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Abstract
This paper concerns the construction of a general class of exponentially fitted two-step
implicit peer methods for the numerical integration of Ordinary Differential Equations
(ODEs) with oscillatory solution. Exponentially fitted methods are able to exploit a-priori
known information about the qualitative behaviour of the solution to efficiently furnish an
accurate solution. Moreover, peer methods are very suitable for a parallel implementation,
which may be necessary in the discretization of Partial Differential Equations (PDEs) when
the number of spatial points increases. Examples ofmethodswith 2 and 3 stages are provided.
Numerical experiments are carried out in order to confirm theoretical expectations.
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1 Introduction

Weare interested in the numerical solutionof initial value problems forODEsexhibiting oscil-
latory solution. Classical numerical integrators could require a very small stepsize to follow
the oscillations, expecially when the frequency increases. To develop efficient and accurate
numerical methods, we propose an adapted numerical integration based on exploiting a-priori
known information about the behavior of the exact solution, by means of exponential fitting
strategy (Ixaru and Vanden Berghe 2004). We combine this feature with the usage of peer
methods,which represent a highly structured subclass ofGeneral LinearMethods (Jackiewicz
2009) and are identified with several distinct stages, such as Runge–Kutta methods.

Peermethods have been introduced in linearly implicit form in Schmitt andWeiner (2004).
Explicit peer methods have been derived in Kulikov and Weiner (2010), Schmitt and Weiner
(2010), Schmitt et al. (2009) and Weiner et al. (2008), while implicit peer methods are
described in Beck et al. (2012), Podhaisky et al. (2005), Schmitt et al. (2013, 2005a, b) and
Soleimani and Weiner (2017). The attribute “peer” means that all s stages have the same
good accuracy properties and a linearly implicit implementation using only one Newton-step
is possible for implicit methods since accurate predictors are easily available (Schmitt and
Weiner 2004). Moreover, as the internal stages are also external variables, the stage order is
equal to the order. Therefore, implicit peer methods are quite efficient for stiff problems since
they do not show order reduction like one-step methods but still allow easy stepsize control
due to the two-step structure (Schmitt and Weiner 2017; Schmitt et al. 2005b; Soleimani and
Weiner 2017). Furthermore, they have good stability properties in comparison with other
multistep methods. In other words, peer methods combine the benefits of the Runge–Kutta
andmulti-step approach, thus obtaining good stability characteristics without reducing orders
for very stiff systems (Schmitt et al. 2005a). Moreover, for suitable choice of the parameters,
these methods have an inherent parallelism across the method (Schmitt and Weiner 2004;
Schmitt et al. 2005b). This feature may be very useful in the discretization of PDEs when the
number of spatial points increases (see Gerisch et al. 2009 for applications of peer methods
to large-scale problems).

We combine peer methods with exponential fitting strategy (Ixaru and Vanden Berghe
2004), to obtain more convenient formulae for solving oscillatory problems. As a matter of
fact, classical peer methods are developed to be exact (within round-off error) on polyno-
mials up to a certain degree. We propose Exponentially Fitted (EF) peer methods, which
are constructed to be exact on functions other than polynomials. The basis functions are
normally supposed to belong to a finite-dimensional space Fq = {

φ0(t), φ1(t), . . . , φq(t)
}

called fitting space and are selected according to the a-priori known information concerning
the behaviour of the exact solution. As a result, the coefficients of the corresponding methods
are no longer constant as in the classic case, but depend on parameters characterizing the
exact solution (i.e. the frequency of oscillation), whose values may be unknown. Hence, the
exponential fitting technique requires the choice of a suitable fitting space and the estimate
or the computation of the afore-mentioned parameters.

By following Ixaru and Vanden Berghe (2004), the exponential fitting strategy has led to
EFmethods for a wide range of problems such as interpolation, numerical differentiation and
quadrature (Conte et al. 2010, 2014; Conte and Paternoster 2016; Conte et al. 2012; Ixaru
1997; Ixaru and Paternoster 2001; Kim et al. 2002, 2003; Van Daele et al. 2005), numerical
solution of integral equations (Cardone et al. 2010a, b, 2012, 2015), PDEs (D’Ambrosio
et al. 2017a, b; D’Ambrosio and Paternoster 2014b, 2016) and ODEs (Calvo et al. 1996;
D’Ambrosio et al. 2009; D’Ambrosio and Paternoster 2014a; Simos 1998, 2001; Vanden
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Berghe et al. 1999, 2001). In particular, two-step hybrid exponentially fitted methods are
proposed for the integration of second-order differential equations in D’Ambrosio et al.
(2011a, b), while various estimates for the parameter characterizing the coefficients of the
methods are presented in D’Ambrosio et al. (2012a, b, 2017a). Adapted Runge–Kutta meth-
ods are introduced in D’Ambrosio et al. (2011c, 2012a, 2014), D’Ambrosio and Paternoster
(2014b), Ixaru (2012), Ixaru and Vanden Berghe (2004), Ozawa (2001), Paternoster (1998)
and Simos (1998, 2001). In Ozawa (2001), it has been shown that for any fitting space Fq

of smooth linearly independent real functions there exists a q-stage Runge–Kutta method
fitted to Fq . However, the stage order of a Runge–Kutta method extremely influences the
highest dimension that can be achieved by the fitting space, especially in case of explicit
Runge–Kutta methods. For instance, in Vanden Berghe et al. (1999), an explicit four stage
RK method has been constructed on a fitting space having the maximum dimension equal
to 3. In contrast, linear multistep methods do not impose such a strong dimensional limit,
as shown in Gautschi (1961). Indeed, a k-step method can be fitted on a k + 1-dimensional
fitting space. EF peer methods, which can combine the advantages of Runge–Kutta and mul-
tistep methods, have been derived in Conte et al. (2019a, b), where explicit EF peer methods
having order equal to the number of stages has been developed. Other families of adapted
peer methods have been constructed in Calvo et al. (2015) and Montijano et al. (2014).

In this paper, we develop a general class of EF implicit peer method having order equal
to the number of stages and lower triangular coefficients matrix, by employing the six-step
procedure described in Ixaru and Vanden Berghe (2004).

The remainder of the paper is organized into five sections: In Sect. 2, we give a short
overview to classical implicit peer methods. Section 3 outlines the construction of implicit
EF peer methods adapted to a general fitting space. In Sect. 4, some examples of EF peer
methodswith 2 and 3 stages are shown.Experimental results are presented in Sect. 5. Section 6
summarizes the results of this work and draws conclusions.

2 Classical implicit peer methods

Consider initial value problems for ODEs of the form

y′(t) = f (t, y(t)), y(t0) = y0 ∈ R
d, t ∈ [t0, T ], (2.1)

where f : R × R
d → R

d is smooth enough to guarantee the existence and the uniqueness
of the solution. We suppose that for any stepsize h > 0 there exists a starting procedure to
approximate the solution in the internal grid points t0i = t0 + ci h, i = 1, . . . , s. An s-stage
two-step peer method with fixed stepsize h has the following expression:

Yni =
s∑

j=1

bi j Yn−1, j + h
s∑

j=1

ai j f (tn−1, j , Yn−1, j ) + h
i∑

j=1

ri j f (tn j , Ynj ),

i = 1, . . . , s,

(2.2)

where

Yni ≈ y(tni ), tni = tn + ci h, i = 1, . . . , s.

No extraordinary numerical solution with different properties is computed: we assume that
cs = 1, so Yns is the approximation of the solution at grid point tn+1. The other nodes are
chosen such that ci < 1 for i = 1, . . . , s − 1.
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2.1 Order conditions

For simplicity of notation, from now on, we assume that problem (2.1) is scalar and we
employ the following notation:

Yn = [Yni ]
s
i=1 , F(Yn) = [ f (tni , Yni )]

s
i=1 ,

A = [ai j
]s
i, j=1 , B = [bi j

]s
i, j=1 , R = [ri j

]s
i, j=1 ,

where A and B are full matrices and R is a lower triangular matrix. A compact representation
of the method (2.2) is as follows:

Yn = B Yn−1 + h A F(Yn−1) + h R F(Yn). (2.3)

The matrices of coefficients A, B and R are constructed in order to achieve high order
(uniformly for all components Yni ) and good stability properties. We consider singly implicit
methods, i.e. the matrix R is lower triangular with rii = γ ≥ 0 (when γ = 0 we have an
explicit method). We recall that the method (2.2) has order of consistency p if Δni = O(h p)

for i = 1, . . . , s, where Δni is the residual obtained by inserting the exact solution in
the numerical scheme (2.2). Schmitt and Weiner (2004) have related this property to the
simplifying condition

AB(q) = cmi −
s∑

j=1

bi j (c j − 1)m − m
s∑

j=1

ai j (c j − 1)m−1 − m
i∑

j=1

ri j c
m−1
j = 0,

m = 0, . . . , q − 1, i = 1, . . . , s,

(2.4)

as follows:

Theorem 1 If AB(p + 1) is verified, the implicit s-stage peer method (2.2) has order of
consistency p.

Corollary 1 The peer method (2.2) has order p ≥ s if

B 1 = 1, (2.5a)

AV1D = CV0 − B (C − I)V1 − RV0D, (2.5b)

where 1 = [1, 1, . . . , 1]T , C = diag(c1, . . . , cs), D = diag(1, . . . , s) and

V0 =
⎡

⎢
⎣

1 c1 . . . cs−1
1

...
...

...
...

1 cs . . . cs−1
s

⎤

⎥
⎦ , V1 =

⎡

⎢
⎣

1 (c1 − 1) . . . (c1 − 1)s−1

...
...

...
...

1 (cs − 1) . . . (cs − 1)s−1

⎤

⎥
⎦ .

3 EF implicit peer methods

The procedure for the construction of EF implicit peer method follows the lines down by
paper (Conte et al. 2019a) in the case of explicit methods. In this section, we underline the
relevant steps of the procedure and present a new formulation of the order conditions. We
first of all consider the fitting space as follows:

F =
{
1, t, t2, . . . , t K , e±μt , t e±μt , t2e±μt , . . . , t Pe±μt

}
, (3.1)
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whereμ is a parameter characterizing the exact solution and it is real or imaginary, if the exact
solution belongs to the space spanned by hyperbolic functions or trigonometric functions,
respectively. Additionally, assume that K = −1 if there are no classical components and
P = −1, if there are not exponential fitting ones.

The linear operator as the residual obtained by inserting the exact solution in the method
(2.2) as follows:

Li [h,w] y(t) =y(t + ci h) −
s∑

j=1

bi j y(t + (c j − 1) h)

− h
s∑

j=1

ai j y
′(t + (c j − 1) h) − h

i∑

j=1

ri j y
′(t + c j h), i = 1, . . . , s,

(3.2)
where w contains the coefficients of the method. The method (2.2) is adapted to the fitting
space F if the difference operator (3.2) annihilates on these basis functions. This procedure,
for fixed nodes c, leads to a linear system having the coefficients of the method as unknowns,
because of the dependence of the difference operator on such coefficients.

To derive the order conditions, we now present some steps of the six-step procedure
introduced in Ixaru and Vanden Berghe (2004). Indeed, authors in Conte et al. (2019a) have
used the same procedure for the derivation of EF explicit peer methods, but in this paper, we
consider a lower triangular matrix R with rii = γ ≥ 0 (when γ = 0 we have an explicit
method). For more details, reader is referred to Conte et al. (2019a).

By performing the first five steps of the six-step procedure, and following the same steps
used in Conte et al. (2019a), we obtain that K +1 = s−1−2P , where K and P characterize
the fitting space (3.1) and s is the number of stages of the peer method. Moreover, the
coefficients of implicit EF peer methods satisfy the conditions below.

• If s is even, we take P = s

2
− 1 and K = 0, with corresponding fitting space (3.1)

F =
{
1, e±μt , t e±μt , t2 e±μt , . . . , t P e±μt

}
, (3.3)

and the coefficients of the method satisfy:

L∗
i0(h,w) = 0, i = 1, . . . , s, (3.4a)

G±(m)
i (Z ,w) = 0, i = 1, . . . , s, m = 0, . . . , P. (3.4b)

• If s is odd, we take P = s − 1

2
and K = −1, with corresponding fitting space (3.1)

F =
{
e±μt , t e±μt , t2 e±μt , . . . , t P e±μt

}
, (3.5)

and the coefficients of the method satisfy:

G±(m)
i (Z ,w) = 0, i = 1, . . . , s, m = 0, . . . , P. (3.6)

The L∗
i0(h,w) and G±(m)

i (Z ,w) = 0 functions in above conditions are derived similarly
to Conte et al. (2019a) and their expression is displayed in the following theorem.

Theorem 2 The dimensionless classical moments defined as:

L∗
i m(h,w) = 1

hm
Li [h,w]tm |t=0, i = 1, . . . , s, (3.7)
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we have the form:

L∗
i m(h,w) = cmi −

s∑

j=1

bi j (c j − 1)m − m
s∑

j=1

ai j (c j − 1)m−1 − m
i∑

j=1

ri j c
m−1
j ,

for i = 1, . . . , s, m = 0, 1, . . . , M − 1.

(3.8)

The G-functions and their derivatives assume the following expressions for i = 1, . . . , s:

G+
i (Z ,w)=η−1

(
c2i Z

)−
s∑

j=1

bi j η−1
(
(c j − 1)2Z

)−Z
s∑

j=1

ai j (c j − 1) η0
(
(c j − 1)2Z

)

− Z
i∑

j=1

ri j c j η0

(
c2j Z

)
,

G−
i (Z ,w) =ci η0

(
c2i Z

)−
s∑

j=1

bi j (c j − 1) η0
(
(c j − 1)2Z

)−
s∑

j=1

ai j η−1
(
(c j − 1)2Z

)

−
i∑

j=1

ri j η−1

(
c2j Z

)
, (3.9)

G+(m)
i (Z ,w) = c2mi

2m
ηm−1

(
c2i Z

)−
s∑

j=1

bi j
(c j − 1)2m

2m
ηm−1

(
(c j − 1)2Z

)

−
s∑

j=1

ai j

[
m (c j − 1)2m−1

2m−1 ηm−1
(
(c j − 1)2Z

)

+ (c j − 1)2m+1

2m
Z ηm

(
(c j − 1)2Z

) ]]

−
i∑

j=1

ri j

[
m c2m−1

j

2m−1 ηm−1

(
c2j Z

)
+ c2m+1

j

2m
Zηm

(
c2j Z

)]

,

m = 1, . . . , P,

G−(m)
i (Z ,w) =c2m+1

i

2m
ηm
(
c2i Z

)−
s∑

j=1

bi j
(c j − 1)2m+1

2m
ηm
(
(c j − 1)2Z

)

−
s∑

j=1

ai j
(c j − 1)2m

2m
ηm−1

(
(c j − 1)2Z

)

−
i∑

j=1

ri j
c2mj
2m

ηm−1

(
c2j Z

)
, m = 1, . . . , P. (3.10)

Proof The proof follows the lines of the proof of Theorems 2.2, 2.3 in Conte et al. (2019a).
�	

We recast such systems to drive the coefficients of exponentially fitted peer methods.

Theorem 3 Assume s is even. The peer method (2.2) has order p = s and is adapted to the
fitting space

F =
{
1, e±μt , t e±μt , t2e±μt , . . . , t

s
2−1e±μt

}
,

123



EF two-step peer methods for oscillatory problems Page 7 of 19 174

if the coefficient matrices A, B and R satisfy

B 1 = 1, (3.11a)

AD3 = D1 − B D2 − RD4, (3.11b)

where 1 = [1, 1, . . . , 1]T , and

D1 =

⎡

⎢⎢⎢
⎣

. . .
1

2i
c2i1 ηi−1

(
c21 Z

) 1

2i
c2i+1
1 ηi

(
c21 Z

)
. . .

.

.

.
.
.
.

. . .
1

2i
c2is ηi−1

(
c2s Z

) 1

2i
c2i+1
s ηi

(
c2s Z

)
. . .

⎤

⎥⎥⎥
⎦

,

D2 =

⎡

⎢⎢⎢⎢
⎣

. . .
1

2i
ĉ2i1 ηi−1

(
ĉ21 Z

) 1

2i
ĉ2i+1
1 ηi

(
ĉ21 Z

)
. . .

...
...

. . .
1

2i
ĉ2is ηi−1

(
ĉ2s Z

) 1

2i
ĉ2i+1
s ηi

(
ĉ2s Z

)
. . .

⎤

⎥⎥⎥⎥
⎦

, (3.12)

D3 =

⎡

⎢⎢⎢
⎣

. . .
i

2i−1
ĉ2i−1
1 ηi−1

(
ĉ21 Z

)
+ 1

2i
ĉ2i+1
1 Zηi

(
ĉ21 Z

) 1

2i
ĉ2i1 ηi−1

(
ĉ21 Z

)
. . .

.

.

.

. . .
i

2i−1
ĉ2i−1
s ηi−1

(
ĉ2s Z

)
+ 1

2i
ĉ2i+1
s Zηi

(
ĉ2s Z

) 1

2i
ĉ2is ηi−1

(
ĉ2s Z

)
. . .

⎤

⎥⎥⎥
⎦

,

D4 =

⎡

⎢⎢⎢
⎣

. . .
i

2i−1
c2i−1
1 ηi−1

(
c21 Z

)
+ 1

2i
c2i+1
1 Zηi

(
c21 Z

) 1

2i
c2i1 ηi−1

(
c21 Z

)
. . .

.

.

.

. . .
i

2i−1
c2i−1
s ηi−1

(
c2s Z

)
+ 1

2i
c2i+1
s Zηi

(
c2s Z

) 1

2i
c2is ηi−1

(
c2s Z

)
. . .

⎤

⎥⎥⎥
⎦

,

(3.13)

with i = 0, 1, . . . , P and P = s
2 − 1. Moreover ĉ j = 1 − c j , j = 0, 1, . . . , s.

Proof Annihilating the dimensionless classic moments of orderm = 0 in (3.4a) is equivalent
to solving the system

L∗
i0(h,w) = 1 −

s∑

j=1

bi j = 0, i = 1, . . . , s,

which can be recasted in a matrix form as follows

1 − B 1 = 0, 0 = (0, 0, . . . , 0)T .

Therefore, (3.11a) holds.
System (3.4b) for G+

i can be written in a compact form

θ−1, c − B θ−1, c−1 − Z A ( Ĉ θ0, c−1 ) − Z R (C θ0, c) = 0, (3.14)

where C = diag(c1, . . . , cs), Ĉ = diag(c1 − 1, . . . , cs − 1) and the vector θσ,v associated to
a vector v of dimension s, is defined as follows

θσ,v = [ησ (v21 Z), . . . , ησ (v2s Z)
]
. (3.15)

On the other hand, system (3.4b) for G−
i can be recasted in

C θ0, c − B ( Ĉ θ0, c−1 ) − A θ−1, c−1 − R θ−1, c = 0. (3.16)

123



174 Page 8 of 19 D. Conte et al.

In a similar way, systems (3.4b) for G+(m)
i and G−(m)

i with m = 1, . . . , P are, respectively,
equivalent to
(

1

2m
C2m θm−1, c

)
− B

(
1

2m
Ĉ2m θm−1, c−1

)

− A

(
m

2m−1 Ĉ
2m−1 θm−1, c−1 + Z

2m
Ĉ2m+1θm, c−1

)

− R

(
m

2m−1C
2m−1 θm−1, c + Z

2m
C2m+1Zθm, c

)
= 0, (3.17a)

1

2m

((
C2m+1θm,c

)− B
(
Ĉ2m+1θm,c−1

)
− A

(
Ĉ2mθm−1,c−1

)
− R

(
C2mθm−1,c

)) = 0.

(3.17b)

We next construct the matrix D1 such that its first and second columns correspond to the first
vectors of the systems (3.14) and (3.16), respectively. Then the other columns are the first
vectors of the system (3.17a) and (3.17b), alternatively.

We construct the remaining matrices Dk, k = 2, 3, 4 in (3.11b) by considering them
as columns the vectors multiplying B, A and R, respectively, in equations (3.14)–(3.17b).
Then, system (3.14)–(3.17b) is equivalent to equation (3.11b). �	

In similar way, in case of odd number of stages, we have the following theorem:

Theorem 4 Assume s is odd. The peer method (2.2) has order p = s and is adapted to the
fitting space

F =
{
e±μt , t e±μt , t2e±μt , . . . , t

s−1
2 e±μt

}
,

if the coefficient matrices A, B and R satisfy

B θ−1, c−1 = θ−1, c − Z A ( Ĉ θ0, c−1 ) − Z R (C θ0, c), (3.18a)

AF3 = F1 − B F2 − RF4, (3.18b)

where θσ,v are defined in (3.15) and Fk for k = 1, 2, 3, 4 are obtained by deleting the first
column to the matrices Dk defined in Theorem 3 [when s odd, P = s−1

2 and Dk have
dimensions s × (s + 1)].

Now, we compute the leading term of the local truncation error at each stage, as follows:

(ltee f )i = (−1)P+1hs+1
L∗
i,K+1(h,w)

(K + 1)! Z P+1 DK+1(D2−μ2)P+1y(t), i = 1, . . . , s, (3.19)

where we denote D the derivative with respect to time.
As before, we choose K = 0 and K = −1 for s even or odd, respectively. In these cases, the
aforementioned leading term assumes the following expressions:

• if s is even

(ltee f )i

= (−1)
s
2 hs+1

Z
s
2

⎛

⎝ci −
s∑

j=1

bi j (c j − 1) −
s∑

j=1

ai j −
i∑

j=1

ri j

⎞

⎠ D(D2 − μ2)
s
2 y(t),

(3.20)
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• if s is odd

(ltee f )i = (−1)
s+1
2 hs+1

Z
s+1
2

⎛

⎝1 −
s∑

j=1

bi j

⎞

⎠ (D2 − μ2)
s+1
2 y(t). (3.21)

4 Derivation of EF implicit peer method

To derive EF implicit peer method which can efficiently integrate stiff problems, we will
determine the coefficients A = A(Z), B = B(Z) and R = R(Z) by satisfying the order
conditions of Theorems 3 and 4, and moreover we will require that, when Z → 0, they tend
to classical implicit peer methods derived by Soleimani and Weiner (2017). The following
theorems describe the derivation of such coefficients.

Lemma 1 Let u ∈ R
s and H = (0 | u) ∈ R

s×s with 0 ∈ R
s×s−1 having all null entries.

Then

Hθ−1, c−1 = u,

and

HF2 = 0,

where the vector θ−1, c−1 is defined in (3.15) and F2 is defined in Theorem 3.

Proof From (3.15), by exploiting:

hi j =
{
0 j < s,
ui j = s,

and cs = 1, η−1(0) = 1, we get

(Hθ−1,c−1)i =
s∑

j=1

hi jη−1((c j − 1)2Z) = hisη−1((cs − 1)2Z) = ui . (4.1)

Moreover, as the last row of matrix F2 is zero [compare (3.12) and remind that F2 is obtained
from D2 by deleting the first column], we have

(HF2)i j =
s∑

k=1

hik(F2)k j = his(F2)s j = 0,

which completes the proof. �	
Let B̄ be a constant matrix satisfying the order condition (2.5a) associated to classical peer
methods.

Theorem 5 Assume s is even and the matrix D3 defined in Theorem 3 is invertible. Then, the
EF peer method having coefficients

B = B̄, (4.2a)

A = (D1 − B̄ D2 − RD4)D
−1
3 , (4.2b)

has order p = s and is adapted to fitting space

F =
{
1, e±μt , t e±μt , t2 e±μt , . . . , t

s
2−1 e±μt

}
. (4.3)
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Proof It is immediate to verify the order conditions (3.11a)–(3.11b). �	
Theorem 6 Assume s is odd and the matrix F3 defined in Theorem 4 is invertible. Consider
the EF peer method having coefficients

B = B̄ + H1 − Z A H2 − Z R H3, (4.4a)

A = [F1 − B̄F2 − RF4]F−1
3 , (4.4b)

where

H1 = (0 | θ−1, c − B̄θ−1, c−1), H2 = (0 | Ĉ θ0, c−1), H3 = (0 |C θ0, c) ∈ R
s × s,

and Fi are defined in Theorem 4.
The above EF peer method has order p = s and is adapted to the fitting space

F =
{
e±μt , t e±μt , t2 e±μt , . . . , t

s−1
2 e±μt

}
. (4.5)

Proof To verify order condition (3.18a) we compute, by exploiting Lemma 1,

Bθ−1,c−1 = (B̄ + H1 − Z AH2 − Z RH3)θ−1,c−1 = θ−1,c − Z AĈθ0,c−1 − Z RCθ0,c,

which corresponds to order condition (3.18a).
By substituting the matrix B (4.4a) into condition (3.18b), we find that it is equivalent to

A = [F1 − (B̄ + H1)F2 − R(F4 − ZH3F2)](F3 − ZH2F2)
−1. (4.6)

Then, from Lemma 1 we have H1F2 = H3F2 = H2F2 = 0 and the proof is completed. �	

4.1 Examples of methods with s = 2

By referring to Sect. 3, in this case K = 0 and P = 0. We fix c1 = 0, c2 = 1,

B̄ =
[
0 1
0 1

]
, (4.7)

satisfying (2.5a), R having lower triangular structure with r11 = r22 = γ and derive the
matrices A and B according to Theorem 5.
Then, we get that the EF peer method with coefficients

c =
[
0
1

]
, B =

[
0 1
0 1

]
, R =

[
γ 0
r21 γ

]
, (4.8a)

A=
[

0 −γ
1−η−1(Z)
Zη0(Z)

+γ
η−1(Z)
Zη0(Z)

(η0(Z)−1−r21 − γ (Zη0(Z) − η−1(Z)))+η0(Z)−1 − r21

]

(4.8b)

has order p = 2 and is adapted to the fitting space
{
1, e±μt} .

As a matter of fact B satisfies (4.2a) of Theorem 5 and from c1 = 0, c2 = 1, we have
ĉ1 = −1, ĉ2 = 0 and

D1 =
[

1 0
η−1(Z) η0(Z)

]
, D2 =

[
η−1(Z) −η0(Z)

1 0

]
,
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D3 =
[−Zη0(Z) η−1(Z)

0 1

]
, D4 =

[
0 1

Zη0(Z) η−1(Z)

]
.

If D3 is invertible, we can compute the matrix A. Now, we compute determinant of D3 in
both trigonometric and hyperbolic cases.

Trigonometric case: Z = −ω2h2

Det (D3) = −Zη0(Z) = −ωhsin(ωh).

Therefore the matrix D3 is invertible, when h 
= kπ
ω

, k ∈ N.

Hyperbolic case: Z = μ2h2, μ ∈ R

Det (D3) = μhsinh(μh).

Therefore, the matrix D3 is invertible ∀h > 0.
Then, from (4.2b) of Theorem 5, the expression of A follows.

The corresponding classic peer method is obtained in the limit as Z → 0 and has coefficients:

c =
[
0
1

]
, B =

[
0 1
0 1

]
, R =

[
γ 0
r21 γ

]
, (4.9a)

A =
[
0 −γ

γ −r21

]
. (4.9b)

4.2 Examples of methods with s = 3

Due to Sect. 3, in this case, K = −1 and P = 1. We set c, B̄ and R from paper Soleimani
and Weiner (2017) in order to have an A-stable method in the limit when Z → 0 and derive
matrices B and A from Theorem 6.

Then, for example, the EF peer method with coefficients

c =
⎛

⎝
8.170765826910428900e − 01
6.112848743494372300e − 01
1.000000000000000000e + 00

⎞

⎠ , (4.10)

R =
⎛

⎝
+3.32082968680e − 01 0 0
−4.64383283259e − 02 3.32082968680e − 01 0
−6.03010600818e − 01 1.08071195621e + 00 3.32082968680e − 01

⎞

⎠ ,

(4.11)

B = [0 | 0 | v1 − B̄v0 − Z Av2 − Z Rv3], A = [F1 − B̄F2 − RF4]F−1
3 , (4.12)

where 0 = [0, 0, 0]T ,

B̄ =
⎛

⎝
4.49089617867e − 01, −6.61026939991e − 01 1.21193732212e + 00
3.05103275940e − 01 −4.49089617867e − 01 1.14398634192e + 00

0 0 1

⎞

⎠ ,

v0 =
⎡

⎣
η−1(ĉ21Z)

η−1(ĉ22Z)

1

⎤

⎦ , v1 =
⎡

⎣
η−1(c21Z)

η−1(c22Z)

η−1(Z)

⎤

⎦ ,

v2 =
⎡

⎣
ĉ1η0(ĉ21(Z))

ĉ2η0(ĉ22(Z))

0

⎤

⎦ , v3 =
⎡

⎣
c1η0(c21(Z))

c2η0(c22(Z))

η0(Z)

⎤

⎦ ,
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F1 =
⎡

⎢
⎣
c1η0(c21(Z)) 1

2c
2
1η0(c

2
1(Z)) 1

2c
3
1η0(c

2
1(Z))

c2η0(c22(Z)) 1
2c

2
2η0(c

2
2(Z)) 1

2c
3
2η0(c

2
2(Z))

η0(Z) 1
2η0(Z) 1

2η1(Z)

⎤

⎥
⎦ ,

F2 =
⎡

⎣
ĉ1η0(ĉ21(Z)) 1

2 ĉ
2
1η0(ĉ

2
1(Z)) 1

2 ĉ
3
1η0(ĉ

2
1(Z))

ĉ2η0(ĉ22(Z)) 1
2 ĉ

2
2η0(ĉ

2
2(Z)) 1

2 ĉ
3
2η0(ĉ

2
2(Z))

0 0 0

⎤

⎦ ,

F3 =
⎡

⎢
⎣

η−1(ĉ21(Z)) ĉ21η0(ĉ
2
1(Z)) + ĉ31Z

2 η1(ĉ21(Z)) 1
2 ĉ

2
1η0(ĉ

2
1(Z))

η−1(ĉ22(Z)) ĉ22η0(ĉ
2
2(Z)) + ĉ32Z

2 η1(ĉ22(Z)) 1
2 ĉ

2
2η0(ĉ

2
2(Z))

1 0 0

⎤

⎥
⎦ ,

F4 =
⎡

⎢
⎣

1 0 0

η−1(c22(Z)) c22η0(c
2
2(Z)) + c32Z

2 η1(c22(Z)) 1
2c

2
2η0(c

2
2(Z))

η−1(c23(Z)) c23η0(c
2
3(Z)) + c33Z

2 η1(c23(Z)) 1
2c

2
3η0(c

2
3(Z))

⎤

⎥
⎦ , (4.13)

has order p = 3 and is adapted to the fitting space
{
e±μt , te±μt} .

We note that the expression of B follows from

H1 = [0 | 0 | v1 − B̄v0], H2 = [0 | 0 | v2], H3 = [0 | 0 | v3],
and condition (4.4a).

If F3 is invertible, we can compute the matrix A. Now, we compute determinant of F3 in
both trigonometric and hyperbolic cases.

F3 =
⎡

⎣
η−1(Z) −η0(Z) − Z

2 η1(Z) 1
2η0(Z)

η−1(
Z
4 ) − 1

2η0(
Z
4 ) − Z

16η1(
Z
4 ) 1

8η0(
Z
4 )

1 0 0

⎤

⎦ ,

Det (F3) = 1

32

(
4η0

(
Z

4

)
η0(Z) − 2Zη0

(
Z

4

)
η1(Z) + Zη1

(
Z

4

)
η0(Z)

)
.

Trigonometric case: Z = −ω2h2

Therefore, the matrix F3 is invertible, when

2ωh sin

(
ωh

2

)
+ cos

(
ωh

2

)
− cos

(
3ωh

2

)

= 0,

this means that h 
= 2π
ω

.

Hyperbolic case: Z = μ2h2

Therefore, the matrix F3 is invertible, when

2μh sin h

(
μh

2

)
+ cos h

(
μh

2

)
− cos h

(
3μh

2

)

= 0,

this means that the matrix F3 is invertible ∀h > 0.
The corresponding classic peer method is obtained in the limit as Z → 0 and has coeffi-

cients:

A =
⎛

⎝
2.9548e − 01 − 4.0890e − 01 4.2361e − 01
1.4466e − 01 − 1.9826e − 01 2.6048e − 01
1.1464e − 15 − 2.5388e − 16 1.9022e − 01

⎞

⎠ , B = B̄, (4.14)
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and c, R given by (4.10) and (4.11), respectively.

5 Numerical experiments

In this section,wepresent somenumerical results obtainedfirst of all by comparing thederived
implicit EF peermethodswith their classic counterparts.Wemoreover show the improvement
with respect to explicit EF peer method of Conte et al. (2019a) on stiff problems. Finally we
show a comparison with EF Runge–Kutta methods derived in Vanden Berghe et al. (2001)
and EF linear multistep methods presented in Ixaru et al. (2002).

In the tables, we will report the error computed as the infinite norm of the difference
between the numerical solution and the exact solution at the end point. Moreover, we will
adopt the following notation to indicate the used numerical method:

• CL = classic,
• EF = exponentially fitted,
• EX P2 = explicit peer method of order 2 from Conte et al. (2019a),
• EX P3 = explicit peer method of order 3 from Conte et al. (2019a),
• IM P2 = implicit peer method of order 2 from Sect. 4.1 with r21 = 0 and γ = −1,
• IM P3 = implicit peer method of order 3 from Sect. 4.2,
• RK3 = Runge–Kutta method of order 3 from Vanden Berghe et al. (2001),
• LMM3 = linear multistep method of order 3 from Ixaru et al. (2002).

Example 1 Let us consider the Prothero–Robinson problem Hairer et al. (2006)

y′(t) = λ ( y(t) − sin(ω t + t) ) + (ω + 1) cos(ω t + t), t ∈
[
0,

π

2

]
,

y(0) = 0,
(5.1)

whose exact solution is

y(t) = sin(ω t + t) = sin(ω t) cos(t) + cos(ω t) sin(t).

The oscillating behaviour of exact solution leads us to utilize the EF methods with the
parameter μ = iω, Z = −ω2h2.

We consider two cases:

• λ = −1 (non stiff case)
• λ = −10−6 (stiff case)

First of all, we consider λ = −1. The results reported in Table 1 show that EF implicit peer
methods produce smaller errorswith respect to their classic counterparts and the improvement
is much more visible as the frequency ω increases. We report in Table 2 the corresponding
results obtained by explicit EF peer methods of Conte et al. (2019a) and we note that for
s = 2 the methods have the same behavior in accuracy, which for s = 3 implicit method is
more accurate.

We report in Table 3 the estimated order of EF peer method, computed as:

p(h) ≈ log2

(
E(h)

E(h/2)

)
, (5.2)

where E(h) and E(h/2) are the errors with a stepsize h and h/2, respectively. We notice
that for s = 2 the implicit EF peer method shows effective order 2, as in the explicit case
(Conte et al. 2019a). As regards s = 3, we notice superconvergent behavior with order
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Table 1 Errors of the implicit
peer methods on problem (5.1)
with λ = −1, N grid points and
different values for the frequency
ω

Methods ω N

160 320 640

CL IM P2 50 1.53e−01 3.78e−02 9.33e−03

EF IM P2 50 5.68e−03 1.45e−03 3.62e−04

CL IM P3 50 4.16e−05 2.44e−06 1.45e−07

EF IM P3 50 7.65e−08 3.41e−09 2.02e−10

CL IM P2 100 4.39e−01 1.31e−01 3.45e−02

EF IM P2 100 8.25e−03 2.53e−03 6.77e−04

CL IM P3 100 4.98e−04 3.31e−05 2.16e−06

EF IM P3 100 2.33e−07 1.10e−08 4.77e−09

Table 2 Errors of the explicit
peer methods on problem (5.1)
with λ = −1, N grid points and
different values for the frequency
ω

Methods ω N

160 320 640

CL EX P2 50 1.05e−01 2.65e−02 6.60e−03

EF EX P2 50 4.10e−03 1.00e−03 2.57e−04

CL EX P3 50 1.10e−02 9.42e−04 8.98e−05

EF EX P3 50 1.07e−05 1.26e−06 1.33e−7

CL EX P2 100 3.02e−01 9.33e−02 2.47e−02

EF EX P2 100 5.30e−03 1.80e−03 4.86e−04

CL EX P3 100 6.92e−02 2.40e−03 1.22e−04

EF EX P3 100 3.08e−05 2.30e−06 1.58e−08

Table 3 Estimated order of the
implicit EF peer methods on
problem (5.1) with λ = −1,
ω = 50

N EF IM P2 EF IM P3

160 1.73 4.40

320 1.97 4.48

640 2.00 4.07

p = s + 1 = 4. This can be motivated because the classic coefficients (4.14) taken from
Soleimani and Weiner (2017) were derived by imposing superconvergence.

We now consider the case in which the oscillatory frequency ω is not known exactly.
Therefore, by denoting with δ the relative error on the frequency, we employ the EF peer
methods whose coefficients are computed in correspondence of a perturbed frequency ω̃ =
(1+ δ)ω. We report in Tables 4 and 5 the results obtained with implicit and explicit EF peer
methods, respectively. The results shows that an accurate computation of the frequency is a
crucial point. However, it is not a dramatic situation as the error of EF peer methods keeps
smaller than that of the corresponding classic counterparts and, for increasing δ, it approaches
the error of classic methods.

We now consider λ = −106. As in the non stiff case, Table 6 shows as the EF peer
method produces smaller errors with respect to classic one. We do not report results for
explicit methods because for λ = −106 they are unstable. Table 7 shows the estimated
order. In Table 8, we report the results obtained in correspondence of “wrong” frequency
ω̃ = (1 + δ)ω, showing a similar behavior as in the nonstiff case.
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Table 4 Errors of implicit peer
method of order 3 on problem
(5.1) with λ = −1 and perturbed
frequency ω̃ = (1+ δ)ω, ω = 50

N

Methods 160 320 640

CL IM P3 4.16e−5 2.43e−6 1.45e−7

EF IM P3 δ = 0.3 2.17e−05 1.09e−06 6.09e−08

EF IM P3 δ = 0.1 1.37e−6 7.33e−8 4.34e−9

EF IM P3 δ = 0 7.64e−8 3.41e−9 2.01e−10

Table 5 Errors of explicit peer
method of order 3 Conte et al.
(2019a) on problem (5.1) with
λ = −1 and perturbed frequency
ω̃ = (1 + δ)ω, ω = 50

N

Methods 160 320 640

CL EX P3 1.09e−02 9.42e−04 8.98e−05

EF EX P3 δ = 0.3 2.13e−03 2.68e−04 3.30e−05

EF EX P3 δ = 0.1 1.70e−04 2.11e−05 2.32e−06

EF EX P3 δ = 0 1.07e−05 1.26e−06 1.33e−07

Table 6 Errors of the implicit
peer methods on problem (5.1)
with λ = −106, N grid points
and ω = 50

N

Methods 160 320 640

CL IM P2 2.17e−6 2.16e−7 2.55e−8

EF IM P2 6.01e−8 7.74e−9 9.73e−10

CL IM P3 1.79e−7 2.51e−8 3.22e−9

EF IM P3 2.42e−10 3.48e−11 4.88e−12

Table 7 Estimated order of
implicit EF peer methods on
problem (5.1) with λ = −106,
ω = 50

N EF IM P2 EF IM P3

320 2.95 2.79

640 2.99 2.83

1280 3.00 3.13

Example 2 Let us consider the system of two equations known as Lambert equations Lambert
(1991):

y′
1 = −2y1 + y2 + 2 sin(ωt), t ∈ [0, 10] ,

y′
2 = −(β + 2)y1 + (β + 1)(y2 + sin(ωt) − cos(ωt)),

(5.3)

Table 8 Errors of implicit peer
method of order 3 on problem
(5.1) with λ = −106 and
perturbed frequency
ω̃ = (1 + δ)ω, ω = 50

N

Methods 160 320 640

CL IM P3 1.79e−07 2.52e−08 3.22e−09

EF IM P3 δ = 0.3 8.91e−06 8.48e−0 1.19e−09

EF IM P3 δ = 0.1 4.06e−09 6.02e−10 8.26e−11

EF IM P3 δ = 0 2.42e−10 3.48e−11 4.88e−12
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Table 9 Errors of the implicit
peer methods on problem (5.3)
with ω = 1, β = −3 and stepsize
h

Methods h = 0.1 h = 0.05 h = 0.025

CL IM P2 3.62e−03 8.97e−04 2.24e−04

EF IM P2 1.04e−05 2.66e−06 6.65e−07

CL IM P3 2.43e−07 1.57e−08 9.97e−10

EF IM P3 1.24e−09 6.95e−11 9.62e−12

Table 10 Errors of the implicit
peer methods on problem (5.3)
with ω = 1, β = −1000 and
stepsize h

Methods h = 0.1 h = 0.05 h = 0.025

CL IM P2 3.62e−03 8.97e−04 2.24e−04

EF IM P2 1.04e−05 2.66e−06 6.65e−07

CL IM P3 2.43e−07 1.57e−08 9.97e−10

EF IM P3 1.24e−09 6.95e−11 9.62e−12

Table 11 Errors of Runge–Kutta
methods Vanden Berghe et al.
(2001) on problem (5.3) with
ω = 1, β = −1000 and stepsize
h

Methods h = 0.1 h = 0.05 h = 0.025

CL RK3 1.92e−04 1.68e−04 1.19e−05

EF RK3 6.03e−06 6.66e−07 8.00e−08

Table 12 Errors of the linear
multistep methods Ixaru et al.
(2002) on problem (5.3) with
ω = 1, β = −1000 and stepsize
h

Methods h = 0.1 h = 0.05 h = 0.025

CL LMM3 2.25e−03 5.70e−04 1.43e−04

EF LMM3 2.41e−04 2.36e−05 2.52e−06

with the initial conditions y1(0) = 2 and y2(0) = 3.
The exact solutions of this system are y1(t) = 2 exp(−t)+ sin(ωt) and y2(t) = 2 exp(−t)+
cos(ωt) and are β-independent.

We consider the two cases:

– β = −3 (non stiff case)
– β = −1000 (stiff case)

Lambert’s system has been employed in Ixaru et al. (2002), Lambert (1991) and Vanden
Berghe et al. (2001). In Vanden Berghe et al. (2001), used EF Runge–Kutta methods for
Lambert’s system. In Ixaru et al. (2002), proposed EF linear multistep algorithms for this
system.

According to the exact solution, we consider EF methods with μ = iω, Z = −ω2h2. We
report in Tables 9 and 10 the errors obtained in correspondence of ω = 1 with β = −3 and
β = −1000, respectively. In both cases, we observe that EF peer methods produce smaller
errors with respect to classic ones.

In addition, for β = −1000, Tables 11 and 12 provide a comparison between the our
obtained results and those reported in Ixaru and Paternoster (2001) and Vanden Berghe et al.
(2001). From these Tables, we realize that errors of implicit EF peer methods are smaller
with respect to Runge–Kutta and linear multistep methods of the same order.
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6 Conclusions

In this paper, implicit EF peer methods have been introduced for the numerical solution of
ordinary differential equations exhibiting an oscillatory solution. A general class of implicit
EF peer methods was derived by following the six-step procedure presented in Ixaru and
Vanden Berghe (2004). The adopted strategy is based on adapting already existing methods
to be exact (within round-off error) on trigonometric or hyperbolic functions. In the sixth
step of the procedure, we have computed the expression of the leading term of the local
truncation error, which may lead to an estimate of the parameter characterizing the basis
functions, which we aim to study as future work. Numerical experiments have confirmed the
effectiveness of the approach.

Acknowledgements The authors would like to thank the anonymous referee who provided useful and detailed
comments to improving the quality of the publication.

Appendix: ��(Z) functions

The set of functions ησ (Z), σ = −1, 0, 1, 2, . . . has been originally introduced in Ixaru
and Vanden Berghe (2004) in the context of CP methods for the Schrödinger equation. The
functions ησ (Z) with σ = −1, 0 are defined by

η−1(Z) =
⎧
⎨

⎩

cos(|Z |1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0

η0(Z) =
⎧
⎨

⎩

sin(|Z |1/2)/|Z |1/2 if Z < 0
1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0
(6.1)

and those with m > 0 are further generated by recurrence

ησ (Z) = 1

Z
[ησ−2(Z) − (2σ − 1)ησ−1(Z)], σ = 1, 2, 3, . . .

if Z 
= 0, and by following values at Z = 0:

ησ (0) = 1

(2σ + 1)!! , σ = 1, 2, 3, . . .

The differentiation rule is

η′
σ (Z) = 1

2
ησ+1(Z) , σ = −1, 0, 1, 2, 3, . . .

For more details on these functions see Conte et al. (2010), [10], [11], Ixaru and Vanden
Berghe (2004) or the Appendix of Ixaru (1997).
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