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Abstract
In this paper, a new conservative fourth-order finite difference scheme is proposed for solving
the generalized Rosenau–KdV–RLW equation. The solvability, convergence, and conserva-
tion of the numerical solution are discussed by the discrete energy method. The scheme is
convergent of O(τ 2 + h4) and unconditionally stable. Several numerical experiment results
show that the proposed scheme is efficient and reliable.

Keywords Rosenau–KdV–RLW equation · Conservative scheme · Discrete energy method ·
Unconditionally stable · Unique solvability

Mathematics Subject Classification 65M12 · 65N06

1 Introduction

Nonlinear wave phenomena play an important role in engineering and sciences. In the past,
many scientists have studied about different mathematical models to explain the wave behav-
ior, such as the KdV equation (Korteweg and Vries 1895; Ozer and Kutluay 2005; Skogestad
and Kalisch 2009; Kim et al. 2012; Yan et al. 2016), the Rosenau equation (Rosenau 1986,
1988; Park 1992), the Rosenau–KdV equation (Zuo 2009; Esfahani 2011; Triki and Biswas
2013; Zheng and Zhou 2014), the Rosenau–RLW equation (Pan and Zhang 2012;Wongsaijai
et al. 2014, 2019), and many others (Lu and Chen 2015; Coclite and Ruvob 2017; Mohanty
and Kaur 2019; Kaur and Mohanty 2019).
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In this paper, we will consider the following initial-boundary value problem of the gener-
alized Rosenau–KdV–RLW equation (Razborova et al. 2015):

ut + aux + b(u p)x − cuxxt + duxxx + uxxxxt = 0, x ∈ [α, β], t ∈ [0, T ], (1.1)

with an initial condition

u(x, 0) = φ(x), x ∈ [α, β], (1.2)

and boundary conditions

u(α, t) = u(β, t) = 0, ux (α, t) = ux (β, t) = 0, t ∈ [0, T ], (1.3)

where a, b, c and d are non-negative real constants, p ≥ 2 is a positive integer, φ(x) is a
given smooth function, u(x, t) is a real-valued function.

For Eq. (1.1), shock waves, solitary waves, and the asymptotic behavior with power law
nonlinearity have been theoretically studied in Razborova et al. (2014) and Sanchez et al.
(2015). Besides the theoretical analysis, Wongsaijai and Poochinapan (2014) proposed a
three-level average implicit finite difference scheme, and Wang and Dai (2018) developed
a linearly implicit finite difference scheme. However, both the schemes in Wongsaijai and
Poochinapan (2014) and Wang and Dai (2018) are only second-order accurate. As pointed
out in Ghiloufi and Omrani (2017), the conservative approximation properties of the scheme
have possibly even more impacts on numerical results. Thus, the motivation of this research
is to establish a fourth-order conservative finite difference scheme for Eqs. (1.1)–(1.3).

Theorem 1.1 Suppose φ(x) ∈ H2
0 [α, β], then the problem in Eqs. (1.1)–(1.3) satisfies the

following energy conservative property:

E(t) =
∫ β

α

[
u2(x, t) + cu2

x (x, t) + u2
xx (x, t)

]
dx = ‖u‖2L2

+ c‖ux‖2L2
+ ‖uxx‖2L2

=
∫ β

α

[
u2(x, 0) + cu2

x (x, 0) + u2
xx (x, 0)

]
dx

=
∫ β

α

[
(φ(x))2 + c(φ(x))2x + (φ(x))2xx

]
dx = E(0), c ≥ 0, t ∈ [0, T ]. (1.4)

Proof From Eq. (1.1), we have

ut − cuxxt + uxxxxt = −aux − b(u p)x − duxxx . (1.5)

Multiplying Eq. (1.5) by 2u and integrating on the interval [α, β], we obtain
d

dt

∫ β

α

u2dx − 2c
∫ β

α

uuxxtdx + 2
∫ β

α

uuxxxxtdx

= −2a
∫ β

α

uuxdx − 2b
∫ β

α

u(u p)xdx − 2d
∫ β

α

uuxxxdx . (1.6)

Using the integration by parts and considering the boundary conditions in Eq. (1.3), we have
∫ β

α

uuxdx = 1

2
u2

∣∣∣β
α

= 0, (1.7)

∫ β

α

uuxxxdx =
(

uuxx − 1

2
u2

x

)∣∣∣β
α

= 0, (1.8)
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∫ β

α

u(u p)xdx =
(

uu p − 1

p + 1
u p+1

)∣∣∣β
α

= 0, (1.9)

∫ β

α

uuxxtdx =
∫ β

α

ud(uxt ) =
(

uuxt

)∣∣∣β
α

−
∫ β

α

uxtdu = −1

2

d

dt

∫ β

α

u2
xdx, (1.10)

∫ β

α

uuxxxxtdx =
(

uuxxxt

)∣∣∣β
α

−
∫ β

α

uxxxtdu

= −
(

ux uxxt

)∣∣∣β
α

+
∫ β

α

uxxt uxxdx = 1

2

d

dt

∫ β

α

u2
xxdx . (1.11)

Substituting Eqs. (1.7)–(1.11) into Eq. (1.6) gives

d

dt

∫ β

α

[
u2(x, t) + cu2

x (x, t) + u2
xx (x, t)

]
dx = 0.

Therefore, we obtain E(t) = E(0), t ∈ [0, T ]. ��
Lemma 1.2 (Wang and Dai 2018) Suppose φ(x) ∈ H2

0 [α, β], then the solution of Eqs.
(1.1)–(1.3) satisfies ‖u‖L2 ≤ C, ‖ux‖L2 ≤ C, ‖uxx‖L2 ≤ C, and hence ‖u‖L∞ ≤ C,
‖ux‖L∞ ≤ C.

Theorem 1.3 Suppose φ(x) ∈ H2
0 [α, β], then the problem in Eqs. (1.1)–(1.3) is well posed.

Proof Assume that u1 and u2 are two solutions of Eqs. (1.1)–(1.3) satisfying the initial
conditions φ(1) and φ(2), respectively. Let θ = u1 − u2, then θ satisfies

θt + aθx + b[(u1)
p]x − b[(u2)

p]x − cθxxt + dθxxx + θxxxxt = 0,

and the initial-boundary conditions:

θ(x, 0) = φ(1) − φ(2), x ∈ [α, β],
θ(α, t) = θ(β, t) = 0, θx (α, t) = θx (β, t) = 0, t ∈ [0, T ].

Letting

E(t) =
∫ β

α

(θ2 + cθ2x + θ2xx )dx, c ≥ 0,

we use a similar derivation as that in the proof of Theorem 1.1 and obtain

dE(t)

dt
= 2

∫ β

α

(θθt + cθxθxt + θxxθxxt )dx

= −2
∫ β

α

θ
[
aθx + b[(u1)

p]x − b[(u2)
p]x + dθxxx

]
dx

= 2b
∫ β

α

θ
[
[(u2)

p]x − [(u1)
p]x

]
dx

−
[
aθ2 + 2dθθxx − d(θx )

2
]∣∣∣β

α

= 2bp
∫ β

α

θ
[
(u2)

p−1(u2)x − (u1)
p−1(u1)x

]
dx
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= −2bp
∫ β

α

θθx (u2)
p−1dx − 2bp

∫ β

α

θ

p−2∑
k=0

(u2)
p−2−k(u1)

k(u1)xθdx . (1.12)

By Lemma 1.2, we obtain

∣∣∣
∫ β

α

θθx (u2)
p−1dx

∣∣∣ ≤ C
∫ β

α

|θ | · |θx |dx ≤ C
( ∫ β

α

θ2dx +
∫ β

α

(θx )
2dx

)
,

∣∣∣
∫ β

α

θ

p−2∑
k=0

(u2)
p−2−k(u1)

k(u1)xθdx
∣∣∣ ≤ C

∫ β

α

θ2dx,

where C is a constant. Substituting the above two inequalities into Eq. (1.12), we obtain
dE(t)

dt ≤ C E(t), t ∈ [0, T ]. This leads to E(t) ≤ eCT E(0), 0 ≤ t ≤ T . Thus, if φ(1) = φ(2),
we have θ(x, 0) = 0 and hence E(0) = 0, implying that E(t) = 0. By the Sobolev inequality,
we obtain ‖θ‖L∞ = 0 and u1 = u2. Furthermore, if θ(x, 0) < ε, θx (x, 0) < ε, θxx (x, 0) < ε,
we obtain E(0) < ε and hence E(t) ≤ eCT E(0) ≤ εeCT , 0 ≤ t ≤ T , implying that the
solution is continuously dependent on the initial condition.We conclude that Eqs. (1.1)–(1.3)
are well posed. ��

The rest of this paper is arranged as follows: Sect. 2 gives the detailed description of the
fourth-order finite difference scheme and its discrete conservative property for Eqs. (1.1)–
(1.3). Section 3 provides complete proofs on the solvability, convergence and stability of the
proposed scheme with the convergence order O(τ 2+h4). Section 4 presents some numerical
simulations to verify the theoretical analysis. Finally, concluding remarks are given in Sect. 5.

2 Difference scheme and its discrete conservative law

The solution domain {(x, t)|α ≤ x ≤ β, 0 ≤ t ≤ T } is covered by a uniform grid
{(x j , tn)|x j = α+ jh, tn = nτ, j = 0, . . . , J , n = 0, . . . , N }, with spacing h = (β−α)/J ,
τ = T /N . Denote U n

j ≈ u(x j , tn), and let

Z0
h = {U = (U j )|U−1 = U0 = U1 = UJ−1 = UJ = UJ+1 = 0}, (2.1)

where j = −1, 0, 1, . . . , J − 1, J , J + 1. For convenience, the following notations will be
introduced:

(U n
j )x̃ = 1

h
(U n

j+1 − U n
j ), (U n

j )x̄ = 1

h
(U n

j − U n
j−1), (U n

j )x̂ = 1

2h
(U n

j+1 − U n
j−1),

Ū n
j = 1

2
(U n+1

j + U n−1
j ), (U n

j )t̂ = 1

2τ
(U n+1

j − U n−1
j ), (U n

j )t̃ = 1

τ
(U n+1

j − U n
j ),

〈U n, V n〉 = h
J−1∑
j=1

U n
j V n

j , ‖U n‖2 = 〈U n, U n〉, ‖U n‖∞ = max
1≤ j≤J−1

|U n
j |.

By setting

w = −aux − b(u p)x + cuxxt − duxxx − uxxxxt , (2.2)
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Eq. (1.1) can be written as w = ut . Using the Taylor expansion in the variable x , we
obtain

wn
j = −a

[
(U n

j )x̂ − h2

6
(∂3x u)n

j

]
− b

[
[(U n

j )
p]x̂ − h2

6
(∂3x u p)n

j

]
+ c

[
(U n

j )x̃ x̄ t̂ − h2

12
(∂4x ∂t u)n

j

]

− d
[
(U n

j ) ˙̈x − h2

6
(∂5x u)n

j

]
−

[
(U n

j )x̃ x̃ x̄ x̄ t̂ − h2

6
(∂6x ∂t u)n

j

]
+ O(h4), (2.3)

where the fourth-order operator (U n
j ) ˙̈x is defined as follows (Wang and Dai 2018):

(U n
j ) ˙̈x = − 1

24h3 (U n
j+3 − U n

j−3) + 2

3h3 (U n
j+2 − U n

j−2) − 29

24h3 (U n
j+1 − U n

j−1)

= u(3)
j + h2

6
u(5)

j + O(h4). (2.4)

From Eq. (2.2), we have

(∂6x ∂t u)n
j = −a(∂3x u)n

j − b(∂3x u p)n
j + c(∂4x ∂t u)n

j − d(∂5x u)n
j − (∂2x w)n

j . (2.5)

Substituting Eq. (2.5) into Eq. (2.3) gives

wn
j = −a(U n

j )x̂ − b[(U n
j )

p]x̂ + c(U n
j )x̃ x̄ t̂ − d(U n

j ) ˙̈x − (U n
j )x̃ x̃ x̄ x̄ t̂

+ ch2

12
(∂4x ∂t u)n

j − h2

6
(∂2x w)n

j + O(h4).

Using second-order accuracy for approximation, we obtain

U n
j = Ū n

j + O(τ 2), wn
j = (∂t u)n

j = (U n
j )t̂ + O(τ 2),

(∂2x w)n
j = (W n

j )x̃ x̄ + O(h2), (∂4x ∂t u)n
j = (U n

j )x̃ x̃ x̄ x̄ t̂ + O(h2).

Thus, the proposed difference scheme for Eqs. (1.1)–(1.3) is written as

(U n
j )t̂ + a(Ū n

j )x̂ + b[(Ū n
j )

p]x̂ + d(Ū n
j ) ˙̈x + A(h)(U n

j )x̃ x̄ x̃ x̄ t̂ − B(h)(U n
j )x̃ x̄ t̂ = 0, (2.6)

A(h) = 1 − ch2

12
, B(h) = c − h2

6
, j = 2, . . . , J − 2, n = 2, . . . , N , (2.7)

U 0
j = φ(x j ), 0 ≤ j ≤ J , (2.8)

U n
0 = U n

J = 0, U n−1 = U n
1 = 0, U n

J−1 = U n
J+1 = 0, n = 1, . . . , N . (2.9)

Since the scheme in Eqs. (2.6)–(2.9) is a three-level method, we need to give a two-level
method to compute U 1, which is given by

(U 0
j )t̃ + a(U 0.5

j )x̂ + b[(U 0.5
j )p]x̂ + d(U 0.5

j ) ˙̈x + A(h)(U 0
j )x̃ x̄ x̃ x̄ t̂ − B(h)(U 0

j )x̃ x̄ t̂ = 0,
(2.10)

where

U 0.5
j = (U 1

j + U 0
j )/2, j = 2, . . . , J − 2, n = 0, . . . , N .

Lemma 2.1 (Hu et al. 2008; Ye et al. 2015) For any two mesh functions U , V ∈ Z0
h, we

obtain

〈Ux̃ , V 〉 = −〈U , Vx̄ 〉, 〈Ux̂ , V 〉 = −〈U , Vx̂ 〉, (2.11)

〈Ux̃x̄ , V 〉 = −〈Ux̃ , Vx̃ 〉, 〈Ux̃x̄ , U 〉 = −‖Ux̃‖2, 〈U , Ux̃x̄ x̃ x̄ 〉 = ‖Ux̃x̄‖2. (2.12)
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Lemma 2.2 (Shao et al. 2013) For any mesh function U ∈ Z0
h, there exist two positive

constants C1 and C2 such that

‖U n‖∞ ≤ C1‖U n‖ + C2‖U n
x̃ ‖. (2.13)

Lemma 2.3 (Cai et al. 2015) For any discrete function U ∈ Z0
h, we have

‖U n
x̃ ‖2 ≤ 4

h2 ‖U n‖2, 0 ≤ n ≤ N . (2.14)

Lemma 2.4 (Wongsaijai and Poochinapan 2014; Wang and Dai 2018) For any mesh function
U ∈ Z0

h, we have

〈Ux̂ , U 〉 = 0, 〈U ˙̈x , U 〉 = 0, 〈U p
x̂ , U 〉 = 0, p ≥ 2. (2.15)

Theorem 2.5 Suppose φ(x) ∈ H2
0 ([α, β]), then the finite difference scheme in Eqs. (2.6)–

(2.10) is conservative for discrete energy in sense:

En ≡ ‖U n+1‖2 + ‖U n‖2
2

+ B(h)
[‖U n+1

x̃ ‖2 + ‖U n
x̃ ‖2

2

]

+ A(h)
[‖U n+1

x̃ x̄ ‖2 + ‖U n
x̃ x̄‖2

2

]

= · · · = ‖U 0‖2 + B(h)‖U 0
x̃ ‖2 + A(h)‖U 0

x̃ x̄‖2 ≡ E0, n = 0, . . . , N − 1. (2.16)

Proof Taking the inner product of Eq. (2.6) with 2Ū n , we obtain

〈U n
t̂
, 2Ū n〉+A(h)〈U n

x̃ x̃ x̄ x̄ t̂
, 2Ū n〉−B(h)〈U n

x̃ x̄ t̂
, 2Ū n〉

+a〈Ū n
x̂ , 2Ū n〉 + b〈(Ū n)

p
x̂ , 2Ū n〉 + d〈Ū n˙̈x , 2Ū n〉 = 0. (2.17)

From Lemmas 2.1 and 2.4, we obtain

〈Ū n
x̂ , 2Ū n〉 = 0, 〈(Ū n)

p
x̂ , 2Ū n〉 = 0, 〈Ū n˙̈x , 2Ū n〉 = 0,

〈U n
t̂
, 2Ū n〉 = ‖U n‖2t̂ , 〈U n

x̃ x̄ t̂
, 2Ū n〉 = −‖U n

x̃ ‖2t̂ , 〈U n
x̃ x̃ x̄ x̄ t̂

, 2Ū n〉 = ‖U n
x̃ x̄‖2t̂ .

Thus, Eq. (2.17) can be rewritten as

‖U n‖2t̂ + A(h)‖U n
x̃ x̄‖2t̂ + B(h)‖U n

x̃ ‖2t̂ = 0.

This is equivalent to

‖U n+1‖2 + A(h)‖U n+1
x̃ x̄ ‖2 + B(h)‖U n+1

x̃ ‖2 = ‖U n−1‖2 + A(h)‖U n−1
x̃ x̄ ‖2 + B(h)‖U n−1

x̃ ‖2,
where n = 1, . . . , N − 1. This further yields

En ≡ ‖U n+1‖2 + ‖U n‖2
2

+ B(h)
[‖U n+1

x̃ ‖2 + ‖U n
x̃ ‖2

2

]
+ A(h)

[‖U n+1
x̃ x̄ ‖2 + ‖U n

x̃ x̄‖2
2

]

= ‖U n‖2 + ‖U n−1‖2
2

+ B(h)
[‖U n

x̃ ‖2 + ‖U n−1
x̃ ‖2

2

]
+ A(h)

[‖U n
x̃ x̄‖2 + ‖U n−1

x̃ x̄ ‖2
2

]

= En−1 = · · · = E0, n = 1, . . . , N − 1. (2.18)
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Similarly, taking the inner product of Eq. (2.10) with 2u0.5, we obtain

〈U 0
t̃ , 2u0.5〉 + a〈(U 0.5

x̂ ), 2u0.5〉 + b〈(U 0.5)
p
x̂ , 2u0.5〉 + d〈U 0.5˙̈x , 2u0.5〉

+ A(h)〈U 0
x̃ x̄ x̃ x̄ t̂ , 2u0.5〉 − B(h)〈U 0

x̃ x̄ t̂ , 2u0.5〉 = 0. (2.19)

From Lemmas 2.1 and 2.4, we obtain

〈(U 0.5
x̂ ), 2u0.5〉 = 0, 〈(U 0.5)

p
x̂ , 2u0.5〉 = 0, 〈U 0.5˙̈x , 2u0.5〉 = 0, (2.20)

〈U 0
t̃ , 2u0.5〉 = ‖U 0‖2t̃ , 〈U 0

x̃ x̄ t̃ , 2U 0.5〉 = −‖U 0
x̃ ‖2t̃ , 〈U 0

x̃ x̄ x̃ x̄ t̃ , 2U 0.5〉 = ‖U 0
x̃ x̄‖2t̃ . (2.21)

Substituting Eqs. (2.20)–(2.21) into Eq. (2.19), we obtain

‖U 0‖2t̃ + A(h)‖U 0
x̃ x̄‖2t̃ + B(h)‖U 0

x̃ ‖2t̃ = 0.

This is equivalent to

‖U 1‖2 + A(h)‖U 1
x̃ x̄‖2 + B(h)‖U 1

x̃ ‖2
= ‖U 0‖2 + A(h)‖U 0

x̃ x̄‖2 + B(h)‖U 0
x̃ ‖2.

Thus, from the above equation and the definition of E0, we have

E0 = ‖U 1‖2 + ‖U 0‖2
2

+ B(h)
[‖U 1

x̃ ‖2 + ‖U 0
x̃ ‖2

2

]

+ A(h)
[‖U 1

x̃ x̄‖2 + ‖U 0
x̃ x̄‖2

2

]

= ‖U 0‖2 + B(h)‖U 0
x̃ ‖2 + A(h)‖U 0

x̃ x̄‖2.
��

Theorem 2.6 Suppose φ(x) ∈ H2
0 ([α, β]), then the solution U n of Eqs. (2.6)–(2.10) satisfies

‖U n‖ ≤ C, ‖U n
x̃ ‖ ≤ C, ‖U n

x̃ x̄‖ ≤ C, which yield

‖U n‖∞ ≤ C, ‖U n
x̃ ‖∞ ≤ C, ‖U n

x̄ ‖∞ ≤ C, ‖U n
x̂ ‖∞ ≤ C, 0 ≤ n ≤ N .

Proof We prove the theorem by the mathematical induction. From Eq. (2.8), we obtain
‖U 0‖ ≤ C . We assume that

‖U k‖ ≤ C, ‖U k‖∞ ≤ C, k = 0, 1, 2, . . . , n.

From Lemma 2.3, we obtain

‖U n+1
x̃ ‖2 ≤ 4

h2 ‖U n+1‖2, ‖U n+1
x̃ x̄ ‖2 ≤ 4

h2 ‖U n+1
x̃ ‖2,

which yield

‖U n+1‖2 + B(h)‖U n+1
x̃ ‖2 + A(h)‖U n+1

x̃ x̄ ‖2

≥ ‖U n+1‖2 + c‖U n+1
x̃ ‖2 + ‖U n+1

x̃ x̄ ‖2 − h2

6

4

h2 ‖U n+1‖2

− ch2

12

4

h2 ‖U n+1
x̃ ‖2

≥ 1

3
‖U n+1‖2 + 2c

3
‖U n+1

x̃ ‖2 + ‖U n+1
x̃ x̄ ‖2 ≥ 0, c ≥ 0, (2.22)
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implying that En+1 ≥ 0. FromEqs. (2.16) and (2.22), we obtain ‖U n+1‖ ≤ C , ‖U n+1
x̃ ‖ ≤ C ,

‖U n+1
x̃ x̄ ‖ ≤ C . By Lemma 2.2, we further obtain

‖U n+1‖∞ ≤ C, ‖U n+1
x̃ ‖∞ ≤ C, ‖U n+1

x̄ ‖∞ ≤ C, ‖U n+1
x̂ ‖∞ ≤ C,

which completes the proof. ��

3 Solvability, convergence and stability

Theorem 3.1 The finite difference scheme in Eqs. (2.6)–(2.10) is uniquely solvable.

Proof Using the mathematical induction, we can determine U 0 uniquely by Eq. (2.8) and
choose Eq. (2.10) to compute U 1. Assume that U 1(γ1) and U 1(γ2) are two solutions of Eq.
(2.10) and let U 1(γ ) = U 1(γ1) − U 1(γ2), then U 1(γ ) satisfies the following equation:

1

τ
U 1(γ )

j + a

2
(U 1(γ )

j )x̂ + d

2
(U 1(γ )

j ) ˙̈x − 1

τ
B(h)(U 1(γ )

j )x̃ x̄ + 1

τ
A(h)(U 1(γ )

j )x̃ x̃ x̄ x̄ = 0, (3.1)

where j = 2, . . . , J − 2. By taking an inner product on both sides of Eq. (3.1) with U 1(γ ),
we have

‖U 1(γ )‖2 + B(h)‖U 1(γ )

x̃ ‖2 + A(h)‖U 1(γ )

x̃ x̄ ‖2 = 0. (3.2)

From Theorem 2.6, we get

‖U 1(γ )‖2 + B(h)‖U 1(γ )

x̃ ‖2 + A(h)‖U 1(γ )

x̃ x̄ ‖2

≥ 1

3
‖U 1(γ )‖2 + 2c

3
‖U 1(γ )

x̃ ‖2 + ‖U 1(γ )

x̃ x̄ ‖2 ≥ 0. (3.3)

Thus, from Eqs. (3.2) and (3.3), we obtain

‖U 1(γ )‖2 = 0, ‖U 1(γ )

x̃ ‖2 = 0, ‖U 1(γ )

x̃ x̄ ‖2 = 0.

Therefore, Eq. (3.1) has the only one solution and U 1 is uniquely solvable. Now, suppose
U 0, U 1,. . ., U n to be solved uniquely. By consider the homogeneous Eq. (2.6) for U n+1, we
have

1

τ
U n+1

j − 1

τ
B(h)(U n+1

j )x̃ x̄ + 1

τ
A(h)(U n+1

j )x̃ x̄ x̃ x̄

+ a(U n+1
j )x̂ + b[U n+1

j )p]x̂ + d(U n+1
j ) ˙̈x = 0. (3.4)

Computing an inner product of Eq. (3.4) with U n+1, we obtain

‖U n+1‖2 + A(h)‖U n+1
x̃ x̄ ‖2 + B(h)‖U n+1

x̃ ‖2 = 0. (3.5)

This together with Eq. (2.22) gives

‖U n+1‖2 = 0, ‖U n+1
x̃ ‖2 = 0, ‖U n+1

x̃ x̄ ‖2 = 0. (3.6)

Therefore, Eq. (3.4) has the only one solution and U n+1 is uniquely solvable. ��
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Theorem 3.2 Suppose φ(x) ∈ H2
0 ([α, β]), then the solution U n converges to the solution un

in the sense of ‖ · ‖∞, and the convergence rate is O(τ 2 + h4).

Proof Let en
j = un

j − U n
j , then the truncation error can be obtained as follows:

Rn
j = (en

j )t̂ − B(h)(en
j )x̃ x̄ t̂ + a(ēn

j )x̂ + d(ēn
j ) ˙̈x + A(h)(en

j )x̃ x̄ x̃ x̄ t̂ + b[(ūn
j )

p − (Ū n
j )

p]x̂ ,

(3.7)

where Rn
j = O(τ 2 + h4). By taking an inner product on both sides of Eq. (3.7) with 2ēn

j ,
we have

(‖en+1‖2 − ‖en−1‖2) + B(h)(‖en+1
x̃ ‖2 − ‖en−1

x̃ ‖2)
+ A(h)(‖en+1

x̃ x̄ ‖2 − ‖en−1
x̃ x̄ ‖2)

= 2τ 〈Rn, 2ēn〉 − 2τ 〈a(ēn)x̂ + d(ēn) ˙̈x , 2ēn〉
− 2τ 〈b[(ūn)p − (Ū n)p]x̂ , 2ēn〉. (3.8)

According to Lemmas 1.2, 2.1 and Theorem 2.6, we obtain

〈[(ūn)p − (Ū n)p]x̂ , 2ēn〉 = −h
J−1∑
j=1

{[
(ūn

j )
p − (Ū n

j )
p
]

· 2(ēn
j )x̂

}

= −h
J−1∑
j=1

{ p−1∑
k=1

[
(ūn

j )
p−k(Ū n

j )
k(ēn

j )
]

· 2(ēn
j )x̂

}

≤ C(‖en−1‖2 + ‖en+1‖2 + ‖en−1
x̃ ‖2 + ‖en+1

x̃ ‖2). (3.9)

From Lemmas 2.1, 2.3 and 2.4, we obtain

〈ēn
x̂ , 2ēn〉 = 0, 〈ēn˙̈x , 2ēn〉 = 0, (3.10)

‖en
x̂‖2 ≤ ‖en

x̃‖2 ≤ 1

2
‖en‖2 + 1

2
‖en

x̃ x̄‖2, (3.11)

〈Rn, 2ēn〉 ≤ ‖Rn‖2 + 1

2
(‖en+1‖2 + ‖en−1‖2). (3.12)

Substituting Eqs. (3.9)–(3.12) into Eq. (3.8) gives

(‖en+1‖2 − ‖en−1‖2) + B(h)(‖en+1
x̃ ‖2 − ‖en−1

x̃ ‖2) + A(h)(‖en+1
x̃ x̄ ‖2 − ‖en−1

x̃ x̄ ‖2)
≤ 2τ‖Rn‖2 + Cτ(‖en+1

x̃ x̄ ‖2 + ‖en−1
x̃ x̄ ‖2 + ‖en+1‖2 + ‖en‖2 + ‖en−1‖2). (3.13)

Setting

Λn ≡ ‖en‖2 + ‖en−1‖2 + B(h)(‖en
x̃‖2 + ‖en−1

x̃ ‖2) + A(h)(‖en
x̃ x̄‖2 + ‖en−1

x̃ x̄ ‖2),
then we have from Eq. (2.22) that

Λn+1 ≥ 1

3
(‖en+1‖2 + ‖en‖2) + 2c

3
(‖en+1

x̃ ‖2 + ‖en
x̃‖2) + (‖en+1

x̃ x̄ ‖2 + ‖en
x̃ x̄‖2) ≥ 0.

And, Eq. (3.13) can be rewritten as

Λn+1 − Λn ≤ 2τ‖Rn‖2 + Cτ(Λn+1 + Λn).

Hence, we obtain

(1 − Cτ)(Λn+1 − Λn) ≤ 2τ‖Rn‖2 + 2CτΛn .
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Table 1 Comparison of errors with τ = h at T = 20

Norm Scheme h = 0.2 h = 0.1 h = 0.05 h = 0.025

L2 Hu et al. (2013) − 3.045414E−03 7.631169E−04 1.905450E−04

Present 7.829724E−03 1.946370E−03 4.860569E−04 1.215484E−04

L∞ Hu et al. (2013) – 1.131442E−03 2.835874E−04 7.097948E−05

Present 3.034254E−03 7.533525E−04 1.880891E−04 4.701348E−05

If τ is sufficiently small, which satisfies 1 − Cτ > 0, then we obtain

Λn+1 − Λn ≤ Cτ‖Rn‖2 + CτΛn . (3.14)

Summarizing Eq. (3.14) from 1 to n, we get

Λn+1 ≤ Λ1 + Cτ

n∑
k=1

‖Rk‖2 + Cτ

n∑
k=1

Λk .

Since e0 = 0 and Eq. (2.10) is used to compute U 1, we obtain

e0 = 0, Λ1 = O(τ 2 + h4)2,

and notice that

τ

n∑
k=1

‖Rk‖2 ≤ nτ max
1≤k≤n

‖Rk‖2 ≤ T · O(τ 2 + h4)2,

we have

Λn+1 ≤ O(τ 2 + h4)2 + Cτ

n∑
k=1

Λk .

From discrete Gronwall’s inequality Wang et al. (2019), we obtain Λn ≤ O(τ 2 + h4)2,
implying

‖en+1‖2 ≤ O(τ 2 + h4)2, ‖en+1
x̃ x̄ ‖2 ≤ O(τ 2 + h4)2. (3.15)

Furthermore, it follows from Eqs. (3.11), (3.15) and Lemma 2.2 that

‖en+1
x̃ ‖ ≤ O(τ 2 + h4), ‖en+1‖∞ ≤ O(τ 2 + h4). (3.16)

This completes the proof. ��
Theorem 3.3 Under the conditions of Theorem 3.2, the solution U n of Eqs. (2.6)–(2.10) is
unconditionally stable in norm ‖ · ‖∞.
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Fig. 1 The spatial and temporal convergence orders
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Fig. 2 Numerical solutions of the Rosenau–KdV equation with h = 0.25, τ = h2, α = −40, β = 60 (left)
and α = −40, β=150 (right)
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Fig. 3 Absolute error distribution at T = 30 with τ = h/2, τ = h2, h = 0.5 (left) and h = 0.25 (right)

123



237 Page 12 of 19 X. Wang, W. Dai

Table 2 Comparison of errors at T = 40 with τ = 0.1, h = 0.25

Norm Scheme p = 2 p = 4 p = 8 p = 16

L2 Pan and Zhang (2012) 7.87770E−03 1.73066E−02 1.80583E−02 1.37857E−02

Wongsaijai and Poochinapan (2014) 2.36080E−03 4.72540E−03 4.67130E−03 3.84380E−02

Present 1.99758E−03 3.92115E−03 3.54784E−03 4.20535E−03

L∞ Pan and Zhang (2012) 2.88972E−03 6.47969E−03 6.66740E−03 5.05919E−03

Wongsaijai and Poochinapan (2014) 8.86700E−04 1.81252E−03 1.75739E−03 1.30630E−03

Present 7.61239E−04 1.53212E−03 1.37125E−03 9.37760E−04

4 Numerical experiments

In this section, we choose numerical experiments to verify the correctness of our theoretical
analysis results. The L∞ and L2 error norms of the solution obtained from Eqs. (2.6)–(2.10)
are defined as

L2 = ‖en‖2 =
[
h

J−1∑
j=1

|en
j |2

] 1
2
, L∞ = ‖en‖∞ = max

1≤ j≤J−1
|en

j |.

Example 1 Consider the Rosenau–KdV equation in the case of a = 1, b = 0.5, c = 0, d = 1
and p = 2 as follows (Wongsaijai and Poochinapan 2014):

ut + ux + 0.5(u2)x + uxxx + uxxxxt = 0, α ≤ x ≤ β, t ∈ [0, T ], (4.1)

subject to the initial condition

u(x, 0) = φ(x) = 35
(√

313

312
− 1

24

)
sech4

[ 1

24

√
−26 + 2

√
313x

]
, α ≤ x ≤ β,

and the boundary conditions

u(α, t) = u(β, t) = 0, ux (α, t) = ux (β, t) = 0.

The analytical solution is

u(x, t) = 35
(√

313

312
− 1

24

)
sech4

{ 1

24

√
−26 + 2

√
313

[
x − 1

2
(1 +

√
313

13
)t

]}
. (4.2)

First, using different h, x ∈ [−70, 100], T = 20 and τ = h, the comparison of error results
was listed in Table 1. As seen, the results from the present scheme are more accurate than
that obtained by the scheme in Hu et al. (2013). Then the spatial and temporal convergence
orders for U n at T = 10 with different space and time steps were drawn in Fig. 1, where
h = 0.5, 0.25, 0.125, 0.0625, τ = h2 in Fig. 1a, and τ = 0.2, 0.1, 0.05, 0.025, 0.0125,
h = √

τ in Fig. 1b. From Fig. 1, the convergence rate O(τ 2 + h4) is verified. Furthermore,
the solution profiles were plotted in Fig. 2 using h = 0.25, τ = h2, α = −40, β = 60,
150. The solitons at t = 30 and 60 are in excellent agreement with the solitons at t = 0.
Finally, Fig. 3 shows absolute errors at T = 30 with h = 1/2, 1/4 and τ = h2. From Fig. 3,
we can see that the maximum errors are around orders of 10−3 and 10−4, respectively. The
above results indicate that our scheme in Eqs. (2.6)–(2.10) can be applied to simulate solitary
propagations.
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Table 3 Comparison of rates of convergence and CPU time at T = 40 with p = 4, h = 0.5 and τ = h2

Norm Scheme τ, h τ/4, h/2 τ/16, h/4

L2 Pan and Zhang (2012) 6.41825E−02 1.85385E−02 4.79643E−03

Rate − 1.79165 1.95050

L∞ Pan and Zhang (2012) 2.38960E−02 6.96030E−03 1.80409E−03

Rate − 1.77955 1.94788

CPU time 1.252 13.534 157.561

L2 Present 3.20547E−02 1.97080E−03 1.23081E−04

Rate − 4.02369 4.00110

L∞ Present 1.22483E−02 7.52289E−04 4.69771E−05

Rate − 4.02515 4.00126

CPU time 0.125 2.277 51.854

Table 4 Comparison of rates of convergence and CPU time at T = 40 with p = 8, h = 0.5 and τ = h2

Norm Scheme τ, h τ/4, h/2 τ/16, h/4

L2 Pan and Zhang (2012) 6.44908E−02 1.99919E−02 5.25426E−03

Rate − 1.68968 1.92785

L∞ Pan and Zhang (2012) 2.35870E−02 7.39615E−03 1.94938E−03

Rate − 1.67314 1.92376

CPU time 1.371416 14.862871 175.068007

L2 Present 3.18079E−02 1.94289E−03 1.22300E−04

Rate − 4.03311 3.98971

L∞ Present 1.19512E−02 7.27869E−04 4.54605E−05

Rate − 4.03734 4.00099

CPU time 0.156 2.621 54.522
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Fig. 4 Discrete energy by the present scheme with h = 0.25, τ = h2, p = 4 (left) and p = 8 (right)
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Fig. 5 Numerical solutions of the Rosenau–RLW equation with p = 4, τ = h2, α = −60, β = 120, h = 0.25
(left) h = 0.125 (right)

Example 2 Consider the generalized Rosenau–RLW equation in the case of a = 1, b = 1,
c = 1, d = 0 and p ≥ 2 as follows

ut + ux + (u p)x − uxxt + uxxxxt = 0, −60 ≤ x ≤ 120, t ∈ [0, 40], (4.3)

subject to the initial condition

u(x, 0) = φ(x) = exp
[ 1

p − 1
ln

(p + 1)(3p + 1)(p + 3)

2(p2 + 3)(p2 + 4p + 7)

]
sech

4
p−1 (k1x),

and the boundary conditions

u(−60, t) = u(120, t) = 0, ux (−60, t) = ux (120, t) = 0.

The exact solitary wave solution is

u(x, t) = exp
[ 1

p − 1
ln

(p + 1)(3p + 1)(p + 3)

2(p2 + 3)(p2 + 4p + 7)

]
sech

4
p−1 [k1(x − k2t)],

where

k1 = p − 1√
4p2 + 8p + 20

, k2 = p4 + 4p3 + 14p2 + 20p + 25

p4 + 4p3 + 10p2 + 12p + 21
, p ≥ 2.

First, we made a comparison between our scheme and the scheme in Pan and Zhang
(2012); Wongsaijai and Poochinapan (2014). The results in term of errors at T = 40, and
different p were listed in Tables 2, 3 and 4. One may see that the computational efficiency of
the present scheme is clearly better than the ones obtained by the schemes in Pan and Zhang
(2012); Wongsaijai and Poochinapan (2014). Then the conservative invariant En at different
times t ∈ [0, 60] was listed in Table 5, where p = 4, 8, h = 0.25 and τ = h2. We also
showed the conservative law of discrete energy En in Fig. 4. The obtained results in Table 5
and Fig. 4 testify that the present scheme is conservative for energy, which coincides with
the theory. Finally, we simulated the wave graph of the numerical solution of Eq. (4.3). The
wave graph comparison of numerical solutions obtained using h = 0.25, 0.125, τ = h2 at
various times are given in Figs. 5 and 6 for p = 4 and p = 8, respectively. From Figs. 5 and
6, we can see that the heights of the wave graph at different times are almost identical, which
implies that the energy computed by the scheme is conservative.
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Table 5 Discrete energy En of the scheme with p = 4, 8, h = 0.25, τ = h2

T p = 4 p = 8 T p = 4 p = 8

0 5.73299163669502 9.46798776268510 40 5.73298452807903 9.46798312378886

10 5.73298584179234 9.46798468168063 50 5.73298429973518 9.46798257522380

20 5.73298526560656 9.46798415838727 60 5.73298412584239 9.46798199389881

30 5.73298483514227 9.46798364683599
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Fig. 6 Numerical solutions of the Rosenau–RLW equation with p = 8, τ = h2, α = −60, β = 120, h = 0.25
(left) h = 0.125 (right)

Example 3 Consider the Rosenau–KdV–RLW equation in the case of a = 1, b = 0.5, c = 1,
d = 1 and p = 2 as follows:

ut + ux + 0.5(u2)x − uxxt + uxxx + uxxxxt = 0, α ≤ x ≤ β, t ∈ [0, T ], (4.4)

subject to the initial condition

u(x, 0) = φ(x) = − 5

456

(
25 − 13

√
457

)
sech4(k3x), α ≤ x ≤ β,

and boundary conditions

u(α, t) = u(β, t) = 0, ux (α, t) = ux (β, t) = 0.

The exact solitary wave solution is

u(x, t) = − 5

456

(
25 − 13

√
457

)
sech4(k3x)[k3(x − k4t)],

where

k3 =
(−13 + √

457

288

)1/2
, k4 = 241 + 13

√
457

266
.

First, we compared the errors at T = 30 and different h, using α = −40 and β = 100
as reported in Table 6. It is clear that the errors obtained by the present scheme are slightly
smaller than the ones obtained by the method in Wongsaijai and Poochinapan (2014). Then
we drew the absolute errors distributions with h = 0.25, τ = h2, α = −40, β = 160 at
T = 30, 60 in Fig. 7. We found that the maximum error obtained by the present scheme
takes place around the peak amplitude of solitary waves. At last, the curves of the numerical
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Fig. 7 Absolute error distribution at T = 30 (left) and T = 60 (right) with h = 0.25, τ = h2, α = −40,
β = 160
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Fig. 8 Numerical solutions of the Rosenau–KdV–RLW equation with h = 0.25, τ = h2, α = −40, β = 100
(left) and β = 200 (right)

solutions computed by the present scheme in with h = 0.25, τ = h2, α = −40, β = 100,
200 are given in Fig. 8, and we can see that the waves at T = 20 ∼ 60 agree with the
corresponding waves at T = 0 quite well.

5 Conclusion

A new conservative finite difference scheme for the generalized Rosenau–KdV–RLW equa-
tion is introduced and analyzed. The scheme is unconditionally stable and convergent with
order of O(τ 2 + h4). Numerical experiments confirm well the theoretical analysis and show
that the present scheme is efficient and reliable.
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