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Abstract
The purpose of this research is to provide sufficient conditions for the local and global exis-
tence of solutions for two-dimensional nonlinear fractional Volterra and Fredholm integral
equations, based on the Schauder’s and Tychonoff’s fixed-point theorems. Also, we provide
sufficient conditions for the uniqueness of the solutions. Moreover, we use operational matri-
ces of hybrid of two-dimensional block-pulse functions and two-variable shifted Legendre
polynomials via collocationmethod tofind approximate solutions of thementioned equations.
In addition, a discussion on error bound and convergence analysis of the proposed method
is presented. Finally, the accuracy and efficiency of the presented method are confirmed by
solving three illustrative examples and comparing the results of the proposed method with
other existing numerical methods in the literature.
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1 Introduction

The fractional calculus deals with derivatives and integrals to an arbitrary order. In recent
years, a large number of scientific and engineering problems involving fractional calcu-
lus. It provides more accurate models of systems under consideration. The applications of
fractional calculus have been demonstrated by many authors. Many systems in interdisci-
plinary fields, such as biological systems (Ahmed and Elgazzar 2007; Zalp and Demirci
2011), turbulence (Chen 2006), anomalous diffusion (Chen et al. 2010; Sun et al. 2009), vis-
coelastic systems (Rossikhin and Shitikova 1997), and partial bed-load transport (Sun et al.
2015), can be described with the help of fractional derivatives. Moreover, various problems
in fluid mechanics, biology, physics, physiology, optics, and climatology can be modeled by
fractional integral equations (Atanackovic and Stankovic 2004; Evans et al. 2017). In many
situations, analytic solutions of fractional integral and differential equations are not available,
or may these equations not be directly solvable. Therefore, finding efficient numerical meth-
ods to approximate the solutions of these equations has become the main objective of many
mathematicians. For a review on numerical methods, see, for instance, (Amin et al. 2021;
Aminikhah et al. 2017; Dahaghin and Hassani 2017; Esmaeili et al. 2011; Fathizadeh et al.
2017; Hassani et al. 2019; Hassani and Naraghirad 2019; Hesameddini and Shahbazi 2018;
Hassani et al. 2019a, b; Jabari Sabeg et al. 2017; Kılıçman and Al Zhour 2007; Li and Shah
2017; Mohammadi Rick and Rashidinia 2019; Maleknejad et al. 2018, 2020a, b, c; Mashoof
and Refahi Shekhani 2017; Mirzaee and Samadyar 2019; Najafalizadeh and Ezzati 2016;
Nouri et al. 2018; Pourbabaee and Saadatmandi 2019; Permoon et al. 2016; Rahimkhani
et al. 2018; Samadyar and Mirzaee 2019; Shah and Wang 2019; Zhu and Fan 2012).

In this research study, the following fractional integral equations of the second kind are
considered:

Two-dimensional nonlinear fractional Volterra integral equations (2D-NFVIEs):

f (x, y) = g(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς, f (τ, ς))dςdτ , (1)

Two-dimensional nonlinear fractional Fredholm integral equations (2D-NFFIEs):

f (x, y) = g(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ �1

0

∫ �2

0
(�1 − τ)ι1−1(�2 − ς)ι2−1k(x, y, τ, ς, f (τ, ς))dςdτ , (2)

where f (x, y), k(x, y, τ, ς, f (τ, ς)) are unknown functions and g(x, y) is a given function.
Also, ι1, ι2 > 0 and (x, y) ∈ Ω = [0, �1] × [0, �2].

The outline of this paper is as follows. First, in Sect. 2, a review of two definitions
required in this paper is given. In Sect. 3, sufficient conditions for the existence and unique-
ness of solutions for 2D-NFVIEs and 2D-NFFIEs are provided. Also, in Sect. 4, the hybrid
of two-dimensional block-pulse functions and two-variable shifted Legendre polynomials
(2D-HBPSLs) and their operational matrices of product and fractional integration are intro-
duced. Afterward, in Sect. 5, we explain numerical solutions of 2D-NFVIEs and 2D-NFFIEs,
respectively, by using what was introduced in Sect. 4. Moreover, in Sect. 6, error bound and
convergence analysis of the proposedmethod are discussed. To demonstrate the effectiveness
of the presented method, three numerical examples are given in Sect. 7. Finally, in Sect. 8, a
conclusion is given.
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2 Preliminary knowledge

Here, we give two necessary definitions of the fractional calculus theory which are used
throughout this paper.

Definition 1 (SeePodlubony1999)TheRiemann–Liouville fractional integral of orderα > 0
is defined by

Iα
υ f (x) = 1

Γ (α)

∫ x

υ

(x − τ)α−1 f (τ )dτ ,

where υ > 0. If υ = 0, for simplicity, we will denote the Riemann–Liouville fractional
integral of order α of f (x) with Iα f (x).

Definition 2 (See Abbas and Benchohra 2014) The left-sided mixed Riemann–Liouville
fractional integral of order ι := (ι1, ι2) ∈ (0,∞) × (0,∞) of f is defined by

I ι
σ f (x, y) = 1

Γ (ι1)Γ (ι2)

∫ x

σ1

∫ y

σ2

(x − τ)ι1−1(y − ς)ι2−1 f (τ, ς)dςdτ ,

where σ = (σ1, σ2). If σ = (0, 0), for simplicity, we will denote the left-sided mixed
Riemann–Liouville fractional integral of order ι of f (x, y) with I ι f (x, y).

3 Existence and uniqueness of solutions

In this section, we provide sufficient conditions for the existence and uniqueness of solutions
for 2D-NFVIEs (1) and 2D-NFFIEs (2) in a Banach space. To do this, we need the following
theorems.

Theorem 1 (The Arzela-Ascoli theorem (Conway 2007)) If E is compact and B ⊆ C(E),
then B is totally bounded if and only if B is bounded and equicontinuous.

Corollary 1 (See Conway 2007) If E is compact and B ⊆ C(E), then B is compact if and
only if B is bounded, closed, and equicontinuous.

Theorem 2 (Schauder’s fixed-point theorem (Zeidler 1995)) If Π0 is a bounded, closed,
convex, nonempty subset of a Banach space V and T : Π0 → Π0 is completely continuous,
then T has a fixed point.

Theorem 3 (Tychonoff’s fixed-point theorem (Zeidler 1995)) Let V be a complete, locally
convex, linear space and V0 be a closed, convex, nonempty subset of V . Assume that the
mapping T : V → V is continuous and T (V0) ⊂ V0. If the closure of T (V0) is compact,
then T has a fixed point in V0.

In the following theorem, we prove the local existence of the solutions for 2D-NFVIEs
using Schauder’s fixed-point theorem.

Theorem 4 Assume that

(C1) f , v, g, g1 ∈ C(Ω, R
n) and k ∈ C(Ω × Ω × R

n, R
n), for 0 ≤ τ ≤ x ≤ �1 and

0 ≤ ς ≤ y ≤ �2.
(C2) |g(x, y) − g1(x, y)| < ε

2 .
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(C3) |k(x, y, τ, ς, f (τ, ς)) − k(x, y, τ, ς, v(τ, ς))| <
εΓ (1+ι1)Γ (1+ι2)

2αι1βι2 , for some 0 < α <

�1 and 0 < β < �2.

Then, the 2D-NFVIE has at least one solution on 0 ≤ x ≤ α, 0 ≤ y ≤ β.

Proof Consider the set D = {(x, y, τ, ς, f ) : (x, y, τ, ς) ∈ Ω × Ω, | f | ≤ b}. Let
|g(x, y)| ≤ b

2 and |k(x, y, τ, ς, f (τ, ς))| ≤ ξ on D. Choose ξαι1βι2

Γ (1+ι1)Γ (1+ι2)
≤ b

2 and
let Π0 = { f : f ∈ C(Ω0, R

n), ‖ f ‖ ≤ b}, where ‖ f ‖ = max
(x,y)∈Ω0

| f (x, y)| and

Ω0 = [0, α] × [0, β]. Clearly, the set Π0 is bounded, closed, and convex.
For any f ∈ Π0, define the operator

T f (x, y) = g(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς, f (τ, ς))dςdτ , (x, y) ∈ Ω0.

(3)

Clearly, we have

|T f (x, y)| ≤ |g(x, y)|
+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1 |k(x, y, τ, ς, f (τ, ς))| dςdτ

≤ b

2
+ ξ

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1dςdτ

≤ b

2
+ ξαι1βι2

Γ (1 + ι1)Γ (1 + ι2)
≤ b.

Therefore, we obtain ‖T f ‖ ≤ b, which implies that T (Π0) ⊂ Π0. Furthermore, for any
(x1, y1), (x2, y2) ∈ Ω0 such that x2 > x1 and y2 > y1, we have

T f (x2, y2) − T f (x1, y1) = g(x2, y2) − g(x1, y1)

+ 1

Γ (ι1)Γ (ι2)

∫ x2

0

∫ y2

0
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))dςdτ

− 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0
(x1 − τ)ι1−1(y1 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς))dςdτ

= g(x2, y2) − g(x1, y1)

+ 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))dςdτ

+ 1

Γ (ι1)Γ (ι2)

∫ x2

x1

∫ y2

y1
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))dςdτ

− 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0
(x1 − τ)ι1−1(y1 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς))dςdτ

= g(x2, y2) − g(x1, y1)

+ 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0

(
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))

−(x1 − τ)ι1−1(y1 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς))
)
dςdτ

+ 1

Γ (ι1)Γ (ι2)

∫ x2

x1

∫ y2

y1
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))dςdτ . (4)
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Now adding and subtracting (x2 − τ)ι1−1(y2 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς)) to the right-
hand side of the inequality (4) yields

T f (x2, y2) − T f (x1, y1) = g(x2, y2) − g(x1, y1)

+ 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0

(
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))

− (x2 − τ)ι1−1(y2 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς))

+ (x2 − τ)ι1−1(y2 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς))

−(x1 − τ)ι1−1(y1 − ς)ι2−1k(x1, y1, τ, ς, f (τ, ς))
)
dςdτ

+ 1

Γ (ι1)Γ (ι2)

∫ x2

x1

∫ y2

y1
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))dςdτ

= g(x2, y2) − g(x1, y1)

+ 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0

(
(x2 − τ)ι1−1(y2 − ς)ι2−1 (k(x2, y2, τ, ς, f (τ, ς))

−k(x1, y1, τ, ς, f (τ, ς)))

+k(x1, y1, τ, ς, f (τ, ς))
(
(x2 − τ)ι1−1(y2 − ς)ι2−1

−(x1 − τ)ι1−1(y1 − ς)ι2−1)) dςdτ
+ 1

Γ (ι1)Γ (ι2)

∫ x2

x1

∫ y2

y1
(x2 − τ)ι1−1(y2 − ς)ι2−1k(x2, y2, τ, ς, f (τ, ς))dςdτ .

Let

|k(x1, y1, τ, ς, f (τ, ς))| ≤ η1,

|k(x2, y2, τ, ς, f (τ, ς))| ≤ η2,

and

|k(x2, y2, τ, ς, f (τ, ς)) − k(x1, y1, τ, ς, f (τ, ς))| ≤ η3,

for (τ, ς) ∈ Ω , then we can write

|T f (x2, y2) − T f (x1, y1)| ≤ |g(x2, y2) − g(x1, y1)|
+ 1

Γ (ι1)Γ (ι2)

∫ x1

0

∫ y1

0

(
(η1 + η3)(x2 − τ)ι1−1(y2 − ς)ι2−1

+η1(x1 − τ)ι1−1(y1 − ς)ι2−1) dςdτ
+ 1

Γ (ι1)Γ (ι2)

∫ x2

x1

∫ y2

y1
η2(x2 − τ)ι1−1(y2 − ς)ι2−1dςdτ

= |g(x2, y2) − g(x1, y1)| + 1

Γ (1 + ι1)Γ (1 + ι2)

(
(η1 + η3 − η2)(x2 − x1)

ι1(y2 − y1)
ι2

−(η1 + η3)x
ι1
2 yι2

2 − η1x
ι1
1 yι2

1

)

≤ |g(x2, y2) − g(x1, y1)| + η1 + η3

Γ (1 + ι1)Γ (1 + ι2)
(x2 − x1)

ι1(y2 − y1)
ι2 . (5)

Note that the right-hand side in the inequality (5) tends to zero as x2 → x1, y2 → y1.
Therefore, T : Π0 → Π0 is equicontinuous and consequently, from Theorem 1, the closure
of T (Π0) is compact.
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To show that T is a continuous map, let

T v(x, y) = g1(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς, v(τ, ς))dςdτ ,

where v ∈ Π0. Clearly, we have

|T f (x, y) − T v(x, y)| ≤ |g(x, y) − g1(x, y)|
+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1 |k(x, y, τ, ς, f (τ, ς))

−k(x, y, τ, ς, v(τ, ς))| dςdτ.
Since k is uniformly continuous, for an arbitrary ε > 0, there exists a δ > 0 such that
| f (x, y) − v(x, y)| < δ. Assume that conditions (C1)–(C3) are satisfied, then we obtain

|T f (x, y) − T v(x, y)| ≤ ε

2

+ 1

Γ (ι1)Γ (ι2)

εΓ (1 + ι1)Γ (1 + ι2)

2αι1βι2

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1dςdτ ≤ ε,

and the proof is completed. 	

We shall next discuss a global existence result for the 2D-NFVIEs using Tychonoff’s

fixed-point theorem.

Theorem 5 Assume that

(D1) k ∈ C(R4+ × R
n, R

n) and G ∈ C(R5+, R
n).

(D2) G(x, y, τ, ς, u) is monotone nondecreasing in u, for each (x, y, τ, ς) ∈ R
4+.

(D3) |k(x, y, τ, ς, f )| ≤ G(x, y, τ, ς, | f |), for (x, y, τ, ς, f ) ∈ R
4+ × R

n.

Then, the fractional integral equation

u(x, y) = q(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1G(x, y, τ, ς, u(τ, ς))dςdτ , (6)

has a solution u(x, y), for every x, y ≥ 0, and then for every q(x, y) ∈ R
2+ such that

|g(x, y)| ≤ q(x, y), there exists a solution f (x, y) for 2D-NFVIE satisfying | f (x, y)| ≤
u(x, y).

Proof Assume that the real vector space V consists of all continuous functions from (0,∞)×
(0,∞) into R

n . The topology on V being that induced by the family of pseudo-norms
{Vn,m( f )}∞n,m=1, where Vn,m( f ) = sup0≤x≤n,0≤y≤m | f (x, y)|, for f ∈ V . Let {Sn,m}∞n,m=1
be a fundamental system of neighborhoods, where Sn,m = { f ∈ V : Vn,m( f ) ≤ 1}. Under
this topology, V is complete and locally convex linear space.

Now define the subset V0 of V as follows:

V0 = { f ∈ V : | f (x, y)| ≤ u(x, y), x, y ≥ 0} ⊆ V ,

where u(x, y) is a solution of Eq. (6). It is clear that in the topology of V , V0 is closed,
convex, and bounded.
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Consider the Eq. (6) whose fixed point corresponds to a solution of Eq. (1). Evidently, in
the topology of V , the operator T is compact. Hence, in view of the boundedness of V0, the
closure of T (V0) is compact.

Now using conditions (D1)–(D3), we observe that for any f ∈ V0,

|T f (x, y)| ≤ |g(x, y)|
+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1 |k(x, y, τ, ς, f (τ, ς))| dςdτ

≤ |g(x, y)| + 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1G(x, y, τ, ς, | f (τ, ς)|)dςdτ

≤ q(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1G(x, y, τ, ς, u(τ, ς))dςdτ = u(x, y).

It is clear that using the fact that u(x, y) is a solution of 2D-NFVIE and from the definition
of V0, we can obtain |T f (x, y)| ≤ u(x, y), which implies that T (V0) ⊂ V0. Therefore, by
Tychonoff’s fixed-point theorem, the mapping T has a fixed point in V0, which completes
the proof of this theorem. 	


In the following theorem, we prove the uniqueness of the solution for 2D-NFVIEs.

Theorem 6 Let f ∈ C(Ω, R
n) and k ∈ C(Ω × Ω × R

n, R
n). Suppose that there exists

0 < L1 < 1 such that the following Lipschitz condition is satisfied:

|k(x, y, τ, ς, f (τ, ς)) − k(x, y, τ, ς, f1(τ, ς))| ≤ L1 | f (τ, ς) − f1(τ, ς)| .

If
L1�

ι1
1 �

ι2
2

Γ (ι1+1)Γ (ι2+1) < 1, then the 2D-NFVIE has a unique solution.

Proof Let

T f (x, y) = g(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς, f (τ, ς))dςdτ , (x, y) ∈ Ω,

then, for any f , f1 ∈ C(Ω, R
n) and (x, y) ∈ Ω , we have

|T f (x, y) − T f1(x, y)|
=

∣∣∣∣g(x, y) + 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς, f (τ, ς))dςdτ

−g(x, y) − 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς, f1(τ, ς))dςdτ

∣∣∣∣
≤ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1 |k(x, y, τ, ς, f (τ, ς))

−k(x, y, τ, ς, f1(τ, ς))| dςdτ
≤ L1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1 | f (τ, ς) − f1(τ, ς)| dςdτ

≤ L1�
ι1
1 �

ι2
2

Γ (ι1 + 1)Γ (ι2 + 1)
‖ f − f1‖ .

123
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Therefore,

‖T f − T f1‖ ≤ L1�
ι1
1 �

ι2
2

Γ (ι1 + 1)Γ (ι2 + 1)
‖ f − f1‖ .

Since
L1�

ι1
1 �

ι2
2

Γ (ι1+1)Γ (ι2+1) < 1, it follows that T is a contraction in C(Ω, R
n). Consequently, T

has a unique fixed point and therefore the 2D-NFVIE has a unique solution f ∈ C(Ω, R
n).
	


Now, in the following theorems, we are going to investigate a result of the existence and
uniqueness of the solution for 2D-NFFIEs.

Theorem 7 Assume that conditions (C1)–(C3) in Theorem 4 hold. Then the 2D-NFFIE has
at least one solution on 0 ≤ x ≤ α, 0 ≤ y ≤ β.

Proof The proof of this theorem is similar to the proof of Theorem 4. 	

Theorem 8 Assume that conditions (D1)–(D3) in Theorem 5 hold. Then, the fractional inte-
gral equation

u(x, y) = q(x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ �1

0

∫ �2

0
(�1 − τ)ι1−1(�2 − ς)ι2−1G(x, y, τ, ς, u(τ, ς))dςdτ , (7)

has a solution u(x, y) existing for every x, y ≥ 0, and then for every q(x, y) ∈ R
2+, such that

|g(x, y)| ≤ q(x, y), there exists a solution f (x, y) of the 2D-NFFIE for x, y ≥ 0 satisfying
| f (x, y)| ≤ u(x, y).

Proof The proof of this theorem is similar to the proof of Theorem 5. 	

Theorem 9 Let f ∈ C(Ω, R

n) and k ∈ C(Ω × Ω × R
n, R

n). Suppose that there exists
0 < L2 < 1 such that the following Lipschitz condition is satisfied:

|k(x, y, τ, ς, f (τ, ς)) − k(x, y, τ, ς, f1(τ, ς))| ≤ L2 | f (τ, ς) − f1(τ, ς)| .

If
L2�

ι1
1 �

ι2
2

Γ (ι1+1)Γ (ι2+1) < 1, then the 2D-NFFIE has a unique solution.

Proof The proof of this theorem is similar to the proof of Theorem 6. 	


4 The 2D-HBPSLs and the operational matrices

Here, we present the 2D-HBPSLs and use them to obtain the approximation of two-variable
functions. Then, we review the operational matrices of fractional integration and product.

First, consider the 1D-HBPSLs on the interval [0, �) as follows:

�nm(x) =
{

φm( 2N
�
x − 2n + 1), x ∈ [ n−1

N �, n
N �),

0, otherwise,

for n = 1, 2, . . . , N , m = 0, 1, . . . , M − 1, where N and M are positive integers. Here, φm

is Legendre polynomial of degree m which is defined on [−1, 1] with the analytic form

φm(x) = 2m
m∑
j=0

x j
(
m
j

)( m+ j−1
2
m

)
.
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The orthogonality property of the 1D-HBPSLs on the interval [0, �) is as follows:
∫ �

0
�nm(x)�i j (x)dx =

{
�

N (2m+1) , n = i,m = j,

0, otherwise.

Similarly, the 2D-HBPSLs on the domain Ω = [0, �1) × [0, �2) is defined as follows:

�n1m1n2m2 (x, y)

=
{

φm1

(
2N
�1

x − 2n1 + 1
)

φm2

(
2N
�2

y − 2n2 + 1
)

, (x, y) ∈ [ n1−1
N �1,

n1
N �1) × [ n2−1

N �2,
n2
N �2),

0, otherwise.

Here φm1 and φm2 are Legendre polynomials of degrees m1 and m2, respectively, where
n1, n2 = 1, 2, . . . , N , m1,m2 = 0, 1, . . . , M − 1.

The orthogonality property of the 2D-HBPSLs on the domain Ω is

∫ �1

0

∫ �2

0
�n1m1n2m2(x, y)�i1 j1i2 j2(x, y) dy dx

=
{

�1�2
N2(2m1+1)(2m2+1)

, n1 = i1, n2 = i2,m1 = j1,m2 = j2,

0, otherwise.

Now consider the space X = L2(Ω) with the norm

‖ f ‖2 = 〈 f , f 〉 1
2 =

(∫ �1

0

∫ �2

0
| f (x, y)|2 dydx

) 1
2

,

where 〈., .〉 denotes the inner product. Let
XN ,M = span{�1010(x, y), . . . , �101(M−1)(x, y), �1020(x, y), . . . , �102(M−1)(x, y),

. . . , �N (M−1)N0(x, y), . . . , �N (M−1)N (M−1)(x, y)}.
Since XN ,M ⊂ X is a finite dimensional vector space, for every f ∈ X there exists a unique
best approximation fN ,M ∈ XN ,M such that

∥∥ f − fN ,M
∥∥
2 = inf

u∈XN ,M
‖ f − u‖2 .

A proof of this result is given by Cheney (1966), Davis (1975), and Kreyszig (1989). Since
fN ,M ∈ XN ,M , we have

f (x, y) � fN ,M (x, y) =
N∑

n1=1

M−1∑
m1=0

N∑
n2=1

M−1∑
m2=0

f̂n1m1n2m2�n1m1n2m2(x, y) = F̂T H(x, y),

(8)

where

F̂ = [ f̂1010, . . . , f̂101(M−1), f̂1020, . . . , f̂102(M−1), . . . , f̂N (M−1)N0, . . . , f̂N (M−1)N (M−1)]T ,

(9)

H(x, y) = [�1010(x, y), . . . , �101(M−1)(x, y), �1020(x, y), . . . , �102(M−1)(x, y),

. . . , �N (M−1)N0(x, y), . . . , �N (M−1)N (M−1)(x, y)]T , (10)
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and hybrid coefficients are uniquely obtained by

f̂n1m1n2m2 =
〈
f , �n1m1n2m2

〉
〈
�n1m1n2m2 , �n1m1n2m2

〉 . (11)

Now consider X = L2(Ω × Ω) with

‖k‖2 = 〈k, k〉 1
2 =

(∫ �1

0

∫ �2

0

∫ �1

0

∫ �2

0
|k(x, y, τ, ς)|2 dς dτ dy dx

) 1
2

.

Also, a function k in X can be expanded as follows:

k(x, y, τ, ς) � HT (x, y)K H(τ, ς), (12)

where K is the N 2M2 × N 2M2 known matrix and its entries are given by

Kn,m =
∫ �1
0

∫ �2
0

∫ �1
0

∫ �2
0 H(n)(x, y)k(x, y, τ, ς)H(m)(τ, ς) dς dτ dy dx(∫ �1

0

∫ �2
0 |H(n)(x, y)|2 dy dx

) (∫ �1
0

∫ �2
0 |H(m)(τ, ς)|2 dς dτ

) . (13)

Here H(n)(x, y) denotes the nth element of H(x, y).

4.1 The operational matrix of fractional integration

Maleknejad et al. (2020a) obtained the left-sidedmixedRiemann–Liouville fractional integral
of order ι := (ι1, ι2) of 2D-HBPSLs as follows:

I (ι1,ι2)H(x, y) � (
Iι1 ⊗ Iι2

)
H(x, y). (14)

Here, ⊗ denotes the Kronecker product and Iι1 ⊗ Iι2 is the operational matrix of fractional
integration of 2D-HBPSLs, where

Iιi = ΨPιi Ψ −1, i = 1, 2, (15)

and

Pιi =
(

�i

NM

)ιi 1

Γ (ιi + 2)

⎡
⎢⎢⎢⎢⎢⎣

1 κ1 κ2 . . . κNM−1

0 1 κ1 . . . κNM−2

0 0 1 . . . κNM−3
...

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

,

with κl = (l + 1)ιi+1−2l ιi+1+ (l − 1)ιi+1, l = 1, 2, . . . , NM −1, is the operational matrix
of fractional integration of block-pulse functions given by Kılıçman and Al Zhour (2007).
Also, Ψi is an NM × NM matrix given by

Ψi �
[
H

(
�i

2NM

)
, H

(
3�i

2NM

)
, . . . , H

(
(2NM − 1)�i

2NM

)]
NM×NM

,

where

H(x) = [�10(x), . . . , �1(M−1)(x), �20(x), . . . , �N (M−1)(x)]T ,

is an NM × 1 vector of 1D-HBPSLs.
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Moreover, from Maleknejad et al. (2020a), we have

1

Γ (ι1)Γ (ι2)

∫ �1

0

∫ �2

0
(�1 − τ)ι1−1(�2 − ς)ι2−1H(τ, ς)dςdτ = Ξ1 ⊗ Ξ2, (16)

where

Ξ1 = 1

Γ (ι1)

∫ �1

0
(�1 − τ)ι1−1H(τ )dτ ,

and

Ξ2 = 1

Γ (ι2)

∫ �2

0
(�2 − ς)ι2−1H(ς)dς.

4.2 The product operational matrix

Let H(x, y) be the 2D-HBPSLs vector defined in (10), then we have

H(x, y)HT (x, y)F̂ � ˜̂FH(x, y), (17)

where F̂ is defined by (9) and ˜̂F is an N 2M2×N 2M2 product operationalmatrix.Maleknejad

et al. (2020a) have computed the entries of ˜̂F = diag(Ci1)i1=1,2,...,N as follows:

Ci1 =
[
C ( j1,m1)
i1

]
j1,m1=0,1,...,M−1

,

C ( j1,m1)
i1

= N (2m1 + 1)

�1

M−1∑
h1=0

wi1 j1h1m1Bi1h1 , j1,m1 = 0, 1, . . . , M − 1,

wi1 j1h1m1 =
∫ i1

N �1

i1−1
N �1

φ j1

(
2N

�1
x − 2i1 + 1

)
φh1

(
2N

�1
x − 2i1 + 1

)
φm1

×
(
2N

�1
x − 2i1 + 1

)
dx,

Bi1h1 = diag(Ai1,h1,i2)i2=1,2,...,N ,

Ai1,h1,i2 =
[
A( j2,m2)
i1,h1,i2

]
j2,m2=0,...,M−1

,

A( j2,m2)
i1,h1,i2

= N (2m2 + 1)

�2

M−1∑
h2=0

wi2 j2h2m2 f̂i1h1i2h2 , j2,m2 = 0, . . . , M − 1,

wi2 j2h2m2 =
∫ i2

N �2

i2−1
N �2

φ j2

(
2N

�2
y − 2i2 + 1

)
φh2

(
2N

�2
y − 2i2 + 1

)
φm2

×
(
2N

�2
y − 2i2 + 1

)
dy.

5 Method of solution

In this section, we suppose that k(x, y, τ, ς, f (τ, ς)) = k(x, y, τ, ς) f p(τ, ς) and then we
use 2D-HBPSLs and their operational matrices for solving Eqs. (1) and (2).
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5.1 Themethod for 2D-NFVIEs

Here, we are going to convert Eq. (1) to a nonlinear system using 2D-HBPSLs. First, we can
write

g(x, y) � HT (x, y)G, (18)

Using (8) and (17) for the function f (x, y), we obtain

[ f (x, y)]2 � F̂T H(x, y)HT (x, y)F̂ = F̂T ˜̂F︸ ︷︷ ︸
F̂2

H(x, y) = F̂2H(x, y),

[ f (x, y)]3 � F̂T H(x, y)F̂2H(x, y) = F̂T H(x, y)HT (x, y)F̂T
2 = F̂T ˜̂FT

2︸ ︷︷ ︸
F̂3

H(x, y)

= F̂3H(x, y).

where ˜̂FT
2 is an N 2M2 × N 2M2 product operational matrix. By expanding the method for

an arbitrary p ∈ N, the result is as follows:

[ f (x, y)]p � F̂pH(x, y). (19)

Now, using (8), (12), (14), (17) -(19), we get

HT (x, y)F̂ � HT (x, y)G

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1HT (x, y)K H(τ, ς)F̂pH(τ, ς)dςdτ

� HT (x, y)G

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1HT (x, y)K ˜̂FT

p H(τ, ς)dςdτ

= HT (x, y)G

+ HT (x, y)K ˜̂FT
p

(
1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1H(τ, ς)dςdτ

)

� HT (x, y)G + HT (x, y)K ˜̂FT
p

(
Iι1 ⊗ Iι2

)
H(x, y).

Therefore, we have

HT (x, y)F̂ � HT (x, y)G + HT (x, y)K ˜̂FT
p

(
Iι1 ⊗ Iι2

)
H(x, y). (20)

To obtain unknown coefficients f̂n1m1n2m2 , for n1, n2 = 1, 2, . . . , N , m1,m2 =
0, 1, . . . , M − 1, we collocate Eq. (20) at N 2M2 collocation points {(xi , y j )}NM

i, j=1 in the
domain Ω = [0, �1) × [0, �2), where

xi = 2i − 1

2NM
, y j = 2 j − 1

2NM
, i, j = 1, 2, . . . , NM,

are the Newton-Cotes nodes. Therefore, we have N 2M2 nonlinear equations. By solving this
system, we determine an approximate solution for 2D-NFVIE from (8).

123



Existence, uniqueness, and numerical solutions. . . Page 13 of 22 271

5.2 Themethod for 2D-NFFIEs

Now we want to convert Eq. (2) to a nonlinear system using 2D-HBPSLs. For this purpose,
we apply (8), (12), (16)–(19) in (2) and, therefore, we obtain

HT (x, y)F̂ � HT (x, y)G

+ 1

Γ (ι1)Γ (ι2)

∫ �1

0

∫ �2

0
(�1 − τ)ι1−1(�2 − ς)ι2−1HT (x, y)K H(τ, ς)F̂pH(τ, ς)dςdτ

� HT (x, y)G

+ 1

Γ (ι1)Γ (ι2)

∫ �1

0

∫ �2

0
(�1 − τ)ι1−1(�2 − ς)ι2−1HT (x, y)K ˜̂FT

p H(τ, ς)dςdτ

= HT (x, y)G

+ HT (x, y)K ˜̂FT
p

(
1

Γ (ι1)Γ (ι2)

∫ �1

0

∫ �2

0
(�1 − τ)ι1−1(�2 − ς)ι2−1H(τ, ς)dςdτ

)

� HT (x, y)G + HT (x, y)K ˜̂FT
p (Ξ1 ⊗ Ξ2).

So, we have

HT (x, y)F̂ � HT (x, y)G + HT (x, y)K ˜̂FT
p (Ξ1 ⊗ Ξ2). (21)

Obtaining the unknown coefficients f̂n1m1n2m2 in the above system is similar to (20). There-
fore, we can determine an approximate solution for 2D-NFFIE from (8).

6 Error bound and convergence analysis

Theorem 10 Suppose that f ∈ C (2M)(Ω). Let f (x, y) be the exact solution of the 2D-NFVIE
and fN ,M (x, y) be its approximate solution obtained by the proposed method. Assume that
for (x, y) ∈ Ω = [0, �1) × [0, �2), the following assumptions hold:

(H1) g ∈ C (2M)(Ω) and k ∈ C (4M)(Ω × Ω).
(H2) There exists a Lipschitz constant L such that

∣∣∣ f p(x, y) − f pN ,M (x, y)
∣∣∣ ≤ L

∣∣ f (x, y) − fN ,M (x, y)
∣∣ .

(H3) supΩ | f p(x, y)| = a′ < ∞.
(H4) supΩ×Ω |k(x, y, τ, ς)| = b′ < ∞.

Then, there exist positive constants μ1 and μ2 such that

‖ f − fN ,M‖2 ≤
(
c′Γ (ι1 + 1)Γ (ι2 + 1) + μ1�

ι1
1 �

ι2
2

Γ (ι1 + 1)Γ (ι2 + 1) − μ2�
ι1
1 �

ι2
2

) √
�1�2

22M−1NMM ! . (22)

Proof Considering the two-dimensional hybrid expansions of f (x, y) and k(x, y, τ, ς) and
also using assumptions (H1)–(H4) lead to
∣∣ f (x, y) − fN ,M (x, y)

∣∣ = ∣∣g(x, y) − gN ,M (x, y)

+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1k(x, y, τ, ς) f p(τ, ς)dςdτ
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− 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1kN ,M (x, y, τ, ς) f pN ,M (τ, ς)dςdτ

∣∣∣∣
≤ ∣∣g(x, y) − gN ,M (x, y)

∣∣
+

∣∣∣∣ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1

(
k(x, y, τ, ς)

(
f p(τ, ς) − f pN ,M (τ, ς)

)

+ (
k(x, y, τ, ς) − kN ,M (x, y, τ, ς)

)
f pN ,M (τ, ς)

)
dςdτ

∣∣∣
≤ ∣∣g(x, y) − gN ,M (x, y)

∣∣
+ 1

Γ (ι1)Γ (ι2)

∫ x

0

∫ y

0
(x − τ)ι1−1(y − ς)ι2−1 (b′L

∣∣ f (τ, ς) − fN ,M (τ, ς)
∣∣

+ a′ ∣∣k(x, y, τ, ς) − kN ,M (x, y, τ, ς)
∣∣) dςdτ. (23)

Now from Maleknejad et al. (2020a) (see Theorem 6, page 16), we can write

∥∥g − gN ,M
∥∥
2 ≤ c′√�1�2

22M−1NMM ! ,
and

‖k − kN ,M‖2 ≤ d ′√�1�2

22M−1NMM ! .

Also, by taking L2−norm in the inequality (23), we obtain

‖ f − fN ,M‖2 ≤ ∥∥g − gN ,M
∥∥
2

+ �
ι1
1 �

ι2
2

Γ (ι1 + 1)Γ (ι2 + 1)

(
b′L‖ f − fN ,M‖2 + a′∥∥k − kN ,M

∥∥
2

)

≤ c′√�1�2

22M−1NMM !
+ �

ι1
1 �

ι2
2

Γ (ι1 + 1)Γ (ι2 + 1)

(
b′L‖ f − fN ,M‖2 + a′d ′√�1�2

22M−1NMM !
)

≤
(
c′ + a′d ′�ι1

1 �
ι2
2

Γ (ι1 + 1)Γ (ι2 + 1)

) √
�1�2

22M−1NMM !
+ b′L�

ι1
1 �

ι2
2

Γ (ι1 + 1)Γ (ι2 + 1)
‖ f − fN ,M‖2.

By simplifying the above relation and also setting μ1 = a′d ′ and μ2 = b′L , we get the
inequality (22) which completes the proof of the theorem. 	

Remark 1 To obtain an upper error bound for 2D-NFFIEs, since (x, y) ∈ Ω , we can use a
similar way that has been used in Theorem 10.

Remark 2 It is obvious that the right-hand side of the inequality (22) tends to zero as N , M →
∞, so f − fN ,M → 0 and this proves the convergence of the proposed method.

7 Illustrative examples

In this section, we present three examples to demonstrate the accuracy and efficiency of the
proposed method. In all these examples, n̂ denotes the number of bases. All examples are
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Table 1 Numerical results for Example 1

x = y Exact solution Present method 2D-SLPM 2D-BPFs

M = 2 M = 3 N = 64 N = 128 m = 64 m = 128

0 0 0 0 0 0 0.000203 0

0.1 0.005 0.00499998 0.005 0.0049789 0.0499965 0.00157 0.004587

0.2 0.020 0.0199999 0.020 0.0199693 0.0199989 0.021056 0.02054

0.3 0.045 0.0449998 0.045 0.0449485 0.0449988 0.040154 0.04328

0.4 0.080 0.0799996 0.080 0.0799275 0.0799980 0.086581 0.081564

0.5 0.125 0.124999 0.125 0.1249110 0.1249941 0.12058 0.126196

0.6 0.180 0.179999 0.180 0.1799068 0.1799840 0.17985 0.18346

0.7 0.245 0.244999 0.245 0.2448798 0.2449730 0.23982 0.247982

0.8 0.320 0.319999 0.320 0.3198459 0.3199785 0.323195 0.32120

0.9 0.405 0.404998 0.405 0.4046765 0.4049762 0.03905 0.406365

Max error 0 1.692071e−6 5.786662e−8 1.97e−4 3.21e−5 7.23e−3 2.88e−3

tested on an Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz Processor with 4 GB of RAM
usingMaple 2018 software onWindows 7 (64 bit) operating systemwith 16 significant digits
(Digits:= 16). The absolute errors in the solutions are obtained by∣∣ f (x, y) − fN ,M (x, y)

∣∣ , (x, y) ∈ [0, �1) × [0, �2), N , M ∈ N.

Also, the maximum absolute errors

max
i, j=1,...,NM

{∣∣ f (xi , y j ) − fN ,M (xi , y j )
∣∣} ,

are calculated at points (xi , y j ), i, j = 1, . . . , NM which are Newton-Cotes nodes in
[0, �1) × [0, �2).

Moreover, plots of maximum absolute errors are displayed by using

max
j=1,...,NM

{∣∣ f (x, y j ) − fN ,M (x, y j )
∣∣} , x ∈ [0, �1),

where points y j , j = 1, . . . , NM are Newton-Cotes nodes in [0, �2).
Example 1 Consider the following two-dimensional fractional Fredholm integral equation
studied by Hesameddini and Shahbazi (2018); Najafalizadeh and Ezzati (2016):

f (x, y) = 2362

4725
xy + 1

Γ ( 72 )Γ ( 72 )

∫ 1

0

∫ 1

0
(1 − τ)

5
2 (1 − ς)

5
2 xy

√
ς f (τ, ς)dςdτ ,

with the exact solution f (x, y) = 1
2 xy.

In Tables 1 and 2, respectively, we report the exact and approximate solutions and also the
absolute errors in the solutions for N = 2, M = 2, 3 at some selected nodes. These tables
state that by using n̂ = N 2M2 = 36 numbers of bases, we obtain more accurate results
than the 2D-SLPOM and 2D-BPFs methods reported by Hesameddini and Shahbazi (2018);
Najafalizadeh and Ezzati (2016), respectively, that used n̂ = (N + 1)2 = 1292 = 16641
2D-SLPOM and n̂ = m2 = 1282 = 16384 2D-BPFs to solve this problem. Figures 1 and 2
illustrate the accuracy and efficiency of the presented method.
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Table 2 Absolute errors for Example 1

x = y Present method 2D-BPFs

M = 2 M = 3 m = 16 m = 32

0 0 5.000000e−17 1.14e−3 6.14e−4

0.1 2.210053e − 8 6.886606e−10 1.67e−2 6.24e−3

0.2 8.840210e−8 2.754642e−9 1.09e−2 7.93e−3

0.3 1.989047e−7 6.197945e−9 1.62e−2 7.22e−3

0.4 3.536084e−7 1.101857e−8 9.23e−3 2.53e−3

0.5 5.525131e−7 1.721651e−8 2.58e−2 1.32e−2

0.6 7.956189e−7 2.479178e−8 7.44e−3 4.61e−3

0.7 1.082926e−6 3.374437e−8 2.58e−2 1.48e−2

0.8 1.414434e−6 4.407428e−8 9.97e−3 5.27e−3

0.9 1.790143e−6 5.578151e−8 2.32e−2 1.32e−2

Fig. 1 Plots of: a1 the exact solution, b1 the approximate solution, c1 the absolute error with N = 2 and
M = 3 for Example 1

Fig. 2 Plots of: d1 the comparison of the exact and approximate solutions, e1 the maximum absolute error
with N = 2 and M = 3 at y = 0.3 for Example 1
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Table 3 Numerical results for Example 2

x = y Exact solution Present method 2D-SLPM 2D-BPFs

M = 2 M = 3 N = 64 N = 128 m = 64 m = 128

0 0 −0.0416667 −6.87500e − 17 0.0001429 0.0000062 0.000203 0

0.1 −0.04 −0.0416667 −0.04 −0.0399150 −0.0399967 0.00157 0.004587

0.2 −0.06 −0.0416667 −0.06 −0.0599359 −0.0599927 0.021056 0.02054

0.3 −0.06 −0.0416667 −0.06 −0.0598965 −0.0599967 0.040154 0.04328

0.4 −0.04 −0.0416667 −0.04 −0.0398165 −0.0399968 0.086581 0.081564

0.5 0 −0.0416667 −1.50625e − 16 0.0002158 0.0000014 0.12058 0.126196

0.6 0.06 0.0583333 0.06 0.0597465 0.0599936 0.17985 0.18346

0.7 0.14 0.158333 0.14 0.1396887 0.1399886 0.23982 0.247982

0.8 0.24 0.258333 0.24 0.2396555 0.2399852 0.323195 0.32120

0.9 0.36 0.358333 0.36 0.3598051 0.3599875 0.03905 0.406365

Max error 0 5.234025e−3 1.096591e−5 1.97e−4 3.21e−5 7.23e−3 2.88e−3

Table 4 Absolute errors for Example 2

x = y Present method 2D-BPFs

M = 2 M = 3 m = 16 m = 32

0 4.166667e−2 6.875000e−17 2.95e−2 1.42e−2

0.1 1.666667e−3 0 4.05e−2 2.13e−2

0.2 1.833333e−2 1.000000e − 17 4.94e−2 1.96e−2

0.3 1.833333e−2 0 4.94e−2 1.96e−2

0.4 1.666667e−3 0 4.05e−2 2.13e−2

0.5 4.166667e−2 1.506250e−16 2.95e−2 1.42e−2

0.6 1.666667e−3 8.000000e−17 4.94e−2 1.39e−1

0.7 1.833333e−2 0 4.10e−2 2.06e−2

0.8 1.833333e−2 0 2.10e−2 5.86e−3

0.9 1.666667e−3 1.000000e − 16 4.12e−2 2.06e−2

Fig. 3 Plots of: a2 the exact solution, b2 the approximate solution, c2 the absolute error with N = 2 and
M = 3 for Example 2
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Fig. 4 Plots of: d2 the comparison of the exact and approximate solutions, e2 the maximum absolute error
with N = 2 and M = 3 at y = 0.3 for Example 2

Table 5 Numerical results for Example 3

x = y Exact solution Present method 2D-BPFs

M = 3 M = 4 m = 16 m = 32

0 0 0.00848361 0.00465488 0.018452 0.009386

0.1 0.057735 0.0516175 0.0555976 0.031135 0.042121

0.2 0.115470 0.114056 0.118617 0.132610 0.124282

0.3 0.173205 0.179512 0.17389 0.147605 0.156905

0.4 0.230940 0.235315 0.227048 0.246768 0.239179

0.5 0.288675 0.289481 0.288775 0.262075 0.274574

0.6 0.346410 0.346123 0.34638 0.360925 0.354075

0.7 0.404145 0.403988 0.404194 0.378545 0.389848

0.8 0.461880 0.462224 0.461945 0.475083 0.468971

0.9 0.519615 0.52003 0.519653 0.501015 0.507021

Max error 0 9.395571e−3 6.527875e−3 2.96e−2 1.63e−2

Example 2 Consider the following two-dimensional fractional Fredholm integral equation
studied by Hesameddini and Shahbazi (2018) and Najafalizadeh and Ezzati (2016):

f (x, y) = g(x, y) + 1

Γ ( 92 )Γ ( 32 )

∫ 1

0

∫ 1

0
(1 − τ)

7
2 (1 − ς)

1
2 5

√
τ(y − x) f 2(τ, ς)dςdτ ,

where

g(x, y) = 322560x2 − 322349x + 161069y

322560
,

with the exact solution f (x, y) = x2 − x + 1
2 y.
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Table 6 Absolute errors for Example 3

x = y Present method 2D-TFs method 2D-BPFs method

M = 3 M = 4 m = 6 m = 8 m = 16 m = 32

0 8.483608e−3 4.654879e−3 0 0 1.84e−2 9.38e−3

0.1 6.117569e−3 2.137467e−3 0.020069 0.008448 2.66e−2 1.56e−2

0.2 1.413861e−3 3.146985e−3 0.00764 0.002634 1.71e−2 8.81e−3

0.3 6.306532e−3 6.853207e−4 0.000789 0.005404 2.56e−2 1.63e−2

0.4 4.375111e−3 3.891639e−3 0.003448 0.000709 1.57e−2 8.23e−3

0.5 8.055251e−4 1.002373e−4 0.006956 0.007308 2.66e−2 1.41e−2

0.6 2.875908e−4 3.036785e−5 0.000093 0.000053 1.45e−2 7.66e−3

0.7 1.571449e−4 4.901139e−5 0.000335 0.000044 2.56e−2 1.42e−2

0.8 3.433532e−4 6.500334e−5 0.001909 0.001421 1.32e−2 7.09e−3

0.9 4.150370e−4 3.739562e−5 0.003807 0.003041 1.86e−2 1.25e−2

In Tables 3 and 4, respectively, we report the exact and approximate solutions and also
the absolute errors in the solutions for N = 2, M = 2, 3 at some selected nodes. These
tables state that using n̂ = N 2M2 = 36 numbers of bases, we obtain more accurate results
than the 2D-SLPOM and 2D-BPFs methods reported by Hesameddini and Shahbazi (2018);
Najafalizadeh and Ezzati (2016), respectively, that used n̂ = (N + 1)2 = 1292 = 16641
2D-SLPOM and n̂ = m2 = 1282 = 16384 2D-BPFs to solve this problem. Figures 3 and 4
illustrate the accuracy and efficiency of the presented method.

Example 3 Consider the following two-dimensional nonlinear fractional Volterra integral
equation studied by Jabari Sabeg et al. (2017) and Najafalizadeh and Ezzati (2016):

f (x, y) = √
y

(
− 1

180
x3y

7
2 +

√
x

3

)

+ 1

Γ
( 3
2

)
Γ

(
5
2

)
∫ x

0

∫ y

0
(x − τ)

1
2 (y − ς)

3
2
√
xyς f 2(τ, ς)dςdτ ,

with the exact solution f (x, y) =
√
3xy
3 .

The exact and approximate solutions and also the absolute errors in the solutions, respec-
tively, are reported in Tables 5 and 6 for N = 2, M = 3, 4. These tables state that by
using n̂ = N 2M2 = 64 numbers of bases, we obtain more accurate results than the 2D-TFs
and 2D-BPFs methods reported by Jabari Sabeg et al. (2017) and Najafalizadeh and Ezzati
(2016), respectively, that used n̂ = 4m2 = 256 2D-TFs and n̂ = m2 = 322 = 1024 2D-BPFs
to solve this problem. Figures 5 and 6 illustrate the accuracy and efficiency of the presented
method.

8 Conclusion

In the presented paper, sufficient conditions were provided for the local and global existence
of solutions for 2D-NFVIEs and 2D-NFFIEs, based on the Schauder’s and Tychonoff’s fixed-
point theorems. Also, sufficient conditions were provided for the uniqueness of the solutions.
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Fig. 5 Plots of: a3 the exact solution, b3 the approximate solution, c3 the absolute error with N = 2 and
M = 4 for Example 3

Fig. 6 Plots of: d3 the comparison of the exact and approximate solutions, e3 the maximum absolute error
with N = 2 and M = 4 at y = 0.3 for Example 3

Moreover, operational matrices of 2D-HBPSLs via collocation method were applied to find
approximate solutions for 2D-NFVIEs and 2D-NFFIEs. The obtained results introduced
the presented method as a powerful mathematical tool for solving these fractional integral
equations with lower numbers of bases than the other methods studied by Hesameddini and
Shahbazi (2018); Jabari Sabeg et al. (2017); Najafalizadeh and Ezzati (2016).
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