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Abstract
This article presents a computational method for solving a problem with parameter for a
system of Fredholm integro-differential equations. Some additional parameters are intro-
duced and the problem under consideration is reduced to solving a system of linear algebraic
equations. The coefficients and right-hand side of the system are calculated by solving the
Cauchy problems for ordinary differential equations. We establish a criterion for the unique
solvability of the problem under consideration. A numerical algorithm is offered for solving
the problem with parameter. The results are illustrated by numerical examples.
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1 Introduction

Control problems, also referred to as boundary value problems with parameters or as param-
eter identification problems, for ordinary differential and integro-differential equations have
been extensively studied by many authors Akhmetov et al. (2002); Alimhan et al. (2015);
Dauylbayev and Atakhan (2015); Dauylbaev and Mirzakulova (2017); Kiguradze (1987);
Luchka and Nesterenko (2008); Nesterenko (2014); Ronto and Samoilenko (2000). Various
methods have been applied to study these problems, such as methods of qualitative theory of
differential equations, the calculus of variations and optimization theory, the method of upper
and lower solutions, etc. However, there still remain open problems in obtaining effective
criteria for the unique solvability of such problems and in developing numerical algorithms
to find their optimal solutions.

Consider the following problem with a parameter for a system of Fredholm integro-
differential equations with degenerate kernels:

dx

dt
=A(t)x+

m∑

k=1

T∫

0

ϕk(t)ψk(s)x(s)ds+A0(t)μ + f (t), x ∈ Rn, μ ∈ Rl , t ∈ (0, T ),

(1)

B0μ + Bx(0) + Cx(T ) = d, d ∈ Rn+l . (2)

Here the (n × n) matrices A(t), ϕk(t), ψk(τ ), k = 1,m, the (n × l) matrix A0(t) and the
n vector f (t) are continuous on [0, T ]; the ((n + l) × l) matrix B0 and the ((n + l) × n)

matrices B and C are constant; ‖x‖ = max
i=1,n

|xi |.
By a solution to problem (1), (2) we mean a pair (x∗(t), μ∗), where μ∗ ∈ Rn and x∗(t) is

a continuous on [0, T ] and continuously differentiable on (0, T ) vector function satisfying
the system of integro-differential Eq. (1) and boundary condition (2) for μ = μ∗.

The aim of this paper was to establish a criterion for the unique solvability of problemwith
parameters (1), (2) and propose an algorithm for finding its solutions including its numerical
implementation.

For this purpose, we use the parametrization method proposed by Dzhumabayev (1989).
This is a constructive method originally developed to investigate and solve boundary value
problems for ordinary differential equations. In Dzhumabayev (1989), coefficient crite-
ria were established for the unique solvability of linear boundary value problems. An
algorithm for finding their approximate solutions was developed. The method was later
extended to boundary value problems, both linear and nonlinear, for various classes of equa-
tions. In particular, the parametrization method has been applied to problems for Fredholm
integro-differential equationsDzhumabaev (2010, 2013); Dzhumabaev andBakirova (2013);
Dzhumabaev (2015, 2016) and linear boundary value problemswith a parameter for ordinary
differential equations Minglibayeva (2003); Minglibayeva and Dzhumabaev (2004).

The rest of this paper is organized as follows: Sect. 2 is devoted to the study of the unique
solvability of problem (1), (2). Wemake a partition�N of the interval [0, T ] into N parts and
take the values of a solution at the left-end points of the subintervals as additional parameters.
We then obtain a special Cauchy problem for a system of integro-differential equations with
parameters on the subintervals. The unique solvability of this problem is equivalent to the
invertibility of a matrix I − G(�N ) composed of the fundamental matrix of the differential
part and the kernel matrices of the integral term. We call a partition �N regular if the matrix
I −G(�N ) has an inverse. Then, assuming�N to be regular, we construct a system of linear
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algebraic equations in parameters by using [I −G(�N )]−1, boundary condition (2), and the
continuity conditions of a solution at the interior partition points. It is established that the
unique solvability of problem (1), (2) is equivalent to the invertibility of the matrix of the
constructed system.

In Sect. 3, we develop an algorithm for finding a solution to problem (1), (2). For a chosen
partition �N , the matrix G(�N ) is computed. If the matrix I − G(�N ) has an inverse, then
we construct the above-mentioned system of linear algebraic equations. The components of
G(�N ), the coefficients and right-hand sides of the system are determined by solving the
Cauchy problems for ordinary differential equations and by calculating definite integrals of
some known functions over the partition subintervals. Solving the system, we find the values
of solution at the left-end points of subintervals. Using them and the initial data, we construct
a function F∗(t). Solving the Cauchy problem for the ordinary differential equations with
the right-hand side F∗(t), we find the values of the desired solution at the remaining points
of [0, T ]. Section 3 also provides the numerical implementation of the algorithm. Note
that the elements of matrix G(�N ), the coefficients and right-hand side of the system of
algebraic equations in parameters can be evaluated by the parallel computing on the partition
subintervals. Section 4 presents numerical examples to demonstrate the effectiveness of the
proposed method.

2 The unique solvability of the problemwith parameter

Let us take a partition �N of the interval [0, T ] by points t0 = 0 < t1 < ... < tN = T .
We introduce the following notation:

C([0, T ], Rn) is the space of continuous functions x : [0, T ] → Rn with the norm
||x ||1 = max

t∈[0,T ] ||x(t)||;
C([0, T ],�N , RnN ) is the space of function systems x[t] = (x1(t), x2(t), . . . , xN (t)),

where xr : [tr−1, tr ) → Rn , r = 1, N , are continuous functions having finite left-sided limits
lim

t→tr−0
xr (t), with the norm ||x[·]||2 = max

r=1,N
sup

t∈[tr−1,tr )
||xr (t)||.

Suppose that x(t) is a solution to problem (1), (2) and denote by xr (t) the restriction of
x(t) to the r th subinterval of the partition, i.e. xr (t) = x(t) for t ∈ [tr−1, tr ), r = 1, N .
We introduce additional parameters λr , r = 1, N , as the values of a solution x(t) at the
left endpoints of the partition subintervals: λr = xr (tr−1). We then compose the vector
λ = (λ1, λ2, . . . , λN , λN+1), whose last component is the parameter μ included in problem
(1), (2), i.e. λN+1 = μ.

On each partition subinterval, we make the substitution ur (t) = xr (t)−λr , t ∈ [tr−1, tr ),
r = 1, N . The problem (1), (2) is then transformed into the multipoint boundary value
problem with parameters

dur
dt

= A(t)(ur + λr ) +
N∑

j=1

m∑

k=1

t j∫

t j−1

ϕk(t)ψk(s)[u j (s)

+λ j ]ds + A0(t)λN+1 + f (t), t ∈ [tr−1, tr ), (3)

ur (tr−1) = 0, r = 1, N , (4)

B0λN+1 + Bλ1 + CλN + C lim
t→T−0

uN (t) = d, (5)
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λp + lim
t→tp−0

u p(t) − λp+1 = 0, p = 1, N − 1, (6)

where conditions (6) are imposed to ensure the continuity of a solution to (1), (2) at the interior
points of the partition �N . Note that conditions (6) in conjunction with integro-differential
equations (3) also ensure the continuity of the derivative of a solution at these points.

A solution to problem (3)–(6) is a pair (u∗[t], λ∗),whereu∗[t] = (
u∗
1(t), u

∗
2(t), . . . , u

∗
N (t)

)

∈ C([0, T ],�N , RnN ) with continuously differentiable on [tr−1, tr ) components u∗
r (t) and

λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
N , λ∗

N+1) ∈ RnN+l , satisfying the system of integro-differential equa-
tions (3), initial conditions (4), and relations (5), (6).

The problems (1), (2) and (3)–(6) are equivalent. Indeed, if a pair (x∗(t), μ∗) is a solution
to problem (1), (2), then the pair (u∗[t], λ∗) composed of the components u∗

r (t) = x∗(t) −
x∗(tr−1), t ∈ [tr−1, tr ), λ∗

r = x∗(tr−1), r = 1, N , λ∗
N+1 = μ∗, is a solution to problem

(3)–(6). Conversely, if a pair (̃u[t], λ̃), with elements ũ[t] ∈ C([0, T ],�N , RnN ) and λ̃ ∈
RnN+l , is a solution to problem (3)–(6), then the pair (̃x(t), μ̃) defined by the equalities
x̃(t) = ũr (t) + λ̃r , t ∈ [tr−1, tr ), r = 1, N , x̃(T ) = lim

t→T−0
ũN (t) + λ̃N , and μ̃ = λ̃N+1, is

a solution to the original problem (1), (2).
For fixed λr , r = 1, N + 1, Eqs. (3) and (4) form a special Cauchy problem for the system

of Fredholm integro-differential equations.
Consider the system of differential equations:

dur
dt

= A(t)ur + g(t), (7)

subject to the condition

ur (tr−1) = u0r , (8)

where g(t) is a continuous on [tr−1, tr ] function and u0r is a constant vector.
By a fundamental matrix Xr (t) of

dur
dt

= A(t)ur (9)

or

dXr

dt
= A(t)Xr (10)

is meant a solution of (10) such that det Xr (t) �= 0.
If Xr (t) is a solution of (10) and c is a constant vector, the principle of superposition states

that

ur (t) = Xr (t)c (11)

is a solution of (9). Furthermore, if Xr (t) is a fundamental solution of (10), then every solution
of (9) subject to (8) is of the form (11) with c = X−1

r (tr−1)ur (tr−1) (see Hartman (1964,
p.47)), that is,

ur (t) = Xr (t)X
−1
r (tr−1)ur (tr−1). (12)

By Corollary 2.1 Hartman (1964, p.48), the solution to the initial-value problem (7), (8)
can be represented by the Cauchy formula

ur (t) = Xr (t)c + Xr (t)

t∫

tr−1

X−1
r (τ )g(τ )dτ.
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Taking into account (12), we get that the initial-value problem (7), (8) is equivalent to the
system of integral equations

ur (t) = Xr (t)X
−1
r (tr−1)u

0
r + Xr (t)

t∫

tr−1

X−1
r (τ )g(τ )dτ.

Setting g(t) = A(t)λr +
N∑
j=1

m∑
k=1

t j∫
t j−1

ϕk(t)ψk(s)[u j (s) + λ j ]ds + A0(t)λN+1 + f (t) and

u0r = 0, we get that the special Cauchy problem (3), (4) is reduced to the equivalent system
of integral equations

ur (t) = Xr (t)

t∫

tr−1

X−1
r (τ )A(τ )dτλr

+Xr (t)

t∫

tr−1

X−1
r (τ )

N∑

j=1

m∑

k=1

t j∫

t j−1

ϕk(τ )ψk(s)[u j (s) + λ j ]dsdτ +

+Xr (t)

t∫

tr−1

X−1
r (τ )A0(τ )dτλN+1

+Xr (t)

t∫

tr−1

X−1
r (τ ) f (τ )dτ, t ∈ [tr−1, tr ), r = 1, N . (13)

Let us set ξk =
N∑
j=1

t j∫
t j−1

ψk(s)u j (s)ds, k = 1,m, and rewrite system (13) in the following

form:

ur (t) =
m∑

k=1

Xr (t)

t∫

tr−1

X−1
r (τ )ϕk(τ )dτξk + Xr (t)

t∫

tr−1

X−1
r (τ )

[
A(τ )λr +

+
m∑

k=1

ϕk(τ )

N∑

j=1

t j∫

t j−1

ψk(s)dsλ j+A0(τ )λN+1+ f (τ )
]
dτ, t ∈ [tr−1, tr ), r=1, N .

(14)

Multiplying both sides of (14) by ψp(t), integrating them over the interval [tr−1, tr ], and
summing up with respect to r , we obtain the following system of linear algebraic equations
in ξ = (ξ1, . . . , ξm) ∈ Rnm :

ξp =
m∑

k=1

Gp,k(�N )ξk +
N+1∑

r=1

Vp,r (�N )λr + gp( f ,�N ), p = 1,m, (15)

with the (n × n) matrices
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Gp,k(�N ) =
N∑

r=1

tr∫

tr−1

ψp(τ )Xr (τ )

τ∫

tr−1

X−1
r (s)ϕk(s)dsdτ, k = 1,m, (16)

Vp,r (�N ) =
tr∫

tr−1

ψp(τ )Xr (τ )

τ∫

tr−1

X−1
r (s)A(s)dsdτ +

+
N∑

j=1

m∑

k=1

t j∫

t j−1

ψp(τ )X j (τ )

τ∫

t j−1

X−1
j (τ1)ϕk(τ1)dτ1dτ

tr∫

tr−1

ψk(s)ds, r = 1, N ,

(17)

the (n × l) matrices

Vp,N+1(�N ) =
N∑

r=1

tr∫

tr−1

ψp(τ )Xr (τ )

τ∫

tr−1

X−1
r (s)A0(s)dsdτ, (18)

and the vectors of dimension n

gp( f ,�N ) =
N∑

r=1

tr∫

tr−1

ψp(τ )Xr (τ )

τ∫

tr−1

X−1
r (s) f (s)dsdτ, p = 1,m. (19)

Using the matrices Gp,k(�N ) and Vp,r (�N ), we construct the matrices G(�N ) =
(Gp,k(�N )), p, k = 1,m, and V (�N ) = (Vp,r (�N )), p = 1,m, r = 1, N + 1. Then
the system (15) becomes

[I − G(�N )]ξ = V (�N )λ + g( f ,�N ), (20)

where I is the identity matrix of order nm and g( f ,�N ) = (g1( f ,�N ), . . . , gm( f ,�N )) ∈
Rnm .

Definition 2.1 A partition �N is called regular if the matrix I − G(�N ) is invertible.

Definition 2.2 The special Cauchy problem (3), (4) is called uniquely solvable if it has a
unique solution for any λ ∈ RnN+l and f (t) ∈ C([0, T ], Rn).

Thus, the special Cauchy problem (3), (4) is equivalent to the system of integral Eq. (13).
This system, due to the kernel degeneracy, is equivalent to the system of algebraic Eq. (15)
in ξ = (ξ1, . . . , ξm) ∈ Rnm . Therefore, the special Cauchy problem is uniquely solvable if
and only if the partition �N , generating this problem, is regular.

Let σ(m, [0, T ]) denote the set of regular partitions �N of [0, T ] for the Eq. (1).
Since the special Cauchy problem is uniquely solvable for a partition with a sufficiently

small step size h > 0 (see Dzhumabaev (2010), p.1152), the set σ(m, [0, T ]) is not empty.
Take a partition �N ∈ σ(m, [0, T ]) and represent the matrix [I −G(�N )]−1 in the form

[I − G(�N )]−1 =
(
Mk,p(�N )

)
, k, p = 1,m,

where Mk,p(�N ) are square matrices of order n. Then, in view of (20), the elements of the
vector ξ ∈ Rnm can be determined by the equalities

ξk =
N+1∑

j=1

( m∑

p=1

Mk,p(�N )Vp, j (�N )
)
λ j +

m∑

p=1

Mk,p(�N )gp( f ,�N ), k = 1,m. (21)
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By replacing ξk in (14) with the right-hand side of (21), we get the following representation
of the functions: ur (t) via λ j , j = 1, N + 1 :

ur (t) =
N∑

j=1

{ m∑

k=1

Xr (t)

t∫

tr−1

X−1
r (τ )ϕk (τ )dτ

[ m∑

p=1

Mk,p(�N )Vp, j (�N ) +
t j∫

t j−1

ψk (s)ds

]}
λ j +

+Xr (t)

t∫

tr−1

X−1
r (τ )A(τ )dτλr +

+Xr (t)

t∫

tr−1

X−1
r (τ )

[ m∑

k=1

ϕk (τ )

m∑

p=1

Mk,p(�N )Vp,N+1(�N ) + A0(τ )

]
dτλN+1 +

+Xr (t)

t∫

tr−1

X−1
r (τ )

[ m∑

k=1

ϕk (τ )

m∑

p=1

Mk,p(�N )gp( f , �N )

+ f (τ )
]
dτ, t ∈ [tr−1, tr ), r = 1, N . (22)

We introduce the following notation:

Dr , j (�N ) =
m∑

k=1

Xr (tr )

tr∫

tr−1

X−1
r (τ )ϕk (τ )dτ

[ m∑

p=1

Mk,p(�N )Vp, j (�N ) +
t j∫

t j−1

ψk (s)ds

]
,

j �= r , r , j = 1, N , (23)

Dr ,r (�N ) =
m∑

k=1

Xr (tr )

tr∫

tr−1

X−1
r (τ )ϕk (τ )dτ

[ m∑

p=1

Mk,p(�N )Vp,r (�N ) +
tr∫

tr−1

ψk (s)ds

]
+

+
m∑

k=1

Xr (tr )

tr∫

tr−1

X−1
r (τ )A(τ )dτ, (24)

Dr ,N+1(�N ) =
m∑

k=1

Xr (tr )

tr∫

tr−1

X−1
r (τ )ϕk (τ )dτ

m∑

p=1

Mk,p(�N )Vp,N+1(�N ) +

+Xr (tr )

tr∫

tr−1

X−1
r (τ )A0(τ )dτ, (25)

Fr (�N ) =
m∑

k=1

Xr (tr )

tr∫

tr−1

X−1
r (τ )ϕk (τ )dτ

m∑

p=1

Mk,p(�N )gp( f ,�N ) +

+
m∑

k=1

Xr (tr )

tr∫

tr−1

X−1
r (τ ) f (τ )dτ, r = 1, N . (26)

Then from (22) we get

lim
t→tr−0

ur (t) =
N+1∑

j=1

Dr , j (�N )λ j + Fr (�N ). (27)

If we substitute the right-hand side of (27) into the boundary condition (5) and the continu-
ity condition (6), we obtain the following system of linear algebraic equations in parameters
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λr , r = 1, N + 1 :

[B + CDN ,1(�N )]λ1 +
N−1∑

j=2

CDN , j (�N )λ j + C[I + DN ,N (�N )]λN +

+[B0 + CDN ,N+1(�N )]λN+1 = d − CFN (�N ), (28)

[I + Dp,p(�N )]λp − [I − Dp,p+1(�N )]λp+1

+
N+1∑

j=1
j �=p, j �=p+1

Dp, j (�N )λ j = −Fp(�N ), p = 1, N − 1. (29)

Let Q∗(�N ) denote the matrix corresponding to the left-hand side of this system. Then
we can represent (28), (29) as follows:

Q∗(�N )λ = −F∗(�N ), λ ∈ RnN+l , (30)

where F∗(�N ) =
(

− d + CFN (�N ), F1(�N ), . . . , FN−1(�N )
)

∈ RnN+l .

Lemma 2.1 For �N ∈ σ(m, [0, T ]) the following assertions hold:
(i) the vector λ∗ = (λ∗

1, . . . , λ
∗
N+1) ∈ RnN+l , composed of the values of a solution

(x∗(t), μ∗) to problem (1), (2) at the partition points λ∗
r = x∗(tr−1), r = 1, N, and

λ∗
N+1 = μ∗, satisfies the system (30);

(ii) if λ̃ = (̃λ1, . . . , λ̃N+1) ∈ RnN+l is a solution to system (30) and the function system
ũ[t] = (̃u1(t), . . . , ũN (t)) is a solution to the special Cauchy problem (3), (4) with λr = λ̃r ,

r = 1, N + 1, then the pair (̃x(t), μ̃), where the function x̃(t) and the parameter μ̃ are
defined by the equalities:

x̃(t) = λ̃r + ũr (t), t ∈ [tr−1, tr ), r = 1, N , x̃(T )=̃λN + lim
t→T−0

ũN (t), μ̃=̃λN+1,

is a solution to problem (1), (2).

The proof of Lemma 2.1 is similar to that of Lemma 1 in Dzhumabaev (2010, p. 1155).
Let us introduce the following notation:

α = max
t∈[0,T ] ‖A(t)‖, α0 = max

t∈[0,T ] ‖A0(t)‖, ω = max
r=1,N

(tr − tr−1),

ϕ(m) = max
r=1,N

tr∫

tr−1

m∑

k=1

‖ϕk(t)‖dt, ψ(T ) = max
p=1,m

T∫

0

‖ψp(t)‖dt .

Theorem 2.1 Let �N ∈ σ(m, [0, T ]) and the matrix Q∗(�N ) : RnN+l → RnN+l be invert-
ible. Then problem (1), (2) has a unique solution (x∗(t), μ∗) for any f (t) ∈ C([0, T ], Rn),

d ∈ Rn+l , and the estimate

max(‖x∗‖1, ||μ∗||) ≤ N (m,�N )max(‖d‖, ‖ f ‖1), (31)

holds, where

N (m, �N ) = eαω
{
ϕ(m)

[
‖[I − G(�N )]−1‖ · ψ(T )

(
eαω − 1 + eαω · ϕ(m) · ψ(T )

)
+

+ψ(T ) + α0

]
+ 1 + α0

}
γ∗(�N )(1 + ‖C‖)max

{
1, ωeαω

[
1 + eαω · ϕ(m) ·

123
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‖[I − G(�N )]−1‖ · ψ(T )
}

+ eαωω
[
ϕ(m) · ‖[I − G(�N )]−1‖ · ψ(T ) · eαω + 1

]
.

(32)

Definition 2.3 Problem (1), (2) is said to be well-posed if it has a unique solution (x(t), μ)

for any pair ( f (t), d),with f (t) ∈ C([0, T ], Rn) and d ∈ Rn+l , and the following inequality
holds:

max(‖x‖1, ||μ||) ≤ K max(‖ f ‖1, ‖d‖),
where K is a constant, independent of f (t) and d.

Theorem 2.2 Problem (1), (2) is well-posed if and only if for any �N ∈ σ(m, [0, T ]) the
matrix Q∗(�N ) : RnN+l → RnN+l is invertible.

The proofs of Theorems 2.1 and 2.2 repeat with minor changes in the proofs of Theo-
rems 2.1 and 2.2 in Dzhumabaev (2016, pp. 347–349).

3 An algorithm for solving problem (1), (2) and its numerical realization

An essential part of the proposed algorithm is solving auxiliary Cauchy problems for ordinary
differential equations on the partition subintervals:

dx

dt
= A(t)x + P(t), x(tr−1) = 0, t ∈ [tr−1, tr ], r = 1, N . (33)

Here P(t) is either a square matrix of order n or a vector of dimension n, both continuous on
[tr−1, tr ], r = 1, N . Hence a solution to problem (33) is either a square matrix or a vector.
Let E∗,r (A(·), P(·), t) denote such a solution. We then have

E∗,r (A(·), P(·), t) = Xr (t)

t∫

tr−1

X−1(τ )P(τ )dτ, t ∈ [tr−1, tr ], (34)

where Xr (t) is a fundamental matrix of a homogeneous differential equation corresponding
to (33) on the r -th subinterval.

An appropriate choice of a regular partition is another important part of the algorithm. We
can start with �1, when the interval[0; T] is not partitioned.

Let us now formulate the Algorithm for solving problem (1), (2).
I. Choose a partition �N , N = 1, 2, . . ..
II. Solve the N ·m auxiliary Cauchy problems for matrix ordinary differential equations

dx

dt
= A(t)x + ϕk(t), x(tr−1) = 0, t ∈ [tr−1, tr ], (35)

to get the matrix functions

E∗,r (A(·), ϕk(·), t), t ∈ [tr−1, tr ], r = 1, N , k = 1,m. (36)

III. Multiply each (n×n)matrix (36) by the (n×n)matrixψp(t), p = 1,m, and integrate
the product over [tr−1, tr ] :

ψ̂p,r (ϕk) =
tr∫

tr−1

ψp(t)E∗,r (A(·), ϕk(·), t)dt . (37)
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Summing up (37) with respect to r , we obtain the (n × n) matrices

Gp,k(�N ) =
N∑

r=1

ψ̂p,r (ϕk), p, k = 1,m,

which follows from (18) and (34).
Compose the (nm×nm)matrix G(�N ) = (Gp,k(�N )), p, k = 1,m, and check whether

the matrix [I − G(�N )] : Rnm → Rnm is invertible.
If so, find its inverse and represent it in the form [I − G(�N )]−1 = (Mp,k(�N )), where

Mp,k(�N )) are square matrices of order n, p, k = 1, N . Then move on to the next step of
Algorithm.

If there is no inverse of [I −G(�N )], i.e. the partition �N is not regular, then take a new
partition of interval [0, T ], and the algorithm starts over. A simple way for selecting a new
partition is to choose the partition �2N , where each interval of the partition �N is divided
into two parts.

IV. By solving again the auxiliary Cauchy problem for ordinary differential equations

dx

dt
= A(t)x + A(t), x(tr−1) = 0, t ∈ [tr−1, tr ],

dx

dt
= A(t)x + A0(t), x(tr−1) = 0, t ∈ [tr−1, tr ],

dx

dt
= A(t)x + f (t), x(tr−1) = 0, t ∈ [tr−1, tr ], r = 1, N ,

find their respective solutions E∗,r (A(·), A(·), t), E∗,r (A(·), A0(·), t), and E∗,r (A(·), f (·), t),
r = 1, N .

V. Evaluate the integrals

ψ̂p,r =
tr∫

tr−1

ψp(t)dt, ψ̂p,r (A) =
tr∫

tr−1

ψp(t)E∗,r (A(·), A(·), t)dt,

ψ̂p,r (A0) =
tr∫

tr−1

ψp(t)E∗,r (A(·), A0(·), t)dt, ψ̂p,r ( f ) =
tr∫

tr−1

ψp(t)E∗,r (A(·), f (·), t)dt .

By equalities (19), (20), and (34), determine the (n × n) matrices

Vp,r (�N ) = ψ̂p,r (A) +
N∑

j=1

m∑

k=1

ψ̂p, j (ϕk) · ψ̂k,r , r = 1, N ,

the (n × l) matrices

Vp,N+1(�N ) =
N∑

r=1

ψ̂p,r (A0), p = 1,m,

and the n vectors

gp( f ,�N ) =
N∑

r=1

ψ̂p,r (�N ), p = 1,m, r = 1, N .
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VI. Form the system of linear algebraic equations in parameters

Q∗(�N )λ = −F∗(�N ), λ ∈ RnN+l . (38)

The elements of the matrix Q∗(�N ) : RnN+l → RnN+l and the vector F∗(�N ) = (−d +
CFN (�N ), F1(�N ), . . . , FN−1(�N )) ∈ RnN+l are defined by the equalities (23), (24), (25),
and (26), where, in view of (34), we replace

Xr (tr )

tr∫

tr−1

X−1
r (τ )ϕk(τ )dτ and Xr (tr )

tr∫

tr−1

X−1
r (τ ) f (τ )dτ

with E∗,r (A(·), ϕk(·), tr ) and E∗,r (A(·), f (·), tr ), respectively.
As it follows from Theorem 2.2, the invertibility of matrix Q∗(�N ) is equivalent to the

well-posedness of problem (1), (2). By solving the system (38), find λ∗ = (λ∗
1, . . . , λ

∗
N+1) ∈

RnN+l .

VII. Determine the components of ξ∗ = (ξ∗
1 , . . . , ξ∗

m) ∈ Rnm by the equalities

ξ∗
k =

N+1∑

j=1

( m∑

p=1

Mk,p(�N )Vp, j (�N )
)
λ∗
j +

m∑

p=1

Mk,p(�N )gp( f ,�N ) (39)

and construct the function

F∗(t) =
m∑

k=1

ϕk(t)
[
ξ∗
k +

N∑

r=1

tr∫

tr−1

ψk(s)dsλ
∗
r

]
+ A0(t)λ

∗
N+1 + f (t). (40)

Recall that λ∗
r = x∗(tr−1), r = 1, N , λ∗

N+1 = μ∗, where (x∗(t), μ∗) is a solution to the
problem with parameter (1), (2). Therefore, the solution of system (38) provides us with
the values of the function x∗(t) at the left-end points of the partition subintervals and the
parameter μ∗.

The values of x∗(t) at the remaining points of the subinterval [tr−1, tr ) determine by
solving the following Cauchy problem for the ordinary differential equation:

dx

dt
= A(t)x + F∗(t), x(tr−1) = λ∗

r , t ∈ [tr−1, tr ), r = 1, N .

Thus, the offered algorithm consists of seven interconnected steps.
If the fundamental matrices Xr (t), r = 1, N , are known, then equalities (23), (24), (25),

and (26) allow us to construct the system (38). Using the solution λ∗ to (38), by (39) and
(40), we construct the function F∗(t). Therefore, the solution to the problem with parameter
(1), (2) is defined by the equalities

x∗(t) = Xr (t)X
−1
r (tr−1)λ

∗
r + Xr (t)

t∫

tr−1

X−1
r (τ )F∗(τ )dτ, t ∈ [tr−1, tr ), r = 1, N ,

(41)

x∗(T ) = XN (T )X−1
N (tN−1)λ

∗
N + XN (T )

T∫

tN−1

X−1
N (τ )F∗(τ )dτ, (42)

μ∗ = λ∗
N+1. (43)
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However, it is not always possible to construct a fundamental matrix for a system of
ordinary differential equations with variable coefficients. We, therefore, offer the numerical
implementation of Algorithm that involves numerical solution of auxiliary Cauchy problems
and numerical integration.

The numerical algorithm for solving problem (1), (2) performs as follows:
I. Take a partition �N : t0 = 0 < t1 < . . . < tN−1 < tN = T . Divide each subinterval

[tr−1, tr ], r = 1, N , into Nr parts with step size hr = (tr − tr−1)/Nr .

Let t̂ be a variable taking on the discrete values t̂ = tr−1, tr−1 + hr , . . . , tr−1 + (Nr −
1)hr , tr on the subinterval [tr−1, tr ]. We denote the set of such points by {tr−1, tr }.

II. Find the numerical solutions to Cauchy problems (33) by using one of numerical
methods for solving initial value problems for ordinary differential equations. Determine the
values of the (n × n) matrices Ehr∗,r (A(·), ϕk(·), t̂) on the set {tr−1, tr }, r = 1, N , k = 1,m.

III. Using the values of (n × n) matrices ψk(s) and Ehr∗,r

(
A(·), ϕ(·), t̂

)
on {tr−1, tr }, and

applying a numerical quadrature rule, calculate the (n × n) matrices

ψ̂hr
p,r (ϕk) =

tr∫

tr−1

ψp(τ )Ehr∗,r (A(·), ϕk(·), τ )dτ, p, k = 1,m, r = 1, N .

Summing up the matrices ϕ̂
hr
p,r (ψk) with respect to r , determine the (n × n) matrices

Gh̃
p,k(�N ) =

N∑
r=1

ϕ̂
hr
p,r (ψk), where h̃ = (h1, h2, . . . , hN ) ∈ Rn . Using them, compose the

nm × nm matrix Gh̃(�N ) = (Gh̃
p,k(�N )), p, k = 1,m.

Check whether the matrix I − Gh̃(�N ) is invertible. If so, calculate its inverse [I −
Gh̃(�N )]−1 = (Mh̃

p,k(�N )), p, k = 1,m, and move on to the next step.
If the matrix is not invertible, take a new partition. In particular, each subinterval can be

divided into two parts. Then go back to Step I.
IV. Solve numerically the Cauchy problem (33), (35) and find the values of the

(n × n) matrix E∗,r (A(·), A(·), t̂), the (n × l) matrix E∗,r (A(·), A0(·), t̂), and the n vec-
tor E∗,r (A(·), f (·), t̂) on the grid {tr−1, tr }, r = 1, N .

V. On the set {tr−1, tr }, evaluate the definite integrals

ψ̂hr
p,r =

tr∫

tr−1

ψp(s)ds, ψ̂hr
p,r (A) =

tr∫

tr−1

ψp(τ )Ehr∗,r (A(·), A(·), τ )dτ,

ψ̂hr
p,r (A0) =

tr∫

tr−1

ψp(τ )Ehr∗,r (A(·), A0(·), τ )dτ,

ψ̂hr
p,r ( f ) =

tr∫

tr−1

ψp(τ )Ehr∗,r (A(·), f (·), τ )dτ, r = 1, N , p = 1,m.

Determine the (n × n) matrices V h̃
p,r (�N ), the (n × l) matrices V h̃

p,N+1(�N ), and the n

vectors gh̃p( f ,�N ) by the respective equalities

V h̃
p,r (�N ) = ψ̂hr

p,r (A) +
N∑

j=1

m∑

k=1

ψ̂
h j
p, j (ϕk) · ψ̂

hr
k,r , r = 1, N ,
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V h̃
p,N+1(�N ) =

N∑

r=1

ψ̂hr
p,r (A0), gh̃p( f ,�N ) =

N∑

r=1

ψ̂hr
p,r ( f ), p = 1,m.

VI. Construct the system of linear algebraic equations in parameters

Qh̃∗(�N )λ = −Fh̃∗ (�N ), λ ∈ RnN+l , (44)

where the elements of the matrix Qh̃∗(�N ) and the vector

Fh̃∗ (�N ) = (−d + CFh̃
N (�N ), Fh̃

1 (�N ), . . . , Fh̃
N−1(�N ))

are defined by the equalities

Dh̃
r , j (�N ) =

m∑

k=1

Ehr∗,r (A(·), ϕk(·), tr )
[ m∑

p=1

Mh̃
k,p(�N )V h̃

p, j (�N )

+ψ̂
h j
k, j

]
, j �= r , r , j = 1, N ,

Dh̃
r ,r (�N ) =

m∑

k=1

Ehr∗,r (A(·), ϕk(·), tr )
[ m∑

p=1

Mh̃
k,p(�N )V h̃

p,r (�N ) + ψ̂
hr
k,r

]

+Ehr∗,r (A(·), A(·), tr ), r = 1, N ,

Dh̃
r ,N+1(�N ) =

m∑

k=1

Ehr∗,r (A(·), ϕk(·), tr )
m∑

p=1

Mh̃
k,p(�N )V h̃

p,N+1(�N )

+Ehr∗,r (A(·), A0(·), tr ), r = 1, N ,

Fh̃
r (�N ) =

m∑

k=1

Ehr∗,r (A(·), ϕk(·), tr )
m∑

p=1

Mh̃
k,p(�N )gh̃p(�N )

+Ehr∗,r (A(·), f (·), tr ), r = 1, N .

Using the constructed matrix Qh̃∗(�N ), we can establish the well-posedness of prob-

lem (1), (2). Suppose that the matrix Qh̃∗(�N ) is invertible and the estimate ||Q∗(�N ) −
Qh̃∗(�N )|| ≤ ε(̃h) holds. By Theorem 4 Dzhumabaev (2015, p.212), if the inequality

||[Qh̃∗(�N )]−1|| · ε(̃h) < 1 holds, then Q∗(�N ) is invertible. Thus it follows from The-
orem 2.2 that the problem (1), (2) is well-posed.

By solving system (44) find λh̃ ∈ RnN+l . As noted above, the elements of λh̃ =
(λh̃1, . . . , λ

h̃
N+1) are the values of approximate solution to problem (1), (2), i.e. the approxi-

mate values of x(t) at the left endpoints of the subintervals: xh̃r (tr−1) = λh̃r , r = 1, N , and

the approximate value of the parameter μ: μh̃r = λh̃N+1.
VII. To define the values of an approximate solution at the remaining points of the set

{tr−1, tr }, we first find

ξ h̃k =
N+1∑

j=1

( m∑

p=1

Mh̃
k,p(�N )V h̃

p, j (�N )
)
λhj +

m∑

p=1

Mh̃
k,p(�N )gh̃p( f ,�N ), k = 1,m,

and then numerically solve the Cauchy problems

dx

dt
= A(t)x + F h̃(t), x(tr−1) = λh̃r , t ∈ [tr−1, tr ], r = 1, N .
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Here

F h̃(t) =
m∑

k=1

ϕk(t)
(
ξ h̃k +

N∑

j=1

ψ̂
h j
k, jλ

h
j

)
+ A0(t)λ

h
N+1 + f (t).

Thus the algorithm offered provides us with the numerical solution to the problem (1),
(2).

4 Numerical examples

Example 1 Consider the following problem with parameter for the system of integro-
differential equations:

dx

dt
= A(t)x + ϕ(t)

T∫

0

ψ(τ)x(τ )dτ + A0(t)μ + f (t), x ∈ R2, μ ∈ R1, (45)

B0μ + Bx(0) + Cx(T ) = d, d ∈ R3, (46)

where

T = 1, A(t) =
(
t t2

0 t − 4

)
, A0(t) =

(
t + 5
t3 − 2

)
,

ϕ(t) =
(
3t t3

4 t − 2

)
, ψ(t) =

(
t t2 − 2

t + 4 3

)
, f (t) =

(
5t4 − t5 − t6 + 13t3

7 − 318t
7 − 45

10t2 − 5t3 − t4 − 267t
7 + 85

21

)
,

B0 =
⎛

⎝
2
7

−5

⎞

⎠ , B =
⎛

⎝
2 −5
0 6

−4 11

⎞

⎠ , C =
⎛

⎝
3 0

−12 5
9 17

⎞

⎠ , d =
⎛

⎝
36
9

−153

⎞

⎠ .

To implement the numerical algorithm for solving problem (45),(46), we use Simpson’s
rule for estimation of definite integrals and the fourth-order Runge-Kutta method. To do this,
we divide each interval [0, 0.5] and [0.5, 1] into N = 10 subintervals with the step h = 0.05.

We compute the matrix I − Gh̃(�2) =
(

1.6665474 −0.4153697
−3.6533113 1.5407901

)
, where I is the

second-order identity matrix. The invertibility of this matrix implies the regularity of �2.
We then construct the system of linear algebraic equations with respect to parameters

Qh̃∗(�2)λ = −Fh̃∗ (�2), λ ∈ R5, (47)

where

Qh̃∗(�2) =

⎛

⎜⎜⎜⎜⎝

9.5083951 −7.0229286 16.5414502 −0.0873712 41.3179432
−30.5783061 12.889927 −66.2339239 0.2548226 −151.3556546
16.6731188 0.8451376 49.3927316 −0.5839651 109.2686315
1.6033622 −0.1482411 −0.2174947 −0.0605072 4.7172016

−0.5501459 −0.0171558 −0.6994877 −1.2253692 −1.908402

⎞

⎟⎟⎟⎟⎠
,

Fh̃∗ (�2) =
(

− 508.2954741, 1863.211432,−1321.586001,−51.2392, 19.6852962
)′

.

By solving (47) we find λh̃ = (λh̃1, λ
h̃
2, λ

h̃
3) ∈ R5 with

λh̃1 =
(
6.0000271
0.0000055

)
, λh̃2 =

(
4.7812568

−3.3750023

)
, λh̃3 = 8.9999902.
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Table 1 Comparison of exact and
numerical solutions to problem
(45), (46)

t x̃1(t) x̃2(t) x∗
1 (t) x∗

2 (t)

0 6.0000271 0.0000055 6 0

0.05 5.987525 −0.349872 5.9875003 −0.349875

0.1 5.9500324 −0.6989988 5.95001 −0.699

0.15 5.8875962 −1.0466252 5.8875759 −1.046625

0.2 5.8003381 −1.3920012 5.80032 −1.392

0.25 5.6884926 −1.7343768 5.6884766 −1.734375

0.3 5.5524441 −2.0730023 5.55243 −2.073

0.35 5.3927644 −2.4071275 5.3927522 −2.407125

0.4 5.2102503 −2.7360025 5.21024 −2.736

0.45 5.0059613 −3.0588775 5.0059528 −3.058875

0.5 4.7812568 −3.3750023 4.78125 −3.375

0.55 4.5378336 −3.6836271 4.5378284 −3.683625

0.6 4.2777636 −3.9840018 4.27776 −3.984

0.65 4.0035313 −4.2753765 4.0035291 −4.275375

0.7 3.7180709 −4.5570011 3.71807 −4.557

0.75 3.4248045 −4.8281257 3.4248047 −4.828125

0.8 3.1276788 −5.0880003 3.12768 −5.088

0.85 2.8312034 −5.3358749 2.8312053 −5.335875

0.9 2.5404876 −5.5709995 2.54049 −5.571

0.95 2.2612783 −5.7926241 2.2612809 −5.792625

1 1.9999975 −5.9999987 2 −6

μ̃ = 8.9999902 μ∗ = 9

To define the values of an approximate solution at the remaining points of set {tr−1, tr },
r = 1, 2, we first find ξ h̃ =

(
1.8759368

−8.9001442

)
, and then solve the Cauchy problems:

dx̃

dt
= A(t )̃x + ϕ(t)ξ h̃ + ϕ(t)

0.5∫

0

ψ(τ)dτλh̃1 + ϕ(t)

1∫

0.5

ψ(τ)dτλh̃2 + A0(t)λ
h̃
3 + f (t),

x̃(tr−1) = λh̃r , t ∈ [tr−1, tr ], r = 1, 2.

The exact solution to problem with parameter (45), (46) is the pair (x∗(t), μ∗) with

x∗(t) =
(
t5 − 5t2 + 6

t3 − 7t

)
, μ∗ = 9.

Table 1 provides the values of the exact solution and the numerical solution (̃x(t), μ̃). The
calculations were carried out in the MathCad software package.

The error estimates obtained by using the Runge–Kutta method are as follows:

‖μ∗ − μ̃‖ < 0.00001, max
j=0,20

‖x∗(t j ) − x̃(t j )‖ < 0.00003.
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Example 2 Consider the problemwith parameter for system of integro-differential equations

dx

dt
= A(t)x + ϕ(t)

1∫

0

ψ(τ)x(τ )dτ + A0(t)μ + f (t), x ∈ R2, μ ∈ R2, (48)

B0μ + Bx(0) + Cx(T ) = d, d ∈ R4, (49)

where A(t) =
(
et 1
t3 cos(t)

)
, A0(t) =

(
4 t2

sin(t) 0

)
, ϕ(t) =

(
t t2

0 t + 3

)
, ψ(t) =

(
t3 t − 2
0 et

)
,

f (t) =
( 43t

56 + t2 + 4t3 − 28 − t2e + et (4 − 6t3 − t4)
5t − 3e − 7sin(t) − t2cos(t) − te + 4t3 − 6t6 − t7 + tcos(t) + 8

)
,

B0 =

⎛

⎜⎜⎝

4 5
2 3
0 −3
1 2

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

1 7
3 0

−5 2
9 3

⎞

⎟⎟⎠ , C =

⎛

⎜⎜⎝

1 9
0 −8
19 4
9 7

⎞

⎟⎟⎠ , d =

⎛

⎜⎜⎝

122
59
20
36

⎞

⎟⎟⎠ .

We use the numerical implementation of algorithm. The accuracy of the solution depends
on that of solving the Cauchy problems on the subintervals. We provide the results of the
numerical implementation of algorithm based on the Bulirsch–Stoer method Atkinson et al.
(2009), Butcher (2000), Stoer and Bulirsch (2002) by partitioning the subintervals [0, 0.5],
[0.5, 1] with step size h = 0.05.

The exact solution to problem with parameter (48), (49) is the pair (x∗(t), μ∗) with

x∗(t) =
(
t4 + 6t3 − 4

t2 − t

)
, μ∗ =

(
7
19

)
.

In Table 2, the values of the exact solution and numerical solution (x∗(tk), μ∗) and (̃x(tk), μ̃),
k = 0, 20, are shown.

Example 3 Consider the following problem with parameter for the system of integro-
differential equations:

dx

dt
= A(t)x +

2∑

k=1

1∫

0

ϕk(t)ψk(τ )x(τ )dτ + A0(t)μ + f (t), x ∈ R2, μ ∈ R3,

(50)

B0μ + Bx(0) + Cx(T ) = d, d ∈ R5, (51)

where

A(t) =
(
sin(t) 1
t2 0

)
, A0(t) =

(
t 1 t + 2

t2 − 7 2t 8

)
, f (t) =

(
f1(t)
f2(t)

)
,

ϕ1(t) =
(

t 0
2t3 t − 3

)
, ϕ2(t) =

(
1 t
t3 t + 5

)
, ψ1(t) =

(
t et

t2 4t

)
, ψ2(t) =

(
2 t2

t et

)
,

f1(t) = − 1

6π
(163π − 6π2 cos(π t) + 6π sin(t)t + 6π sin(t) sin(π t)

+ 6π t3 + 30π t2 − 56π t + 12t + 144πet + 24),
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Table 2 Comparison of exact and numerical solutions to problem (48), (49)

t x̃1(t) x∗
1 (t) |x∗

1 (t) − x̃1(t)| x̃2(t) x∗
2 (t) |x∗

2 (t) − x̃2(t)|
0 −4.00000058 −4 0.00000058 −0.00000066 0 0.00000066

0.05 −3.99924493 −3.99924375 0.00000118 −0.04750057 −0.0475 0.00000057

0.1 −3.99390172 −3.9939 0.00000172 −0.09000049 −0.09 0.00000049

0.15 −3.97924596 −3.97924375 0.00000221 −0.12750041 −0.1275 0.00000041

0.2 −3.95040265 −3.9504 0.00000265 −0.16000032 −0.16 0.00000032

0.25 −3.90234679 −3.90234375 0.00000304 −0.18750024 −0.1875 0.00000024

0.3 −3.82990337 −3.8299 0.00000337 −0.21000017 −0.21 0.00000017

0.35 −3.72774739 −3.72774375 0.00000364 −0.22750009 −0.2275 0.00000009

0.4 −3.59040386 −3.5904 0.00000386 −0.24000002 −0.24 0.00000002

0.45 −3.41224776 −3.41224375 0.00000401 −0.24749996 −0.2475 0.00000004

0.5 −3.18750409 −3.1875 0.00000409 −0.2499999 −0.25 0.00000010

0.55 −2.91024786 −2.91024375 0.00000411 −0.24749986 −0.2475 0.00000014

0.6 −2.57440405 −2.5744 0.00000405 −0.23999983 −0.24 0.00000017

0.65 −2.17374767 −2.17374375 0.00000392 −0.22749981 −0.2275 0.00000019

0.7 −1.70190369 −1.7019 0.00000369 −0.2099998 −0.21 0.00000020

0.75 −1.15234711 −1.15234375 0.00000336 −0.1874998 −0.1875 0.00000020

0.8 −0.51840292 −0.5184 0.00000292 −0.15999982 −0.16 0.00000018

0.85 0.2067539 0.20675625 0.00000235 −0.12749984 −0.1275 0.00000016

0.9 1.03009837 1.0301 0.00000163 −0.08999986 −0.09 0.00000014

0.95 1.95875552 1.95875625 0.00000073 −0.04749986 −0.0475 0.00000014

1 3.00000038 3 0.00000038 0.00000017 0 0.00000017

μ̃1 μ∗
1 |μ∗

1 − μ̃1| μ̃2 μ∗
2 |μ∗

2 − μ̃2|
6.99999721 7 0.00000279 19.0000029 19 0.0000029

f2(t) = − 1

60π3 (240π3t2 − 397π3t − 1150π3t3 + 60π3t2 sin(π t)

+360π2t3 + 1440π3et3 +
+120π2t − 240t − 6749π3 + 120π2 + 720 + 720π3te + 3600π3e),

B0 =

⎛

⎜⎜⎜⎜⎝

1 2 5
3 0 1
4 2 1
12 1 4
2 0 −5

⎞

⎟⎟⎟⎟⎠
, B =

⎛

⎜⎜⎜⎜⎝

4 5
1 2
5 6
2 −5
0 5

⎞

⎟⎟⎟⎟⎠
, C =

⎛

⎜⎜⎜⎜⎝

−8 9
5 2
6 5
15 6
1 3

⎞

⎟⎟⎟⎟⎠
, d =

⎛

⎜⎜⎜⎜⎝

216
83
164
176
60

⎞

⎟⎟⎟⎟⎠
.

The exact solution to problem with parameter (50), (51) is the pair (x∗(t), μ∗) with

x∗(t) =
(
t + sin(π t)
t3 + 5t2 + 9

)
, μ∗ =

⎛

⎝
7

−4
9

⎞

⎠ .

Case 1.Let N = 1.We introduce the additional parameters λ1, λ2 ∈ R2 setting λ1 = x(0)

and λ2 = μ. Let ξk =
1∫

0
ψk(s)u(s)ds, k = 1, 2, where u(s) = x(s) − λ1. Then for the

function u(t) we have the equality

123



248 Page 18 of 23 A. T. Assanova et al.

Table 3 Comparison of numerical solutions to problem (50, 51). Case 1

t Adams method Runge-Kutta method Bulirsch-Stoer method

x̃1(t) x̃2(t) x̃1(t) x̃2(t) x̃1(t) x̃2(t)

0 0.0482514 8.980579 0.025551 8.9897177 0.02405 8.9903231

0.1 0.4499408 9.0389214 0.4306937 9.0446196 0.4294176 9.0449953

0.2 0.8224944 9.2021676 0.8061773 9.2049413 0.8050918 9.2051211

0.3 1.1383968 9.4763998 1.1245971 9.4767265 1.1236752 9.4767416

0.4 1.3758101 9.8677329 1.364198 9.8660358 1.3634185 9.8659143

0.5 1.5206706 10.38232 1.5109927 10.3789505 1.5103394 10.3787158

0.6 1.5680604 11.0263565 1.5601231 11.0215746 1.5595835 11.021244

0.7 1.5226728 11.8060815 1.5163294 11.8000353 1.5158938 11.7996189

0.8 1.3983499 12.7277792 1.3934832 12.7204846 1.3931437 12.719983

0.9 1.2167217 13.7977804 1.2132287 13.7890996 1.2129778 13.7885031

1 1.0051 15.0224688 1.0028668 15.012085 1.0026965 15.0113717

μ̃1 = 6.9771984 μ̃1 = 6.9879316 μ̃1 = 6.9886448

μ̃2 = −4.0832155 μ̃2 = −4.0440641 μ̃2 = −4.0414742

μ̃3 = 8.9862406 μ̃3 = 8.9927147 μ̃3 = 8.9931433

Fig. 1 Comparison of the exact solutions and numerical solutions to problem (50, 51) (N = 2)

u(t) = E
h1∗,1(A(·), A(·), t̂)λ1

+E
h1∗,1(A(·), A0(·), t̂)λ2 + E

h1∗,1(A(·), f (·), t̂) + E
h1∗,1(A(·), ϕ1(·), t̂)ξ1 +

+E
h1∗,1(A(·), ϕ2(·), t̂)ξ2 + E

h1∗,1(A(·), ϕ1(·), t̂)
∫ 1

0
ψ1(s)dsλ1

+E
h1∗,1(A(·), ϕ2(·), t̂)

∫ 1

0
ψ2(s)dsλ1. (52)

Multiplying both sides of (52) by ψp(t), p = 1, 2, and then integrating them over the
interval [0, 1], we get the system of linear algebraic equations in ξ = (ξ1, ξ2) ∈ R4. By
solving this system we determine ξ and substitute the corresponding expression into the
right-hand side of (52). We then obtain the representation of function u(t) through λ1 and λ2.

To implement the numerical algorithm for solving problem (50),(51), we use Simpson’s
rule for estimation of definite integrals and the fourth-order Runge–Kutta method, the Adams
method, and the Bulirsch–Stoer method to solve auxiliary Cauchy problems for ordinary
differential equations. The calculations were carried out in the MathCad software package.

For the chosen step size h = 0.1, the algorithm was performed three times, by separately
using the Adams method, the fourth-order Runge–Kutta method, and the Bulirsch–Stoer
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method. Table 3 and Fig. 1 provide the comparative results obtained for the numerical solu-
tion (̃x(t), μ̃) to problem (50),(51).

The error estimates obtained by using the three methods are as follows:
Adams method: ‖μ∗ − μ̃‖ < 0.0832155, max

j=0,10
‖x∗(t j ) − x̃(t j )‖ < 0.0482514;

Runge–Kutta method: ‖μ∗ − μ̃‖ < 0.0440641, max
j=0,10

‖x∗(t j ) − x̃(t j )‖ < 0.0255510;

Bulirsch–Stoer method: ‖μ∗ − μ̃‖ < 0.0414742, max
j=0,10

‖x∗(t j ) − x̃(t j )‖ < 0.0240500.

Case 2. Let N = 2. We perform the numerical algorithm by the partitioning the interval
[0, 1] with step size h = 0.5 and the subintervals [0, 0.5], [0.5, 1] with step size h1 = 0.05.
The results are presented in Table 4.

Case 3. Let us take N = 4 and perform the numerical algorithm for solving problem
(50),(51). The four partition subintervals [0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1] are in
turn divided with step size h1 = 0.025.

Again, we implement the algorithm three times using different methods for solving aux-
iliary Cauchy problems.

The results are presented in Table 5 and Fig. 2.
To compare the results, we obtain the following error estimates:
Adams method: ‖μ∗ − μ̃‖ < 0.0309316, max

j=0,40
‖x∗(t j )− x̃(t j )‖ < 0.01793120;

Runge–Kutta method: ‖μ∗ − μ̃‖ < 0.0001708, max
j=0,40

‖x∗(t j )− x̃(t j )‖ < 0.000099;
Bulirsch–Stoer method: ‖μ∗ − μ̃‖ < 0.0001604, max

j=0,40
‖x∗(t j ) − x̃(t j )‖ <

0.000093.

Conclusion

The proposed computational method for solving problems with parameters for integro-
differential equations is based on the parametrization method with the choice of a regular
partition. The algorithm includes two auxiliary problems: the Cauchy problems for ordinary
differential equations and the evaluation of definite integrals. The numerical solutions to
the Cauchy problems were obtained by the Adams method, the fourth-order Runge–Kutta
method, and the Bulirsch–Stoer method; the integrals were evaluated by Simpson’s rule. If
we use other numerical or approximate methods, we obtain a new numerical or approximate
implementation of the algorithm. By choosing various regular partitions, we obtain a family
of algorithms.

The proposed method can be extended to problems for impulsive integro-differential
equations, integro-differential equations of mixed type, and fractional integro-differential
equations. One of the possible options for the further development of the proposed com-
putational method is its combination with computational methods for fractional dynamical
systems Burgos et al. (2019), Harrat et al. (2018), Kim et al. (2020), Liu et al. (2018),
Manimaran et al. (2019).
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Table 5 Comparison of numerical solutions to problem (50),(51). Case 3

t Adams method Runge–Kutta method Bulirsch–Stoer method

x̃1(t) x̃2(t) x̃1(t) x̃2(t) x̃1(t) x̃2(t)

0 0.0179312 8.9927756 0.000099 8.9999601 0.000093 8.9999626

0.025 0.1206645 8.9966377 0.1035541 9.0031048 0.1035484 9.0031069

0.05 0.2229442 9.006817 0.2065257 9.012593 0.2065201 9.0125949

0.075 0.3242882 9.0234076 0.3085329 9.0285186 0.3085276 9.0285203

0.1 0.4242201 9.0465036 0.409101 9.0509753 0.4090959 9.0509768

0.125 0.5222723 9.076199 0.5077641 9.0800568 0.5077592 9.0800581

0.15 0.6179893 9.1125881 0.6040679 9.115857 0.6040632 9.1158581

0.175 0.7109304 9.1557651 0.6975728 9.1584695 0.6975683 9.1584704

0.2 0.8006721 9.2058242 0.7878565 9.2079881 0.7878522 9.2079889

0.225 0.8868103 9.2628597 0.8745165 9.2645067 0.8745123 9.2645072

0.25 0.9689639 9.3269659 0.9571724 9.3281188 0.9571684 9.3281192

0.275 1.0468294 9.3983148 1.0354689 9.3989183 1.0354651 9.3989185

0.3 1.1199735 9.4768458 1.1090774 9.4769989 1.1090737 9.476999

0.325 1.1881462 9.5627308 1.1776981 9.5624545 1.1776945 9.5624544

0.35 1.2510769 9.6560644 1.241062 9.6553786 1.2410586 9.6553784

0.375 1.3085282 9.7569412 1.2989327 9.7558652 1.2989295 9.7558648

0.4 1.3602965 9.8654559 1.3511075 9.8640079 1.3511043 9.8640074

0.425 1.4062146 9.9817032 1.3974187 9.9799005 1.3974157 9.9798999

0.45 1.4461494 10.105778 1.437735 10.1036368 1.4377321 10.103636

0.475 1.4800058 10.2377749 1.4719619 10.2353105 1.4719592 10.2353096

0.5 1.5077261 10.377789 1.5000426 10.3750153 1.50004 10.3750144

0.525 1.5293173 10.5259487 1.521958 10.5228451 1.5219555 10.5228441

0.55 1.5447462 10.6822821 1.5377271 10.6788936 1.5377247 10.6788924

0.575 1.5540941 10.846918 1.5474069 10.8432545 1.5474046 10.8432533

0.6 1.5574546 11.0199514 1.5510917 11.0160216 1.5510895 11.0160203

0.625 1.5549583 11.2014775 1.5489129 11.1972887 1.5489109 11.1972873

0.65 1.5467723 11.3915916 1.5410382 11.3871495 1.5410362 11.387148

0.675 1.5331006 11.5903893 1.5276702 11.5856978 1.5276683 11.5856962

0.7 1.5141784 11.7979659 1.5090453 11.7930273 1.5090436 11.7930256

0.725 1.4902741 12.0144167 1.4854327 12.0092318 1.4854311 12.00923

0.75 1.4616872 12.2398374 1.4571319 12.234405 1.4571304 12.2344032

0.775 1.4287557 12.4743399 1.4244717 12.4686408 1.4244702 12.4686389

0.8 1.3918163 12.7179873 1.3878073 12.7120329 1.387806 12.7120309

0.825 1.3512595 12.970892 1.3475192 12.964675 1.3475179 12.9646729

0.85 1.3074863 13.2331496 1.3040096 13.2266609 1.3040085 13.2266587

0.875 1.2609193 13.5048559 1.2577011 13.4980844 1.2577001 13.4980821

0.9 1.2119984 13.7861072 1.2090333 13.7790391 1.2090323 13.7790368

0.925 1.1611788 14.0769998 1.1584603 14.069619 1.1584594 14.0696165

0.95 1.1089262 14.3776294 1.1064481 14.3699178 1.1064473 14.3699152

0.975 1.0557158 14.6880923 1.0534715 14.6800291 1.0534707 14.6800264
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Table 5 continued

t Adams method Runge–Kutta method Bulirsch–Stoer method

x̃1(t) x̃2(t) x̃1(t) x̃2(t) x̃1(t) x̃2(t)

1 1.0020287 15.0084851 1.0000111 15.0000468 1.0000104 15.000044

μ̃1 = 6.9915036 μ̃1 = 6.9999532 μ̃1 = 6.9999561

μ̃2 = −4.0309316 μ̃2 = −4.0001708 μ̃2 = −4.0001604

μ̃3 = 8.9948835 μ̃3 = 8.9999718 μ̃3 = 8.9999735

Fig. 2 The exact solution (light blue solid line) and the numerical solution values obtained by the Bulirsch–
Stoer method (’o’)
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