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Abstract

In this work, we consider, from the numerical point of view, a poro-thermoelastic problem.
The thermal law is the so-called of type III and the microtemperatures are also included
into the model. The variational formulation of the problem is written as a linear system of
coupled first-order variational equations. Then, fully discrete approximations are introduced
by using the classical finite-element method and the implicit Euler scheme. A discrete stability
property and an a priori error estimates result are proved, from which the linear convergence
of the algorithm is derived under suitable additional regularity conditions. Finally, some
one- and two-dimensional numerical simulations are presented to show the accuracy of the
approximation and the behavior of the solution.

Keywords Type III thermoelasticity with voids - Microtemperatures - Numerical
approximation - Error estimates - Numerical solutions

Mathematics Subject Classification 65M60 - 65M12 - 74F05 - 74B05

1 Introduction

The most useful model to describe the heat conduction is based on the Fourier law that
proposes a linear relation between the heat flux vector and the gradient of temperature. If
we combine this equation with the usual energy equation, we obtain the existence of thermal
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waves propagating with an unbounded speed. That is, a thermal perturbation at one point is
instantaneously felt at any other point of the space for every distance. It is clear that this effect
contradicts the causality principle. For this reason, a big deal trying to overcome this paradox
has been developed in the last and current centuries. It seems that the first works in this aspect
correspond to Cattaneo and Maxwell (Cattaneo 1958). They proposed the introduction of a
relaxation time in the Fourier law. Recently, in the 1990s decade, Green and Naghdi proposed
several alternative models (Green and Naghdi 1992, 1993). In fact, they proposed these new
theories in the context of the thermoelasticity and the main difference concerning the classical
theory corresponds to the thermal effects. The most general is the so-called type III and it
contains the Fourier model as a limit case. It is also worth recalling the type II which is also
called without energy dissipation. It also corresponds to another limit case of the type III
theory.

A big interest has also been developed to understand models with microstructure. In fact,
Eringen (1999) contributed in an important way in this sense in the last century. An interesting
case for these models corresponds to those where microtemperatures are taken into account.
That is, among the microstructure effects, we can consider the microtemperatures. First
contribution on this kind of materials came back to the one by Grot (1969) and some people
used them to study several problems (Riha 1975, 1976; Verma et al. 1979). We recall the
contribution (Iesan and Quintanilla 2000) as a new reborn of the interest for this kind of
questions, because many works have studied this kind of problems recently (see (Casas and
Quintanilla 2005a; Chirita et al. 2013; Ciarletta et al. 2010; Iesan 2007; Iesan 2018; Iesan and
Quintanilla 2018; Magafia and Quintanilla 2018; Quintanilla 2011, 2013) among others). In
the last 20 years, there has been a big deal of people interested in the study of elastic materials
with microtemperatures.

Cowin (1985), Cowin and Nunziato (1983), Nunziato and Cowin (1979) proposed a math-
ematical theory to model elastic materials with voids. Since these contributions, many people
have been interested in the study of thermoelastic materials with voids and the quantity of con-
tributions involving this model is huge (Bazarra and Fernandez 2018; Casas and Quintanilla
2005b; Feng and Apalara 2019; Feng and Yin 2019; Ferndndez and Masid 2016, 2017a,b;
Iesan and Quintanilla 2014; Kumar and Vohra 2017, 2019; Kumar et al. 2016; Magaiia and
Quintanilla 2006, 2017; Ramos et al. 2020). It is worth noting that the model has become
useful to understand the behavior of elastic materials with small distributed pores and we
can find them in the study of biological materials as bones or in the study of soils, woods,
ceramics, or rocks. It is also worth noting the structural similarity (from the mathematical
point of view) of the system of equations for the poro-elasticity with the equations of the
Timoshenko beam (see, for instance, Almeida Jinior and Ramos 2017).

In the present paper, we want to joint these three basic ideas: on one side, we consider
the type III theory; on the second aspect, we consider microtemperatures; and on the third
side, we consider porous aspects. First contribution concerning the three aspects at the same
time can be seen at Magafa and Quintanilla (2020). There, the authors consider the system
of equations that we can obtain from the studies (Aouadi et al. 2018; Iesan 2007; Iesan
and Quintanilla 2009). Here, we continue the research started in Magafia and Quintanilla
(2020), introducing a fully discrete approximation based on the finite-element method and
the implicit Euler scheme, proving a discrete stability property and a priori error estimates,
and performing some one- and two-dimensional numerical simulations to demonstrate the
accuracy and the behavior of the discrete solutions.

We think that it is relevant to point out that the behavior of the thermoelastic materials in
the context of the type III theory has been revealed different from the classical theory based
on the Fourier law. We can cite several contributions (Leseduarte et al. 2010; Magafia and
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Quintanilla 2018; Miranville and Quintanilla 2020, 2019; Magafia and Quintanilla 2020)
where we have detected relevant differences in the behavior of the solutions corresponding
to this kind of materials. The main reason is that, when we consider type III theory, new
coupling terms appear which are not present when we consider the theory based on the
classical Fourier law. At the same time, when we consider microtemperatures, there are
also more new coupling terms which are not present in the case of the Fourier theory with
microtemperatures. Therefore, our system is more complex from the mathematical point of
view, and then, new and strong difficulties could appear when we consider the new theory.
Furthermore, what we will develop here cannot be a direct extension of the classical theory,
but we could consider new aspects in our study.

2 Mathematical and variational formulations

First, we describe the problem (see Magafia and Quintanilla 2020 for further details). Let
£2 be a bounded domain in R? (for d = 1,2, 3) with boundary smooth enough to allow
the application of the divergence theorem. We will use the standard notation where “, i”
means the partial derivative with respect to the variable x;, a superposed dot represents time
derivative and summation on repeated indices is assumed. Moreover, let [0, T], T > 0, be
the time interval of interest.

Letusdenoteu = (u i)le ,p,0,and M = (M,-)f’=1 the displacement, the volume fraction,
the temperature, and the microtemperatures, respectively.

Since we are interested in the thermoelastic theory of type III with voids and microtem-
peratures, the corresponding thermo-mechanical problem is the following (see Aouadi et al.
2018; Iesan and Quintanilla 2000; Iesan and Quintanilla 2009; Magafia and Quintanilla 2020):

Problem P. Find the displacement u : 2 x [0, 7] — R?, the volume fraction ¢
2 x[0,T] —» R,ithe thermal displacement T : 2 x [0, T] — R, and the microthermal
displacement R : 2 x [0, T] — R4, such that:

pii; = (Aijruky — aij0 + &ij@ + BijuRey),j in 2 x(0,7T)

fori=1,...,d, (1
J§ = (Aijo j — aijRi + HijT ;) j — Cijui j + kt — FijRi j — &g

in 2 x(0,7), 2)

f = —ajjiii j + (Hijoi).j — (dijR) j + (KijTi + K5t0) j — bijRi j
—Kk§+ (A;My) j in 2 x(0,T), 3)

¢ijR; = (Buijuk; — bijt + Fijo + CijuRey),j — dijt,j + (C;kjkle,l),j
—aijgj— AG0 — AGM; in 2 x (0, T) fori=1,....d, 4)
wi(x,0) =ud(x), ;(x,0) =00x), @, 0 =¢’x)forx e 2, )
¢o(x,0) =e"(x), 1(x,0)=1%x), 7(x,0) =06%%)forx e, (6)
Ri(x,0) = R)(x), Ri(x,0) = M>(x)forx € £2, )
ui(x,t) =px,t) =1(x,t) = Ri(x,t) =0 for x €982, t € [0, T]. (8)
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Here, T is the thermal displacement introduced by Green and Naghdi and R = (R,-)fl: | are
the microthermal displacements, defined, respectively, by:

t t
r(x,t):ro(x)—i—/ 0(x, s)ds, Ri(x,t):R?(x)—i-/ M;(x, s)ds.
0 0

As usual, p denotes the mass density, J the product of the mass density by the equilibrated
inertia, and c the thermal capacity. A; j; is the elastic tensor, and a;;, {;;, and B; j; are, respec-
tively, the coupling tensors between the displacement and the temperature, the displacement

and the volume fraction, and the displacement and the microtemperatures. A;;, AE;), Asz.),

Ag), a;j, H;j, Fij, d;ij, and b;; are other coupling tensors between the variables. K;; is the
tensor introduced by Green and Naghdi, and it is usually called rate conductivity, K i’; is the
thermal conductivity tensor, ¢;; is a typical tensor of the theories with microtemperatures,
and, finally, C;;; and C l*; « are the specific type III tensors with microtemperatures.

The following symmetries are assumed (see Aouadi et al. 2018; Magafia and Quintanilla
2020):

Aiju = Awij,  Aij = Aji, Kij =Kji, K =K5, Ciji= Cuij, ©)
Cliw = Chuj» Cij =¢jis A}y =A%, Hij=Hji, Biju = Buij.
From the second law of thermodynamics the following inequality must be satisfied (see
Iesan and Quintanilla 2000):

K} EE + (Al + A7DniEj + Alming + Cliymijnu = Ko(Ei& +nini + nijnij),  (10)

for a positive constant K¢ and for each pair of vectors &; and n; and for each tensor 7;;.

We will also impose some assumptions over the constitutive coefficients. For each vector
&;, each pair of tensors &;; and n;; and each real number /, the following inequalities are
assumed:

Aijri&ij&r + 2Bijii&iini + Cijanijni + 286l + €12
> Co(&ij&ij + mijnij +1%),
Aij&i& +2H;6in; + Kijning = C1(&& +ninj),
cij&i§; = C6i&, p>=p0>0, J>Jp>0, c>co>0,

an

for positive constants Jy, cg, Co, C1, C2, and pg. The first two conditions proposed here can
be interpreted with the help of the stability theory for thermoelastic materials. The physical
meaning of the assumptions in the third line of (11) is clear.

First, we show that the energy of the system is dissipative.

Proposition 1 Let us define the energy of the system E(t) as follows:

1
& = Elp(vi(t), vi)y + Jle@lly + o7 + (cij Mj@), Mi 1))y

+(Ajjrui (@), ug 1 (®)y + (Bijiqui, j(t), R (t))y +Elp®)%
F(CijuRi,j (), Ry (1)y + (Gijui j (@), o)y + (Ajjo,it), ¢, i)y

+(Hiji 0,750y + (K0, 7,0y |, (12)

where we have used the notation Y = L*($2) and (-, ")y for the usual scalar product in this
space. Then, this energy is dissipative.
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Proof We note that, from the previous definition after a direct calculation, we find that:
) = — /Q (K;;.eyieyj + (A}j + A?j)M,»e,, + A?jMiMj) dv

— / C;kjklMi,ijJ dv,
Pt
and using assumption (10), we then conclude that the energy is always dissipative.

Now, we recall the following existence and uniqueness result (Magafia and Quintanilla
2020).

Theorem 1 Under assumptions (9)—(11), if the following regularity on the initial conditions
hold:

u’, 0%, RO, M e [H* ()1, ¢°, ¢, 7°, 6% € H*(2),
then there exists a unique solution to Problem P with the regularity:
u, R e C'([0,T}; V)NCX0, T]; H), ¢, T €C'([0,T]; EYNnC*([0,T]; Y).

To obtain the exponential decay of the solutions to Problem P, we will assume that, for
every tensor &;; and every vector ¢;:

Buijéuéij > C&ij&ij, Hijtit; = C*Lig, (13)

for two positive constants C and C*.
Even if the above assumptions are quite natural, we need to impose also two more technical
conditions on some of the tensors. Let us suppose that there exist two constants, 71 and m»,

such that:
aij =m&; and oy = magi;. (14)

Notice that, for isotropic and homogeneous materials, assumptions (14) are satisfied when-
ever the corresponding constitutive parameter is different from zero, because, in this case,
¢ij = ¢8;; for a constant ¢ # 0 (6;; denotes the Kronecker delta).

Therefore, we have the following (see Magafia and Quintanilla 2020).

Theorem 2 Under the assumptions of Theorem 1 and (13)—(14), the solution to Problem P
is asymptotically stable; that is, there exist two positive constants M and o, such that:

IE@N < MIEO)[le™,
where the energy of the system £ was defined in (12).

Finally, to provide the numerical approximation of Problem P in the next section, we
will obtain the variational formulation of this problem. Thus, let H = [L2(£2)])¥ and O =
[L2(£2)]9%4, and denote by (-, )y and (-, -) ¢ the respective scalar products in these spaces,
with corresponding norms || - ||z and || - || o. Moreover, let us define the variational spaces
E=H}(2)and V = [H] ()1

Then, applying Green’s formula to Eqs. (1)—(4) and using boundary conditions (8), we
have the following weak problem.

Problem VP. Find the velocity v : [0, T] — V, the volume fraction speed e : [0, T] — E,
the temperature 0 : [0, T] — E, and the microtemperatures M : [0, T] — V, such that
v(0) = 1°, €(0) = €%, (0) = 6°, M(0) = M° and, for a.e.t € (0, T):

P i (), wi)y + (Ajjruri(t), wi j)y = (@ij0@), wi,j)y — (Bijr R (1), wi j)y
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— i), wi )y Yw= (), €V, (15)
J(@),r)y + (Aijo,j(@), ri)y +&(@®), 1)y = (a;jM; (@), 7 )y +« @), 1)y
—(HijTi(t),r )y — (Gijui j(0), r)y — (FijR; j(t),r)y Vr € E, (16)

c(@(1), 2)y + (K50:(0), 2, )y + (KijTi(t), 2, )y = (dijMi (1), 2z, j)y
_(A,‘lei(t)» z. )y — (bijM; (1), 2y — (aijvi, (), 2)y — k(e(®), 2y
—(Hijp.i(t),z,j)y Vz€E, 17)
(cijMj(t), &)y + (Cijri R (1), &) + (CliaMi (1), & j)y = (bij0(t), & j)y
—(Briijuk,1(t), & )y — (Fijo@), & j)y — (d;j0 j (1), &)y — (ajje (1), &)y
—(A70.;(1), &)y — (A} M (1), &)y VE= (&), €V, (18)

where we recall that the displacement, the volume fraction, the thermal displacement, and
the microthermal displacements are then recovered from relations:

t

t
u(t):/ v(s)ds + u®, w(z):/ e(s)ds + ¢°, (19)
0 0

t t
r(t):/ 6(s)ds + 7°, R(t):/ M(s)ds + R°. (20)
0 0

3 Fully discrete approximations: an a priori error analysis

In this section, we now consider a fully discrete approximation of Problem V P. This is done
in two steps. First, we assume that the domain §2 is polyhedral and we denote by 7" a regular
triangulation in the sense of Ciarlet (1993). Thus, we construct the finite-dimensional spaces
V" C V and E" C E given by:

Vi = (" e [C@@: 2y, e [PI(TP))* VTreT", =0 on 882}, 1)
E'={"eC@): nly, e PI(Tr) VTreT", y"=0 on 382}, (22)

where Pj (Tr) represents the space of polynomials of degree less or equal to one in the element
Tr,i.e., the finite-element spaces V" and E" are composed of continuous and piecewise affine
functions. Here, 7 > 0 denotes the spatial discretization parameter. Moreover, we assume
that the discrete initial conditions, denoted by ub, yOh, (pOh, O 7Ok gOh RO and pMOR,
are given by:
u'h = p{zuo, 20 — p{zvq @O = gg[)o’ O — 5160’

70 — 5107 90 — 7;5100’ R — Pf’RO, MO — IP{zMO’ (23)
where ’Pf’ and ’Pé’ are the classical finite-element interpolation operators over V" and E",
respectively (see, e.g., Ciarlet 1993).

Second, we consider a partition of the time interval [0, T'], denoted by 0 = 79 < #; <

- < ty = T. In this case, we use a uniform partition with step size k = T /N and nodes
t, =nktforn=0,1,..., N.Fora continuous function z(¢), we use the notation z,, = z(t,)
and, for the sequence {z,,}flvzo, we denote by 6z, = (2, — Zn—1)/k its corresponding divided
differences.

Therefore, using the backward Euler scheme, the fully discrete approximations are con-
sidered as follows.
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Problem VP!, Find the discrete velocity v'* = {v"*: ”}N C V" the discrete volume
fraction speed "% = {ehk’”}N o C E" the temperature Qhk = {6’}’1”‘}”_0 C E" and
the microtemperatures M — {th"}n —o C VI such that v*0 = 0 ohk0 — 01
ohk.0 — gOh  pgik.0 — MO and, forn =1, ..., N:

hk, hk, h hk, h
((SU " >, W; )Y + (Azjklukl » Wy j)Y = (alje " w,"j)Y - (Bijkle’ln’wiyj)Y

(G wl Dy Y = i e V7, (24)
VT )y+<Ai,-<p, Dy F 5@ My = (@Mt )y
—(Hy Ty = @y k@ ey
—(F,,R’“‘” My vt e EP, (25)

c(80"", My + (K505 Py + (K 2y = Mt 2y
—(ALMI" My — by M Yy — a2y — ke 2y
—(H,,w”,k”,z,,,ay v e £V, (26)

(cij MG Ny + (i REY" &)+ (Clg M 8y + (AL M €Dy
= (b 0" " &l Dy — (Fije"™ " &l )y — (@™ gy — (ijet gy
—(AGO" EDy = Buijni" €y VE = € e v, 27)

where the discrete displacement, the discrete volume fraction, the discrete thermal displace-
ment, and the discrete microthermal displacement are then recovered from relations:

n n
n_ kahk,j +ul, gk — kZehk,j + 0 (28)
j=1 j=1
n n
"=k Y M 4O R =y MR 4 RO (29)
j=1 j=1

The existence of a unique solution to Problem VP¥ can be easily proved using Lax—
Milgram lemma and taking into account assumptions (11)—(14).

The aim of this section is to provide the numerical analysis of Problem VP. First, we have
the following discrete stability result.

Lemma 1 Under the assumptions of Theorem 2, it follows that the sequences
{uhk, vk oh go , ek ghk ghk  phk th} generated by Problem v phk satisfy the stability
estimate:

0" 1 + IV 1T + 1M 15 + 19" 1 + ™" 15 + 16" 1y
IV + 1M+ VR < C

where C is a positive constant assumed to be independent of the discretization parameters h
and k.

Proof First, if we take as a test function wf’ = v;’ k. in discrete variational equation (24), we
find that:

hk,n hk n hk,n hk,n)

hk,
)0(51) s )y + (A’Jklukl , vi,j 9hk,n ”)Y

7,]
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hk,n hk n hk,n
, )y )

_(BthIR Y-

(Cl/(p s

Thus, taking into account that:

hkn k. U yhen 2 hk,n—12
R T LA R e FA P

we find that:
2,0k {”vhk’n”%i - ||"hk’”71||%4} + i{(Aukzu’;Z";", “fl.l}'n)y - (Aukzui’k,”‘l u%’”_l)y
—i-(Aijkl(qul" Zk," h, lh];n hk” by }
= (a;;0", ,hlj "y — (Bz]klR;lf];", ,h]; ")Y G, vfl,];’")Y- (30)

— ehk,n

Second, taking h as a test function in (25), we have:

hkon ik, hkn bk, Wk ko _ hkonhk,
J(8e"™", e My + (Aijel " €Ty + E@ ey = (i M €y

hk,n hk n hk n hk hk, hk hk,n _hk,
—(HjjTi ", y = Gijug [ ey + i@ ey — (Fi R ey
and using the estimates:

J
hk hk hk 2 hk,n—12
J(8e™" e ’n)YZ?[||e My = e ||y]»

[\

we obtain:

J _ 1 hkon hk, hkon—1 hk,n—1
1 = e i+ el ety = gl oy

hkan hkn 1) hkan hkn 1) }

+(Alj (§0 @i

hk,n 2 hk,n—1)2 hk hk,n—12
T P P R L ||y}

hk n _hk,n hk, n hk n hk n hk,
= (a;; M € )y (Hljt )y (CU s My

+x<9”“ MMy — (F RIS ’“‘*">y. (31)
Third, choosing 7" = 9"k a5 a test function in (26), it follows that:

c(89hk n Qhk n) + (K Hhk n hk n) + (K,]‘L'hk n7 Qh-k'n)y — (dijMihk,n, Gh-k’n)y

»J 5J
—(A th n Ghjk n) (blj th n Qhk n) (al] hk n ghk ")y
_(Hljwhk n7 0}7{ n)y _ K(ehk,n, Qhk’n)y

Keeping in mind that
C
C(Sghk’”, ehk.n)y 2 ﬂ {Hehk,n”% _ ”9hk,n—l ||2Y} ,
we find that:

ﬁi”@hk,"”y |07kn= l||y}+(Kl/9hkn hkn) L {(K,,r 0 t’f;k,n)y

hk,n—1 _hk,n—1 hk,n hk,nfl hk,n hk,n—1
_(Kij‘[’i ’T,j )Y—i—(K,'j(‘L"i -7 )’T,j —T’j )Y]
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— (dijMihk,n’ Q,hjk,n) (A th n ei;k n) (bl/th R Qhk n) (a” lhk/ n Qhk’n)y

—(Hygl " 61"y — x(e’”"", 6" ")y (32)

hk,n

Finally, taking &; h— = M;"" as a test function in (27), we obtain:

(ci M M)y + (o RY™ My + (Cla My " M%)y

i,j
3 hkn hkn hk,n hk,n
+(A > )y — (Bklz]”k[ > Mi,j )y

—(bijehk’", M’”‘r") + (Fyj"™ M7y

+(dij9flik’n hk n)y + (atj hk n7 hk n) + (Az] hjk n, Mihk,n)y — 0,

and, since, using (11), it follows that:
(Cij(SM;Lk,n’ th > = {“th n”H “th n—1 ” }

we have:

G hk.n ok, hkn phk
ﬁ{uM”k’"nH |7 l||,1,}+(c”,de,”, 7y +2k{(c,,sz LRI

hk,n—1 hk 1 hk, hk,n—1 hk hk,n—1
(Cl]kleln > " )y +(Cz]kl(Rkln Rkln ), R- ‘,n - R,‘ j,n )Y]

= (Buijuy" M “’”)y+(b-~9hk’" MYy — (B, My — (6" iy

L

_(alJ hk n th n) (A,2, I;k n Mlhk n) (33)

Combining now estimates (30)—(33), after easy algebraic manipulations, we find that:

2k [”vhk’n”% - ”vhk’nil”%i} + ﬁ{(AljklMZkln’ uzhljn) (Azjkluzkln : M?,]},n_l)Y
=l )
+21k [||ehkv"||§ - ||ehk,n—1”2yl [(Alﬂp] n (p}ik myy — (Al](ph]kn I (p}:kn by
HAG @ = ol o - wﬁ"’"‘l)y}
a1 — G+ 1 — )
+2k {Hehkn”” o™ IHY} + (K50 hk "o i Ty + 5z {(Kuthk” Th,k'n)y
_(Kijr’llz_k,nfl, men=ly (K (_[hk o T’I;k,nfl)’ _L_yl;k,n _ T’I}k,nfl)Y]

(6))
7 i, — gt 1||H}+<cl,,thk" My
F(Gju qujn hkn) +(A3 thn th "y — {(Cl,sz,}:ﬁ"’,Rﬁ'}’")y

b1 phk.n=1 hk, hkn—1\  phk, hk,n—1
—(Ciju Ry Ry )Y+(Czjk1(Rk,”—Rk," ) R — R )Y}

+(Bz]k1R,}:];n, e ”)Y + (Bkl,JuI,Zkl”, th; My + (g—u‘/’ n le;,n)y
+(Hy T, ef’}"")y + (Hijg"" 0"y + (AL + A" M)y

= (™1 + g1 + ||VR"“ %) +elvmten,
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where € > 0 is a positive constant assumed small enough, and C is a generic constant, whose
value may change from line to line, and it is independent of the discretization parameters &
and k.

Keeping in mind assumptions (10), we find that:
(Czjk[ hk n th n)Y + ((Al + A2 )Qhk n th n) + (K Qhk n 9hk n)
+(AfM hk "My = CUVOME g A VMG M ).
Observing that:

Bl hln o ghkon 1 hen
(Bt R !5y + Bugul" M5y = 2| B R %)y

hk,n—1 _ hk,n—1 hk, hk,n—1 hk, hk,n—1
_(Bi]kleln Juln )y+(Bl]k1(R n_Rk]n ), ulm — )Y]

b ij i,j
(@jn, ol LYy + (G hkn’ ony, = %{(Qi(phk,n, hk, 1y — (@) ko= ],u?’/;,n—l)y
(&) ((phk,n _ gohk,n—l)’ uﬁ’}’” _ ulfl,l}.n—l)y}’
(H”Thkn hk, n) + (Hlj(pﬁk,nieyhjk,n) _ [(Hlj_fhkn’(ph]k "y — (Hije" hk,n— 17¢thk$n—1)y

hk,n hk,n—1 hk,n hk,n—1
+(Hij(r,i -7 ),(P’j -9 )Y]s

using assumptions (11), it follows that:
Aira (" =", " — "y + 2By (R = Rl —uls =y
+(Cljkl(th " Rli”;n 1) th,];’n - hk " 1)Y + 2(&ij (‘Phk " <ﬂhk " u hk i uﬁ]}’"_l)y
FE |t — (phk,nflllz >0,

(Alj((phkn hkn b, gohkn hkn by _’_Z(Hl](rhkn _ ka1 (ph{c,n (phjkn by

5 Y
+(KU (T,};k,n _ T,};k,n 1) _L_hk n_ Th!(.n—l)y > 0.

o J
Therefore, multiplying the above estimates by k£ and summing up to n, we have:
k(2 hk.n  hk, hk, hk,n hk,
PV Ny + (Aijrug " w7y + Tlle mF + (Aijo " @y

+E "I + 015
KT Ty Coll MM+ (Cora RES™ RISy + 2(Bijr REY™ ul ")y

ki > lj
2G50 Sy 4 2(H T My

n
= kY (1M1 + g™ 1 + VR I ) + € (10 1, + 19 1 + 1™ 1
j=1
HIVE " 15 + 1615 + 1% 15 + 1V 15 + 1M1, + ||VR°h||2Q).

Finally, using again assumptions (11), we obtain:

hkn
)

hk,n hk,n B hk,n  hk,n B hk,n  phk,n kn
(Aljkluk[ Sy UG )Y+2(szkleJ YU )Y+(Cljkle’l 7Ri’j )y +2@ije Ui j

+E Q"G = C (Va1 + VR G + o3 ),

hk, hk, hk, hk,
(Aijo " @5y + 2(Hy 7" 0 "y

Y

hk,n _hk,n hk, hk,n 2
KT Ny = (I + 19, ),
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and so:
e 7 N o e e A R L L U TR N v
MM + VR G,
n
= kY (N1 + 19" 1 + IVRT15) + (10" 1 + 1915 + 1% 1
j=1

HIVE" 1 + o™ 15 + 10”15 + 1V 15 + 1M 13 + I VR ||2Q).

Therefore, applying a discrete version of Gronwall’s inequality (see, e.g., Campo et al.
2006), we deduce the desired stability property.

Now, our aim will be to obtain a priori error estimates on the numerical errors from the
approximations given in Problem V P, We have the following.

Theorem 3 Let the assumptions of Theorem 2 still hold. If we also assume that:
aij(x)=a,-j, Ol,'j(x)=Olij forall x € £, (34)

and if we denote by (v, e, 0, M) and (vhk, ek ghk th) the respective solutions to prob-
lems VP and VP, then we have the following a priori error estimates for all w" =
(whm N gh = (ghmN_ VI and rh = (he)N_ o = (ghm N

hkon (2 hk,ny 12 hkon (2 hk,ny 12
Og}nglﬂvn—v g HIV@" —u"™")lG + e =™ lly + 1Ve" =" "lly

HO" = 6"+l — M+ IV @ = T+ M = M
HIVR — R )

n
< Ck Y (187 = 807 1y + IV ! = sud) I + 97 = wh ) + o/ — w1
j=1

Hled —sel I + 11V — 8D + IVl —r"DIF + lle/ — ™|}
+H167 — 807 |13 + V(3 — st

HIVE! -

+llo) — I3 18— MU

HIVR = 8RO + IV M — EM))% + 1M — sh*fn%,)

j h,j j+1 h,j+1y2 j h,j j+1 hj+1y)12

w0 fid =t = @It Wt el — T — (e
j h,j j+1 h,j+1y2 j h,j j+1 h,j+1y2
M — g8 — (M — gD, o — T — o7t — )]

+C max 10" —wh I+ e =G 4 0 — 2+ e — g

+C(||v0 — o5 + IV@® = a1 + l1e® — 15
IV =™l + 18 = 6115
+16° = 6%} + 1V — <), + MO = MO, + VR - RO)IG).  (35)
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242 Page 12 of 27 N. Bazarra et al.

where C > 0 is a positive constant assumed to be independent of the discretization parameters
but depending on the continuous solution.

Remark 1 We note that assumption (34) implies that these terms are homogeneous. Such
conditions are found, for instance, in the case that the material is homogeneous and isotropic,
that is:

aijj (x) = acS,-_,-, a,‘j(x) = 013,"/' forall x e .Q,
where a and « are constants and §;; represents the Kronecker symbol.

Proof First, we will derive the estimates for the velocity. Thus, subtracting variational equa-
tion (15) at time #, for a test function w = w” € V" and discrete variational equation (24),
it follows that, for all w” = (wh)l_] e vh

. hk,n h hk,n h hk h
p @ = 8v; " wy + (A (g — wge ), wit )y — (aij (0" — 075", wy' )y

+(Biju (R, — REG™, wlt )y + (@i (0" — ™), wlt )y =0,

and so, for all w”" = (wh)l_] e vh

p (] — s W — vy
+(Aijk1(142'1 Mk; "), v} ,h];”)
—(ay (0" = "), v — fﬁ")
+(Biju (R — Ry ”) S
+(;,~j(go" —m o — vff’?”>

=p@! — hk "ol —why
+(Aijk1(uk,1 - MZﬁ'”), v = wlh,j)Y
—(aij (0" — "M, v —w] )y
+(Biju (R, — RV —wl )y
F@j " — @™ —w) )y
Keeping in mind that:

. hk,n hk,n Y fk,n
@F = 8v;"" v — v,y = (0 = 8vf, v — v, )y

hk -1 hk,n—12
TR L A e A G
hk,n hk,n k,n
(Aijir (g —wy ),y — vy = (Aijia (ug —ukl ), Uy —oui )y
hk, hk,
+( Ak gy — gy, duf ;= dui My,

o hky oo n nky L o hkny  n hk,n
(A = ™. 80ty = sul’sMy = S A =™ —ulsmy

— hk,n—1 —1 hk,n—1
_(Aijkl(uz’l _ukl )’M?,j — U )

B n hk,n n—1 hk,n—1 n hk n —1 hk,n—1
+(Al]kl(uk] “kl (uk,[ - ”‘kl ), Ui j—u; N ( ”i,j ))Y}7

Y

where we used the notations §v"* = (v — v"~!)/k and Su” = (u" — u"‘l)/k, we obtain the
following estimates for the velocity:
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P hk,n (2 —1 _ yhkn—1 hk,n hk.n
R PRI " 5 | Ay = =l
- hk.n—1 —1 _  hk, 1
_(Aijkl (MZ’[ — Uy, [n youl = )

ij i,
hk n—1 n hk,n n— 1 hk,n—1
e e R R Ty A s Vg
hk, k. o hk,
+(Bijkl(R]r(l1 Rkln) v; /n)Y + ({U (9" — M, v — Ul-,jn)
hk, hkn
—(a;j (0" = 0", v, — v Dy

< c(nb" — 8V |G+ IV@E" = su™) |G + IVE" — w5 + V@ — a5,
Hlv" = w1107 = 0"+ " — "I+ IVRT = RMIG

1

+@v! = 5o v —wlhy ) Vel = @)L e VI (36)

Now, we will derive the estimates on the volume fraction speed. Therefore, subtracting
variational equation (16) at time 1, for all » = " € E" and discrete variational equation
(25), we get:

J(&" — selkn phyy 4 (4@ - "), iy e - gkn, rhyy

— (e (M = M) Py + (i () — 2 ey + iy = w!s"), iy
(0" — gk, h)y—i—(F,](R" —th") My 20 Wik e B,

and so, for all ¥ € E":

J(@ = 8eMn & — MMy 4 (A (9l = @l = Ny HE" = g e =y

(a,,(M"—th"xef’j— Yy iy (27 = ) e — oM,
+(§l](ul - uflk m, el ok, MYy — k(0" — ghicn gn _ Ghk, Yy
+(F; (R” —Rl’]”;”) e — ey
— J(e” _ hkn e — h)Y + (Alj((/{nj hk n) en _rh)Y +E(§0 kn’en _ rh)y

hk n hk n

_(aij(Mn B ) el =iy + (H,](r’l ). ey =rly
+({l](uz N u[hk/n) e — rh)Y - K(Qn — ghk ”, e” h)y
+H(Fy (R = RIM™), e — ryy.

Taking into account that:

(e-n o 8€hk’n, e — ehk,n)Y > (en — 8", " — ehk,n)y
hk, 2 -1 hk,n—12
e — e — flen ! — ehn ]

2k {
(Aij (0" — @"F") e — M)y = (A (¢ — "5 6% — STy
(A (" — "), ¢ — 86" My,

(Aij (9" — hk") 8" — 8" ")y ﬁ[(Aij(q{"j hkn) iy

90, @

“1__hkn=1y a—1 _ _hkn—l
—(Aij (" =" h), rﬁ -9 Dy

+H(Aij (¢, — hkn hkin=lyy o hk.n _ ((pz—l _ (pﬁk,nfl))Y]’

e -,
W
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(@ — b o = My = (g b gt ey e — gt
R A T o e e Gl s’”""*)ny},

where we used the notations se”” = (¢ — ¢"~!)/k and §¢" = (¢ — ¢"~1)/k, we have the
following estimates for the volume fraction speed, for all r" € E”:

- - 1 hk, hk,
R L e L R [ R e N R
—(Ajj ((pflfl hk n— 1) gon 1 (p}ik n— I)Y
hk, hk 1 hk hk
(Al/(§0] _(pj n (q)n 1 _ n— )) (/) n ((pn 1 _ n— 1)) }

%— n hk,n2 n—1 hk,n—12 n __ ghkn _ en—1 _ shkn—1y2
= {lg" = PR — gt — PRI g7 — e — g1 — gk )

hk, hk hk hk,
_(Olij(M,'n - Ml'l n)’ eflj - n)Y + (Hl/(T n)v e?j —€; n)Y

+(&ij(u} ; — u?l;’"), e’ — ehk’”)y —k(O" — th’”, e — ety
+H(F(RE = RN, e = ehomyy
= (1" =8¢} + IV (@" = 89" + IV (" = I + 190" — ™)1,
Hle" =I5 416" — 6" 15 + lle" — "M T + IVR" — R
HIV@" = u" MG+ 1M = MU V@ =
(8" — el o _ rh)y). 37)
Now, we will obtain the error estimates on the temperature. Subtracting variational equa-

tion (17) at time ¢ = t, for a test function z = z" € E" and discrete variational equation, we
find that, for all 7 € E":

c(6" — 80" Zhyy 4 (K70 — 010, 2 )y+(K,,(r — gk oy
_(dij(Mln - hkn) z )Y+(A1 (M" — hkn) z )Y+(blj(Mn _th ny 2y
+(aij (v} ; — vf’”;n),zh)y + (Hij(¢", _(p%;k " Z’j)Y k(e — hkn7z )y = 0.

and so, for all z/' € V", it follows that:

C(én _ Behk,n, 9}’! Ohk n)Y + (K (0}1 _ Qf;k,l’l), 9’}:11 _ e’lillk,n)y

Ky (0 = T, 01—

—(dij(M]" = M), 07 — 0"y + (AL (M) — M, 0 — 0"y
+(bij (M} — M), 0" — 0"y
+(aij (v ; — v-hkf") 6" — ghkmyy
+(H;j (¢ — hk "), 0" — hk My — k(" — ek gn — ghkmyy
—c(@" — th,n, on — Zh)Y
(KGO — 0" 0m — 2y (K (- TR e — 2y
—(dij (M} — M), 0% — My + (AL e — M, 0 — 2ty
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(b (M — M), 0" — My + (a0 — o) 0" — My
+(Hy (" — hk ey g, — )Y — k(" — g — .
Keeping in mind that:
(@ — so"n g —ghlony, > (@7 — spn 9" — gk,
A R 3 B
(Kij (2 = <), 00 = 075"y = (Kip(x — "), 2 = 82y
(K (2 — ), 87— 57y,

(Kij (" — "), 62 — 8ty = [(K,,( -y, o= iy
_(Kl.j(l.’njfl _ T,I;k,nfl)’ _L_,rlffl _ T’I}k,n I)Y

+(Kij (7 — r’]}k’" - (Iqu_l - rz.k’"fl)), T — ‘L'ﬁk"l — (‘L'f}_l — ‘L',};k’"fl))yl,
(aij (v} ; — Uﬁﬁ’"), 0" — My = —(a;; (0 — v, 0" — )y,

where we used the notations 66" = (6" — 9”’1)/k and 87" = (7" — ¢! )/k and assumption
(34), we get the following estimates for the temperature, for all 7 € E":

1
ﬁ[”e”—Gh"’"llzy—lle" L 1 B A R O N

hk n hk,n —1 hk,n—1 —1 hk,n—1
{(K,,(r R P G L W L Y

hk, -1 hk,n—1 hk, -1 hk,n—1
+(Ki,-(rf;—r,, R A R G

—(diy (M} = M), 0% — 0"y (AL — MR, 0 — 0"y
+(bij (M) — M, 0" — ehk’")y + (@] ; —osm, m — 0"y
+(Hj (¢ — hk n) 9}1 S n) — k(e — M gn — ghkny,
< c(né" - ae"ny +IVGE" - Sr")u%, FIVE" =% + 1V =Ry 3,
160" =215 + lle” — " 15 + 1V (" — ")y + I1M" — M|,
" — vhk,n”%{ + (56" — sohkn gn _ Zh)y 6" — Qhk,n”%)
+e|VEO" — 0" + e V(M — M, (38)
where € > 0 is assumed small enough.
Finally, we will obtain the error estimates on the microtemperatures. Therefore, we subtract

variational equation (18) at time #, for a test function & = & h e vh and discrete variational
equation (27) to obtain the following estimates, for all Eh = (Sf‘);;l eVvh:

(cij (M — M5 ERYy + (Cija (R, — RES™,ER ) + (Clyy (M — MES™), ED )y
+<A?J(M" M’”‘ M, Ey = (bij (0" — 0"y gl )y

Ry (g — g, EN Dy + (i 0" — eh"">s)y+<al,<e M), gy
+(AZ 0" — 60", & Yy + By, — ! "), E Dy =
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and so, for all Eh = (éﬁih)fl:1 e V" it follows that:

(cij (M} = 8ME"), M} — M)y + (Cija (R — RG™ . MYy — M)
H(Cg (MP = MY, MI = M)y + (A3 (MY — M5, MP — M)y
—(bij (0" — 0", MI L — MMy + (Fy(o" — @"m), MI L — M5y
(i (07 — 075", M = MMy (el — e M — My

H(AZ 0 — 075, MY = My B — ™) M — My
= (cij (M = SMI"), M — Elyy + (Ciju (R, — RYY™). P!, — &)

(g (M — MES™, MI L — &l Dy + (AF (M7 — MIE"), M — gy

—(bij (0" — 0"y, M]  — & Dy + (Fij(e" — o™y, M} — &) Dy

H(dij 0" — 0", MP — &y + (aije”; — ", M — gy

HAZ O — 0", M — &MYy + Buij (f — "), M — Py

Keeping in mind that:

(cij (M7 = SMEE™), M — MIS™)y > (cij (M)} — M), M' — M)y
C _ _
+ﬁ [”Mn _ th’n”%—] _ ”Mn 1 _ th,n 1”%_1} ,
hk hk, hk, 5
(Cijkl(R]?J - Rk’l,n)’ M,'rtj - M,'Jn))’ = (Cijkl(R]r;’l - RkJ n)’ R?J - SR;I’]')Y
+H(Ciju (R, = RYY™), 8R!, — SRy,
1
hk, hk, hk, hk,
(i (R, — RI%™), 8RE, — SRIN™)y = Ig—k{(c,»,-u(Rz,, — RN R~ RISy
- hk,n—1 - hk,n—1
_(Cijkl(RZ’ll - RS, R?,jl - R Dy
hk, — hk,n—1 hk, — hk,n—1
H(Ciju(RY — Ry — (R = RO, RY = RIS — (RIS — RS ))y},

hk,
(cij(ely — ey ™). M — &)y = —(auij(e" — ™). M — &y

where we used the notations SM" = (M" — M"~')/k and §R" = (R" — R"™")/k, and
assumption (34), we obtain the following estimates for the microtemperatures, for all & h =
EH eV

C

— — hk hk
S {iar — ey — g — R L (g = a5 M — My

ijk ij
1 hk hk
+ﬁ{(cifkl(RZ,z — Ry R = Ry
- hk,n— - hk,n—
—(Ciju (R = R b, Rz‘n,jl - R Dy
hk, - hk,n— hk, N ikn=
+H(Cijr (R — R — (R = R D), R — RIS — (RIS = RY" 1))’/}
AL M — M - Ry
—(bij (0" — "), M] = MYy 4 (Fij(o" — "My, M — MMy
H(dij 0" — 0", M — My — (et — e, M] = My
i hk hk hk,
HAG O = 077" M = M)y (Buaij (= ul ") MY — My
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< c(uM” —SM"||3 + IV(R" = SR |[ + IV(M" — EM1G + IV@" — a5,
HIM" = &M+ 118" — 6" + Nl — "I + IV R = RMMIIG
Hlle” — MM - M — M, M — gy + M — MM )
+elVO" — 0" T + e VM — MMM, (39)

where € > 0 is assumed small enough.
Using assumption (10), we find that:

(Clig (MY = M™M= M5y + (A + A7 — 615, M7 — My
(K0 — 051", 0% — 011"y + (AT, (M) — M), My — My
> Ko(IIV(0" — "6 (13, + 1IV(M" — M"o™) |15, + | M"* — M"™"12).

Therefore, combining estimates (36)—(39), it follows that:

P fvn - hkny2 A=l hka—1y2 1 n Moy n hleon
ﬁ[”v -0 ”1—1_”” -0 ”1-1 +ﬁ (Aijkl(”k,[_uk’[ )7”1',]'_“,‘,]' )y

1 hk,n—1 -1 hk,n—1
—(Apjr gy —wey ™) ouy =g )y

B n hk.,n n—1 hk,n—1 n hk,n n—1 hk,n—1
F(Aijur gy —wy ™ = Qe — w7 ) wg =g = G —u ))Y}

B n hk,n n hk,n ) hk,n n hk,n
+(szkl(Rk,1 - RkJ ), Vij— vi,j )y + (Bklz](uk,l — U ), M,‘,j - M )y

J _ _ 1 hi hk
o et =g — et = M Al = ol o — ol

—1 hk,n—1 —1 hk,n—1
_(A”(QDTIJ - w’] " )7 WZ _w’[ " )y

hk, — hk,n—1 hk, - hk,n—1
Ay = " = @ = ) e = ol = @ = )y

£ - _ _ _
_’_ﬁ[”%'n _ Shk,l’l”% _ ”%.n 1 _ Ehk,n 1”2Y + ”E}’l _ Ehk,n _ (%-l’l 1 _ Shk,}’l 1)”%/]
F(Hi (e = 7). e = Ny - (il = @, 0% — 07y
hk hk
@] —wS"), e — ey (G (" — ") =y

+H(Fy (R, — RINY, " — ™M)y + (Fij(p" — ™), M, — M%)y

1 _ _ 1 hk hk
o {10 =0 et — oM | | kel = . = ey

—1 hk,n—1 —1 hk,n—1
—(Kij(f,”j -1 ), r”} -7 )y
hk,n —1 hk,n—1 hk,n —1 hk,n—1
+(Kij (= =@ =)t = (T ))Y]

& _ _
+§ !”M}’l _ th,n”%[ _ ”M}’l 1 _ th,n 1”%1}

1 hk hk - hk,n—1 - hk,n—1
+ﬁ{<c,~jkz(R,’z,, — R R = Ry — (Con (R = R, RIS = RISy
hk - k,n— _ hk.n—
H(Co (R = R = (R = R, RE = RIS — (RETY = RIS )y )
< c(||.>" — 8" |3 + IV@E" = su™) |5 + IVE" — ") + V@ — a3,

Hv" = w' i 116" = " + " — "I+ IVRY — RMMIIG
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@ — S0 Wt —why + 16" — 8" |3+ IIV(@" — 81 + V(" — I
V" — "M + e =I5 + 1M = MY + IV E" = )
+(@e" —8eM e — My + 6" — 860" |5 + [V (E" = 8T + V" — )y
+||011 _ Zh ”%/ + ”en hk n”Y + ”v hk,n”%q + (59" _ SQhk’n, 0" — Zh)Y
HIM" =M™ 3 + V(R = SR + IV(M" —EMIG + IM" — &3

M — sMI M — ;;.h)y) vwh, gt e vi e BN (40)
Now, we observe that:
(Bijkl(lRZl RN, su! f”j”)y+(3k,l](uk, u,’j’;") SR!; — SRy
hk hk, hk hk,n—
= E{(Bijkl(Rkl Rkln) - ,Jn)Y _(Bl]kl(R Rkln 1) ulr'lyjl - i,j,n l)Y
hk, hk, hk, hk,n—
+ (B (R}, Rk," (R L R L o
hk, hk,
(;,,(u,, —u"), 5" — hk">y+<¢l,<¢ — "M, sull = su "y
hk, hk —
= @ —ufm.em = "y — @y =l 1= gy,

hk, - hk,n— —
F@ ] — st — @ =), ot — gt —(rp" o gttty ),
(Hij (t = 75, 89", — 89" ")y + (Hij (¢ — o), 577 — 57"y

hk,nfl) n—1 hk,n— 1)

_1
A @ = = oy = @ = g = ]
hk — hk hk hk
F(Hi (2 — o =tk g gk g ",
so using again assumptions (11), it follows that:
hk 1 hk, — hk,n—1
(Aijuar(uf; — " (hk "), hL;{,,l— ,,-”—(u]g’k,1 ui" o
+2(Biju Ry, — R — <R — R Ul =S — @ =)y
hk, hk, hk, hk,
+(Ciju (RY, — RN — (R,':,l — RO R — RIS — (R — RISy
200" — g — (1 = gty D Dt kst
+§||(pn_ hl;n ((pn—] (/)hkn—l)1”2 >0, hk hk l
(Aij (0" — "5 — (@7 = "), " = )y
+2(HU(T" —Thk _(_L,n 1 thkl’l 1)) (pn' _wh{(,n _( n' 1_ hk}’l 1)))’
hkn_ n—1 _ hkln 1 n”_ JJ,In_ n=1_ _hkn—1
+(Kl/(f (f’, ))st,j T,j (T,j T,j ))Y > 0.

Multiplying estimates (40) by k and summing up to n, we have:

hk, hk
lv" — vhk’n”%[ + (Aijkl(uzl Mkln) u - ui!j,n)y
hk, hk
+2(Bijkl(RZ Rk I n) —u; j,n)
hk hk
e — k2 4 (A,, («p =@, o — oy 1 — £

+2(Hyj () — i), " — wh,k ")y +2(&;) (u, G —uthm, et — ey

+(Ki (T —r’f"*”) =y 0" — 0" F M — M
“f‘(cijkl(RZl thn) Rn _thn)

n
<Ck)_ (niﬂ — 80/ |13 + IV@! = su)|f + IV@ —wh )G + V@ — a5
=1
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+lo/ — w5 4+ 167 — 0" 15 + ll! — "5 + VR — R™)IIG
o o o -
+6v] — 80/ vl —wi )y + 1167 = 8el |15 + V(@) — 8pD) gy + 1V (e — "Il
V! — "N + led — ™I I5 + 1M = MPET|3, 4+ V(= )15,
+(@e! =8¢ el — "Dy 4167 = 807117 + V(T = ST +IVET - ")y
107 = T A+ lle? = TG+ o) — "I+ 807 — 80" 67 — 2Ty
HIM = sM |3 + V(R =8RG + V(M7 — EMI)I5, + 1M — &M |13
A i

+oM! — oM™ m) — ] f)y)

+C (10" = o™ 13 + 1V@® — w1 + e -
IV — "1 + 1% — 115 + 16° — 6% 15
HIV@E® = )5 + 1M — MO,
+HIVR® = RO)IG) Vo', g" e Vit h e Eh.

Finally, using assumptions (11), we find that:

Ajrr ;= g™ uf =Sy + 2By (RE, — REY™), ;= ul")y
H(Cij (R, — RE™, R = RIM™y +2(6(0" — ™), uf = ul"y
+elle" = "1 = C(IV@" = w G + VR = RN + lg" = o™ 1),

hk, hk, hk, hk,
(Aij (@ =™, ¢ = @y + 2(Hi (7 — i), ¢ — 0 "y

K (@ = T, T =y = C(IV " = o™ I + 19 = TR ).

Therefore, taking into account that:

n n
kZ(gvj _ 5vhk,j, vl — wh,j)H — Z(vj — phkJ _ (vjfl _ vhk,jfl), vl — wh,j)H
=1 j=1

=" - vhk,n’ " — wh,n)H + (th _ UO, vl _ wh,l)H
n—1

+ Z(vj _ vhk,]7 v —whi — (vj+l _ wh’J'H))H,
j=1

n

n
k Z(Se./' _ Sehk’j, el — rh’j)y — Z(ej — i (ej—l _ ehk,j—l)! el — rh’j)y
J=1

J=1
— (en _ ehk,n, el — rh,n)Y + (eOh _ eO, el _ rh,l)Y
n—1
+ 3 (] = M ] (o it
j=1

n n
kY 607 — s0"d o7 — Ty = (07 — oM — (9771 — p"kiTy 9T — i)y
j=1 j=1
— (91’1 _ ehk,n’ gn _ rh,n)Y + (90/1 _ 00’ 91 _ rh,l)Y
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n—1
+Y 07 = 6" 0] — T — (7T — Ty,
j=1

n
k> @M —sM™ M —g")y
j=1

n
=Y (M —M"™T — (M — MM, M — gy

j=1
— (M}’l _ th,n, Mn _ Eh,n)H + (MOh _ MO, Ml _ Eh,l)H
n—1
) (M — MM M — g — (T — g ),
j=1

applying again a discrete version of Gronwall’s inequality (see Campo et al. 2006), we derive
error estimates (35).

We remark that these a priori error estimates can be used to obtain the convergence order
of the approximations given by Problem VPX_ Thus, as an example, we have the following
result which states the linear convergence of the algorithm under suitable additional regularity
conditions.

Corollary 1 Let the assumptions of Theorem 2 hold. Therefore, if we assume the following
additional regularity:

u, R e H>(0,T; H) N W0, T; [H*(2)]) N H*(0, T; V),

0, 1€ HX0,T;Y)NL®(0,T; H*(2))NH' (0, T; E),
it follows that the approximations obtained by Problem VP"™* are linearly convergent; that
is, there exists a positive constant C, independent of the discretization parameters h and k,
such that:

Jmax {107 ="y V@ = ut ) g + e =y 4+ V(" — ")
HIO" = 0" [y + [l — "y + V" = TN g+ 1M~ My

HIVR" = R*M)o) < Cth+ k).

4 Numerical results

In this final section, we will present some numerical results obtained in one- and two-
dimensional examples.

In the numerical resolution, we assume that the material is homogeneous and isotropic,
and therefore, the tensors defined in Problem P can be simplified. In particular, we will
assume the following form for all of them:

Ajjriuggwij = (A + wu; jw; ; + pu; jw;j forall u = (Mi)f:p w= (wi);izl ev,
a,-_,»@w,-,j = aGw[,,- forall 6 € E,w= (w,'):-izl eV,
Bijki Rk w; j = BR; jw; j forall R = (Ri);jzl, w= (wi);izl eV,

Cijow; j =Cow;,; forall ¢ € E, w= (w,‘)ﬁlz1 ev,
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Ajjp jri =Ag;r; forall ¢, rek,

aijMir,j =aM;r; forall M= M)’ ,eV,rekE,

Hijz;r j=Hz;r; forall z,r ek,

FijR; jr = FR;r forall R=(R)!_ eV, rekE,

K0,z = K*0,z; forall 0, z€E,

Kijtjzi=Krt;z; forall 7,zeE,

dijMiz,; = DM;z; forall M = (M)’ eV, z€eE,

AMizj=A'"Mz; forall M= (M)_, eV, z€eE,

bijMiz j = bM;z; forall M= (M), €V, z€E,

CijuRewi,j = C1Ri jwi; + CaR; jw;,; forall R= (R, w=(w)l, eV,
CliRiawi j = CYRijwi; + C5R; jwij forall R = (R){_,, w= W), €V,
ALO jwi = A%0,w; forall 6 € E, w= (w)l_, €V,

Al Mjw; = A Myw; forall M = (Mj)_;, w= (w){_, €V,

ciiMj& = Mg forall M= (M), &= &), eV.

Hence, using these tensors, discrete problem V P" leads to a linear system for a variable
U in an adequate product space which is solved using classical Cholesky’s method. This
numerical scheme was implemented on a 3.2 Ghz PC using MATLAB, and a typical 1D run
(h = k = 0.01) took about 0.622 s of CPU time; meanwhile, a typical 2D run took about
3.66 s of CPU time.

4.1 Numerical convergence and asymptotic behavior in a one-dimensional problem

As a simpler one-dimensional case, we will consider the following one-dimensional version
of Problem P using the isotropic and homogeneous expressions given above. We note that,
in some cases, the coefficients are collected together, because they lead to the same term.

Problem P!2. Find the displacement u : [0, 1] x [0, 1] — R, the volume fraction ¢ :
[0, 1] x [0, 1] — R, the thermal displacement T : [0, 1] x [0, 1] — R, and the microthermal
displacement R : [0, 1] x [0, 1] — R, such that:

pii = puyy + &y —aty + BRyx + F1 in (0,1) x (0, 1),

J§ = Agur — City —E@+ K + Hroe — FRy —aRo + F in (0, 1) x (0, 1),

¢t = Kty + Hoyy —atty — kg + A'Ry + K*t,, — bR, — DR, + F3
in (0,1) x (0, 1),

¢*R = CRyx + Buyy + Foy —agy — Dty + C*Ryy — AR — bty — A%t + Fy
in (0,1) x (0, 1),

u@©,t) =u(l,t) =¢0,1t) =¢p,t) =0 forae te(0,1),

7(0,1) =t(1,t) = R(0,t) = R(1,t) =0 fora.e te(0,1),

u(x,0) =ux,0) =¢x,0) =¢x,0) =x(x—1) forae x € (0,1),

7(x,0) =1t(x,0) = R(x,0) = R(x,0) = x(x —1) fora.e x € (0,1),
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Table 1 Example 1: Numerical errors for some 4 and k

hik— 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

1/23 1.070021 1.068799 1.068409 1.068338 1.068314 1.068303 1.068300
1/2* 0.537092 0.534805 0.534131 0.534026 0.533997 0.533986 0.533984
1/2° 0.272919 0.268519 0.267229 0.267039 0.266989 0.266974 0.266972
1/26 0.144580 0.136480 0.133980 0.133609 0.133515 0.133488 0.133484
1727 0.085436 0.072347 0.067714 0.066989 0.066804 0.066751 0.066744
1/28 0.060382 0.042813 0.035229 0.033857 0.033494 0.033390 0.033375
1/2° 0.050677 0.030320 0.019950 0.017616 0.016929 0.016724 0.016695
17210 0.047323 0.025500 0.013302 0.009978 0.008808 0.008420 0.008362
17211 0.046323 0.023846 0.010663 0.006656 0.004989 0.004322 0.004209
17212 0.046056 0.023357 0.009722 0.005338 0.003328 0.002360 0.002159
17213 0.045988 0.023227 0.009432 0.004868 0.002668 0.001481 0.001176

where the artificial volume forces F;, i = 1,2, 3,4, are given by: for (x,t) € (0, 1) x (0, 1)

Fi(x,t)=¢ (x(x = 1) = 8),
F(x,t) =¢ (8x —8),

F3(x,t) =e' (4x(x — 1) — 14 + 4x) ,
Fi(x,t) = ¢ Bx(x — 1) — 14 + 6x),

and we used the following data in the simulations:

=1, un=2, (=1, a=1, B=2 J=1, A=1, &=
=1, F:27 (x:l, CZI, K:3, K*:, D=1, b:L
=2, C=3, C*=2, A1=1, A3=1, A2=2

%W

The exact solution to Problem P'” can be easily calculated and it has the following form,
for (x,t) € (0, 1) x (0, 1):

u(x,t) =@, t) =1(x,t) = R(x,t) =e'x(x — 1).

The numerical errors, given by:

hk nk, hk, hk,
max [Ilv"—v My + 1@ —u™")elly + lle” — ™y + 10" — " xlly

0<n<N
+H6" = 6"y + " — "y + 1" = Ty
HIMT = MRy R = REEm gy |

and obtained for different discretization parameters z and k, are depicted in Table 1. Moreover,
the evolution of the error depending on the parameter 7 + k is plotted in Fig. 1. We notice
that the convergence of the algorithm is clearly observed, and the linear convergence, stated
in Corollary 1, is achieved.

If we assume now that there are not volume forces, and we use the following data:

T=20, p=05 pu=7 ¢=1, a=1, B=2, J=10, A=1,
£=5 k=3, H=1, F=01, a=1, ¢c=1, K=3, K*=3,
D=1, b=1, ¢*=2, C=3, C*=5 Al=2 A3=1, A?2=2,
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Fig. 1 Example 1: Asymptotic constant error
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Fig.2 Example 1: Evolution of the discrete energy in natural and semi-log scales

and the initial conditions:
u’(x) =0°0) = ROx) = MP°(x) =x(x — D forx € (0, 1), ¢"=e"=1"=0"=0,
taking the discretization parameters & = k = 1073, the evolution in time of the discrete
energy £"%", defined as:
1
ghen = L oo™ 4+ TP 4 el + MR 4 ANl

hk, hk, hk, hk,
+(Buy™", Ry + CIRS™ 2 + ui™™, o)y + £lp"m )2

hk hkon_hk hk,
+A2 QT 4+ (Hee " oy + Kl " 13 1

is plotted in Fig. 2. As can be seen, it converges to zero and an exponential decay seems to
be achieved.
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Fig. 3 Example 2: Norms of the displacement (left) and microtemperatures (right) at final time over the
deformed mesh (multiplied by 10)
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Fig.4 Example 2: Microthermal displacement and volume fraction at final time

4.2 Numerical results in a two-dimensional problem

For this second example, the square domain [0, 1] x [0, 1] is considered, assumed to be
clamped on its vertical boundaries {0, 1} x [0, 1] and traction-free on the rest of the boundary.
The following data have been employed in this simulation:

R=0.Dx©01, T=1, p=1, r=1, p=1, ¢=1, a=1,
B=2 J=1 A=1, £€=2, «=3, H=1, F=2 a=1, c=1,
K=3, K*=3, D=2 b=2 ¢*=2 C =2 =2 Ci=1,
r=1, Al=2 A’=1, A’=1,

and the initial conditions:

wW=1"=R'=M"=0, *=0%=0,
@O(x,y) = %x, y) =x(x — 1) forall (x,y) e (0,1)x (0,1).

Taking the time discretization parameter k = 0.01, in Fig. 3, we plot the norm of both
the displacement (left) and microtemperatures (right) at the final time and over the deformed
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Fig.5 Example 2: Evolution in time of the volume fraction at point x = (0.5, 0.5)

mesh. As expected, due to the clamping conditions, the displacement and the microtemper-
atures, which are generated by the volume fraction, have a similar behavior.

Moreover, in Fig. 4 we plot the microthermal displacement (left) and the volume fraction
(right) at the final time. We note that the volume fraction, even if it has a quadratic behavior,
changes its sign, being now positive. Thus, in Fig. 5, the evolution in time of the volume
fraction at middle point x = (0.5, 0.5) is shown. As we can see, it starts to increase after
some time and it seems to converge to a steady state.
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