0.6898 0.8323 0.9572 1

MR13/2 0.1420 0.4749 0.6989 0.8791 1

Z14 0.3227 0.7557 0.8343 0.9319 1

EMO18o 0.4266 0.6201 0.8349 0.8858 1

EA20 0.5808 0.7224 0.8558 0.9080 1

Table 6 Ranking orders of filters for the eleven soft decision-making methods

Algorithms Ranking orders

E15 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

ZZ16 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

ZZ16-2 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

YJ11 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

YJ11/2 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

BNS12 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

MR13 (NB14) PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

MR13/2 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

Z14 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

EMO18o PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF

EA20 PSMF ≺ DBA ≺ MDBUTMF ≺ NAFSMF ≺ DAMF
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Table 7 Running time of EA20 for the objects and parameters ranging from 100 to 1000 (in second)

(u, x) 100 200 300 400 500 600 700 800 900 1000

100 0.0526 0.0099 0.0090 0.0101 0.0121 0.0125 0.0139 0.0156 0.0168 0.0360

200 0.0093 0.0123 0.0152 0.0179 0.0207 0.0241 0.0277 0.0312 0.0337 0.0377

300 0.0138 0.0178 0.0228 0.0310 0.0429 0.0487 0.0571 0.0614 0.0706 0.0714

400 0.0194 0.0389 0.0332 0.0538 0.0560 0.0579 0.0739 0.0912 0.0953 0.1062

500 0.0296 0.0509 0.0564 0.0558 0.0641 0.0729 0.0850 0.0966 0.1104 0.1292

600 0.0281 0.0369 0.0505 0.0638 0.0778 0.0909 0.1051 0.1219 0.1624 0.1698

700 0.0326 0.0451 0.0589 0.0741 0.0904 0.1072 0.1267 0.1514 0.1760 0.1988

800 0.0375 0.0497 0.0680 0.0874 0.1063 0.1262 0.1463 0.1708 0.2003 0.2342

900 0.0414 0.0570 0.0782 0.1015 0.1294 0.1451 0.1710 0.1968 0.2296 0.2664

1000 0.0473 0.0641 0.0891 0.1148 0.1388 0.1702 0.1929 0.2207 0.2566 0.3030

7 Conclusion

In this paper, we defined the concept of ifpifs-matrices. We then suggested a new soft
decision-making method, denoted by EA20, and applied it to a recruitment scenario of
a company. This application showed that ifpifs-matrices can be successfully applied to
the problems that contain greater uncertainties. Moreover, we provided an application that
assigned performance-based values to noise-removal filters. Since EA20 is the first method
in I F P I F SE [U ], we present the fpfs-matrices therein in the form of ifpifs-matrices.

Furthermore, for ifpifs-matrices [ai j ] and [bik] in Sect. 5, the average running time of
EA20 is 0.0004 sec. for 1000 tests. Moreover, in Table 7, we present the running time values
of EA20 by using MATLAB R2019b and a laptop with 2.4 GHz i3 Dual Core CPU and 4GB
RAM for the parameters and objects ranging from 100 to 1000. The results show that the
method can be translated into a technological product.

In the future, different soft decision-makingmethods can be developed by using operations
of ifpifs-matrices, such as R-relative union/intersection/difference and and/or/andnot/ornot-
products. Additionally, to model more severe uncertainties than the aforesaid, ifpifs-matrices
can be expanded to interval-valued intuitionistic fuzzy parameterized interval-valued intu-
itionistic fuzzy soft matrices through the closed subintervals of [0, 1]. Besides, defining the
distance and similarity measurements of ifpifs-matrices can prove beneficial in such areas as
medical diagnosis and pattern recognition.
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Çağman N, Çıtak F, Enginoğlu S (2010a) Fuzzy parameterized fuzzy soft set theory and its applications. Turk

J Fuzzy Syst 1(1):21–35
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Çıtak F, Çağman N (2017) Soft k-int-ideals of semirings and its algebraic structures. Ann Fuzzy Math Inform

13(4):531–538
Das S, Kar S (2014) Group decision making in medical system: an intuitionistic fuzzy soft set approach. Appl

Soft Comput 24:196–211
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Enginoğlu S, Çağman N, Karataş S, Aydın T (2015) On soft topology. El-Cezerî J Sci Eng 2(3):23–38
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