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Abstract
The heat transfer analysis coupled with fluid flow is important in many real-world application
areas varying frommicro-channels to spacecraft’s. Numerical prediction of thermal and fluid
flow situation has become very common method using any computational fluid dynamics
software or by developing in-house codes. One of the major issues pertinent to numerical
analysis lies with immense computational time required for repeated analysis. In this article,
technique applied for parallelization of in-house developed generic code using CUDA and
OpenMP paradigm is discussed. The parallelized finite-volume method (FVM)-based code
for analysis of various problems is analyzed for different boundary conditions. Two GPUs
(graphical processing units) are used for parallel execution. Out of four functions in the code
(U, V , P, and T ), only P function is parallelized using CUDA as it consumes 91% of com-
putational time and the rest functions are parallelized using OpenMP. Parallel performance
analysis is carried out for 400, 625, and 900 threads launched from host for parallel execu-
tion. Improvement in speedup using CUDA comparedwith speedup using complete OpenMP
parallelization on different computing machines is also provided. Parallel efficiency of the
FVM code for different grid size, Reynolds number, internal flow, and external flow is also
carried out. It is found that the GPU provides immense speedup and outperforms OpenMP
largely. Parallel execution on GPU gives results in a quite acceptable amount of time. The
parallel efficiency is found to be close to 90% in internal flow and 10% for external flow.
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1 Introduction

Conjugate heat transfer is a phenomenon in which conduction mode of heat transfer in solid
is combined with convection mode of heat transfer in fluid. Conduction usually dominates
in solids and convection in fluids (Ate et al. 2010). There is wide area of applications in
which conjugate heat transfer phenomenon is observed. For example, the optimal design
of heat exchanger involves the combination of heat transfer by conduction, in the walls of
heat exchanger, and by convection in the flowing fluid. In most of the electronic devices
for regulating optimal temperature level of heat sink, in design and development of heating
furnace used in metallurgical process, in turbo jet engine flow of hot gases, etc., the conjugate
analysis is important. For safe, reliable, and efficient performance of electrochemical energy
conversion system andmanymore, the conjugate condition ismost appropriate (Cukurel et al.
2012; He et al. 2011; Guan et al. 2017). Conjugate study can be performed experimentally
or numerical method. Numerical methods nowadays are used to simulate fluid flow situa-
tions for problems ranging from molecular level to global level. Numerical methods have
advanced from the analysis of flowover two-dimensional configurations to three-dimensional
configurations. Numerical methods are extensively used as a design and optimizing tool in
industries. With the use of computational analysis, multi-phase flow modeling has become
easy, adopting huge fine mesh resolution. Generally, the numerical simulation is performed
by running the codes/software on modern-day computing machines (Bhatti et al. 2020; Khan
et al. 2019, 2020; Ullah et al. 2019).

The thermal and fluid flow behavior study related to parallel plate channel has been
reported in the abundant available literature. Different application aspectswere covered under
various operating conditions. The areas of applicationmainly include electronic components,
equipment and devices, nuclear fuel elements, electric vehicle battery system, heat exchang-
ers, solar flat plate collector, mini and micro-channels, etc. (Meng et al. 2016; Lindstedt and
Karvinen 2017; Poddar et al. 2015; Adelaja et al. 2014). The arrangement of the channel
formed by the set of plates in these studies is horizontal, vertical, or inclined. Among the
research available in the subject of parallel plate channel, some of the investigations are purely
based on the uncoupled mode of heat transfer, while some other investigations are based on
coupled mode of heat transfer (Arici and Aydin 2009; Bilir 2002; Harman and Cole 2001).
For numerical analysis of conjugate heat transfer and fluid flow analysis, finite-difference
method (FDM) or finite-volume method (FVM) is most commonly adopted. SIMPLE algo-
rithm to solve the Navier–Stokes (NS) equation for fluid flow analysis is a very popular
method used by researcher in these areas. However, this algorithm is compute intensive and
slow in convergence and, hence, demands parallelization for reducing the computational cost
achieving faster convergence. To the best of our knowledge, parallelization of this algorithm
in this field is not reported in the literature. The following literature review is pertinent to
parallelization of various codes developed for thermal and fluid flow analysis.

Gropp et al. (2001) demonstrated parallelization of FUN3D code developed at NASA.
This code uses an FVM-based discretization, such that for convective flux approximation,
variable order Roe scheme is used, and for viscous terms, Galerkin discretization is used.
The subdomain parallelization of FUN3D code was successfully demonstrated using MPI
(message-passing interface) tool. The flux calculation phase needed 60% of computational
time, which was parallelized using OpenMP (open multi-processing) tool. Transient NS
equation for incompressible flows in three dimension for analysis of shear flows was solved
byPassoni et al. (2001) developing a code. The parallelization of the developed computational
code was achieved using MPI applying their own schemes (scheme A/B/C). The parallel
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performance was analyzed using two computers with different processors and for various
grid points. The results show that the parallel performance is better for problemwith medium
grid size than larger size. 91% of parallel efficiency on doubling the processors and on
eightfold increase in processors 60% efficiency was obtained. Schulz et al. (2002) used
lattice Boltzmann method (LBM) for fluid flow analysis and established data structures to
reduce the memory requirements. MPI parallelization for grid size of 2 × 107 was used and
achieved about 90% of parallel efficiency. MPI was used for domain-decomposition-based
parallelization of reproducing kernel particle method to analyze three-dimensional flow over
a cylinder, flow past a building. 70 processors were used to obtain speedup of 35 (Zhang
et al. 2002). Peigin and Epstein (2004) used NES code for aerodynamic design optimization
which is computationally very expensive. Hence, MPI was used for multilevel parallelization
of codeNES for optimization. A cluster of 144 processors was used for implementing parallel
execution which provided around 95% parallel efficiency.

Eyheramendy (2003) used FEM analysis of lid-driven cavity problem solving for 50182
degrees of freedom (dofs) on a four-processor Compaq machine. By increasing the num-
ber of threads for different dofs, the parallel efficiency reduced. Jia and Sunden (2004)
used in-house developed CALC-MP which uses FVM and collocated mesh arrangement. To
interpolate velocity values at faces this code uses Rhie and Chow method and SIMPLEC
(SIMPLE Consistent) for coupling pressure and velocity. Out of three schemes proposed,
scheme 1 provided the best parallel performance due to overlap of computational and commu-
nication phase. Lehmkuhl et al. (2007) used CFD code ThermoFluids for solving accurately
and to have reliable results for industrial problems of turbulent flows. The parallelization of
ThermoFLuids was carried out using METIS software on a cluster of ten processors. Oktay
et al. (2011) used CFD code FAPeda which applies unstructured FVM-based cell-centered
tetrahedral formulation. As the problem is complex, it requires heavy computations, hence,
demanding the necessity of parallelization. Using MUMPS library centered on multi-frontal
approach, parallelization of FAPeda was achieved. The CFD code GenIDLEST used for
simulation of real-world problems was parallelized using OpenMP tool by Amritkar et al.
(2012). GenIDLEST solves transient NS equation in a body fitted multi-block coordinate
system using cell-centered FVM formulation. OpenMP parallelism by fine-grained tuning
on 256 cores, the performance was shown to match with the MPI. In another study, Amritkar
et al. (2014) provided parallelization strategies using OpenMP for simulation of dense par-
ticulate system by discrete element method (DEM) with the same code GenIDLEST. Rotary
kiln heat transfer and fluidized bed problems were selected for demonstration of DEM-
CFD coupled problem. OpenMP speedup was twice than the speedup of MPI on 25 cores.
Steijl and Barakos (2018) applied Quantum Fourier transform to solve Poisson equation to a
vortex-in-cell method. MPI was used for parallelization of Poisson solver required for sim-
ulation of quantum circuits. Gorobets et al. (2018) described parallelization of compressible
NS equation for viscous turbulent fluid flow. OpenMP + MPI + OpenCL (open computing
language) were used for parallelization. Grid size of 29 million was chosen and about 250
GPUs (graphical processing unit) and 2744 cores were employed for scalability and parallel
performance analysis. Compute unified device architecture (CUDA) was used by Lai et al.
(2018) to parallelize compressible NS equation on NVIDIAs GTX 1070 GPU. When the
block size was varied from 50 to 750, the parallel efficiency varied significantly showing a
maximum efficiency for a block size of 256.

CFD code ultraFluidX based on LBMwas parallelized using CUDA by Niedermeier et al.
(2018). 95% efficiency for empty wind tunnel problem and 80% efficiency for wind tunnel
with car problem were obtained on eight GPUs. OpenMP was used to parallelize the Green
function-based code which requires immense computational time applying 16 number of

123



219 Page 4 of 25 A. Afzal et al.

threads (Shan et al. 2018). For different discretization methods, the speedup up to 12 was
achieved using 16 threads (Shan et al. 2018). For two model simulation analysis of bacterial
biofilmmodel and solute simulation, FENICS software was used based on FEM. Inmodeling
of bacteria growth dynamics, huge computational time is spent as reported by Sheraton and
Sloot (2018). The computations were performed on 3.20 GHz Intel® Core™ i7-6900 K CPU
running on Ubuntu Linux 14.04 using METIS library. The parallelization analysis revealed
that during the initial growth of bacteria, the number of grids required is less, so the necessity
of parallel execution at this stage is not required (Sheraton and Sloot 2018). Wang et al.
(2018) developed in-house CFD code to solve NS equation for compressible viscous flow in
three dimensions. CPU (central processing unit) + Intel Xeon-phi co-processors were used
for heterogeneous parallel computing employing MPI, OpenMP, and offload programming
model. CUDA, OpenMP, and hybrid OpenMP + CUDA-based parallelization for in-house
CFD codes is also reported in the literature (Simmendinger and Kügeler 2010; Kafui et al.
2011; Xu et al. 2014; Jacobsen and Senocak 2011). Review articles by Afzal et al. (2017)
and Pinto et al. (2016, 2017) provide a detailed insight into parallel computing strategies for
different CFD applications.

The above presented past parallelization research works using different tools for several
applications are reported for parallelization of in-house developed codes using OpenMP,
CUDA, andMPI.These codesmostly belong tofluidflowapplication for analysis of aero foils,
fluidized beds, heat exchangers, etc. Like Amritkar et al.’s (2012) parallelized GenIDLEST
code, Niedermeier et al. (2018) parallelized ultraFluidX, Oktay et al. (2011) used CFD code
FAPeda, Sheraton and Sloot (2018) parallelized FENICS software, andmanymore. However,
none of the work says about parallelization of CFD codes using CUDA meant for conjugate
heat transfer analysis, in which the conduction in solid and convection in fluids is dominated.
The parallelization of numerical method for coupled heat and fluid flow problem solved using
SIMPLE algorithm using CUDA and OpenMP tool is still a gap. The motivation of this work
is to parallelize an in-house built generic CFD code for analysis of various applications using
combined OpenMP and CUDA programming model. The prime objectives of this work are
listed below:

1. To find the effect of using different GPUs, various thread blocks, and wide range of fluid
flow conditions on parallel performance of the parallelized FVM-based CFD code using
CUDA.

2. To provide in-depth understanding of speedups and parallel efficiency of the in-house
code for different boundary conditions applied for heat-generating battery cells.

3. Comparison between the speedup achieved using OpenMP parallelization on different
computing machines with CUDA parallelization on GPUs.

In this work, the incompressible two-dimensional NS equation solved using staggered
grid and SIMPLE algorithm for fluid flow analysis can be used for analysis in the area of
plates, parallel plates, heat-generating plates, etc. like battery cells, nuclear fuel plate, fins,
and many more. As a demonstration, the heat-generating Li-ion battery system is considered
in which the maximum temperature has to be kept within safe limits for effective thermal
performance of battery system. To avoid the maximum temperature reaching its limit, air as
coolant is forced to flow over the battery cells. Hence, this simulation analysis provided by
the in-house developed code helps in understanding the thermal behavior of coupled heat and
fluid flow scenario, but at the cost of computational expenses. Parallelization of FVM code
using CUDA helps in achieving exhaustive numerical analysis in possible time duration.
Organization of the rest of the paper is as follows. Section 2 provides the details of the
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numerical methodology. Section 3 provides the parallelization strategy and results obtained
are discussed in Sect. 4. Finally, in Sect. 5, conclusions are drawn.

Nomenclature

Ar Aspect ratio of battery cell V Non-dimensional velocity along the
transverse direction

L Length of battery cell w Half width

k Thermal conductivity W̄ Non-dimensional width

lo Length of extra outlet fluid domain x Axial direction

li Length of extra fluid domain X Non-dimensional axial direction

Lo Dimensionless length of extra outlet fluid
domain

y Transverse direction

Li Dimensionless length of extra inlet fluid
domain

Y Non-dimensional transverse direction

q′′′ Volumetric heat generation Greek symbols
q̄ Non-dimensional heat flux α Thermal diffusivity of fluid
S̄q Dimensionless volumetric heat generation ν Kinematic viscosity of fluid

Pr Prandtl number ρ Density of fluid

Re Reynolds number ζ cc Conduction–convection parameter

T Temperature μ Dynamic viscosity

To Maximum allowable temperature of battery
cell

Subscripts

T̄ Non-dimensional temperature c center

u Velocity along the axial direction f Fluid domain

U Non-dimensional velocity along the axial
direction

s Solid domain (battery cell)

u∞ Free stream velocity ∞ Free stream

v Velocity along the transverse direction m mean

Qr Heat removed from surface
(non-dimensional)

2 Numerical methodology

A battery module usually consists of battery cells that are densely packed to obtain higher
power densities. For ease of operation and better thermal uniformity, the number of battery
cells in each module is less. In this paper, a computationally efficient thermal model used for
simulating the thermal behavior of modern electric vehicle battery cells generating uniform
heat during charging and discharging operations at a steady state is simulated. A parallel
channel with liquid coolant flow is employed to cool the battery cells during operation. The
developed thermal model is then used to analyze the thermal behavior of the battery cell for
various parameters, as shown in Fig. 1. Alongside, the computational domain is symmetric
along the vertical axis; therefore, to reduce the computational cost, only half of the domain
through a flow passage, configuration is modeled. Figure 2 shows the simulated domain
which consists of two sub-domains, which are the Li-ion battery cells, a vertical parallel
flow path channel and the coolant. The fluid flow inside the channel is commonly in laminar
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Fig. 2 The symmetric battery (prismatic cell) and coolant flow domain considered for computational analysis

regime owing to the low velocity of the flow inside the channel (Karimi and Li 2012; Xu and
He 2013).

The governing equations describing the heat transfer process when discharging/charging
the Li-ion battery cell are given by:

ks∇2Ts + q ′′′ � 0, (1)

where q′′′ is volumetric heat generation term.
The governing equations for two-dimensional, steady, incompressible, laminar, forced-

convection flow in the fluid domain are continuity equation, and x and ymomentum equations
and equation of energy, which are as follows:

∇u � 0 (2)
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(u∇u) � − 1

ρ
∇ p + μ∇2u (3)

u∇T � α∇2Tf.. (4)

In Eqs. (1)–(4), the term T s represents the temperature of solid battery, T f temperature
of fluid body, u is velocity, p is pressure, and α and μ are thermal diffusivity and viscosity
of the fluid. Equation (2) is mass conversation equation, Eq. (3) is momentum equation, and
Eq. (4) is energy equation representing the temperature in fluid domain.

The above equations are non-dimensionalized using the following set of normalizing
parameters mentioned in Eq. (5):

S̄q � q ′′′w2
s

ks(To − T∞)
, C � 4Ar2 T̄ � T − T∞

T0 − T∞
, L i � li

L
, Lo � lo

L

X � x

L
, U � u

u∞
, V � v

u∞
, P � p

ρu2∞
, Ar � L

2ws

Ys � ys
ws

, Yf � 1 +
yf
L

, W̄f � wf

L
, ζcc � kf

ks

[ws

L

]

Re � u∞L

ν
, Pr � ν

α
. (5)

The above non-dimensionalized parameters are selected based on previous research work
that are close to conjugate study of parallel plate channel (Kaladgi et al. 2019; Abdul Razak
et al. 2019; Mohamme Samee et al. 2019; Samee et al. 2018).

The final set of non-dimensionalized governing equations are provided in Eqs. (6)–(9):

∂2T̄s
∂ X2 + C

∂2T̄s
∂Y 2

s
+ C S̄q � 0 (6)

∇U � 0 (7)

U∇U � −∇P +
1

Re
∇2U (8)

U∇Tf � 1

RePr
∇2Tf. (9)

The boundary conditions applied for the above energy, conduction, and momentum equa-
tions for the conjugate numerical computations of upward flow of air collecting the heat from
the lateral surface of battery cell are provided in detail in Eq. (10):

X � 0; 0 ≤ Ys ≤ 1, U � 0, V � 0, T̄s � 0

Ys � 0; 0 ≤ X ≤ 1,
∂ T̄s
∂X

� 0

Ys � 1; 0 ≤ X ≤ 1,
∂ T̄s
∂ X

� 0

Ys � 1; 0 ≤ X ≤ 1, T̄s � T̄f

X � 1; 0 ≤ Ys ≤ 1,
∂ T̄s
∂Ys

� 0,

Yf � 1; −L i ≤ X ≤ 0 and L ≤ X ≤ Lo
∂ T̄f
∂Yf

� 0,
∂U

∂Yf
� 0, V � 0

Yf � 1; 0 ≤ X ≤ L,
∂Tf
∂Yf

� 1

ζcc

∂Ts
∂Ys

, U � 0, V � 0
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Yf � 1 + W̄f; −L i ≤ X ≤ (L + Lo),
∂ T̄f
∂Yf

� 0, V � 0,
∂U

∂Yf
� 0

X � −L i; 1 ≤ Yf ≤ (1 + W̄f), T̄s � 0, U � 1, V � 0

X � L + Lo; 1 ≤ Yf ≤ (1 + W̄f),
∂ T̄s
∂X

� 0,
∂U

∂Yf
� 0, V � 0. (10)

2.1 Solution strategy

The numerical solution of the conjugate problem consisting of energy and momentum equa-
tions is obtained by employing staggered grid method of finite-volume method (FVM).
SIMPLE algorithm is used to solve the coupled momentum and continuity equation to obtain
velocity and pressure components. The SIMPLE algorithm steps involved in solving the
continuity and momentum equations are as follows:

Step 1: guess and initialize the variables U*, V*, and P*.
Step 2: solve the discretized equations of U* and V* using the guessed pressure field:

(
ap

)
U∗
i, j � −

(
P∗
i+1, j − P∗

i, j

)
Ai, j +

∑
anbU

∗
nb + bi, j

(
ap

)
V ∗
I ,J j � −

(
P∗
I ,J+1 − P∗

i, j

)
AI ,J +

∑
anbU

∗
nb + bI ,J .

Step 3: solve the pressure correction equation P′ using the previously calculated U ′ and
V ′:

(
ap

)
P ′
i, j �

∑
anb P

′
nb + F∗

u + F∗
v

Step 4: correct the pressure and velocity equations:

P � P∗ + P ′ U � U∗ +U ′ and V � V ∗ + V ′.

Step 5: update the U*, V*, and P* values with just computed *values and go back to step
1 till error is within desired limit.

Here, the terms ap and anb, bi, j , and F∗
u + F∗

v are sum of neighboring coefficients, source
term, and velocity of neighboring points, respectively. Discretization of the governing equa-
tions was done by central differencing scheme for continuity and momentum equations.
The diffusion equation of cell domain and energy equation of fluid domain are coupled
as the conjugate condition at the cell–fluid interface should be satisfied. The U* and V*
velocity components arrived in the pressure correction procedure are solved by line-by-line
Gauss–Seidel iteration method and Thomas algorithm considering the boundary conditions
mentioned earlier and guessed pressure P*. The pressure correction P′ equation obtained
employing the continuity equation is solved by successive over-relaxation (SOR) method
using the calculatedU* and V* velocity from the previous computations. The corrected pres-
sure P′ calculated to satisfy the continuity equation is further used to correct the guessedU*,
V*, and P*. At this stage, the temperature T̄s from the 2-D conduction equation with source
term S̄q and energy equation for T̄f are solved simultaneously using the obtained corrected
U, V , and P values from the previous computations. Line-by-line Gauss–Seidel iteration
method and Thomas algorithm are used for solving the T̄ of solid and fluid domains. The U,
V , and P values are used as a guessed value for the next iteration with some under relaxation
and so on until the error in the continuity equation and T̄ is<10e−6.
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To evaluate the accuracy of the numerical results, grid-independence tests to check the
dependence of the obtained results on the grid resolutionwas conducted. The consideredmesh
systemshave grid size of 42×82, 62×122, and 82×162 influid domain andgrid size of 82×
82, 82× 122, and 122× 122 in the solid domain, respectively. For typical cases calculated in
the presentwork, the numerical results obtained for non-dimensional temperature for different
mesh systemwere less than 5%. However, to reduce the computational timewithout affecting
the accuracy, a grid size of 62 × 122 for solid domain and fluid domain is used. The detailed
numerical method, boundary conditions, solution strategy, and validation are discussed in
Afzal et al. (2019, 2020a, b), which are avoided here for the sake of briefness.

3 Parallelization strategy

Parallel architectures are in significant attention to offer immense computational power by
utilizing multiple processing units. The progress in the growth of parallel processing is due
to the stagnation of central processing units (CPUs) clock speed. To benefit out of the present
multicore/processor and GPUs, the programs have to be developed for parallel execution
(Mudigere et al. 2015; Couder-Castaneda et al. 2015; Xu et al. 2015). In this research work,
an effort ismade to parallelize the developed FVMcode for the present conjugate heat transfer
problem. Parallelization of the in-house developed indigenous code written in C language is
carried out usingNVIDIAsGPUGTX980. Parallel computing paradigmCUDA is employed
for the parallelization of the FVM code. Parallelization of the FVM code is achieved using
Red and Black Successive over Relaxation (RBSOR) scheme.

For fluid flow conditions like internal flow, external flow, internal flow with outlet domain
extended, and internal flow with inlet and outlet domain extended, computational speedup
obtained is investigated in detail. Grid size of 42 × 82, 52 × 102, 62 × 122, and 72 × 142
for internal flow and grid size of 62 × 24 for inlet and outlet extended domain are adopted
for parallel performance analysis. For external flow, the grid sizes chosen are 122× 122, 162
× 162, 202 × 202, and 242 × 242 to understand the parallel speedup achieved. In case of
internal flow, the spacing between the parallel battery cells W̄f � 0.1 is kept constant. For both
internal and external flow, Re� 250, 750, 1250, and 1750 is considered. The other parameters
are fixed to their base values for complete parallelization analysis. Parallel efficiency of the
parallelized code is also investigated to understand the fraction of time for useful processor
utilization.

3.1 The RBSORmethod

The computational time taken by the developed FVM code depending upon on parameters
varies from approximately 30 min to 24 h. From the profile analysis of different functions
used in the code, it is found that up to 91% of computational time is spent/used on pressure
correction function. The remaining time is usedbyU andV velocity, temperature, andprinting
output results function.Hence, themajor focus ismadeonparallelizing thepressure correction
function using RBSOR scheme and on CMs with different configuration. SOR method is
employed for solving the pressure correction equation obtained using the SIMPLE algorithm
technique. For the remaining functions, TDMA is used for formulating the corresponding
discretized equations. One of the commonly known schemes for parallelization of SOR
is red and black scheme. However, the use of wavefront scheme or their combinations is
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Fig. 3 Serial execution of grid
points depending upon the four
neighboring cells

98

16

100

2 4

14

5

15

25

1

99

3

not reported in the literature. In the following section, a detailed description of working of
RBSOR scheme and wavefront scheme is provided.

The SOR is an important iterativemethod to solve the systemof linear equations. SOR is an
expansion/improvement of Gauss–Seidel method that speed ups convergence. It over-relaxes
and combines the old values and current values by a factor greater than unity (Niemeyer
and Sung 2014). In this work, SOR is used to solve the pressure correction equation with
over-relaxation factor equal to 1.8. This pressure correction function consumes maximum
computational time as mentioned earlier, due to inner iterations required for correcting the
pressure.

The parallel implementation of SOR technique is not easy as it uses the values of neigh-
boring cells/grid points of the current iteration, as shown in Fig. 3. The gird point/cell shown
in yellow color (number 15) requires the values of upper, lower, left, and right side cells
(number 5, 25, 14, and 16, respectively) shown in blue color. Each grid point is serially
executed one after the other taking the newly calculated values of neighboring points. This
is mentioned serially from 1 to 100 in Fig. 3. Hence, this brings in sequential dependency
and may lead to different results in parallelly executed SOR. To overcome this sequential
dependency and parallelize the SOR algorithm, graph coloring methods are used (Abdi and
Bitsuamlak 2015). Using this coloring method, the single sweep of SOR can be broken
into multiple sweeps which are suitable for parallel processing. The RBSOR scheme can be
thought as a compromise among Gauss–Seidel and Jacobi iteration. As shown in Fig. 4, the
RBSOR solves by coloring in the checkerboard with alternative red/black grids. At first, all
the red cells are computed simultaneously considering the neighboring black points. Then,
black cells are computed using the updated red cells parallelly. The RBSOR scheme imple-
mentation is mentioned briefly in Algorithm 1. In Algorithm 1, imin refers to start point of
grid number along x-direction and jmin along y-direction.m and n are the maximum numbers
of grid points along x- and y-direction given by the user. w is the over-relaxation term which
is set to 1.8 in this algorithm.
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Fig. 4 RBSOR and wavefront
scheme for parallel implement of
SOR

Red cells Black cells

3.2 Parallelization using CUDA

Existing graphics processing units (GPUs) offer an excessive computational power in the
form of graphics hardware. A GPU is an enormously parallelly coprocessing architecture
to the CPU and is a set of SIMD (Single Instruction Multiple Data). GPUs and the present
CPUs have similar memory hierarchy (Poddar et al. 2015). GPUs are nowadays commonly
used as a programmable engine with the use of parallel programming tools like CUDA,
OpenAcc (open accelerator), and OpenCL (open computing language). CUDA is a well-
known parallel computing tool provided by NVIDIA to create immense parallel applications.
Porting of applications on CPU is made easy by CUDA as it avoids the previous graphics
pipeline concepts.CUDAestablishes high abstraction levels byproviding a newprogramming
model for high-performance computing architecture. To enable heterogeneous programming,
it consists of set of extensions and to manage devices or memory, it has straightforward APIs
(application program interface) (Adelaja et al. 2014; Arici and Aydin 2009; Bilir 2002).
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Fig. 5 Overview of memory copy and kernel launching in CUDA paradigm

In CUDA paradigm, the computational core is known as kernel, CPU with its memory is
known as host, and GPUwith its memory is known as device. The CUDA paradigm overview
with its data/result copying and kernel launching is illustrated in Fig. 5. Figure 5 shows the
passing/launching of kernel on GPU which parallelly executes using data streams by array
(scalable) of multithreaded Streaming Multiprocessors (SMs).

The kernel launched from the host CPU is mapped to GPUs thread grid which has several
blocks of threads along with different directions. These threads share the memory within a
block which synchronizes. The SMs work together for massive computations managed by
employing the architecture of single instruction multiple thread (SIMT). The SIMT architec-
ture describes the characteristics of SMs that are same as all devices. The detailed description
of SIMTandmultithreading architecture can be found inNVIDIAsGPUprogramming guide-
lines in detail in Harman and Cole (2001), Gropp et al. (2001) and Passoni et al. (2001).

In this work, the FVM code parallelization using CUDA is adopted only for pressure
correction function as it requires around 91% of the total runtime of the code. The remaining
U andV velocity and temperature functions are parallelized usingOpenMP for inner for() lop
of the TDMA. The steps involved in parallelization using CUDA for the present developed
code in mentioned in Algorithm 2. The specifier __global__ is added in the code to be
identified by CUDA C++ compiler to be run on GPU and is called by the host program. The
other declarations like cudaMalloc, cudaMemcpy, and cudaFree are used for themanagement
of device memory. The kernel for RBSOR has grid and block dimension declared by dim3
command. The grid size is always two-dimensional, whereas the block dimension can be of
one-, two-, or three-dimensional. The grid size specifier is for defining number of blocks per
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Table 1 Specifications of CMs on which GPUs are installed

CM number Processor Frequency
(GHz)

RAM (GB) Number of
logical cores

Hard disk
storage (TB)

CM1 Intel ® core ™ i7-4970 3.6 16 8 1.3

CM2 Intel ® core ™ i7-4970 3.6 8 8 0.7

CM3 Intel ® core ™ i5-3470 s 2.9 8 4 0.5

CM4 Intel ® core ™ i3-3240 3.4 4 4 0.5

Table 2 Specifications of NVIDIAs’ GPU used for parallelization

GPU number Installed on
CM

Engine CUDA cores Memory
(GB)

Base clock
(MHz)

Memory
clock (Gbps)

GPU1 CM1 GTX 980 2048 12 1127 7.0

GPU2 CM2 GTX 960 1024 8 1126 7.0

grid and the block specifier is for declaring number of threads per block. __synchthreads()
is used to synchronize threads inside a kernel from the same block. In CUDA model global
synchronization is difficult, and hence, to enforce it, the kernel is exited before a new kernel
is launched. The details of GPUs installed on two different CMs (specifications in Table 1)
used for parallel execution are mentioned in Table 2. Four different CMs are employed for
comparison of relative increase in speedup with GPU1. The specifications of these four CMs
are mentioned in Table 1.
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3.3 Speedup and parallel efficiency

The use of multiple processors to work together simultaneously on a common task is com-
monly known as parallel computing. The performance of a parallel algorithm implemented
on a parallel architecture for parallel computations is measured by speedup and parallel effi-
ciency. The ratio of time taken to execute the sequential algorithm on a single processor to
the time taken by parallel algorithm to execute on multiple-processor is known as speedup.
Parallel efficiency is defined as the ratio of parallel speedup achieved the number of pro-
cessers. Parallel efficiency gives the measure of the fraction of computational time at which a
processor is used efficiently (Darmana et al. 2006; Walther and Sbalzarini 2009; Wang et al.
2005; Mininni et al. 2011).

According to the definition of speedup and parallel efficiency, they are calculated as given
by Eq. (11) (Walther and Sbalzarini 2009; Darmana et al. 2006):

S(par) � T(seq)
T(par)

E(par) � S(par)
N(par)

, (11)

where S(par) is the parallel speedup achieved, T (seq) is the elapsed (wall) time taken by the
sequential program,T (par) is thewall time taken by the parallel program for execution,E(par) is
the parallel efficiency, andN (par) is the number of processors employed for parallel execution.
The efficiencyof loss occurred due to communication of data, computational task partitioning,
processors scheduling, management of data, etc. during parallel implementation is accounted
by parallel efficiency. The elapsed time for computations in parallel on N processors can be
written as composed of (Shang 2009):

T(par) � T(seq)N + T(N ) + T(comm)N + T(misc)N . (12)

Equation (12) shows the total amount of time taken by a code that is capable of running
parallelly on multiple processors. In another way, it can be said that the code which is
parallelized (or some part of the program which is parallelized) takes some time for parallel
execution on multiple cores for a certain amount of time. This parallel execution time can be
faster or slower depending upon the technique adopted for parallelization of the code. This is
due to the amount of time taken by the master processor to schedule the parallel tasks, divide
the work, divide the data, parallel execution, synchronization, etc., and this entire amount of
time taken by the code is accountable under T (par).

Where T (seq)N is the time taken by CPU for computations of the sequential part of the
program. T (N) is the time taken by CPU for computations of parallel part of the program on
N processors, T (comm)N is the time taken by CPU for communication with N processors, and
T (misc)N is the idle time or extra time spent induced due to parallelization of program.

4 Results and discussion of speedup and parallel efficiency using CUDA

Using CUDA parallel computing paradigm, the parallelization of FVM code developed in-
house is analyzed in the form of parallel speedup and efficiency. Two GPUs, namely GPU1
andGPU2, are adopted for parallel execution. 400, 625, and 900 threads are launched from the
host to device and their speedup is also checked. In this section, speedup andparallel efficiency
of the parallelizedFVMcode are provided in detail. UsingRBSORscheme, various grid sizes,
and Res for internal and external flow, the computational time analysis is carried out. In this
entire parallel performance analysis, the operating heat and fluid flow parameters are kept
fixed at S̄q� 0.5, ζ cc� 0.06, and Ar� 10, for both the flow conditions. For computational
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Fig. 6 Elapsed time on different machines for different flow conditions

time analysis, the grid sizes chosen are 42× 82, 52× 102, 6× 122, and 72× 142 for internal
flow. The grid size considered for outlet and inlet domains extended is 24 × 122. In case of
external flow 122 × 122, 162 × 162, 202 × 202, and 242 × 242 grid sizes are chosen, while
Re is varied from 250 to 1750.

4.1 Elapsed time

The elapsed time of the FVM code for internal and external flow on all the four machines
is noted at first, to get an idea of computational cost for different conditions. In Fig. 6 the
elapsed time on CM1, CM2, CM3, and CM4 is shown for internal flow and external flow.
The flow Re� 250 to 1750 and grid size of 62 × 122 and 202 × 202 for internal and external
flow, respectively, is fixed to note the elapsed time. Based on clock speed and RAM of the
machines, the elapsed time is minimum for CM1 and maximum for CM4 at Re� 250 for
both the flow conditions. Time for CM1 and CM2 are almost the same for all flow Re. This
elapsed time is for outlet and inlet domains not extended during internal flow analysis. Surely,
if higher grid size and extra flow domains are considered, the computational time increases
up to 24 h and above.

4.2 Speedup achieved

The speedup of parallel FVM code achieved for internal and external flow on GPU1 using
CUDA paradigm and RBSOR scheme is shown in Fig. 7. The speedup using CUDA is
calculated considering the serial performance of the FVM code on CM1. GPU1 is selected
by default and 400 threads were launched on the device during each iteration from the
host CPU for this entire parallel computations. For different Re and grid size, the speedup
achieved on GPU1 shown in Fig. 7 indicates massive parallel performance of the CUDA
parallelized FVM code. For internal flow, the speedups are higher than speedups achieved
for external flow. The SMs of the GPU perform very fast computations as they are very light
threads and do not require any kind of forking/joining mechanism. In internal flow, the inner
iterations required for pressure correction function are higher compared to external flow. And
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(a) Internal flow (b)External flow
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Fig. 7 Speedup obtained for different Re and grid sizes

on another hand, the total computational time for serial execution of FVM code for higher
Re is less in case of both internal and external flow as shown previously in Fig. 6. Thus, due
to the reduction in serial computational time for higher Re and massive parallel performance
capability of GPU, the speedup reduces.Whereas for lower Re due tomore utilization ofGPU
for parallel computation, the speedup increases. Similarly, due to reduced inner iterations in
external flow, the speedup is also reduced compared to internal flow.

To analyze the computational performance of GPU when serial computations are made,
only one thread on SM during each iteration is launched. To get an idea of elapsed time
for serial computations on GPU, only internal flow with 62 × 122 grid size is selected.
The elapsed time calculated is for serial execution of the FVM code in which only the
pressure correction functions are made on GPU and the rest computations are made on CPU.
The pressure correction function is chosen as it consumes 91% of total time, mentioned
earlier. During each iteration due to the copying of memory back and forth to GPU/CPU and
launching the kernel, extra computational effort is required. Hence, the computational time
required for serial computations on GPU is huge, as shown in Fig. 8a.

When two GPUs with different configuration mentioned in Table 2 are used for parallel
computation, the respective speedup obtained is shown in Figure 8b that the speedup on both
the GPUs is very close to each other. The default analysis of speedup using CUDA paradigm
is performed by launching 400 threads for different conditions explained previously. In Fig. 9,
speedup obtained by launching 400, 625, and 900 threads on GPU1 is presented for different
Re. The flow chosen is internal with 62 × 122 grid size without any extended domain. As
explained earlier, for higher Re, the speedup using CUDA is comparatively less. It is also
seen that by launching higher number threads reduces the speedup further. The reason can
be attributed to synchronization time required after parallel computations. As more threads
are launched, more synchronization time is required, hence increasing the parallel execution
time marginally.

In Fig. 10, speedup obtained with outlet domain extended and with both inlet and outlet
domain extended in case of internal is represented. The grid size for the inlet/outlet domain
extended is 62 × 24 for each. The grid size is fixed at 62 × 122 for internal flow, while Re is
changed from250 to 1750. It is observed that the speedup for both the cases remains nearly the
same at all Re. It can also be seen thatwhen the speedup is comparedwith Fig. 7a, for extended
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Fig. 9 Speedup obtained by launching kernel with different number of threads on GPU1

domains, the speedup is reduced in internal flow. With the extension of flow domains, the
parallel execution time has also increased, which shows that the pressure correction iterations
required have drastically increased, reducing the speedup. This analysis provides an insight
of behavior of parallel performance of FVM code using SIMPLE algorithm to solve NS
equation. One thing that can be deduced is that, without any extended domain, the speedup
for internal flow is best, and extension of fluid body before the leading edge and after the
trailing edge causes immense computational cost.

Out of curiosity to know how the FVM code behaves computationally, if the extensions
of domain are applied for external flow, parallel performance analysis was carried out. In
Fig. 11, the speedup obtained for only outlet domain and both the domains extended in case
of external flow is depicted. Grid size of 202 × 202 is fixed for the flow over plate, whereas
for outlet/inlet extended domain, 40× 202 is fixed for each. Compared to results presented in
Fig. 7b, the speedup has increased significantlywhen extended domains are chosen.However,
the speedup for either only outlet domain or both domains extended remains more or less
the same for all Re. One interesting aspect noticed is that the fluctuation in speedup with
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Fig. 11 Speedup in external flow considering only outlet domain and both the domains extended

domains extended is in line with the speedup fluctuations observed from Fig. 7b. The increase
in speedup for external flowwith extended domain may be attributed to the physical behavior
of fluid over/between the plates. According to the boundary layer theory, in case of internal
flow, the boundary layers of parallelly placed plates mix and get fully develop near to the
leading edge if the spacing between the plates is less. Hence, due to the mixing of boundary
layers, the pressure correction required to satisfy the continuity equation for initially guessed
velocity and pressure field are very immense. This causes increased computational time of
the FVM code. If the spacing between the plates is further reduced, the computational time
will inversely increase, and if the spacing is increased, the pressure correction required is
less and the related computational time is also less. This fluid behavior is in agreement with
reduced speedup obtained for internal flow with extended domain. In contrast to this, in case
of external flow, the boundary layers never mix and the flow is parallel to the plate. Therefore,
the pressure correction required is very less which leads to reduced computational time, and
hence, addition of extended domain or grids causes more efficient computations on SMs of
GPU. The parallel efficiency may, however, be more for internal flow with extended domain
than that of external flowwith extendeddomain due to better utilization of parallel processors.

The speedup obtained on GPU1 compared to the sequential time of different CMs for
external and internal flow is presented in Fig. 12. The previous results of speedup on GPU1
were considering sequential time of CM1. The flow domain considered is without any exten-
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Fig. 12 Speedup obtained using CUDA considering serial time on different computing machines

sion of fluid body in both the cases. The grid size is fixed at 62 × 122 and 202 × 202 for
internal and external flow, respectively. As per the preceding discussions, the speedup on
CM1 for different Re is the same and similar is for CM2 due to very close configurations of
both theCMs.Yet, another similar trend of speedup onGPU1 for increasingRe in internal and
external flow when serial time of CM3 and CM4 is considered is obtained. It can be pointed
out that the speedup on GPU1 considering serial time of CM1/CM2 is less than the speedup
obtained considering serial time of CM3/CM4. The speedup on GPU1 is highest if serial time
of CM4 is considered in case of internal and external flow, as well. These speedups obtained
are corresponding to the computational capability of the CMs having different configurations.
These speedups obtained give an idea of massive parallel computational capability of SMs
of GPU. However, the speedups are significantly more for internal flow relative to external
flow.

As mentioned earlier, the three functions (U, V , and T ) are parallelized using OpenMP
tool and the P function is parallelized using CUDA tool. In another attempt, the P function
is also parallelized using OpenMP making the entire FVM code parallelized using OpenMP
paradigm. Four CMs, namely CM1, CM2, CM3, and CM4, were selected for analysis of
speedup using OpenMP parallelized code. The %improvement in speedup obtained using
GPU1 compared to speedup of these four CMs is depicted in Fig. 13. In this analysis, internal
flow without any extended domain with grid size 62 × 122 was selected for demonstration.
It can be easily seen that the %improvement in speedup obtained using GPU1 compared to
OpenMP speedup on different CMs is very close to each other. The prime reason behind
this same %improvement in speedup is due to very low or unnoticeable speedup obtained on
CMs using OpenMP when compared with speedup using CUDA. Hence, from this analysis,
it is crystal clear that the compute capability of GPUs is incomparable with that of CPUs.
It is also clear that the OpenMP parallelization is 100 times slower than the CUDA-based
parallelization.

In Fig. 14, the speedup achieved during each iteration on GPU1 for internal flow consid-
ering Re� 750 and different grid sizes is depicted. During the initial iterations, the speedup
is very high and as the iterations continue, the speedup reduces, and finally, they reach close
to speed up around 75 for the last iteration. The speedups look unrealistic as such speedups
are normally not achievable. In this work, the inner iterations of pressure correction equa-
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Fig. 14 Speedup achieved during each iteration on GPU1 for different grid size

tion parallelized using red–black scheme are completely computed on GPUs. 91% of time
is used by pressure function as the inner iterations are high in number. Using an outer for
loop to launch the kernels for fixed number of times on GPU, this speedup is possible. For
higher grid size, the speedup at initial iterations is very high compared to lower grid size
during the initial iterations. The speedup obtained during the initial iterations is very high due
to immense inner pressure corrections required as the velocity and pressure are in guessed
state. As the iterations proceed, the velocity and pressure field values are computed and,
hence, the pressure correction required also reduces. The speedup obtained and change in
it are directly related with the inner pressure corrections computed. If pressure corrections
are highly required, then the serial execution takes immense time for that iteration. Hence,
during that iteration, if parallel execution of pressure corrections is performed on GPU, it
gives enormous speedup.

4.3 Parallel efficiency of the FVM code

The parallel efficiency of FVM code using CUDA and applying RBSOR scheme and 400
threads on GPU1 for internal and external flow is shown in Fig. 15. It can be easily seen from
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Fig. 15 Parallel efficiency obtained for different grid size and Re

Fig. 15a, b for internal and external flow that for lower grid size, the parallel efficiency is
lowest, and for higher grid size, it is highest irrespective of any Re. In internal flow problem,
the parallel efficiency is higher compared to external flow at all Re due to increased speedup
obtained on GPU1, as shown in Fig. 7. As the speedups are highest at 72 × 122 grid size, the
parallel efficiency can be seen to be continuously improving. The parallel efficiency indicates
the efficiency of utilization of multi-processors for parallel execution. Basically, if the time
taken by the code for serial execution is more, the associated parallel execution time will be
less. This indicates that for the most of the time, the code is run parallelly. If the number of
cores is more and the amount of computations is less than the parallel efficiency reduces.
Therefore, for efficient utilization of multiple cores, the code must be parallelized with a
proper strategy. For lower Re, the serial time is high due to more number of inner iterations
involved in pressure correction of large boundary layer. For high Re, the boundary layer is
closer to solid part and, hence, the inner iterations are less. As the iterations are more for
low Re, the serial time is also more which, in turn, improves the ability of code to utilize
more efficiently the multiple cores. Therefore, for lower Re, the parallel efficiency is higher.
An increase in grid size also causes further improvement in parallel efficiency due to better
utilization of SMs of GPU for parallel computations. The parallel efficiency for all Re in
external flow is found to be very close to each other, but increases with grid size. However,
in the case of external flow, very high grid size can be used to improve the parallel efficiency.
However, the use of higher grid size for the present problem is not required. Nevertheless, to
increase the parallel efficiency, the scalable problem in external flow is necessary.

5 Conclusions

Parallel performance analysis of the parallelized FVM code developed in-house is analyzed
in the form of parallel speedup and parallel efficiency. CUDA parallel computing paradigm
is used for parallelization applying the RBSOR scheme. Four computing machines CM1,
CM2, CM3, and CM4 for OpenMP parallelization are employed. For computational time
analysis, the grid sizes chosen are 42 × 82, 52 × 102, 6 × 122, and 72 × 142 for internal
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flow. The grid size considered for outlet and inlet domain extended is 24 × 122. In case of
external flow 122 × 122, 162 × 162, 202 × 202, and 242 × 242 grid sizes are chosen, while
Re is varied from 250 to 1750.

From the complete speedup and parallel efficiency analysis of the parallelized FVM code
using different methods, the following important conclusions are drawn.

1. Parallelization using CUDA paradigm gives massive speedup for the present FVM code.
In case of internal flow, the speedup is very high compared to speedup achieved in case
of external flow.

2. The use of two different GPUs, mainly GPU1 and GPU2, have provided very similar
speedup. If different block size of threads is launched, that is 400, 625, and 900 threads,
the speedup is again nearly the same, but is the highest for 400 threads.

3. For internal flow considering inlet and outlet domain extended reduces the speedup sig-
nificantly compared to internal flow without any extended domain. Whereas the speedup
increased for external flow when extended domains are considered.

4. Speedup on GPU considering the serial time of CM1/CM2 is the same. If serial time of
CM3 and CM4 is considered, the speedup on GPU significantly improves due to the low
frequency of CM3 and CM4.

5. The %improvement in speedup using CUDA compared to speedup obtained using
OpenMP parallelization is very immense.

6. The parallel efficiency in case of internal flow improves with increasing grid size for all
Re considered. And in external flow at all Re, the parallel efficiency remains nearly the
same with slight improvement for the increase in grid size.
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