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Abstract
In this paper, the modifications of the Hermitian-Normal splitting iteration methods for
solving a class of complex symmetric linear systems are presented. Theoretical analysis
shows that the modified iteration methods of Hermitian-normal splitting are unconditionally
convergent; the coefficient matrices of the two linear systems solved in each iteration of the
methods are real symmetric positive definite. Inexact version of the methods employs the
Krylov subspace method as an internal iteration to accelerate. Numerical examples from two
model problems are given to illustrate the effectiveness of the modified iteration methods.

Keywords Complex symmetric matrix · Hermitian-normal splitting · Modified ·
Convergence

Mathematics Subject Classification 65F10 · 65F50

1 Introduction

Many problems in the field of scientific computation can be viewed as solving a large and
space symmetric linear system (Axelsson and Kucherov 2000), including quantum mechan-
ics, fluid dynamics, and electromagnetic problems. Now, we consider a large sparse system
of linear equations as follows:

Ax = b, A ∈ Cn×n x, b ∈ Cn, (1.1)
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where A is symmetric and nonsingular.
There are many iterative methods that need to effectively split the coefficient matrix A

to solve this problem. For example, the classic Jacobi and Gauss–Seidel iterations method
(Hageman andYoung 1971; Saad 1996) and the generalized Lanczosmethod (Widlund 1978)
split the matrix A into the Hermitian and skew-Hermitian parts which is formed as:

A = W + iT , (1.2)

where W = 1
2 (A + A∗) and iT = 1

2 (A − A∗), i = √−1 is the imaginary unit, and A∗ is
denoted the conjugate transpose of the matrix A. We assume T �= 0, which implies that A is
non-Hermitian matrix.

Bai et al. (2003) presented the formation of the HSS iteration method: given an initial
guess x (0) for k = 0, 1, . . . until {x (k)} converges, compute:

(α I + W )x (k+1/2) = (α I − iT )x (k) + b,

(α I + iT )x (k+1) = (α I − W )x (k+1/2) + b,
(1.3)

where α is a given positive constant. Bai et al. (2004) applied this method to the saddle
point problem directly or as a preconditioner. Bai et al. (2006) analyzed the optimal param-
eter α∗ that minimizes the spectral radius of the iteration matrix of the HSS method to
accelerate convergence. Later, Bai et al. (2010) skillfully designed a modified Hermitian
and skew-Hermitian splitting (MHSS) method to solve two linear systems with real sym-
metric positive definite coefficient matrices. Based on Hermitian positive semidefinite matrix
−(−iT )2 = (−iT )(−iT ), Bai (2008) also established Skew-Normal Splitting (SNS)method
and Skew-Scaling Splitting (SSS) method.

Wu (2015) multiplied (1.1) on the left byW to obtain a splitting of the Hermitian-Normal
equations:W (W + iT )x = Wb. The Hermitian-Normal Splitting (HNS) iteration method is
written as following.
The HNS Iteration Method.Given an initial value x (0) to (1). For k = 0, 1, 2, . . . until the
sequence of iterates x (k) converges, compute the next iterate x (k+1) according to the following
procedure: {

(α I + iW )x (k+1/2) = (αT − W 2)x (k) + Wb,

(αT + W 2)x (k+1) = (α I − iW )x (k+1/2) + Wb,
(1.4)

where α > 0 and I is the identity matrix. Furthermore, a simplified HNS (SHNS) method is
presented.

In this paper, to further generalize the Hermitian-Normal Splitting iteration methods and
accelerate convergence rate, the modification of the Hermitian-Normal Splitting iteration
method is proposed. In Sect. 2, the modified Hermitian-Normal Splitting iteration method
(MHNS) and themodified simplifiedHermitian-Normal Splitting iterationmethod (MSHNS)
are described and their convergence properties are discussed. In Sect. 3, the conclusion on
eigenvalue distribution of the preconditioned matrix is presented when the modified methods
as the preconditioner. Some implementation aspects are briefly discussed in Sect. 4. The
results of numerical experiments in Sect. 5 are displayed. Finally, in Sect. 6, we offer some
conclusions to end the paper.

123



Modified Hermitian-normal splitting iteration methods… Page 3 of 13 190

2 Themodified Hermitian-normal splitting iterationmethods

2.1 TheMHNS iterationmethod

We first multiply (1.1) on the left by −iW to obtain a equation:

−iW Ax = (−iW 2 + WT )x = −iWb,

and then multiply W on the left to obtain another equation:

W Ax = (W 2 + iWT )x = Wb.

Then, we can obtain the following forms as:

(αT + WT )x = (αT + iW 2)x − iWb,

(αT + W 2)x = (αT − iWT )x + Wb.
(2.1)

Now, by alternately iterating between the two systems of equations, we can establish the
following modified HNS iteration method.

TheMHNS iterationmethodLet x (0) ∈ Cn is an initial value. For k = 0, 1, 2, . . ., we compute
the sequence of iterates x (k) until it converges; the next iterate x (k+1) accords the following
procedure: {

(α I + W )x (k+1/2) = (αT + iW 2)x (k) − iWb,

(αT + W 2)x (k+1) = (α I − iW )x (k+1/2) + Wb,
(2.2)

where α > 0 and I is the identity matrix.
By eliminating the intermediate vector x (k+1/2), we can obtain the following iteration

form as:
x (k+1) = Mαx

(k) + NαWb, k = 0, 1, 2, . . . ,

where
Mα = (αT + W 2)−1(α I − iW )(α I + W )−1(αT + iW 2)

is the iteration matrix. In addition, we introduce matrices:

B(α) = 1 + i

2α
(α I + W )(αT + W 2) and C(α) = 1 + i

2α
(α I − iW )(αT + iW 2), (2.3)

it holds that:
W A = B(α) − C(α) and M(α) = B(α)−1C(α).

Matrix B(α) can be used as a preconditioner matrix for the complex matrix W A. Then,
we analyze the convergence rate of the method and derive the upper bound of the contraction
factor.

Theorem 2.1 Let A = W + iT ∈ Cn×n, with W ∈ Rn×n symmetric positive definite and
T ∈ Rn×n symmetric positive semidefinite, α is a positive constant. Then, the spectral radius
ρ(M(α)) of the MHNS iteration matrix M(α) satisfies ρ(M(α)) ≤ σ(α) < 1, where:

σ(α) ≡ max
μi∈sp(W )

√
α2μ2

i + 1

αμi + 1
,

and sp(W ) denotes the spectrum of the matrix W, i.e., the MHNS iteration converges to the
unique solution x� ∈ Cn of the complex symmetric linear system (1.1) for any initial guess.
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Proof By direct computations, we have:

ρ(M(α)) = ρ((αT + W 2)−1(α I − iW )(α I + W )−1(αT + iW 2))

= ρ((αT + W 2)(αT + W 2)−1(α I − iW )(α I + W )−1(αT + iW 2)(αT + W 2)−1)

= ρ((α I − iW )(α I + W )−1(αT + iW 2)(αT + W 2)−1)

≤‖ (α I − iW )(α I + W )−1 ‖2‖ (αT + iW 2)(αT + W 2)−1 ‖2
=‖ (α I − iW )(α I + W )−1 ‖2‖ W (αW−1TW−1 + i I )(αW−1TW−1 + I )−1W−1 ‖2
=‖ (α I − iW )(α I + W )−1 ‖2‖ (αW−1TW−1 + i I )(αW−1TW−1 + I )−1 ‖2 .

Let Q = W−1TW−1, becauseW ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is
symmetric positive semidefinite, Q = W−1TW−1 is also symmetric positive semidefinite,
and there exist orthogonal matrices U , V ∈ Rn×n , such that:

UT QU = �Q, V TWV = �W ,

where
�Q = diag(λ1, λ2, . . . , λn)

and
�W = diag(μ1, μ2, . . . , μn)

with λi (1 ≤ i ≤ n) and μi (1 ≤ i ≤ n) being the eigenvalues of the matrices Q and W ,
respectively. By our assumption, it holds that:

λi ≥ 0 and μi > 0, i = 1, 2, . . . .

Now, based on the orthogonal invariance of the Euclidean norm ‖ · ‖2, we can further
obtain the following upper bound on ρ(M(α)):

ρ(M(α)) ≤‖ (α I − i�W )(α I + �W )−1 ‖2‖ (α�Q + i I )(α�Q + I )−1 ‖2
= max

μi∈sp(W )

∣∣∣∣α − iμi

α + μi

∣∣∣∣ · max
λi∈sp(Q)

∣∣∣∣ αλi + i

αλi + 1

∣∣∣∣
= max

μi∈sp(W )

√
α2 + μ2

i

α + μi
· max
λi∈sp(Q)

√
α2λ2i + 1

αλi + 1
.

For all λi (1 ≤ i ≤ n), we know that
√

α2λ2i + 1 ≤ αλi + 1. It follows that:

ρ(M(α)) ≤ max
μi∈sp(W )

√
α2 + μ2

i

α + μi
= σ(α) < 1.

i.e., the MHNS iteration converges to the unique solution of the complex symmetric linear
system (1.1). 
�

Corollary 1 Let conditions satisfy theorem 2.1, and γmin and γmax are the extreme eigenvalues
of the symmetric positive definite matrix W ∈ Rn×n, respectively. Then:

α� ≡ arg min
α

{
max

γmin≤μ≤γmax

√
α2 + μ2

α + μ

}
= √

γminγmax (2.4)
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and

σ(α�) =
√

γmax
γmin

+ 1√
γmax
γmin

+ 1
=

√
κ(W ) + 1√
κ(W ) + 1

, (2.5)

where κ(W ) = γ(max)/γ(min) is the spectral condition number of the matrix W.

Proof It easily holds that:

σ(α) = max

⎧⎨
⎩

√
α2 + γ 2

min√
α2 + γ 2

min

,

√
α2 + γ 2

max√
α2 + γ 2

max

⎫⎬
⎭ .

To compute an approximate optimal α > 0, such that the convergence factor ρ(M(α)) of
the MHNS iteration is minimized, we let:√

α2 + γ 2
min√

α2 + γ 2
min

=
√

α2 + γ 2
max√

α2 + γ 2
max

.

Then, solving this equation, we obtain:

α� = √
γminγmax.

Therefore, substituting α� into σ(α), we can easily obtain the formula (2.4). 
�

2.2 TheMSHNS iterationmethod

To obtain the modified simplified Hermitian-normal equations, we write the linear system
(1.1) as: (

W + 1

α
W 2

)
x =

(
−iT + 1

α
W 2

)
x + b,(

iT + i

α
W 2

)
x =

(
−W + i

α
W 2

)
x + b.

By simple computation, we can obtain that:

(α I + W )iW x = (αT + iW 2)x + iαb,

(αT + W 2)x = (α I − iW )iW x − iαb.
(2.6)

From (2.6), we can obtain the following iteration form:{
(α I + W )iW x (k+1/2) = (αT + iW 2)x (k) + iαb,

(αT + W 2)x (k+1) = (α I − iW )iW x (k+1/2) − iαb.
(2.7)

Hence, we can establish the modified SHNS iteration method which is described as fol-
lows.

The MSHNS iteration method Let x (0) ∈ Cn is an initial value. For k = 0, 1, 2, . . . , we
compute the sequence of iterates x (k) until it converges; the next iterate x (k+1) accords the
following procedure:{

(α I + W )x (k+1/2) = (αT + iW 2)x (k) + iαb,

(αT + W 2)x (k+1) = (α I − iW )x (k+1/2) − iαb,
(2.8)
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where α > 0 and I is the identity matrix.
By eliminating the intermediate vector x (k+1/2), we can obtain the following iteration

form as:
x (k+1) = Mαx

(k) + Nαb, k = 0, 1, 2, . . . ,

where
Mα = (αT + W 2)−1(α I − iW )(α I + W )−1(αT + iW 2)

is the iteration matrix. Let

B(α) = 1 + i

2α
(α I + W )(αT + W 2) and C(α) = 1 + i

2α
(α I − iW )(αT + iW 2), (2.9)

it holds that
W A = B(α) − C(α) and M(α) = B(α)−1C(α).

Matrix B(α) can be used as a preconditioner matrix for the complex matrix W A.
Comparing the MSHNS method with the MHNSmethod, the obvious difference is on the

constant vector terms, one is αb and the other one is Wb. Therefore, the MSHNS method
is cheaper than the MHNS method. Just like the MHNS method, the MSHNS method also
converges unconditionally to a unique solution of linear system (1.1).

Just like theMHNSmethod, theMSHNS also have its convergence theorem and corollary,
and proof of theorem and corollary are the same.

Theorem 2.2 Let A = W + iT ∈ Cn×n, with W ∈ Rn×n symmetric positive definite and
T ∈ Rn×n symmetric positive semidefinite, α is a positive constant. Then, the spectral radius
ρ(M(α)) of the MSHNS iteration matrix M(α) satisfies ρ(M(α)) ≤ σ(α) < 1, where:

σ(α) ≡ max
μi∈sp(W )

√
α2 + μ2

i

α + μi

and sp(W ) denotes the spectrum of the matrix W, i.e., the MSHNS iteration converges to the
unique solution x� ∈ Cn of the complex symmetric linear system(1.1) for any initial guess.

Corollary 2 Let conditions satisfy theorem 3.1, γmin and γmax are the extreme eigenvalues of
the symmetric positive definite matrix W, respectively. Then:

α� ≡ arg min
α

{
max

γmin≤μ≤γmax

√
α2 + μ2

α + μ

}
= √

γminγmax (2.10)

and

σ(α�) =
√

γmax
γmin

+ 1√
γmax
γmin

+ 1
=

√
κ(W ) + 1√
κ(W ) + 1

,

where κ(W ) = γ(max)/γ(min) is the spectral condition number of the matrix W.

Some remarks on Theorems 2.1 and 2.2 and Corollaries 1 and 2 are given as follows:

Remark 1 It is easy to see that the convergence rates of the modified Hermitian-Normal
Splitting iteration methods are bounded by σ(α), which only depends on the spectrum of the
symmetric positive definite matrix W .

Remark 2 It is worth noting that the iterative parameter α only minimizes the upper bound
σ(α) on the spectral radius ρ(M(α)) of the iterative matrix of M(α), not ρ(M(α)) itself.
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3 Themodifiedmethods—preconditioner

From modified iteration methods, it is easy to see that the splitting matrix Bα can be used as
a preconditioner matrix for the complex matrix W A. Note that the multiplicative factor 1+i

2α
is no effect on preconditioned system. Therefore, we let:

Bα = (α I + W )(αT + W 2)

as a preconditioner matrix of Krylov subspace method such as GMRESmethod (Saad 1993).
Application of the preconditioner within GMRES requires solving a linear system B−1

α Ax =
B−1

α b. The matrix Bα is positive definite, so a direct conclusion can be obtained about Bα as
a preconditioner.

Theorem 3.1 Let W ∈ Rn×n is symmetric positive definite and T ∈ Rn×n is symmetric
positive semidefinite, and then, the spectral distribution of B−1

α W A is clustered around
(0, 1).

Proof From modified iteration methods, we obtain that:

W A = B(α) − C(α) and M(α) = B(α)−1C(α).

By direct computations, we have:

B−1
α W A = I − B−1

α Cα = I − Mα.

FromTheorem 2.1-2.2, we know that the eigenvalues λ ofM(α) are less than 1. Therefore,
it follows that the eigenvalues of B−1

α W A satisfy | 1 − |λ| |< 1. 
�

4 Implementation aspects

In the modified iteration methods, the two half-steps comprising each iteration require the
exact solution of two symmetric positive definite systemswithmatricesα I+W andαT+W 2.
However, this may be very costly and impractical in actual implementations. To improve the
computing efficiency of the modified iteration methods, we can employ an inner iterative
method which is similar to inexact HSS method (Bai et al. 2008). Because the coefficient
matrices for both subsystems are symmetric and positive definite, some Krylov subspace
methods can be utilized, such as CG (Hestenes and Stiefel 1952) and GMRES (Saad and
Schultz 1986) method. Moreover, if the matrices α I + W and α I + T are available as
preconditioners, we can use the preconditioned conjugate gradient (PCG) method instead of
CG at solving in subsystems, so the computing efficiency of inexact modified Hermitian-
Normal Splitting methods can be further improved.

In Algorithm 1, εk and ηk are the tolerances of internal iteration. In general, the toler-
ance of internal iteration methods and the number of internal iteration steps are different,
resulting in different precision of external iteration schemes. The tolerance of inner itera-
tion is bigger; more iterations are needed to achieve the precision of the external iteration.
When the tolerance of internal iteration tends to zero with the increase of outer iteration
index, the convergence rate of the inexact modified Hermitian-Normal Splitting iteration
methods is approximately equal to that of modified Hermitian-Normal Splitting iteration
methods. Therefore, the inexact modified Hermitian-Normal Splitting methods are actually
nonstationary iterative methods for solving linear system 1.1.
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Algorithm 1 Inexact modified Hermitian-Normal Splitting method
k = 0;
while ‖rk‖2/‖r0‖2 > ε do

rk = −iWb + iW Ax(k)(MHNS) or rk = iαb − iαAx(k)(MSHNS);
solving (α I + W )z(k) = rk by CG method or (PCG);
residual p(k) = rk − (α I + W )z(k) satisfies ‖p(k)‖ ≤ ‖εk‖;
x(k+1/2) = x(k) + z(k);
rk+1/2 = Wb − W Ax(k+1/2)(MHNS) or rk+1/2 = −iαb + iαAx(k+1/2)(MSHNS);

solving (αT + W 2)z(k+1/2) = rk+1/2 by CG method or (PCG);

residual q(k) = rk+1/2 − (αT + W 2)z(k+1/2) satisfies ‖q(k)‖ ≤ ‖ηk‖;
x(k+1) = x(k+1/2) + z(k+1/2);
k = k + 1;

end while

5 Numerical experiments

In this section,weuse different types of test problems to assess the feasibility and effectiveness
of theMHNS iteration method and theMSHNS iteration method when they are used either as
a solver or as a preconditioner for solving the system of linear equations (1.1) with complex
symmetric coefficient matrix. We also compare the MHNS with the HNS both as iterative
solvers and as preconditioners for the GMRES method. According to the optimal parameter
α� = √

γminγmax in the corollary 1 and 2, we compare the two methods from the number of
inner iterations (denoted as IT) and the total CPU time (denoted as CPU).

In addition, all numerical experiments were performed on a personal computer with 3.20
GHz central processing unit [Intel(R) Core(TM) i5-3470 CPU], 6.0 Gmemory, andWindows
8.1 operating system. In our implementations, The tests are performed in MATLAB R2016a.
Here, x (0) = 0 is the initial guess and the iteration is terminated once the current iterate x (k)

satisfies:
‖b − Ax (k)‖2

‖b‖2 ≤ 10−6.

Example 1 We consider a direct frequency-domain analysis of n-degree-of-freedom (n-DOF)
linear system (Feriani et al. 2000) which can be written in matrix form as:

Mq̈ + Cq̇ + Kq = p,

where q is the configuration vector and p is the vector of generalized components of dynamic
forces, M and K are the inertia and stiffness matrices, respectively, and C is the viscous
damping matrix. This leads to the complex symmetric linear system:

[(−ω2M + K ) + i(ωCV + CH )]x = b,

where M = I , CV = 10I , and CH = μK . The matrix K ∈ Rn×n possesses the tensor-
product form K = I ⊗ Vm + Vm ⊗ I , with Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m , the
mesh-size h = 1

m+1 . In addition, we set ω = π , μ = 0.02, and the right-hand side vector
b = (1 + i)Ae, with e being the vector of all entries equal to 1.

Example 2 We consider the complex Helmholtz equation (Bertaccini 2004):

−�u + σ1u + iσ2u = f ,
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Table 1 IT and CPU for HNS and MHNS methods for Example 1

Method m × m 4 × 4 8 × 8 16 × 16 24 × 24 32 × 32

HNS α 47.2905 159.9252 451.8160 757.8687 1058.8762

IT 120 354 906 1440 1936

CPU 0.0384 0.1578 3.7139 39.7483 233.9878

MHNS α 39.7291 77.3419 149.6622 221.1945 292.5107

IT 56 90 152 212 271

CPU 0.0841 0.0303 0.5299 6.6664 33.2456

Bold indicates optimal parameter value for the method

Table 2 IT and CPU for SHNS and MSHNS methods for Example 2

Method m × m 4 × 4 8 × 8 16 × 16 24 × 24 32 × 32

SHNS α 3255.91 11632.85 42828.89 93178.62 162738.09

IT 66 212 709 1463 2457

CPU 0.0068 0.0807 3.0220 42.9397 302.8856

MSHNS α 57.0606 107.8557 206.9031 305.2517 403.4081

IT 45 68 112 156 199

CPU 0.0040 0.0197 0.3204 3.2182 16.4067

Bold indicates optimal parameter value for the method

Table 3 IT and CPU for GMRES methods for Example 1

Method m × m 4 × 4 8 × 8 16 × 16 24 × 24 32 × 32

GMRES IT 3 10 26 40 52

CPU 0.0016 0.0030 0.0108 0.0429 0.1916

HNS-GMRES α 47.2905 159.9252 451.8160 757.8687 1058.8762

IT 3 10 17 22 26

CPU 0.0022 0.0053 0.0511 0.4113 1.8834

MHNS-GMRES α 39.7291 77.3419 149.6622 221.1945 292.5107

IT 3 9 14 17 20

CPU 0.0024 0.0047 0.0152 0.1580 0.3648

Bold indicates optimal parameter value for the method

where σ1 and σ2 are real coefficient functions, u satisfies Dirichlet boundary conditions in
D = [0, 1] × [0, 1], we use finite differences on an m × m grid with mesh size h = 1

m+1 ,
and obtain the linear system:

((K + σ1 I ) + iσ2 I )x = b,

where K = I ⊗ Vm + Vm ⊗ I is the discretization of −�, Vm = h−2tr idiag(−1, 2,−1) ∈
Rm×m . The right-hand side vector b = Ae, with e being the vector of all entries equal to 1.
For our numerical tests, we set σ1 = −1, σ2 = 1.

In Tables 1 and 2, we list the iteration numbers(IT) and CPU times(CPU) for the original
and modified methods as the iterative solver. In Tables 3 and 4, we present some results of
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Table 4 IT and CPU for GMRES methods for Example 2

Method m × m 4 × 4 8 × 8 16 × 16 24 × 24 32 × 32

GMRES IT 3 10 26 40 50

CPU 0.0016 0.0021 0.0116 0.0673 0.2521

SHNS-GMRES α 3255.91 11632.85 42828.89 93178.62 162738.09

IT 3 8 11 14 17

CPU 0.0022 0.0042 0.0371 0.2588 1.2206

MSHNS-GMRES α 57.0606 107.8557 206.9031 305.2517 403.4081

IT 3 8 12 14 16

CPU 0.0023 0.0033 0.0130 0.0612 0.5192

Bold indicates optimal parameter value for the method

0 0.5 1 1.5

×10-3

-10

-8

-6

-4

-2

0

2
×10-4

Fig. 1 The eigenvalue distribution of HNS preconditioner for Example 1

GMRES and the methods as a preconditioner of GMRES. By comparing the data results, we
find that as the n increases, the IT and CPU also increase for all methods. Especially when
the mesh size h is large, the difference between the two methods is obvious. In addition, the
modified methods are superior to the original methods both in terms of IT and CPU time,
both as an iterative solver and as a preconditioner.

It is well known that the spectrum of preconditioned matrices is an important basis for
improving the convergence of Krylov subspace methods. In particular, for symmetric linear
systems, we want the number of different eigenvalues to be small, so that the convergence
of the method will be very fast. Therefore, based on the above idea, it is necessary to test
the eigenvalue distribution of preconditioned matrix B−1

α W A in numerical analysis. All the
matrices of Figs. 1, 2, 3, and 4 tested are 256 × 256.

From Figs. 1, 2, 3, and 4, it is easy to find that the numerical results are in correspondence
with our previous results and the preconditioner of the modified methods makes the spectrum
more concentrated near 0. The results validate our previous Theorem 3.1 and show that the
convergence of the method will be accelerated.
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0 0.5 1 1.5 2 2.5 3
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0

0.2

0.4

0.6

0.8

1

1.2
×10-3

Fig. 2 The eigenvalue distribution MHNS preconditioner for Example 1
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Fig. 3 The eigenvalue distribution of HNS preconditioner for Example 2

6 Conclusion

In this paper, a class ofmodifiedHermitian-Normal Splittingmethods for complex symmetric
linear systems with a Hermitian part being real symmetric and definite has been introduced.
Theoretical analysis shows that for any initial value of x (0), the modified methods converge
unconditionally to the unique solution of the system (1.1) for any positive α. We also give
the spectral radius of the iterative matrix and derive α� which minimizes its upper bound.
In practical cases, inexact versions of these methods and the Krylov subspace method as a
preconditioner are proposed to reduce computational costs. Numerical results show that the
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Fig. 4 The eigenvalue distribution of MHNS preconditioner for Example 2

modified Hermitian-Normal Splitting methods perform better in both iteration number and
CPU time. These methods are very effective for solving the above matrix equations.
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