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Abstract
The purpose of this article is to introduce a new two-step iterative algorithm, called F∗
algorithm, to approximate the fixed points of weak contractions in Banach spaces. It is also
showed that the proposed algorithmconverges strongly to thefixedpoint ofweak contractions.
Furthermore, it is proved that F∗ iterative algorithm is almost-stable for weak contractions,
and converges to a fixed point faster than Picard, Mann, Ishikawa, S, normal-S, and Varat
iterative algorithms. Moreover, a data dependence result is obtained via F∗ algorithm. Some
numerical examples are presented to support the main results. Finally, the solution of the
nonlinear quadratic Volterra integral equation is approximated by utilizing our main result.
The results of the paper are new and extend several relevant results in the literature.

Keywords F∗ iterative algorithm · Weak contraction · Fixed points · Numerically stable ·
Data dependence · Nonlinear quadratic Volterra integral equation

Mathematics Subject Classification 47H05 · 47H09 · 47H10

1 Introduction and preliminaries

Throughout this article, we assume that Z+ is the set of nonnegative integers, Y a nonempty,
closed and convex subset of a Banach space X , and F(G), the set of fixed points of the
self-mapping G defined on Y .

The iterative approximation of fixed points of linear and nonlinear mappings is one of the
most significant tools in the fixed point theory that has many applications in different fields
like Engineering, Differential equations, Integral equations, etc. Hence, a large number of
researchers introduced and studied many iterative algorithms for certain classes of mappings
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(e.g., see Ali et al. 2020; Khan 2013; Thakur et al. 2016; Katchang andKumam 2010;Maingè
and Măruşter 2011). The following iterative algorithms are called (Picard 1890; Mann 1953;
Ishikawa 1974), S (Agrawal et al. 2007), normal-S (Sahu 2011), and Varat (Sintunavarat and
Pitea 2016) algorithms, respectively, for the self-mapping G defined on Y :{

p0 ∈ Y ,

pn+1 = Gpn, n ∈ Z+
(1.1)

{
p0 ∈ Y ,

pn+1 = (1 − r̃n)pn + r̃nGpn, n ∈ Z+
(1.2)

⎧⎨
⎩

p0 ∈ Y ,

pn+1 = (1 − r̃n)pn + r̃nGqn,
qn = (1 − s̃n)pn + s̃nGpn, n ∈ Z+

(1.3)

⎧⎨
⎩

p0 ∈ Y ,

pn+1 = (1 − r̃n)Gpn + r̃nGqn,
qn = (1 − s̃n)pn + s̃nGpn, n ∈ Z+

(1.4)

{
p0 ∈ Y ,

pn+1 = G((1 − r̃n)pn + r̃nGpn), n ∈ Z+
(1.5)

⎧⎪⎪⎨
⎪⎪⎩

p0 ∈ Y ,

pn+1 = (1 − r̃n)Gzn + r̃nGqn,
zn = (1 − t̃n)pn + t̃nqn,
qn = (1 − s̃n)pn + s̃nGpn, n ∈ Z+,

(1.6)

where {r̃n}, {s̃n}, and {t̃n} are sequences in (0, 1).
Motivated by the above, one can raise the following natural question:
Question: Is it possible to define a two-step iterative algorithmwhose rate of convergence

is faster than S iterative algorithm (1.4) and some other iterative algorithms?
As an answer, we introduce a new two-step iterative algorithm, called F∗ algorithm,which

is defined as follows:
For a self-mapping G on a nonempty closed and convex subset Y of a Banach space X ,

the sequence {pn} is defined by:⎧⎨
⎩

p0 ∈ Y ,

pn+1 = Gqn,
qn = G((1 − r̃n)pn + r̃nGpn), n ∈ Z+,

(1.7)

where {r̃n} is a sequence in (0, 1).
A mapping G : X → X is said to be δ-contraction if there is a constant δ ∈ [0, 1), such

that:
‖Gx − Gy‖ ≤ δ‖x − y‖, ∀ x, y ∈ X .

In 2003,Berinde (2003) introduced the concept ofweak contractionswhich is a very important
class of mappings and wider than the classes of contraction mappings, Kannan mappings
(Kannan 1968), Chettarjee mappings (Chatterjea 1972), Zamfirescu mappings (Zamfirescu
1972), etc.

Now, we recall the definition of weak contraction.

Definition 1.1 A self-map G on a Banach space X is called weak contraction if there is a
constant δ ∈ (0, 1) and some constant L ≥ 0, such that:

‖Gx − Gy‖ ≤ δ‖x − y‖ + L‖y − Gx‖, ∀ x, y ∈ X . (1.8)
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Later, many authors also called it almost contraction.
Berinde (2003) proved the following theorem for existence and uniqueness of a fixed point

of the weak contraction.

Theorem 1.2 Let G be a self-map on a Banach space X satisfying (1.8) and:

‖Gx − Gy‖ ≤ δ‖x − y‖ + L‖x − Gx‖, ∀ x, y ∈ X . (1.9)

Then, the mapping G has a unique fixed point in X.

On the other hand, the concept of stability of iterative algorithms was first introduced
by Ostrowski (1967). He proved that the Picard iterative algorithm is stable for contraction
mappings. The definition of stability introduced by Ostrowski runs as follows:

Definition 1.3 (Ostrowski 1967) Let G be a self-map on a Banach space X with fixed point
p. Assume that p0 ∈ X and pn+1 = h(G, pn) is an iterative algorithm for some function h.
Let {zn} be an approximate sequence of the sequence {pn} in X and define σn = ‖zn+1 −
h(G, zn)‖. Then, iterative algorithm pn+1 = h(G, pn) is called G-stable if:

lim
n→∞ σn = 0 ⇐⇒ lim

n→∞ zn = p.

Using Definition 1.3, Harder (1987), Harder and Hicks (1988) proved the stability of
various iterative algorithms for several classes of contractive-type operators. Rhoades (1990)
generalized the results of Harder and Hicks (1988) for two different classes of contraction
mappings of Çiric type. Furthermore, Osilike (1995, 1996, 1997, 1998, 2000) showed the
stability of Mann and Ishikawa algorithms for a class of contractive-type operators. In 1998,
Osilike (1998) introduced the concept of almost stability of iterative algorithms, which is
weaker class of stability due to Ostrowski (1967) and defined as follows:

Definition 1.4 Let G be a self-map on a Banach space X with a fixed point p. Assume that
p0 ∈ X and pn+1 = h(G, pn), n ∈ Z+ is an iterative algorithm for some function h. Let {zn}
be an approximate sequence of the sequence {pn} in X and define σn = ‖zn+1 − h(G, zn)‖.
Then, iterative algorithm pn+1 = h(G, pn) is called almost G-stable if:

∞∑
n=0

σn < ∞ �⇒ lim
n→∞ zn = p.

Also, Osilike proved stability of Ishikawa algorithm for a class of pseudo-contractive
operators.

The following lemma plays a crucial role in proving the main result of this paper.

Lemma 1.5 Berinde (1997) Let {un} and {vn} be two sequences inR+ (the set of nonnegative
real numbers) and 0 ≤ s < 1, such that un+1 ≤ sun + vn, ∀ n ≥ 0.

(i) If limn→∞ vn = 0, then limn→∞ un = 0.

Şoltuz and Grosan (2008) proved the following most valuable lemma which used to prove
the data dependence results.

Lemma 1.6 Let {θn} be a sequence in R+ and there exists N ∈ Z+, such that for all n ≥ N
satisfying the following inequality:

θn+1 ≤ (1 − μn)θn + μnηn,

where μn ∈ (0, 1) ∀ n ∈ Z+, such that
∑∞

n=0 μn = ∞ and ηn ≥ 0. Then:

0 ≤ lim
n→∞ sup θn ≤ lim

n→∞ sup ηn .
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We observe the following remark.

Remark 1.7 The Lemma 1.6 need not to be true in general, because there is no guarantee of
the existence of limn→∞ sup θn and limn→∞ sup ηn . As, we choose the sequences θn = n

2 ,
μn = 1

2 , and ηn = n for all n ∈ Z+. Then, obviously, all the conditions of Lemma 1.6 are
satisfied. However, neither limn→∞ sup θn nor limn→∞ sup ηn exists.

Now, we modify Lemma 1.6 as follows:

Lemma 1.8 Let {θn} be a sequence in R+ and there exists N ∈ Z+, such that for all n ≥ N,
{θn} satisfies the following inequality:

θn+1 ≤ (1 − μn)θn + μnηn,

where μn ∈ (0, 1) ∀ n ∈ Z+, such that
∑∞

n=0 μn = ∞ and ηn ≥ 0 is a bounded sequence.
Then:

0 ≤ lim
n→∞ sup θn ≤ lim

n→∞ sup ηn .

Proof One can easily prove this lemma using the proof of Lemma 1 in Park (1994). �
To compare the rate of convergence of iterative algorithms, Berinde (2004) gave the following
definitions.

Definition 1.9 Let {θn} and {ηn} be sequences in R+ that converge to θ and η, respectively.
Suppose that:

� = lim
n→∞

|θn − θ |
|ηn − η| .

(i) If � = 0, then {θn} converges to θ faster than {ηn} to η.
(ii) If 0 < � < ∞, then {θn} and {ηn} converge at the same rate of convergence.

Definition 1.10 Let {pn} and {qn} be two iterative algorithms both converging to the same
point p with the following error estimates(best ones available):

|pn − p| ≤ θn,

|qn − p| ≤ ηn .

If lim
n→∞

θn
ηn

= 0, then {pn} converges faster than {qn}.

Definition 1.11 (Berinde 2007) Let S and G be two self operators on a nonempty subset Y
of a Banach space X . An operator S is said to be an approximate operator of G if, for all
x ∈ Y , there exists a fixed ε > 0, such that ‖Gx − Sx‖ ≤ ε.

In this study,weprove that F∗ iterative algorithmconverges strongly to a uniquefixedpoint
of weak contractions satisfying (1.9) and F∗ algorithm is almost G-stable. Also, we prove
that the proposed algorithm converges faster than Picard, Mann, Ishikawa, S, normal-S, and
Varat algorithms. To support the results, we present a couple of numerical examples. Finally,
we give a data dependence result for weak contractions satisfying (1.9) using F∗ algorithm
and we present an illustrative numerical example to show the validity of the result. As an
application, we approximate the solution of nonlinear quadratic Volterra integral equation
via the proposed iterative algorithm.
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2 Main results

In this section, we prove themain results forweak contractions satisfying (1.9) using F∗ itera-
tive algorithm in an arbitrary Banach space. First, we prove the following strong convergence
result.

Theorem 2.1 Let G : Y → Y be a weak contraction satisfying (1.9), where Y is a nonempty,
closed, and convex subset of a Banach space X. Then, the sequence {pn} defined by F∗
iterative algorithm (1.7) converges to a unique fixed point of G.

Proof By condition (1.9), we have:

‖Gpn − p‖ = ‖Gpn − Gp‖
≤ δ‖pn − p‖ + L‖p − Gp‖
= δ‖pn − p‖, ∀ n ∈ Z+.

Now, by F∗ iterative algorithm (1.7), we have:

‖qn − p‖ = ‖G((1 − r̃n)pn + r̃nGpn) − p‖
≤ δ‖(1 − r̃n)pn + r̃nGpn − p‖
≤ δ((1 − r̃n)‖pn − p‖ + r̃n‖Gpn − p‖)
≤ δ((1 − r̃n)‖pn − p‖ + δr̃n‖pn − p‖)
= δ(1 − r̃n + δr̃n)‖pn − p‖
= δ(1 − (1 − δ)r̃n)‖pn − p‖. (2.1)

Using Eq. (2.1), we get:

‖pn+1 − p‖ = ‖Gqn − p‖
≤ δ‖qn − p‖
≤ δ2(1 − (1 − δ)r̃n)‖pn − p‖. (2.2)

Since 0 < δ < 1 and r̃n ∈ (0, 1), therefore, using the fact (1 − (1 − δ)r̃n) ≤ 1, we get:

‖pn+1 − p‖ ≤ δ2‖pn − p‖.
Inductively, we get:

‖pn+1 − p‖ ≤ δ2(n+1)‖p0 − p‖. (2.3)

Since 0 < δ < 1, hence, {pn} converges strongly to p. This completes the proof. �
The following theorem shows the almost G-stability of F∗ iterative algorithm (1.7).

Theorem 2.2 Let G : Y → Y be a weak contraction satisfying (1.9), where Y is a nonempty,
closed, and convex subset of a Banach space X. Then, F∗ iterative algorithm (1.7) is almost
G-stable.

Proof Suppose that {zn} is an arbitrary sequence in Y and the sequence defined by F∗
algorithm is pn+1 = h(G, pn) and σn = ‖zn+1 − h(G, zn)‖, n ∈ Z+. Now, we will prove
that:

∞∑
n=0

σn < ∞ �⇒ lim
n→∞ zn = p.
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Let
∑∞

n=0 σn < ∞, and then, by F∗ algorithm, we have:

‖zn+1 − p‖ ≤ ‖zn+1 − h(G, zn)‖ + ‖h(G, zn) − p‖
= σn + ‖G(G((1 − r̃n)zn + r̃nGzn)) − p‖
≤ σn + δ2(1 − (1 − δ)r̃n)‖zn − p‖
≤ σn + δ2(1 − (1 − δ)r)‖zn − p‖.

Define un = ‖zn − p‖ and q = δ2(1 − (1 − δ)r), and then, 0 ≤ q < 1 and:

un+1 ≤ qun + σn .

Thus, conclusion follows by Lemma 1.5. �
The following theoremproves that F∗ iterative algorithm converges faster than the algorithms
(1.1)–(1.6) for weak contractions.

Theorem 2.3 Let G : Y → Y be a weak contraction satisfying (1.9), where Y is a nonempty,
closed, and convex subset of a Banach space X. Let the sequences {p1,n}, {p2,n}, {p3,n},
{p4,n}, {p5,n}, {p6,n}, and {pn} be defined by Picard, Mann, Ishikawa, S, normal-S, Varat,
and F∗ iterative algorithms, respectively, and converge to same fixed point say, p. Then, F∗
algorithm converges to a fixed point p of a mapping G faster than the algorithms (1.1)–(1.6).

Proof In view of Eq. (2.1) in Theorem 2.1, we have:

‖pn+1 − p‖ ≤ δ2(n+1)‖p0 − p‖ = αn, n ∈ Z+.

As proved by Khan (2013, Proposition 1):

‖p1,n − p‖ ≤ δn+1‖p1,0 − p‖ = α1,n, n ∈ Z+.

Then:

αn

α1,n
= δ2(n+1)‖p0 − p‖

δn+1‖p1,0 − p‖ = δ(n+1) ‖p0 − p‖
‖p1,0 − p‖ .

Since δ < 1, therefore, we have αn
α1,n

→ 0 as n → ∞. Hence, the sequence {pn} converges
faster than {p1,n} to p.

Now, by normal-S algorithm (1.5), we get:

‖pn+1 − p‖ = ‖G((1 − r̃n)pn + r̃nGpn) − p‖
≤ δ[(1 − r̃n)pn + r̃nGpn − p‖]
≤ δ[(1 − r̃n)‖pn − p‖ + δr̃n‖pn − p‖]
= δ(1 − (1 − δ)r̃n)‖pn − p‖
≤ δ‖pn − p‖.

Inductively, we get:

‖pn+1 − p‖ ≤ δn+1‖p0 − p‖.
Let

‖p5,n − p‖ ≤ δn+1‖p5,0 − p‖ = α5,n .
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Then:

αn

α5,n
= δ2(n+1)‖p0 − p‖

δn+1‖p5,0 − p‖ = δn+1 ‖p0 − p‖
‖p5,0 − p‖ .

We get αn
α5,n

→ 0 as n → ∞. Hence, the sequence {pn} converges faster than {p5,n} to the
fixed point p.

As proved by Sintunavarat and Pitea (2016, Theorem 2.1):

‖p6,n − p‖ ≤ δn+1[1 − (1 − δ)s(t − r + r t)]n+1‖p6,0 − p‖ = α6,n, n ∈ Z+.

And using the fact 1 − (1 − δ)s(t − r + r t) ≤ 1, we get:

‖p6,n − p‖ ≤ δn+1‖p6,0 − p‖ = α6,n .

Then:

αn

α6,n
= δ2(n+1)‖p0 − p‖

δn+1‖p6,0 − p‖ = δn+1 ‖p0 − p‖
‖p6,0 − p‖ .

Thus, we get αn
α6,n

→ 0 as n → ∞. Hence, {pn} converges faster than {p6,n} to p.
Also, Sintunavarat and Pitea (2016) showed that the Varat algorithm converges faster than

Mann, Ishikawa, and S iterative algorithms for the class of weak contractions. Thus, F∗
iterative algorithm converges faster than all the iterative algorithms as discussed earlier. �

Now, we furnish the following examples in support of the above claim.

Example 2.4 Let X = R be a Banach space with usual norm and Y = [0, 100], a subset of
X . Let G be a self-mapping on Y defined by Gx = x − 1 + e−x , for all x ∈ Y . It can be
easily verified that G is a weak contraction satisfying (1.9) and G has a unique fixed point
p = 0. Choose the control sequences r̃n = 0.85, s̃n = 0.15, and t̃n = 0.45 with the initial
guess p0 = 5.

With the help ofMatlab program2015a,wefind that F∗ iterative algorithm (1.7) converges
to the fixed point p = 0 faster than the Picard, Mann, Ishikawa, S, normal-S, and Varat
iterative algorithms, see Table 1 and Fig. 1.

Example 2.5 Let X = R
2 be a Banach space with respect to the norm ‖x‖ = ‖(x1, x2)‖ =

|x1| + |x2| and Y = {x = (x1, x2) : (x1, x2) ∈ [0, 1] × [0, 1]} be a subset of X . Let
G : Y → Y be defined by:

G(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

(
1
2 sin(x1),

1
4 sin(x2)

)
, if (x1, x2) ∈ [

0, 1
2

] × [
0, 1

2

]
,

(
1
2 x1,

1
4 x2

)
, if (x1, x2) ∈ ( 1

2 , 1
] × ( 1

2 , 1
]
.

Then, G is a weak contraction satisfying (1.9) for δ = 1
2 = L and G has a unique fixed point

(p, q) = (0, 0), but G is not a contraction mapping.

Now, all the conditions of the Theorems 2.1 and 2.3 are satisfied. Thus, with the help of
Matlab 2015a, we show that the sequence defined by F∗ iterative algorithm (1.7) converges
to a unique fixed point (p, q) = (0, 0) of themappingG faster than the algorithms (1.1)–(1.6)
which is showed in Tables 2, 3 and Fig. 2. For this claim, we choose the control sequences
r̃n = 0.85, s̃n = 0.15 and t̃n = 0.45 with the initial guess (p0, q0) = (0.25, 0.5).
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Table 1 A comparison of the different iterative algorithms for Example 2.4

Iter. No. F∗ Picard Mann Ishikawa S normal-S Varat

1 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000

2 2.213346 4.006738 4.155727 4.030006 3.881017 3.171402 3.620056

3 0.191268 3.024931 3.319050 3.072279 2.779552 1.451753 2.277509

4 0.000000 2.073492 2.499810 2.146107 1.730002 0.249764 1.072013

5 0.000000 1.199238 1.719595 1.296992 0.822182 0.001877 0.258654

6 0.000000 0.500662 1.021863 0.613452 0.222952 0.000000 0.013936

7 0.000000 0.106791 0.477798 0.198017 0.018322 0.000000 0.000038

8 0.000000 0.005504 0.154923 0.041460 0.000128 0.000000 0.000000

9 0.000000 0.000015 0.032932 0.006744 0.000000 0.000000 0.000000

10 0.000000 0.000000 0.005396 0.001026 0.000000 0.000000 0.000000

11 0.000000 0.000000 0.000822 0.000154 0.000000 0.000000 0.000000

12 0.000000 0.000000 0.000124 0.000023 0.000000 0.000000 0.000000

13 0.000000 0.000000 0.000003 0.000001 0.000000 0.000000 0.000000

14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

(Number of iterations)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(V
al

ue
 o

f p
n)

-1

0

1

2

3

4

5

Picard

Mann

Ishikawa

S

normal-S

Varat

F*

Fig. 1 Convergence behavior of the sequences defined by different iterative algorithms for Example 2.4

3 A data dependence result

In recent years, the data dependence research of fixed points is an important area of fixed point
theory. Notable researchers who have made contributions to the study of data dependence of
fixed points are Markin (1973), Rus and Muresan (1998), Rus et al. (2001, 2003), Berinde
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Table 2 A comparison of the different iterative algorithms for Example 2.5

Iter. no. F∗ Picard Mann Ishikawa

1 (0.250000, 0.500000) (0.250000, 0.500000) (0.250000, 0.500000) (0.250000, 0.500000)

2 (0.035511, 0.010994) (0.123702, 0.119856) (0.142647, 0.176878) (0.134827, 0.166084)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

8 (0.000000, 0.000000) (0.001926, 0.000029) (0.005136, 0.000400) (0.003451, 0.000250)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 (0.000000, 0.000000) (0.000000, 0.000000) (0.000007, 0.000000) (0.000002, 0.000000)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

23 (0.000000, 0.000000) (0.000000, 0.000000) (0.000001, 0.000000) (0.000000, 0.000000)

24 (0.000000, 0.000000) (0.000000, 0.000000) (0.000001, 0.000000) (0.000000, 0.000000)

25 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

Table 3 A comparison of the different iterative algorithms for Example 2.5

Iter. no. S normal-S Varat

1 (0.250000, 0.500000) (0.250000, 0.500000) (0.250000, 0.500000)

2 (0.115882, 0.109063) (0.071082, 0.043989) (0.115262, 0.108213)

.

.

.
.
.
.

.

.

.
.
.
.

12 (0.000058, 0.000000) (0.000000, 0.000000) (0.000055, 0.000000)

.

.

.
.
.
.

.

.

.
.
.
.

18 (0.000001, 0.000000) (0.000000, 0.000000) (0.000001, 0.000000)

19 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

(2003), Espínola and Petruşel (2005), Şoltuz (2004), Şoltuz and Grosan (2008) and Olatinwo
(2009) and the references cited therein.

Now, we prove the following theorem for data dependence of fixed points.

Theorem 3.1 Let S be an approximate operator of a weak contraction G satisfying (1.9) and
{pn} be a sequence defined by F∗ iterative algorithm (1.7) for G. Now, define a sequence
{un} for S as follows: ⎧⎨

⎩
u0 = u ∈ Y ,

un+1 = Svn,

vn = S((1 − r̃n)un + r̃n Sun), n ∈ Z+,

(3.1)

where {r̃n} is a sequence in (0, 1) satisfying 1
2 ≤ r̃n for all n ∈ Z+ and

∑∞
n=0 r̃n = ∞. If

Gp = p and Sq = q such that un → q as n → ∞, then we have:

‖p − q‖ ≤ 5ε

1 − δ
,

where ε > 0 is a fixed number.
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(Number of iterations)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(V
al

ue
 o

f |
|p

n
-p

||)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Picard

Mann

Ishikawa

S

normal-S

Varat

F*

Fig. 2 Convergence behavior of the sequences defined by different iterative algorithms for Example 2.5

Proof It follows from (1.7), (1.9), and (3.1) that:

‖qn − vn‖ = ‖G((1 − r̃n)pn + r̃nGpn) − S((1 − r̃n)un + r̃n Sun)‖
≤ ‖G((1 − r̃n)pn + r̃nGpn) − G((1 − r̃n)un + r̃n Sun)‖

+‖G((1 − r̃n)un + r̃n Sun) − S((1 − r̃n)un + r̃n Sun)‖
≤ δ

(
(1 − r̃n)‖pn − un‖ + r̃n‖Gpn − Sun‖

)
+L‖(1 − r̃n)pn + r̃nGpn − G((1 − r̃n)pn + r̃nGpn)‖ + ε

≤ δ
(
(1 − r̃n)‖pn − un‖ + r̃n

(‖Gpn − Gun‖ + ‖Gun − Sun‖
))

+L(1 − (1 − δ)r̃n)(1 + δ)‖pn − p‖ + ε

≤ δ
(
(1 − r̃n)‖pn − un‖ + r̃n

(
δ‖pn − un‖ + L‖pn − Gpn‖ + ε

))
+L(1 − (1 − δ)r̃n)(1 + δ)‖pn − p‖ + ε

≤ δ
(
(1 − (1 − δ)r̃n)‖pn − un‖ + r̃n L‖pn − Gpn‖ + r̃nε

)
+L(1 − (1 − δ)r̃n)(1 + δ)‖pn − p‖ + ε. (3.2)

Using (3.2), we have:

‖pn+1 − un+1‖ = ‖Gqn − Svn‖
≤ ‖Gqn − Gvn‖ + ‖Gvn − Svn‖
≤ δ‖qn − vn‖ + L‖qn − Gqn‖ + ε

≤ δ2
(
(1 − (1 − δ)r̃n)‖pn − un‖ + r̃n L‖pn − Gpn‖ + r̃nε

)
+δL(1 − (1 − δ)r̃n)(1 + δ)‖pn − p‖ + δε + L‖qn − Gqn‖ + ε.

(3.3)
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Since δ ∈ (0, 1), r̃n ∈ (0, 1) with r̃n ≥ 1
2 ; therefore, using the inequalities δ < 1, δ2 < 1,

1 − r̃n ≤ r̃n and 1 − (1 − δ)r̃n ≤ 1 in (3.3), we get:

‖pn+1 − un+1‖ ≤ (1 − (1 − δ)r̃n)‖pn − un‖ + r̃n L‖pn − Gpn‖ + r̃nε

+L(1 + δ)‖pn − p‖ + L‖qn − Gqn‖ + 2ε

≤ (1 − (1 − δ)r̃n)‖pn − un‖ + r̃n L‖pn − Gpn‖ + 5r̃nε

+2r̃n L(1 + δ)‖pn − p‖ + 2r̃n L‖qn − Gqn‖. (3.4)

Now, define:

θn =: ‖pn − un‖,
μn =: r̃n(1 − δ) ∈ (0, 1),

ηn =: L‖pn − Gpn‖ + 2L‖qn − Gqn‖ + 2L(1 + δ)‖pn − p‖ + 5ε

1 − δ
.

Equation (3.4) becomes:

θn+1 ≤ (1 − μn)θn + μnηn .

All the conditions of Lemma 1.8 are satisfied. Hence, applying Lemma 1.8, we get:

0 ≤ lim sup
n→∞

‖pn − un‖

≤ lim sup
n→∞

L‖pn − Gpn‖ + 2L‖qn − Gqn‖ + 2L(1 + δ)‖pn − p‖ + 5ε

1 − δ

= 5ε

1 − δ
.

In view of Theorem 2.1, we know that pn → p, and using hypothesis, we obtain:

‖p − q‖ ≤ 5ε

1 − δ
.

�
The following example supports Theorem 3.1.

Example 3.2 Let X = R be a Banach space and Y = [−1, 1] ⊂ X . Define an operator
G : Y → Y by:

Gx =
⎧⎨
⎩

9
20 sin( 9x20 ), −1 ≤ x < 0,

− 9
20 sin( 9x20 ), 0 ≤ x ≤ 1.

(3.5)

It can be easily checked that G is a weak contraction satisfying (1.9) with δ ∈ [ 81
400 , 1) and

has a unique fixed point p = 0. Now, define an operator S : Y → Y by:

Sx =

⎧⎪⎨
⎪⎩

(x−0.09)
4.01 + (x+0.2)3

96.06 − (x−0.4)5

7601.16 − (x+0.3)7

129998.03 , −1 ≤ x < 0,

− x
5.02 − (x−0.3)3

108.95 − (x+0.2)5

7598.27 + (x−0.6)7

130050.03 , 0 ≤ x ≤ 1.

(3.6)

Using Matlab program 2015a software, we get:

max
x∈Y ‖Gx − Sx‖ = 0.080707.
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Table 4 Approximated fixed point of operator S by using the Iterative algorithm (3.7)

Iter. no. Iter. algorithm (3.7)

1 0.800000

2 0.014867

3 0.000532

4 0.000311

5 0.000308

Hence, for all x ∈ Y and for a fixed ε = 0.080707 > 0, we have:

‖Gx − Sx‖ ≤ 0.080707 = ε.

Thus, in view of Definition 1.11, S is an approximate operator of G. Moreover, from (3.6),
q = 0.000308 is a unique fixed point of S in Y and the distance between two fixed points p
and q is ‖p − q‖ = 0.000308.

If Sx = − x
5.02 − (x−0.3)3

108.95 − (x+0.2)5

7598.27 + (x−0.6)7

130050.03 and we choose r̃n = n+1
n+2 , n ∈ Z+ in

(3.1), then we obtain:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0 = u ∈ Y ,

un+1 = − vn
5.02 − (vn−0.3)3

108.95 − (vn+0.2)5

7598.27 + (vn−0.6)7

130050.03 ,

vn = S((1 − n+1
n+2 )un + n+1

n+2

( − un
5.02 − (un−0.3)3

108.95 − (un+0.2)5

7598.27 + (un−0.6)7

130050.03

)
), n ∈ Z+.

(3.7)
The sequence {un} is defined by (3.7) which converges to the fixed point q = 0.000308, see
Table 4 .

Now, using Theorem 3.1, we calculate the following estimate:

‖p − q‖ ≤ 5 × (0.080707)

1 − 81
400

= 0.506000.

4 An application to nonlinear quadratic integral equation

In this section, we approximate the solution of a nonlinear quadraticVolterra integral equation
via F∗ iterative algorithm.

Now, consider the following nonlinear quadratic Volterra integral equation:

x(s) = h(s) + g(s, x(s))
∫ s

0
w(s, τ, x(τ ))dτ, ∀ s ∈ A = [0, 1]. (4.1)

Assume that the following conditions are satisfied:

(C1) h ∈ C(A) and h is nonnegative and nondecreasing on A = [0, 1].
(C2) g : A × B −→ R satisfies the following circumstances.
(i) g is continuous on the set A × B;
(ii) For any fixed x ∈ B, the function s �−→ g(s, x) is nondecreasing on A;
(iii) For any fixed s ∈ A, the function x �−→ g(s, x) is nondecreasing on B;
(iv) The function g = g(s, x) is Lipschitz with respect to the variable x ,
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where B ⊂ R
+ is an unbounded interval and h0 ∈ B, where h0 = h(0) = min{h(s), s ∈ A}.

Furthermore, g is nonnegative on the set A × B.

(C3) There is a nondecreasing function k(ρ) = k : [h0,+∞] −→ R
+, such that:

|g(s, x1) − g(s, x2)| ≤ k(ρ)|x1 − x2|,
for any s ∈ A and for all x1, x2 ∈ [h0, ρ].

(C4) The function w : A× A×R −→ R is continuous, such that w : A× A×R
+ −→ R

+
and the function s �−→ w(s, τ, x) is nondecreasing on A for any fixed τ ∈ A and
x ∈ R

+.
(C5) There is a nondecreasing map q : R

+ −→ R
+, such that w(s, τ, x) ≤ q(x) for

s, τ ∈ A and x ≥ 0.
(C6) There is a positive solution ρ0 for the inequality:

‖h‖ + (ρk(ρ) + H1)q(ρ) ≤ ρ,

where H1 = sup{g(s, 0) : s ∈ A}. Moreover: k(ρ0)q(ρ0) < 1.

Banaś and Sadarangani (2008) proved the following existence result for the problem (4.1).

Theorem 4.1 Under the assumptions (C1) − (C6), Eq. (4.1) has at least one solution x =
x(s) ∈ C(A) which is nondecreasing and nonnegative on A.

Now, we present some assumptions for the approximation of solution of the integral
equation (4.1). Let K = {x ∈ C(A) : x(s) ≥ h0 f or s ∈ A} be the subset of the space
C(A) and Kρ0 = {x ∈ K : ‖x‖ ≤ ρ0}, where ρ0 > 0 comes from assumption (C6). Kρ0 is
nonempty since ρ0 ≥ h0, bounded, closed, and convex subset of C(A).

Assume that the following conditions are fulfilled:

(α) w(s, τ, x) is Lipschitz function with respect to x , i .e. for s, τ ∈ A and for x1, x2 ∈ Kρ0 ,
there exists N > 0 such that:

‖w(s, τ, x1) − w(s, τ, x2)‖ ≤ N‖x1 − x2‖.
(β) ρ0 in assumption (C6) satisfies the following inequality:

q(ρ0)k(ρ0) + (ρ0k(ρ0) + H1)N < 1.

Now, define the operator G on the set Kρ0 by:

Gx(s) = h(s) + g(s, x(s))
∫ s

0
w(s, τ, x(τ ))dτ, ∀ s ∈ A. (4.2)

According to the proof of Theorem 4.1 in Banaś and Sadarangani (2008), G transforms the
set Kρ0 into itself as well as K . Also, G is continuous on Kρ0 and has at least one fixed point
in Kρ0 .

We now show that the operator G is a weak contraction on Kρ0 . Suppose that x, y ∈ Kρ0 ,
and then, for s ∈ A, we have:

‖Gx(s) − Gy(s)‖ = ‖g(s, x(s))
∫ s

0
w(s, τ, x(τ ))dτ − g(s, y(s))

∫ s

0
w(s, τ, y(τ ))dτ‖

≤ ‖g(s, x(s))
∫ s

0
w(s, τ, x(τ ))dτ − g(s, y(s))

∫ s

0
w(s, τ, x(τ ))dτ‖

+‖g(s, y(s))
∫ s

0
w(s, τ, x(τ ))dτ − g(s, y(s))

∫ s

0
w(s, τ, y(τ ))dτ‖
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≤ k(ρ0)‖x(s) − y(s)‖
∫ s

0
|w(s, τ, x(τ ))|dτ

+|g(s, y(s))|
∫ s

0
|w(s, τ, x(τ )) − w(s, τ, y(τ ))|dτ

≤ q(ρ0)k(ρ0)‖x(s) − y(s)‖ + (ρ0k(ρ0) + H1)N‖x(s) − y(s)‖
= (q(ρ0)k(ρ0) + (ρ0k(ρ0) + H1)N )‖x(s) − y(s)‖.

Let δ = q(ρ0)k(ρ0) + (ρ0k(ρ0) + H1)N , and by assumption (β), we have δ < 1. Hence,
the operatorG is a weak contraction which satisfies the following inequality for some L ≥ 0:

‖Gx(s) − Gy(s)‖ ≤ δ‖x(s) − y(s)‖ + L‖x(s) − Gx(s)‖.
Taking X = C(A), C = Kρ0 , and G as in Eq. (4.2), we get the following desired result.

Theorem 4.2 Under the assumptions (α) − (β), the sequence {pn} defined by F∗ iterative
algorithm (1.7) converges strongly to the unique solution of integral equation (4.1).

5 Conclusion

In this paper, we introduced a new two-step iterative algorithm for the approximation of
fixed points of weak contractions in Banach spaces which is more efficient and converges
faster than some leading iterative algorithms as shown by Theorem 2.3. In Theorem 2.2, we
also proved that F∗ iterative algorithm is almost G-stable. Examples 2.4 and 2.5 verified
our claim. Furthermore, we obtained a data dependence result using F∗ algorithm and we
presented an example to show the validity of the result. Also, we approximated the solution
of a nonlinear quadratic Volterra integral equation via the proposed algorithm.

Now, we raise the following two open questions for interested mathematicians.

Question 1 Can one define a new two-step iterative algorithm whose rate of convergence is
even faster than F∗ iterative algorithm?

Question 2 Does the sequence {pn} generated by F∗ iterative algorithm converge to a fixed
point of non-expansive or pseudo-contractive mappings?
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Banaś J, Sadarangani K (2008) Monotonicity properties of the superposition operator and their applications.
J Math Anal Appl 340:1385–1394

Berinde V (1997) Generalized contractions and applications (Romanian), Editura Cub Press 22, Baia Mare
Berinde V (2002) On the stability of some fixed point procedures. Bull Stiint Univ Baia Mare Ser b fasc Mat

Inf 18(1):7–14
Berinde V (2003) On the approximation of fixed points of weak contractivemappings. Carpath JMath 19:7–22

123



Convergence, stability, and data dependence... Page 15 of 15 267

BerindeV (2004) Picard iteration converges faster thanMann iteration for a class of quasi-contractive operators.
Fixed Point Theory Appl. 2:97–105

Berinde V (2007) Iterative approximation of fixed points. Springer, Berlin
Chatterjea SK (1972) Fixed point theorems. C R Acad Bulg Sci 25:727–730
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