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Abstract
In this paper, we introduce new representations and characterizations of the outer inverse
of tensors through QR decomposition. Derived representations are usable in generating cor-
responding representations of main tensor generalized inverses. Some results on reshape
operation of a tensor are added to the existing theory. An effective algorithm for comput-
ing outer inverses of tensors is proposed and applied. The power of the proposed method is
demonstrated by its application in 3D color image deblurring.
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1 Introduction

The set of all order n complex (real) tensor is denoted byCI1×···×In (resp.RI1×···×In ). The ele-
ment of the tensor representsAi1...in . The summation of tensorsA, B ∈ C

I1×···×In×J1×···×Jn

is defined as:
(A + B)i1...in j1... jn = Ai1...in j1... jn + Bi1...in j1... jn . (1.1)

However, there is no uniqueway to represent product of two tensors. Different tensor products
have been investigated frequently (Sun et al. 2016). This paper will concentrate on one such
class of product ’Einstein product’ (see Einstein 1916; Lai et al. 2009). The Einstein product
of A ∈ C

I1×···×In×K1×···×Kn and B ∈ C
K1×···×Kn×J1×···×Jm is denoted as A∗nB and is

defined by:

(A∗nB)i1...in j1... jm =
∑

k1,...,kn

Ai1...ink1...knBk1...kn j1... jm ∈ C
I1×···×In×J1×···×Jm . (1.2)

Inverses and generalized inverses of matrices and tensors have significantly impacted
many areas of theoretical and computational mathematics (Sun et al. 2018; Behera et al.
2019; Sahoo et al. 2020). Brazell et al. (2013) introduced the tensor inverse via the Einstein
product. Then, Sun et al. (2016) and subsequently Behera and Mishra (2017) extended to the
generalized inverse of tensor, since tensor decomposition is necessary to develop an efficient
algorithm for solving multilinear systems. Liang et al. (2019) discussed the Schur and the
LU decompositions of tensor via the Einstein product. Also, Ji and Wei (2017) discussed
the weighted Moore–Penrose inverse and least-squares solutions for a multilinear system.
Thereafter, the authors of Behera et al. (2018), Liang and Zheng (2019) added a few more
representations through full-rank splitting of arbitrary tensors. The representation of the null
and range space was discussed in Ji and Wei (2018), Stanimirović et al. (2018) via Einstein
product. Recently, Stanimirović et al. (2018) investigated conditions for the existence of
tensor outer inverses using specific algebraic approach.

It is well known that the outer inverse of matrices (Drazin 2012) have been making their
presence felt in many pure and applied areas of mathematics (i.e., in iterative methods for
solving singular operator equations (Nashed and Chen 1993), stable approximations of ill-
posed problems, rank-deficient generalized inverse (Nashed 1976; Zheng and Bapat 2004),
and statistics (Chen andChen 1985). Several characterization of the outer inverse can be found
in Chen and Chen (2000), Sheng and Chen (2007), Wei (1998), and Wei and Zhang (2004).
As the tensors are generalizations of matrices and vectors, the study of generalized tensor
inversion will initiate a multitude of different research topics. Many attractive mathematical
properties of generalized tensor inverses motivate us to study outer inverses of tensors via
the Einstein product. Well-known results on the numerical methods for computing outer
inverses are surveyed in the monographs (Wang et al. 2018; Wei et al. 2018). Additional
results about the perturbation bounds for the Moore–Penrose inverse, Core, Core-EP, CMP,
and the DMP inverses of tensors via Einstein product can be found in references (Ding and
Wei 2016; Jin et al. 2017; Ma 2018; Ma et al. 2019; Miao et al. 2020; Wang et al. 2020; Du
et al. 2019; Wang et al. 2020; Xie et al. 2019; Wang and Wei 2017).

A summary of the main facets of this discussion may be given the following bullet points.

• Further elaboration on reshape operation and characterizations of different generalized
inverses of tensors.

• A few representations of outer inverse of tensors and relationships with other generalized
inverses, like group inverses, Moore-Penrose inverses, Drazin inverse, weighted Moore–
Penrose inverse, and other generalized inverses are examined.
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• Derive computationally effective representations of generalized inverses of tensors
through the tensor QR decomposition and write an effective algorithm for computing
the outer inverses of tensors.

• An application of outer inverse of tensors is demonstrated in a colour image deblurring.

An important element of this study is to achieve the conditions for which the Moore–
Penrose inverses, weighted Moore–Penrose inverses, group inverses, and the Drazin inverses
are the same. The main advantage of this study is that the algorithm developed for outer
inverse of tensor can be easily extended to many important classes of generalized inverses.

The global organization of the manuscript by sections can be described as follows.
Section 2 describes preliminary information and provides an overview of notations and
definitions. In Sect. 3, we discuss our main results and it has two parts. In the first part, a
few results on reshape operations along with some characterizations of outer inverses are
established. The computation of outer inverse and other generalized inverse through the ten-
sor Q R decomposition are discussed in the second part. A few numerical examples and one
application to image reconstruction are discussed in Sect. 4. Finally, we concluded the work
in Sect. 5.

2 Preliminaries

To increase the efficiency of the presentation, we use some additional notations, which will
be used here on wards:

N(k) = N1 × N2 × · · · × Nk, n(k) = {
n1, n2, . . . , nk |1 ≤ n j ≤ N j , j = 1, . . . , k

}
.

Using the above notation, the range and nullity space of a tensor are defined (Ji and Wei
2018; Stanimirović et al. 2018) as follows:

R(A) =
{
A∗nU : U ∈ C

N(n)
}
and N (A) =

{
V : A∗nV = O ∈ C

M(m)
}

,

where A ∈ C
M(m)×N(n) and O denotes a zero tensor of proper dimensions. Using the facts

about the range space of the tensor, Ji and Wei (2018) explored the index of a tensor, which
is denoted by ind(A), and it is defined as the smallest non-negative integer m, such that:
R(Am) = R(Am+1).

Next,we present the definition of the tensorMoore–Penrose inversewhich is introduced by
the authors of Sun et al. (2016). LetA ∈ C

N(n)×N(n). The tensor Y ∈ C
N(n)×N(n) satisfying:

(1) A ∗n Y ∗n A = A; (2) Y ∗m A ∗n Y = Y;
(3) (A ∗n Y)∗ = A ∗n Y; (4) (Y ∗n A)∗ = Y ∗n A,

is called Moore-Penrose inverse of A and it is denoted by A†. Furthermore, we recall the
definition of the outer inverse from (Stanimirović et al. 2018).

Definition 2.1 A tensor Y represents the outer inverse of A ∈ C
M(m)×N(n) with prescribed

range space R(B) and null space N (A) if it satisfies:

Y ∗n A ∗n Y = Y, R(Y) = R(B), and N (Y) = N (C),

and denoted by A(2)
R (B),N (C).
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Let S ⊆ {1, 2, 3, 4}. The set of tensors satisfying the tensor equations defined by the
set S is denoted by A(S). If a tensor Y from the set A{S} satisfying R(X ) = R(B) (resp.
N (X ) = N (C) is denoted by A(S)

R (B),∗ (resp. A(S)
∗,N (C)). The weighted Moore–Penrose

inverse of a tensor was introduced in Ji and Wei (2017).

Definition 2.2 (Ji andWei 2017) LetA ∈ C
M(m)×N(n) andY ∈ C

N(n)×M(m). SupposeM and
N are Hermitian positive-definite tensors, such thatM ∈ C

M(m)×M(m) andN ∈ C
N(n)×N(n).

Then, the tensor Y = A†
M,N ∈ A{1, 2} is called the weighted Moore–Penrose inverse of A

if it satisfies:

(M ∗m A ∗n Y)∗ = M ∗m A ∗n Y, (N ∗n Y ∗m A)∗ = N ∗n Y ∗m A.

Definition 2.3 (Ji and Wei 2018) Let A ∈ C
N(n)×N(n) with ind(A) = k. A tensor X ∈

C
N(n)×N(n) is called the Drazin inverse of A if it satisfies:

(1k) Ak+1∗nY = Ak, (2) Y∗nA∗nY = Y, (5) A∗nY = Y∗nA.

When k = 1, we Y becomes the group inverse of A. The group and Drazin inverse of A are
labeled by A# and AD, respectively.

Some preliminary results about the tensor range and null space can be collected from
(Behera and Sahoo 2020; Ji and Wei 2018; Stanimirović et al. 2018).

Theorem 2.4 (Ji and Wei 2018, Theorem 3.2 (2)) Let A ∈ C
N(n)×N(n). Then, for any positive

integer p, N (Ap) = N (Ap+1) is equivalent to:

R(Ap) ⊕ N (Ap) = C
N(n), (2.1)

and ind(A) of a non-invertible tensor A is the smallest positive integer p, such that (2.1)
holds.

Lemma 2.5 (Stanimirović et al. 2018, Lemma 2.2.) Let S ∈ C
K(k)×M(m), T ∈ K(k)×N(n).

Then, R(T ) ⊆ R(S) if and only if T = S∗nZ for some tensor Z ∈ C
M(m)×N(n).

The following results discussed in the framework of Boolean tensors in Behera and Sahoo
(2020). However, these two results are true for an arbitrary-order tensor. The proof follows
similarly.

Theorem 2.6 (Behera and Sahoo 2020, Theorem 3.3) Let A ∈ C
M(m)×N(n), B ∈ C

N(n)×S(s),
C ∈ C

S(s)×L(l) and D ∈ C
S(s)×L(l) be tensors with A∗nB∗sC = A∗nB∗sD. If R(BT) =

R(BT ∗nAT), then B∗sC = B∗sD.

Corollary 2.7 (Behera and Sahoo 2020, Corollary 3.2) Let A ∈ C
M(m)×N(n), B ∈ C

N(n)×L(l),
C ∈ C

S(s)×M(m), and D ∈ C
S(s)×M(m) be tensors with C∗mA∗nB = D∗mA∗nB. If R(A) =

R(A∗nB), then C∗mA = D∗mA.

2.1 Tensor decomposition and reshape rank

The reshape operation is an restructures the elements of a tensor into amatrix and the elements
of a matrix into a tensor (Stanimirović et al. 2018). This is denoted by rsh and defined as
follows.
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Definition 2.8 (Definition 3.1, Stanimirović et al. 2018): Let M = ∏m
i=1 Mi and N =∏n

j=1 N j . For A ∈ C
M(m)×N(n) and A ∈ C

M×N, there exist a unique bijective map, called

reshape map, denoted by rsh : CM(m)×N(n) −→ C
M×N, and defined as:

rsh(A) = A = reshape(A,M,N) ∈ C
M×N. (2.2)

Moreover, the inverse reshape operation is defined by the following bijective map:

rsh−1(A) = A = reshape(A,M(m),N(n)) ∈ C
M(m)×N(n). (2.3)

We now state the following result from the above definition.

Lemma 2.9 Observe the tensor A ∈ C
M(m)×N(n) and integers M = ∏m

i=1 Mi , N =∏n
j=1 N j . If A = rsh(A) ∈ C

M×N and Y = rsh(Y), then:

R(A) = {rsh−1(Y ) : Y ∈ R(A)} and N (A) = {rsh−1(Y ) : Y ∈ N (A)}.

In connection with reshape of a tensor with range and nullity spaces of a tensor, we define
the notions termed as reshape range and reshape null space.

Definition 2.10 Let A ∈ C
M(m)×N(n), M = ∏m

i=1 Mi , N = ∏n
j=1 N j , and A = rsh(A).

The reshape range and reshape null space ofA is denoted by RSH(R(A)) and RSH(N (A)),
respectively, and defined as:

RSH(R(A)) = {rsh(Y) : Y ∈ R(A)} and RSH(N (A)) = {rsh(Y) : Y ∈ N (A)}. (2.4)

Definition 2.11 Let A ∈ C
M(m)×N(n), M = ∏m

i=1 Mi , N = ∏n
j=1 N j , and A = rsh(A).

The reshape dimension is denoted by rshdim, and defined as:

rshdim(R(A)) = dim(RSH(R(A))) and rshdim(N (A)) = dim(RSH(N (A))).

Now, the reshape dimension of an arbitrary subspace � ⊆ C
M(m) can be defined as

rshdim(�) = dim(RSH(�)), where RSH(�) = {rsh(V) : V ∈ �}.
The following results from (Behera et al. 2018; Liang and Zheng 2019; Stanimirović et al.

2018) will be useful to prove the main results.

Theorem 2.12 (Stanimirović et al. 2018, Theorem 3.1) Consider A ∈ C
M(m)×N(n) and B ∈

C
N(n)×L(l). Then:

(a) R(A∗nB) = R(A) ⇐⇒ rshrank(A∗nB) = rshrank(A);
(b) N (A∗nB) = N (B) ⇐⇒ rshrank(A∗nB) = rshrank(B),

where rshrank() denotes the reshaping rank of a tensor, as it is defined in Stanimirović et al.
(2018).

Lemma 2.13 (Stanimirović et al. 2018) Let A ∈ C
M(m)×N(n) and B ∈ C

N(n)×L(l) be given
tensors, integers, M = ∏m

i=1 Mi , N = ∏n
j=1 N j , and L = ∏l

k=1 Lk. Then:

rsh (A ∗n B) = rsh (A) rsh (B) = AB, (2.5)

where A = rsh (A) ∈ C
M×N, B = rsh (B) ∈ C

N×L.
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Theorem 2.14 (Liang and Zheng 2019, Theorem 3.6.) For A ∈ C
M(m)×N(n), there is a left

invertible tensor F ∈ C
M(m)×R(r) and a right invertible tensor G ∈ C

R(r)×N(n) which satisfy:

rshrank(F) = rshrank(G) = rshrank(A) =
r∏

i=1

Ri , and A = F∗rG. (2.6)

The decomposition (2.6) is called a full rank decomposition (or full rank factorization) of the
tensor A.

Theorem 2.15 (Behera et al. 2019, Theorem3.24)LetF ∈ C
N(n)×R(r) andG ∈ C

R(r)×N(n) be
two tensors, such that A = F∗rG be a full-rank decomposition of the tensor A ∈ C

N(n)×N(n).
Then, the following statements are equivalent:

(a) A is group invertible;
(b) G∗nF is invertible.

3 Main results

3.1 Further results on reshape operations

In view of Lemma 2.9 and Eq. (2.4), we have the following result.

Lemma 3.1 Let us notice A ∈ C
M(m)×N(n) and M = ∏m

i=1 Mi , N = ∏n
j=1 N j , and A =

rsh(A). Then:

RSH(R(A)) = R(A) = R (rsh(A)) and

RSH(N (A)) = N (A) = N (rsh(A)) .

Proof

RSH(R(A)) = {rsh(Y) : Y ∈ R(A)}
= {y : Y = rsh−1(z), z ∈ R(A)}
= {y : y = z, z ∈ R(A)}
= {y : y ∈ R(A)} = R(A).

The second part can be proved similarly. 
�
Consider two tensor spaces �1 and �2, such that �1 ⊆ �2. Now, using the definition of

reshape operation, we obtain RSH(�1) ⊆ RSH(�2). Furthermore, since dim(RSH(�1)) =
dim(RSH(�2)), it follows that RSH(�1) = RSH(�2). Therefore, �1 = �2. This is stated
in the next result.

Theorem 3.2 Let �1 and �2 be two subspaces of a tensor space C
M(m). If �1 ⊆ �2 and

rshdim(�1) = rshdim(�2), then �1 = �2.

Using Definition 2.11 and Lemma 3.1, one can obtain the next tensor generalization of
the rank nullity theorem.

Theorem 3.3 Arbitrary tensorA ∈ C
M(m)×N(n) satisfies rshdim(R(A))+rshdim(N (A)) =

N(n).
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Lemma 3.4 Let A ∈ C
M(m)×N(n) and rshrank(A) = R(r) = ∏r

i=1 Ri . Let �1 be a sub-
space of C

N(n) with rshdim(�1) = S(s) ≤ R(r), and �2 be a subspace of CM(m) with
rshdim(�2) = M(m) − S(s). If A has a {2}-inverse X , such that R(X ) = �1 and
N (X ) = �2, then A∗n�1 ⊕ �2 = C

M(m).

Proof Since X is {2}-inverse of A, (A∗nX )2 = A∗nX∗mA∗nX = A∗nX . Thus, A∗nX is
idempotent. Hence, R(A∗nX ) and N (A∗nX ) are complementary. Furthermore, A∗nX is
the projection on R(A∗nX ) along N (A∗nX ). As X is an outer inverse of A, it is easy to
verify N (X ) = N (A∗nX ). Therefore, �2 = N (A∗nX ). The result is follows from the
fact that A∗n�1 = A∗nR(X ) = R(A∗nX ). 
�

Next, we consider characterizations of tensor generalized inverses with specified range
and nullity.

Theorem 3.5 Let us observe A ∈ C
M(m)×N(n),U ∈ C

N(n)×S(s),V ∈ C
L(l)×M(m), and

rshrank(A) = R(r). If
X = U∗s(V∗mA∗nU)(1)∗lV,

where (V∗mA∗nU)(1) is a {1}-inverse of (V∗mA∗nU). Then, the following holds:

(a) X ∈ A{1} ⇐⇒ rshrank(V∗mA∗nU) = ∏r
i=1 Ri .

(b) X ∈ A{2} and R(X ) = R(U) ⇐⇒ rshrank(V∗mA∗nU) = rshrank(U).
(c) X ∈ A{2} and N (X ) = N (V) ⇐⇒ rshrank(V∗mA∗nU) = rshrank(U) =

rshrank(V) = ∏r
i=1 Ri .

(d) X ∈ A(1,2)
R (U),N (V) if and only if rshrank(V∗mA∗nU) = rshrank(U) = rshrank(V) =∏r

i=1 Ri .

Proof (a) Let rshrank(V∗mA∗nU) = ∏r
i=1 Ri . Since:

r∏

i=1

Ri = rshrank(V∗mA∗nU) ≤ rshrank(A∗nU) ≤ rshrank(A) =
r∏

i=1

Ri ,

we get rshrank(A∗nU) = rshrank(A). Using Theorem 2.12, we have R(A∗nU) = R(A),
which further implies A = A∗nU∗sY for appropriate Y . Now:

V∗mA∗nX∗mA = V∗mA∗nU∗s(V∗mA∗nU)(1)∗sV∗mA∗nU∗sY = V∗mA∗nU∗sY = V∗mA.

We can easily show rshrank(AT ) = rshrank(AT ∗mVT ). Again by using Theorem 2.12, we
obtain R(AT ∗mVT ) = R(AT ). Therefore, by Theorem 2.6, A∗nX∗mA = A. To show the
sufficient part, let X ∈ A{1}. Since:

A = A∗nX∗mA∗nX∗mA = A∗nX∗mA∗nU∗s(V∗mA∗nU)(1)∗sV∗mA,

we have rshrank(V∗mA∗nU) = rshrank(A) = R(r).
(b) Consider rshrank(V∗mA∗nU) = rshrank(U). Since R(X ) ⊆ R(U) and:

rshrank(X ) = rshrank(U∗s(V∗mA∗nU)(1)∗sV)

≥ rshrank(V∗mA∗nU∗s(V∗mA∗nU)(1)∗sV∗mA∗nU)

= rshrank(V∗mA∗nU) = rshrank(U).

Therefore, R(X ) = R(U). Now:

X∗mA∗nX∗mA∗nU = U∗s(V∗mA∗nU)(1)∗sV∗mA∗nU∗s(V∗mA∗nU)(1)∗sV∗mA∗nU
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= U∗s(V∗mA∗nU)(1)∗sV∗mA∗nU = X∗mA∗nU .

Starting from R(X∗mA∗nU) ⊆ R(X ), the following can be concluded:

rshrank(X∗mA∗nU) = rshrank(U∗s(V∗mA∗nU)(1)∗sV∗mA∗nU)

≥ rshrank(V∗mA∗nU) = rshrank(U) = rshrank(X ).

Thus, by Corollary 2.7, we have X∗mA∗nX = X . Conversely, let X ∈ A{2} and
rshrank(U) = rshrank(X ). Since:

X = X∗mA∗nX = U∗s(V∗mA∗nU)(1)∗sV∗mA∗nU∗s(V∗mA∗nU)(1)∗sV,

one can conclude

rshrank(X ) ≤ rshrank(V∗mA∗nU) ≤ rshrank(U) = rshrank(X ).

This completes this part of the proof.
(c) The part (c) using similar principles.
(d) It follows from (a), (b), and (c). 
�

Lemma 3.6 Let A ∈ C
M(m)×N(n) and rshrank(A) = ∏r

i=1 Ri . Assume the existence of a
tensor G ∈ C

N(n)×M(m) satisfying:

rshdim(R(G)) =
s∏

i=1

Si ≤
r∏

i=1

Ri , rshdim(N (G)) =
m∏

i=1

Mi −
s∏

i=1

Si .

If A has a {2}-inverse A(2)
R (G),N (G), then:

(a) ind(A∗nG) = ind(G∗mA) = 1;
(b) A(2)

R (G),N (G) = G∗m(A∗nG)# = (G∗mA)#∗nG.

Proof It is not difficult to show R(A∗nG) = A∗nR(G) and N (G) ⊆ N (A∗nG). Thus by
Lemma 3.4, we conclude:

rshdimR(A∗nG) = rshdim(A∗nR(G))

=
m∏

i=1

Mi −
(

m∏

i=1

Mi −
s∏

i=1

Si

)
=

s∏

i=1

Si .

Now, rshdimN (A∗nG) = ∏m
i=1 Mi − dimR(A∗nG) = ∏m

i=1 Mi − ∏s
i=1 Si =

dim (N (G)).Thus,N (A∗nG) = N (G), and hence,R(A∗nG)⊕N (A∗nG) = A∗nN (G)⊕
N (G) = C

M(m). Therefore, by Theorem 2.4, we obtain ind(A∗nG) = 1. To find the outer
inverse, let us assume X := G∗m(A∗nG)#. Now:

X∗mA∗n X = G∗m(A∗nG)# = X ,

R(X ) = R(G∗m(A∗nG)#) ⊆ R(G), and N (X ) = N
(
G∗m(A∗nG)#

) ⊇ N
(
(A∗nG)#

) =
N (A∗nG) ⊇ N (G). Since

rshrank(X ) = rshrank(G∗m(A∗nG)#) = rank(G(AG)#) ≤ rank(G) = rshrank(G),

it is possible to verify:

rshrank(X ) = rshrank(G∗m(A∗nG)#) = rank(G(AG)#)

≥ rank(AG(AG)#) = rank(AG) = dim(R(AG))
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= rshdim(R(A∗nG)) =
s∏

i=1

Si = rshdim(R(G)) = rshrank(G).

Therefore, rshrank(X ) = rshrank(G). Using Theorem 2.12, we conclude R(X) =
R(G∗m(A∗nG)#) = R(G). As S ⊆ N (X ) and:

rshdim(N (X )) =
m∏

i=1

Mi − rshdim(R(X )) =
m∏

i=1

Mi −
s∏

i=1

Si = rshdim(S),

it follows that N (X ) = S. Hence, A(2)
R (G),N (G) = G∗m(A∗nG)#.

The dual statements ind(G∗mA) = 1 and A(2)
R (G),N (G) = (G∗mA)#∗nG can be verified

similarly. 
�
Theorem 3.7 (a). The following representations are valid for A ∈ C

M(m)×N(n):

(i) A† = A(2)
R (A∗),N (A∗)

(ii) A†
M,N = A(2)

R (A�),N (A�)
, where A� = N−1∗mA∗∗nM and M and N are Hermitian

positive definite tensors.

(b). For A ∈ C
N(n)×N(n), the following holds:

(i) A# = A(2)
R (A),N (A) if ind(A) = 1.

(ii) AD = A(2)
R (Ak ),N (Ak )

if ind(A) = k.

Proof a(i) It is obvious that A† = A(2). Now, let X ∈ N (A†). This yields A†∗mX = O.
Pre-multiplying A and applying the Moore–Penrose inverse properties, we obtain
(A†)∗∗mA∗∗mX = O. Again, pre-multiplying the last equality by A∗, we get
(A∗nA†∗mA)∗∗mX = O. Thus, A∗∗mX = O, and hence, N (A†) ⊆ N (A∗).
Similarly, we can show N (A∗) ⊆ N (A†). Therefore, N (A†) = N (A∗). As
A∗ = A†∗mA∗nA∗ and A† = A∗∗m(A†)∗∗nA†, so from the definition of the range
space, we have R(A†) = R(A∗).

a(ii) Clearly,A†
M,N = A(2). Now, letX ∈ N (A†

M,N ). This yieldsA†
M,N ∗mX = O. Pre-

multiplying byM∗mA and applying the weightedMoore–Penrose inverse definition, we
obtain (A†)∗∗mA∗∗mM∗mX = O. Again pre-multiplying A∗, we get A∗∗mM∗mX =
O. Furthermore, pre-multiplying N−1, we have A�∗mX = O. Thus, N (A†

M,N ) ⊆
N (A�). Similarly, we can show N (A�) ⊆ N (A†

M,N ). Therefore, N (A†
M,N ) =

N (A�). Let A†
M,N = X . Now:

N∗nX = N∗nX∗mA∗nX = A∗∗mX ∗∗nN∗nX
= A∗∗mX ∗∗nA∗∗mM∗∗mM−1∗mX ∗∗nN∗nX
= A∗∗mM∗mZ, where Z = A∗nX∗mM−1∗mX ∗∗nN∗nX .

Thus, R(A†
M,N ) ⊆ R(A�). Similarly, we can show the reverse relation.

b(i) Starting from A# = A(2) and using A = A#∗nA2 and A# = A∗n(A#)2, one obtains
R(A) = R(A#). Now, let X ∈ N (A). This implies A∗nX = O. Pre-multiplying by
(A#)2, we conclude A#∗nX = O. Thus, N (A) ⊆ N (A#). Similarly, we can show
N (A#) ⊆ N (A). Hence, N (A#) = N (A)

b(ii) Since Ak = AD∗nAk+1 and AD = Ak∗n(AD)k+1, we have R(Ak) = R(AD). The
null condition can be obtained using similar lines of b(i). 
�
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Lemma 3.8 Let us choose A ∈ C
M(m)×N(n) with the rank decomposition A = F∗lG, where

F ∈ C
M(m)×L(l) and G ∈ C

L(l)×N(n). Then, it follows that R(A) = R(F) and N (A) =
N (F).

Proof From the definition of range and space, it is trivial that R(A) ⊆ R(F) and N (G) ⊆
N (A). Since A = F∗lG is the full-rank decomposition of A, it yields G is right invertible
and F is left invertible. Let G−1

R be the right inverse of G and F−1
L be the left inverse of F .

Now, pre-multiplying F−1
L to A, we obtain G = F−1

L ∗mA. Thus, N (A) ⊆ N (G). Post-
multiplying G−1

R toA, we again getF = A∗nG−1
R . This impliesR(F) ⊆ R(A) and finalizes

the proof. 
�
Theorem 3.9 Observe A ∈ C

M(m)×N(n) and consider rshrank(A) = ∏r
i=1 Ri . Suppose the

existence of a tensor W ∈ C
N(n)×M(m), such that rshdim(R(W)) = ∏s

i=1 Si ≤ ∏r
i=1 Ri

and rshdim(N (W)) = ∏m
i=1 Mi − ∏s

i=1 Si . Let W = F∗sG be full-rank factorization of

W . If A has a {2}-inverse A(2)
R (F),N (G), then:

(a) G∗mA∗nF is an invertible tensor;
(b) A(2)

R (W),N (W) = F∗s(G∗mA∗nF)−1∗sG = A(2)
R (F),N (G).

Proof Let W = F∗sG be a rank factorization of W . An application of Lemma 3.8 initiates:

R(W) = R(F) and N (W) = N (G). (3.1)

Now, R(A∗nF) = A∗nR(F) = A∗nR(W). Therefore, by Lemma 3.4, we obtain:

rshdim(R(A∗nF)) =
m∏

i=1

Mi −
(

m∏

i=1

Mi −
s∏

i=1

Si

)
=

s∏

i=1

Si .

Thus, rshrank(A∗nF) = S(s) = rshrank(W) − rshrank(G). Similarly, argumentation leads
to rshrank(A∗nW) = ∏s

i=1 Si . This implies that A∗nW = A∗nF∗sG is a full-rank decom-
position ofA∗nW . The non-singularity of G∗mA∗nF follows from Lemma 3.6 and Theorem
2.15. Since

F∗s(G∗mA∗nF)−1∗sG∗mA∗nF∗s(G∗mA∗nF)−1∗sG = F∗s(G∗mA∗nF)−1∗sG,

it follows that, F∗s(G∗mA∗nF)−1∗sG is a {2}-inverse of A. From the range and null space
definition:

R
(
F∗s(G∗mA∗nF)−1∗sG

) ⊆ R(F) and N (G) ⊆ N
(
F∗s(G∗mA∗nF)−1∗sG

)
. (3.2)

Next, we will show the reverse relation. As

F = F∗s(G∗mA∗nF)−1∗s(G∗mA∗nF) = F∗s(G∗mA∗nF)−1∗sG∗m(A∗nF),

we have:
R(F) ⊆ R

(
F∗s(G∗mA∗nF)−1∗sG

)
. (3.3)

Now, let X ∈ N
(
F∗s(G∗mA∗nF)−1∗sG

)
. This implies F∗s(G∗mA∗nF)−1∗sG∗mX = O.

Pre-multiplying the last equality by the left inverse ofF ,weobtain (G∗mA∗nF)−1∗sG∗mX =
O. Again, pre-multiplication with G∗mA∗nF leads to G∗mX = O. Thus:

N
(
F∗s(G∗mA∗nF)−1∗sG

) ⊆ N (G). (3.4)

Using (3.1), (3.2), (3.3), and (3.4), we obtain:

A(2)
R (W),N (W) = F∗s(G∗mA∗nF)−1∗sG.
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To show the second part of (b), it is sufficient to show N (W) ⊆ N (G). Let X ∈ N (W).
This implies W∗mX = O. This in turn gives F∗sG∗mX = O. Pre-multiplying by the left
inverse of F , we obtain G∗mX = O. Thus, N (W) ⊆ N (G), and hence:

A(2)
R (W),N (W) = F∗s(G∗mA∗nF)−1∗sG = A(2)

R (F),N (G).

The proof is completed. 
�
Lemma 3.10 For given tensor A ∈ C

M(m)×N(n) and X ∈ A{1}, X ∈ A{1, 2} if and only if
rshrank(X ) = rshrank(A).

Proof The sufficient part is trivial. Let rshrank(X ) = rshrank(A). Clearly, R(X∗mA) ⊆
R(X ) and rshrank(X∗mA) ≤ rshrank(X ). Now:

rshrank(X∗mA) ≥ rshrank(A∗nX∗mA) = rshrank(A) = rshrank(X ).

Therefore, by Theorem 2.12, R(X∗mA) = R(X ). This implies X = X∗mA∗nY for some
Y . Multiplication by A from the left gives A∗nX = A∗nY . Now:

X∗mA∗nX = X∗mA∗nY = X .


�
Corollary 3.11 Let A ∈ C

M(m)×N(n). Then, any two of the following three statements imply
the third:

(a) X ∈ A{1};
(b) X ∈ A{1, 2};
(c) rshrank(X ) = rshrank(A).

Proposition 3.12 Let A ∈ C
M(m)×N(n) satisfy rshrank(A) = ∏r

i=1 Ri , and observe F ∈
C
N(n)×S(s), G∈C

S(s)×M(m). For 0 <
∏s

i=1 Si ≤ ∏r
i=1 Ri , the following representations for

some outer generalized inverses hold:

(a) A{2}S(s) =
{
A(2)

R (F),N (G)
= F∗s(G∗mA∗nF)−1∗sG | rshrank(G∗mA∗nF)=S(s)

}
;

(b) A{2, 4}S(s) =
{
A(2,4)

R ((G∗mA)∗),N (G)
= (G∗mA)∗∗s

(G∗mA(G∗mA)∗
)−1 ∗sG | rshrank(G) = S(s)

}

=
{
(G∗mA)†∗sG | rshrank(G∗mA) = S(s)

}
;

(c) A{2, 3}S(s) =
{
A(2,3)

R (F),N ((A∗nF)∗)
= F∗s

(
(A∗nF)∗∗mA∗nF

)−1 ∗m(A∗nF)∗| rshrank(F) = S(s)
}

=
{
F∗s(A∗nF)†| rshrank(A∗nF) = S(s)

}
;

(d) A{1, 2} = A{2}R(r).

Proof (a). Let X = F∗s(G∗mA∗nF)−1∗sG. Now:

X∗mA∗nX = F∗s(G∗mA∗nF)−1∗sG∗mA∗nF∗s(G∗mA∗nF)−1∗sG
= F∗s(G∗mA∗nF)−1∗sG = X .

Thus, X is an outer inverse of A. Clearly, R(X ) ⊆ R(F) and N (G) ⊆ N (X ). Let
Y ∈ N (X ). This leads F∗s(G∗mA∗nF)−1∗sG∗mY = O. Multiplying on the left by
G∗mA, we obtain G ∗m Y = O. Thus, Y ∈ N (G). Hence, N (G) = N (X ). As
F = F∗s(G∗mA∗nF)−1∗sG∗mA∗nF = X∗mA∗nF . Therefore, R(F) ⊆ R(X ). There-
fore, R(F) = R(X ).
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(b). Let X = (G∗mA)†∗sG. Observe:

X∗mA∗nX = (G∗mA)†∗sG∗mA∗n(G∗mA)†∗sG = (G∗mA)†∗sG = X

and
(X∗mA)∗ = (G∗mA)†∗sG∗mA = X∗mA.

Thus, the second part of (b) is verified.
Again, let X = (G∗mA)∗∗s (G∗mA(G∗mA)∗)−1 ∗sG. It can be verified easily that

X∗mA∗nX = X and (X∗mA)∗ = X∗mA. Also, it is trivial that R(X ) ⊆ R(G∗mA)∗)
and N (G) ⊆ N (X ). Let Y ∈ N (X ). This implies:

(G∗mA)∗∗s
(
G∗mA(G∗mA)∗

)−1 ∗sG∗mY = O.

Pre-multiplying G∗mA, we get G∗mY = O, which yields N (X ) ⊆ N (G). Thus,
N (X ) = N (G). Now, (G∗mA)∗ = (G∗mA)∗∗s (G∗mA(G∗mA)∗)−1 ∗sG∗mA(G∗mA)∗ =
X∗mA(G∗mA)∗. Therefore, R(G∗mA)∗) ⊆ R(X ), and hence, R(G∗mA)∗) = R(X ).

(c) Similar to part (b).
(d) From Corollary 3.11, it is enough to show rshrank(F∗s(G∗mA∗nF)−1∗sG) = R(r).

Clearly, rshrank(F∗s(G∗mA∗nF)−1∗sG) ≤ rshrank((G∗mA∗nF)−1) = R(r). Now:

rshrank(F∗s(G∗mA∗nF)−1∗sG) ≥ rshrank(G∗mA∗nF∗s(G∗mA∗nF)−1∗sG∗mA∗nF)

≥ rshrank(G∗mA∗nF) = R(r).

Hence, it completes the proof. 
�

3.2 Generalized inversion arising fromQR decomposition

Computation of generalized inverses based on full-rank factorizations has been studied by
several authors in the recent literature (Behera et al. 2018, 2019; Liang and Zheng 2019). In
this section, we have extended the work of Stanimirović et al. (2012) to tensors via Einstein
product. In the next result, we employed Q R decomposition to obtain the outer inverse with
specified null and range spaces.

Theorem 3.13 Let A ∈ C
M(m)×N(n), W ∈ C

N(n)×M(m) with rshrank(A) = R(r) and
rshrank(W) = S(s), where S(s) ≤ R(r). Suppose that the Q∗nR factorization of W is
given as:

W∗mP = Q∗nR, (3.5)

where P ∈ C
M(m)×M(m) is a permutation tensor, Q ∈ C

N(n)×N(n), Q∗∗nQ = I and R ∈
C
N(n)×M(m) with rshrank(R) = S(s). Assume that P partitions Q and R in the form:

Q = [
Q1 Q2

]
, R =

[
R11 R12

O O

]
=

[
R1

O

]
, (3.6)

where Q1 ∈ C
N(n)×S(s) and R11 ∈ C

S(s)×S(s) is nonsingular.
If A has a {2}-inverse A(2)

R (W),N (W), then:

(a) R1∗mP∗∗mA∗nQ1 is invertible;
(b) A(2)

R (W),N (W) = Q1∗s(R1∗mP∗∗mA∗nQ1)
−1∗sR1∗mP∗;

(c) A(2)
R (W),N (W) = A(2)

R (Q1),N (R1∗mP∗);

(d) A(2)
R (W),N (W) = Q1∗s(Q∗

1∗nW∗mA∗nQ1)
−1∗sQ∗

1∗nW;
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(e) A(2)
R (W),N (W) ∈ A{2}S(s).

Proof (a) Using the partition of Q and R, we have W = Q∗nR∗mP∗ = Q1∗s(R1∗mP∗).
It is easy to verify rshrank(Q1) = S(s) and rshrank(R1) = rshrank(R) = S(s). Thus,
W = Q1∗s(R1∗mP∗) is a full-rank factorization of W . By Theorem 3.9 (b), and the fact
that A(2)

R (W),N (W) is a {2}-inverse A, we deduce invertibility of R1∗mP∗∗mA∗nQ1.
(b), (c) Using similar technique of part (b) in Theorem 3.9, the parts (b) and (c) can be

verified.
(d) Since R1∗mP∗ = Q∗

1∗nW , we have:

Q1∗s(R1∗mP∗∗mA∗nQ1)
−1∗sR1∗mP∗ = Q1∗s(Q∗

1∗nW∗mA∗nQ1)
−1∗sQ∗

1∗nW.

(3.7)
Substituting Eq. (3.7) in part (b), we get: A(2)

R (W),N (W) = Q1∗s(Q∗
1∗nW∗m

A∗nQ1)
−1∗sQ∗

1∗nW .
(e) The proof of this part follows from the part (a) of Proposition 3.12.


�
Suppose that the Q∗nR factorization of W is of the form:

W∗mP = Q∗nR, (3.8)

where P , Q, and R are as the same as in Theorem 3.13. Then, using Proposition 3.12 and
Theorem 3.7, we get the following characterization of the generalized inverses for various
outer inverse.

Corollary 3.14 Observe A ∈ C
M(m)×N(n) and choose W ∈ C

N(n)×M(m) satisfying
rshrank(A) = R(r) and rshrank(W) = S(s), where S(s) ≤ R(r). Suppose that the full-
rank representation of W:

W = Q1∗s(R1∗mP∗), (3.9)

arises from its Q∗nR decomposition (3.8). Then, the following statements are valid:

A(2)
R (Q1),N (R1∗mP∗) =

⎧
⎪⎪⎨

⎪⎪⎩

A†, W = A∗;
A†

M,N , W = A�;
A#, W = A;
AD, W = Ak, k ≥ ind(A).

(3.10)

Using the uniqueness of the outer inverse (with specified null and range space) along with
Theorems 3.13 (b) and 3.9 (b), we conclude the following corollary.

Corollary 3.15 Let all assumptions of Theorem 3.13 be retained and W = F∗sG be a full-
rank decomposition of W . Then:

Q1∗s(R1∗mP∗∗mA∗nQ1)
−1∗sR1∗mP∗ = F∗s(G∗mA∗nF)−1∗sG. (3.11)

Lemma 3.16 Consider A ∈ C
M(m)×N(n) satisfying rshrank(A) = S(s). If A = F1∗sG1 =

F2∗sG2 are two full-rank factorizations of A, then there exists an invertible tensor T ∈
C
S(s)×S(s), such that F2 = F1∗sT and G2 = T −1∗sG1.

Proof Let A = F1∗sG1 = F2∗sG2 be two full factorizations of A. Then, F†
i is left inverse

of Fi and G†
i is right inverse of Gi , i = 1, 2. Since F2∗sG2 = F1∗sG1, pre-multiplying F†

2 ,

we obtain G2 = F†
2∗mF1∗sG1. Now:

S(s) = rshrank(G2) = rshrank(F†
2∗mF1∗sG1) ≤ rshrank(F†

2∗mF1) ≤ S(s).
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Therefore,F†
2∗mF1 invertible. Similarly,we can showG1∗nG†

2 is invertible. LetS = F†
2∗mF1

and T = G1∗nG†
2 . Then:

S∗sT = F†
2∗mF1∗sG1∗nG†

2 = F†
2∗mA∗nG†

2 = F†
2∗mF2∗sG2∗nG†

2 = I.

Thus, S = T −1 with G2 = S∗sG1 = T −1∗sG1 and F2 = F∗sG∗nG† = F∗sT . 
�
Corollary 3.17 Let W = F∗sG be an arbitrary rank factorization of W in accordance with
conditions of Theorem 3.9. If W = Q1 ∗r (R1 ∗m P∗) is another rank factorization of W
satisfying the assumption of Theorem 3.13, then:

F = Q1∗sT , G = T −1∗sR1∗mP∗, (3.12)

where the tensor T is equal to T = Q∗
1∗nF .

In view of Corollary 3.15, if W has two different full-rank representations, W = F∗sG
and W = Q1∗s(R1∗mP∗) W , then we have:

A(2)
R (W),N (W) = Q1∗s(R1∗mP∗∗mA∗nQ1)

−1∗sR1∗mP∗ = F∗s(G∗mA∗nF)−1∗sG.

Toavoid thehigh complexity involved in tensormultiplicationwhile computingA(2)
R (W),N (W),

we can follow the following alternating approaches. For M < N, we compute the tensor
X = (R1∗mP∗∗mA∗nQ1)

−1∗sR1∗mP∗ by solving the below multilinear system:

R1∗mP∗∗mA∗nQ1∗sX = R1∗mP∗. (3.13)

Similarly, forN < M, we solve the following multilinear system:

Q∗
1∗nW∗mA∗nQ1∗sX = Q∗

1∗nW. (3.14)

Obtaining X from Eq. (3.13) or (3.14), we compute the outer inverse as follows:

A(2)
R (Q1),N (R1∗mP∗) = A(2)

R (Q1),N (Q∗
1∗nW)

= Q1∗sX . (3.15)

Corollary 3.18 Let A ∈ C
M(m)×N(n) satisfy rshkrank(A) = ∏r

i=1 Ri ,
∏s

i=1 Si ≤ ∏r
i=1 Ri

and the tensors F, G are chosen as in Proposition 3.12. Suppose W ∈ C
N(n)×M(m) is an

arbitrary tensor with rshkrank(W) = ∏s
i=1 Si .

(a) If (3.9) is a full-rank factorization of W = (G∗mA)∗∗sG, then:

A(2,4)
R (Q1),N (R1∗mP∗) = Q1∗s(R1∗mP∗∗mA∗nQ1)

−1∗sR1∗mP∗ = (G∗mA)†∗sG.

(3.16)
(b) If (3.9) is a full–rank factorization of W = F∗s(A∗nF)∗, then:

A(2,3)
R (Q1),N (R1∗mP∗) = Q1∗s(R1∗mP∗∗mA∗nQ1)

−1∗sR1∗mP∗ = F∗s(A∗nF)†

(3.17)

Proof (a) In view of Proposition 3.12 and Corollary 3.15, the result is follows from:

Q1∗s(R1∗mP∗∗mA∗nQ1)
−1∗sR1∗mP∗ = (G∗mA)∗∗s(G∗mA∗n(G∗mA)∗)−1∗sG

= (G∗mA)†∗sG.

(b) This part of the proof can be verified in a similarly.

�
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Utilizing Q R decomposition, the computation of the outer inverseA(2)
T ,S , of a given tensor

A is elaborated in Algorithm 1.

Algorithm 1 Computation of X := A(2)
R (W ),N (W ) using reshape operation.

1: Input: Integers m, n, integers M1, . . . , Mm , N1, . . . , Nn and the tensors A ∈ C
M(m)×N (n), W ∈

C
N (n)×M(m).

2: Compute integers M = ∏m
i=1 Mi and N = ∏n

j=1 N j .

3: Reshape the tensors A ∈ C
M(m)×N (n), W ∈ C

N (n)×M(m) and compute rsh(A) = A ∈ C
M×N,

rsh(W) = W ∈ C
N×M:

A = reshape (A,M,N) = rsh(A)

W = reshape (W,N,M) = rsh(W).

4: Compute Q and R such that W P = Q R, such that P is theM×M permutation matrix, Q = [
Q1 Q2

] ∈
C
N×N satisfies Q∗ Q = IN, Q1 ∈ C

N×S, Q2 ∈ C
N×(N−S),

R =
[

R11 R12
O O

]
=

[
R1
O

]
∈ C

N×M
S , R1 ∈ C

S×M
S

is an upper trapezoidal matrix and R11 ∈ C
S×S is nonsingular. .

5: In view of (3.9), compute a rank decomposition of W .
6: Compute

X = A(2)
R (Q1),N (R1P∗)

= Q1(R1P∗ AQ1)
−1R1P∗

= A(2)
R (Q1),N (Q∗

1W )
= Q1(Q∗

1W AQ1)
−1Q∗

1W ∈ C
N×M

7: Compute the output
X := rsh−1(X) ∈ C

N (n)×M(m).

4 Numerical examples and applications

This section is aimed to numerical verification of Algorithm 1. In addition, an application
of the tensor generalized inversion in image deblurring is presented.

4.1 Examples

Example 4.1 Let A = (ai jkl)1≤i≤3,1≤ j,k,l≤2 ∈ R
3×2×2×2 with:

ai j11 =
⎛

⎝
1 3
1 4
2 6

⎞

⎠ , ai j21 =
⎛

⎝
2 4
3 5
3 6

⎞

⎠ , ai j12 =
⎛

⎝
3 5
4 6
4 7

⎞

⎠ , ai j22 =
⎛

⎝
4 6
6 7
5 7

⎞

⎠ .

Choose the tensors F = ( fi jk) ∈ R
2×2×2 and G = (gi jkl) ∈ R

2×3×2, such that:

fi j1 =
(
1 0
2 0

)
, fi j2 =

(
1 0
1 0

)
, gi j1 =

(
1 0 0
0 0 1

)
, gi j2 =

(
1 −4 1

−1 8 −1

)
.
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Consider the tensor W satisfying W = F∗nG. The tensors Q1,R1 and P as defined in
Eq. (3.6), are, respectively, given by:

Q1(:, :, 1) =
(

1√
2

0

− 1√
2
0

)
, Q1(:, :, 2) =

(
1√
2
0

1√
2
0

)
,

R1(:, :, 1) =
(− 1√

2
0 0

3√
2

0 1

)
, R1(:, :, 2) =

(
0 − 1√

2√
2 1√

2

)
,

and P is the identity tensor of order 3 × 2 × 3 × 2. From Theorem 3.13 (b) and (c),
A(2)
R (W),N (W) = (xi jkl) ∈ R

2×2×3×2 is equal to:

xi j11 =
(

33/2 0
−25/2 0

)
, xi j21 =

(
0 0
0 0

)
, xi j31 =

(
4 0

−3 0

)
,

xi j12 =
(

25/2 0
−19/2 0

)
, xi j22 =

(−34 0
26 0

)
, xi j32 =

(
25/2 0

−19/2 0

)
.

Example 4.2 Consider the tensor A as in Example 4.1 and W = AT ∈ R
2×2×3×2. The

tensors Q1 ∈ R
2×2×3,R1 ∈ R

3×3×2 and P ∈ R
3×2×3×2 satisfying (3.6) are given by:

Q1(:, :, 1) =
(−2057/4470 −677/1261

−2057/4470 −677/1261

)
, Q1(:, :, 2) =

(
265/362 −155/3792
91/907 −265/394

)
,

Q1(:, :, 3) =
(−161/3323 −719/1060

508/699 347/3581

)
,

R1(:, :, 1) =
⎛

⎝
−8827/677 −3958/549 −1927/375

0 −3147/994 −1916/1019
0 0 −508/2097

⎞

⎠ ,

R1(:, :, 2) =
⎛

⎝
−4244/465 −3125/281 −1719/241
−1741/1060 −1359/892 −155/88
−161/3323 161/3323 −508/3495

⎞

⎠ ,

and P is the identity tensor of order 3 × 2 × 3 × 2. Using Theorem 3.13 (b) and (c), we
obtain the outer inverse A(2)

R (W),N (W) = (xi jkl) ∈ R
2×2×3×2, where:

xi j11 =
(

11/76 2
−163/76 −11/38

)
, xi j21 =

(−23/76 −5/4
99/76 27/76

)
, xi j31 =

(
5/76 1

−81/76 −5/38

)
,

xi j12 =
(−1/76 0

1/76 1/38

)
, xi j22 =

(−7/76 −1
83/76 7/38

)
, xi j32 =

(
15/76 1/4

−15/76 −11/76

)
.

By Corollary 3.14, we obtain the Moore–Penrose inverse A† = A(2)
R (W),N (W).

Example 4.3 Observe A = (ai jkl)1≤i,k≤3,1≤ j,l≤2 ∈ R
3×2×3×2 defined as:

ai j11 =
⎛

⎝
1 0
0 0
0 1

⎞

⎠ , ai j21 =
⎛

⎝
2 1
0 0
1 0

⎞

⎠ , ai j31 =
⎛

⎝
0 0
1 0
0 0

⎞

⎠ ,

ai j12 =
⎛

⎝
0 0
0 0
0 0

⎞

⎠ , ai j22 =
⎛

⎝
1 0
1 2
1 1

⎞

⎠ , ai j32 =
⎛

⎝
0 0
0 0
0 0

⎞

⎠ ,
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and W = A. The tensors Q1 ∈ R
3×2×2×2,R1 ∈ R

2×2×3×2 and P ∈ R
3×2×3×2 as defined

in (3.6) are equal to:

Q1(:, :, 1, 1) =
⎛

⎝
−1189/3363 0
−1189/3363 −985/1393
−1189/3363 −1189/3363

⎞

⎠ , Q1(:, :, 1, 2) =
⎛

⎝
523/1704 −433/1834

−523/3692 −523/1846
−1046/2769 194/249

⎞

⎠ ,

Q1(:, :, 2, 1) =
⎛

⎝
1483/2015 529/1168
−954/5617 −1908/5617
1590/5617 −954/5617

⎞

⎠ , Q1(:, :, 2, 2) =
⎛

⎝
−220/4599 −220/4599
−419/461 1760/4599
220/1533 220/4599

⎞

⎠ ,

R1(:, :, 1, 1) =
(−3363/1189 0

0 0

)
, R1(:, :, 2, 1) =

(−1189/1121 0
1168/529 0

)
,

R1(:, :, 3, 1) =
(−985/1393 568/523
3180/5617 0

)
,

R1(:, :, 1, 2) =
(−1189/3363 −523/3692

−954/5617 −419/461

)
, R1(:, :, 2, 2) =

(
0 0
0 0

)
,R1(:, :, 3, 2) =

(
0 0
0 0

)
,

andP is the identity tensor of order 3×2×3×2. From Theorem 3.13 (b) and (c), we obtain
A(2)

R (W),N (W) = (xi jkl) ∈ R
2×2×3×2, where:

xi j11 =
⎛

⎝
1 0
0 0
0 1

⎞

⎠ , xi j21 =
⎛

⎝
0 1
0 0
1 −2

⎞

⎠ , xi j31 =
⎛

⎝
−2 0
1 0
0 −2

⎞

⎠ ,

xi j12 =
⎛

⎝
0 0
0 0
0 0

⎞

⎠ , xi j22 =
⎛

⎝
1/2 −3/4

−1/2 1/2
−1/2 2

⎞

⎠ , xi j32 =
⎛

⎝
0 0
0 0
0 0

⎞

⎠ ,

Applying Corollary 3.14, one can observe that A# = A(2)
R (W),N (W).

4.2 Image deblurring

The discrete model for two-dimensional (2D) image blurring is represented as:

Ax = b, (4.1)

where A represents the blurring matrix of some specific structure. For instance A may a
banded, Toeplitz, or block-Toeplitz matrix (Calvetti et al. 1999; Kilmer and Martin 2011).
Here, x is the true image and b is the blurred image. In practice, b is corrupted by a noise.
Mostly, the blurred matrix A is ill-conditioned, so even if A is theoretically invertible, the
exact solution x will be contaminated by the noise. The formulation in (4.1) is used in many
image restoration problems. For more information on image deblurring and restoration (see
Andrews and Hunt 1977; Hansen et al. 2006; Lagendijk and Biemond 2012).

In case of three-dimensional (3D) colour image blurring problem, often occurring in
medical or geographic imaging, it can be written as a tensor equation:

A ∗1 X = B, (4.2)

where A is the known blurring tensor, X and B are tensors representing the true image, and
the blurred image, often corrupted by the noise. The main objective in the image restoration
is to establish a blurred free image that requires the approximate solution of the multilinear
system (4.2). To find the approximate solution of the ill-posed system (4.2), several iterative
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Fig. 1 a and d true image, b and e blurred noisy image, c and f reconstruction image

methods such as tensor form of the global GMRES, MINIRES, and SYMMLQ are presented
in Huang et al. (2019). Furthermore, a few iterative methods (called LSQR, and LSMR) have
been discussed by the authors of Huang and Ma (2020).

In our test examples, we consider two 512× 512× 3 colour image and formed a blurring
image B by computing A ∗1 X , where X is the true image. Then, the Gaussian noise was
added to B with the noise level of 0.1 percent. The original images and blurred noisy images
are, respectively, shown in Fig. 1a, d, b, e. We reconstructed the true image by the least
square solution A† ∗1 B directly, where the Moore-Penrose inverse is computed using the
Algorithm 1 by takingW = AT . The resulting reconstructed images are displayed in Fig. 1c,
f.

5 Conclusion

The tensor form of QR decomposition was developed via the Einstein product. Several
representations and characterizations of the outer inverse with specified range and nullity
conditions are developed and analysed. Appropriate algorithms are developed and the com-
putation of the outer inverse is explained with the help of the tensor QR decomposition.
Subsequently, we discuss the relation of this outer inverse with other generalized inverses
such as Moore–Penrose inverse, group inverse, Drazin inverse, Weighted Moore–Penrose
inverse. The generality of the developed algorithm is reflected in the capability that many
kinds of other generalized inverses can be obtained as appropriate special cases. This gives
us the flexibility to choose generalized inverses depending on applications. In addition to
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that, we have discussed one application in the reconstruction of blurred noisy image through
least square solution.
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