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Abstract
This paper investigates the dissipative-based finite-time control for uncertain singular T–S
fuzzy time-varying delay system affected by actuator saturation. First, the concept of dissipa-
tive stability and finite-time bound is presented. Then an appropriate Lyapunov–Krasovskii
functional (LKF) is established and for the sake of reducing the conservatism of the results,
some free matrices are introduced. Using the convexity property of the matrix inequality,
some conditions are given to ensure the fuzzy system is finite-time bounded and dissipative.
Moreover, by solving a series of linearmatrix inequalities (LMIs), the controllerswith the dis-
sipative disturbance weakened level are derived. Finally, simulation examples are presented
to show the feasibility and superiority of this method.

Keywords T–S fuzzy system · Dissipative control · Optimization problem ·
Actuator saturation · Finite time

1 Introduction

In recent years, singular systems have been widely studied since singular systems with more
accuracy and simplicity describe the complex physical systems, for example, Li (1989),
Zhang et al. (2018), Xing et al. (2019a, b), Duan et al. (2013), and Ma and Yan (2016). T–S
fuzzy has been employed in many application fields and attracted great attention. T–S fuzzy
systems describe the nonlinear systems in the form of IF–THEN rules which utilize the fuzzy
membership functions to represent the local linear input–output relations, such as Takagi and
Sugeno (1985), Kumar et al. (2018), Tian et al. (2009), and Ge et al. (2019). In the last 20
years, many studies have been conducted on the singular T–S fuzzy systems (Zhu and Xia
2014; Han et al. 2012a, b; Su and Ye 2013; Zhao et al. 2015; Ma et al. 2016). Zhu and Xia
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(2014) discussed the design of H∞ filter for T–S fuzzy systems based on descriptor fault
detection. A new sliding surface was designed for the T–S fuzzy time-varying delay system
in Han et al. (2012a, b), and the less conservative conditions were given. Ma et al. (2016)
designed a non-fragile static feedback controller for Markovian jump systems described by
singular T–S fuzzy model.

In many practical processes, finite-time stability (FTS) analysis has attracted more and
more attention in the past few years, such as Zhang et al. (2012) and Zhang et al. (2014a, b). In
1960s, FTSwas first introduced in the field of control (Weiss and Infante 1967). Subsequently,
Amato et al. (2001) presented the definition of finite-time boundedness. Since then, there are
many studies about finite-time boundedness. As we all know, LKF approach is an efficient
technique in the analysis of stability for time-varying delay fuzzy systems. For example, Bhat
and Bernstein (2006) obtained finite-time stability conditions with less conservatism for the
nonlinear systems. Tong et al. (2012) discussed finite-time boundedness for linear singular
impulsive systems based on L2-gain analysis. The design of H∞ filtering, robust estimation
and H∞ stability based on finite-time control forMarkovian jump systems have been handled
(Cheng and Zhu 2013; He and Liu 2013; Li and Zhang 2015). The problem of robust finite-
time H∞ control for uncertain stochastic jump systems with time delay was introduced in
Zhang et al. (2014a, b). By designing the H∞ non-fragile robust state feedback controller,
a set of sufficient conditions was obtained to guarantee the finite-time boundedness and the
finite-time asymptotic stability of the Markovian jump system (Zhang et al. 2014a, b).

In addition, dissipativity is a more universally applicable notion than passivity and H∞
performance, which was widely discussed in Men et al. (2018), Kong et al. (2019), Zhang
et al. (2019), Wang et al. (2020). The concept of dissipation is an extension of passivity
in complex dynamical systems, which consumes energy theoretically (Tao and Hu 2010).
Dissipative theory attracts quite a few interest among researchers in the control field (Ma et al.
2015a, b). As an important target, dissipative theory is essential in the research and analysis
of control systems and is of great significance in reducing disturbance to stability. Han et al.
(2012a, b) proposed a new delay-dependent result that guaranteed the T–S fuzzy descriptor
systems to be dissipative. Gassara et al. (2014a, b) investigated (Q, S, R)−γ -dissipativeness
under observer-based control, and some less conservative results were given. Xing et al.
(2019a, b) used the convex combination technique and designed the mode-dependent filter
to study the dissipative control of the system. Based on the above discussion, there have
been a lot of research results on finite-time H and passive control, but how to get a set of
conditions including both h performance and passive incentive for our research. To solve this
problem, we introduce a more general dissipative property based on the finite time analysis
of uncertain singular T–S fuzzy time-varying delay systems.

On the other hand, in practical, the actuator is in the saturated state under normal con-
ditions, and the energy it can provide is limited. Because the actuator saturation will bring
adverse effects to the system, the control research on the saturated system has always been
paid much attention. For example, the new controller for ensuring stability of the systems
with actuator saturation was studied in both linear systems (Hu et al. 2002; Lin and Lv 2007;
Ji et al. 2011; Cao and Lin 2003) and nonlinear systems (Ma and Zhang 2012; Hu et al. 2002;
Gassara et al. 2014a, b; Zuo et al. 2015; Ma et al. 2015a, b). In addition, the several stability
conditions and variable performance indicators for systems with actuator saturation were
researched in both nonsingular systems (Yang et al. 2014) and singular systems (Gassara
et al. 2014a, b; Zuo et al. 2015; Ma et al. 2015a, b).

In this paper, the finite-time dissipative control for uncertain singular T–S fuzzy systems
with actuator saturation is discussed. By establishing an appropriate LKF and using the
convex combination technique, the novel results that guarantee finite-time boundedness and
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dissipativity for the singular systems are given. Moreover, by solving a set of LMIs, an
efficient controller is designed. Finally, several examples are provided to demonstrate the
feasibility of this method. The key contributions of this study are listed as below:

1. An appropriate LKF is constructed, some free matrices are introducing based on the
suitable integral inequality used in this paper. And the conservatism is greatly reduced.

2. By taking the effects of time-varying delay and actuator saturation into account, the
criterion with less conservatism that guarantee finite-time boundedness and dissipativity
of the uncertain fuzzy systems is obtained. With the help of the LMIs technique, the
effective controllers are designed.

Notations: Throughout this paper, P−1 means inverse of P; PT means transpose of P .
Rn is n− dimensional Euclidean. Rm×n is a set of n ×m real matrices. A symmetric matrix
P > 0 means P is positive define. diag {· · · } is a block-diagonal matrix. Sym {X} = X+XT.
λmax (R) (λmin (R)) means the maximum (minimum) of the eigenvalue of a real symmetric
matrix R. ∗ stands for the transposed term in symmetric matrix. I represents the identity
matrix. The notation of sat(·) denotes the scalar values and the vector-valued saturation.

2 Problem formulation

Consider the following T–S fuzzy systems with actuator saturation and time delay:
• Plant rule i : IF ε1(t) is Mi1 and ε2(t) is Mi2, · · · , εp(t) is Mip , THEN

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Eẋ(t) = (Ai + ΔAi )x(t) + (Adi + ΔAdi )x(t − d(t))
+ (Bi + ΔBi )sat(u(t)) + (Bωi + ΔBωi )ω(t)

z(t) = (Ci + ΔCi )x(t) + (Cdi + ΔCdi )x(t − d(t))
+ (Di + ΔDi )sat(u(t)) + (Dωi + ΔDωi )ω(t)

x(t) = φ(t), t ∈ (−d2, 0),

(1)

where Mik(k = 1, 2, . . . , p), i ∈ I := {1, 2, . . . , r} are fuzzy sets and r is the number of
fuzzy IF–THEN rules; ε1(t), ε2(t), · · · , εr (t) are the premise variables; φ(t) is the initial
value; x(t) ∈ Rn is the state vector; z(t) ∈ Rq is the controlled output; u(t) ∈ Rm is the
control input; d(t) is positive time-varying delays functions satisfying: 0 ≤ d1 ≤ d(t) ≤ d2,
ḋ(t) ≤ h and h < 1; ω(t) ∈ Rp is exogenous disturbance input satisfying:

∫ T

0
ωT(t)ω(t)dt ≤ d2. (2)

In addition, sat : Rm × Rm is the standard saturation function satisfying:

sat(u(t)) = [sat(u1(t)), . . . , sat(um(t))]T,
and sat(ui (t)) = sign(ui (t))min {1, |ui (t)|}.

The matrix E ∈ Rn×n may be singular and we assume that rank(E) = r ≤ n.
Ai , Adi , Bi , Bωi ,Ci ,Cdi , Di and Dωi are known real constant matrices with appropriate
dimensions; ΔAi ,ΔAdi ,ΔBi ,ΔBωi ,ΔCi ,ΔCdi ,ΔDi and ΔDωi are unknown matrices
satisfying:

[
ΔAi ΔAdi ΔBi ΔBωi
ΔCi ΔCdi ΔDi ΔDωi

]

=
[
H1i

H2i

]

Fi (t)
[
Ni Ndi Nbi Nωi

]
, (3)
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where N1i , Ndi , Nbi , Nωi , H1i and H2i are known real constant matrices with appropriate
dimensions; Fi (t) is an unknown real, time-delay matrix function and satisfies

FT
i (t)Fi (t) ≤ I ,∀t ≥ 0. (4)

Using center-average defuzzifier, product interference and singleton fuzzifier, the defuzzi-
fied output of the overall uncertain singular T–S fuzzy systems is represented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eẋ(t) =
r∑

i=1
hi (ε(k))[(Ai + ΔAi )x(t) + (Adi + ΔAdi )x(t − d(t))

+(Bi + ΔBi )sat(u(t)) + (Bωi + ΔBωi )ω(t)]
z(t) =

r∑

i=1
hi (ε(k))[(Ci + ΔCi )x(t) + (Cdi + ΔCdi )x(t − d(t))

+(Di + ΔDi )sat(u(t)) + (Dωi + ΔDωi )ω(t)]
x(t) = φ(t), t ∈ (−d2, 0)

(5)

with hi (ε(t)) = �i (ε(t))
/∑r

i=1�i (ε(t)), �i (ε(t)) = Π
p
k=1Mik(εk(t)) and Mik(εk(t)) is

the grade of membership of εk(t) in Mik . Where �i (ε(t)) ≥ 0 for i = 1, 2, . . . , r and
∑r

i=1�i (ε(t)) ≥ 0 for all t . Therefore, we have hi (ε(t)) ≥ 0 and
∑r

i=1 hi (ε(t)) = 1. For
brevity, hi (ε(t)) is represented by hi in the following description.

The following, we construct a parallel distributed compensation controller which has the
same fuzzy sets in the premise parts with the fuzzy system (1). Then we have

u(t) =
r∑

i=1

hi (ε(t))Ki x(t), (6)

with Ki being the constant controller gains.
We next establish conditions under which a given ellipsoid �(ETPE, ρ) is contractively

invariant. To better illustrate this, let us emphasize the significance of the important symbol
and some equations which have been given in many references [30, 31]. hik denote the k−th
row of the matrix Hi , �(Hi ) is a polyhedral consisting of states without saturation satisfying

�(Hi ) = {
x(t) ∈ Rn : |hik x(t)| ≤ 1, k ∈ [1, . . . ,m]

}
,

P ∈ Rn×n is a symmetric matrix and ETPE ≥ 0, η > 0 is a scalar. Denote

�(ETPE, ρ) = {
x(t) ∈ Rn : xT(t)ETPEx(t) ≤ ρ

}
.

Thus, �(ETPE, ρ) is an ellipsoid. And Ξ is the set of m × m diagonal matrices with
1 or 0 as its diagonal elements. Es : s = 1, 2, . . . , γ = 2m represents the element of Ξ . In
addition, E−

s = I − Es . Obviously, if Es ∈ Ξ , then E−
s ∈ Ξ .

Lemma 1 (Hu et al. 2002). Let F, H ∈ Rp×n. Then for any x(t) ∈ L(H),

sat(Fx(t)) ∈ co
{
Es Fx(t) + E−

s Hx(t), s = 1, 2 . . . , 2m
} ;

or equivalently

sat(Fx(t)) =
2m∑

s=1

αs(Es F+E−
s H)x(t),

where co denotes the convex hull, αs for s = 1, 2, . . . , 2m satisfying 0 ≤ αs ≤ 1 and
2m∑

s=1
αs = 1.
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Under the fuzzy state feedback controller law (6) and Lemma 1, the system (5) can be
represented as ⎧

⎨

⎩

Eẋ(t) = Ax(t) + Adx(t − d(t))+Bωω(t)
z(t) = Cx(t) + Cdx(t − d(t)) + Dωω(t)
x(t) = φ(t), t ∈ (−d2, 0),

(7)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
r∑

i=1

r∑

j=i

2m∑

s=1
hi h jαs[(Ai + ΔAi ) + (Bi + ΔBi )(EsK j + E−

s Hj )]

Ad =
r∑

i=1

r∑

j=i

2m∑

s=1
hi h jαs(Adi + ΔAdi ), Bω =

r∑

i=1

r∑

j=i

2m∑

s=1
hi h jαs(Bi + ΔBωi )

C =
r∑

i=1

r∑

j=i

2m∑

s=1
hi h jαs[(Ci + ΔCi ) + (Di + ΔDi )(EsK j + E−

s Hj )],

Cd =
r∑

i=1

r∑

j=i

2m∑

s=1
hi h jαs(Cdi + ΔCdi ), Dω =

r∑

i=1

r∑

j=i

2m∑

s=1
hi h jαs(Bi + ΔBωi ).

(8)

Definition 1 (Ma and Yan 2016) If det(sE − A)	= 0 for some complex number s; (E, A) is
regular; if deg(det(E, A))=rank(E), a regular pair (E, A) is said to be impulse free.

Definition 2 (He andLiu 2013) System (7) is called finite-time bounded (FTB) for (c21, c
2
2, d

2,
T , Rc), in which Rc is a symmetric positive definite matrix and c1, T are positive constants,
if there exists scalar c2 > c1, such that

sup
−d2≤θ≤0

{
xT(θ)ETRcEx(θ), ẋT(θ)ETRcE ẋ(θ), xT(t)Rcx(t)

} ≤ c21,

⇒ xT(t)ETRcEx(t) ≤ c22,∀t ∈ [0, T ] .

Definition 3 (Han et al. 2012a, b)The regular descriptor system (1) is (Q, V , R)−α dissipates
with respect to (c21, c

2
2,d

2, T , α, Rc), if there exists some scalarα > 0, the following condition

W (ω, z, t) > α〈ω,ω〉t
holds for any t ∈ [0, T ] under zero initial state, where

W (ω, z, t) = 〈z, Qz〉t + 2〈z, Vω〉t + 〈ω, Rω〉t ,
〈x,My〉t = ∫ t

0 x
T(s)My(s)ds.

The quadratic supply rate denotes asW (ω, z, t); Q, V and R are real matrices and Q and
R are symmetric. And Q < 0, Q ≤ 0 or Q = 0.

Remark 1 It should be noted that, by Definition 3, the (Q, V , R)−α dissipative performance
contains the following special cases: H∞ performance as special cases, as follows:

1. If Q = 0, V = I and R = 0, the finite-time (Q, V , R) − α dissipativity corresponds
to a finite-time passivity or positive realness property.

2. If Q = −I , V = 0 and R = α + γ 2 I , the finite-time (Q, V , R) − α dissipativity
reduces to an H∞ performance.

Lemma 2 (Ma et al. 2015a, b). Let T1,T2 and Y (t) are real matrices with appropriate dimen-
sions. Y (t) satisfies Y (t)Y T(t) ≤ I . Then for any constant ε > 0, the inequality holds as
follows:

T1Y (t)T2 + T T
2 Y

T(t)T T
1 ≤ εT1T

T
1 + ε−1T T

2 T2.
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Lemma 3 (Ma and Zhang 2012). Given matrices X,Y ,Z with proper dimensions, if there is
a positive scalar α > 0, we have

−ZTY Z ≤ XTZ + ZTX + XTY−1X .

Lemma 4 (Duan et al. 2013) For any constant d > 0, vector function ẋ : [−r , 0] → �n and
constant matrix R ∈ �, R = RT, the following integration holds:

−d
∫ t

t−d
ẋT(s)Rẋ(s)ds ≤

[
x(t)

x(t − d)

]T [−R R
R −R

] [
x(t)

x(t − d)

]

.

Lemma 5 (Duan et al. 2013) Suppose that h1 ≤ h(t) ≤ h2, where h(t) : R+ → R+. Then
for any R = RT > 0, singular matrix E and free matrices X1 and X2, the following integral
inequality holds:

− ∫ t−h1
t−h2

ẋT(s)ETREẋ(s)ds ≤ ξT(t)((h(t) − h1)X1R−1XT
1 + (h2 − h(t))X2R−1XT

2

+ [
X1 X2 − X1 −X2

]
E + ET

[
X1 X2 − X1 −X2

]T
)ξ(t),

where
ξT(t) = [

xT(t − h1) xT(t − h(t)) xT(t − h2)
]
,

Xa = [
XT
a1 XT

a2 XT
a3

]T
, a = 1, 2.

(9)

Remark 2 The Lemma 5 is important in reducing the conservative property result from intro-
ducing slack variables Xal(a = 1, 2; l = 1, 2, 3). The free-weighting matrix method enables
our results possessing superiority.

Lemma 6 (Tian et al. 2009) Λ1,Λ2 and Θ are constant matrices and 0 ≤ d1 ≤ d(t) ≤ d2,
then

(d(t) − d1)Λ1 + (d2 − d(t))Λ2 + Θ < 0,

if and only if (d2 − d1)Λ1 + Θ < 0 and (d2 − d1)Λ2 + Θ < 0 hold.

3 Main results

3.1 FTS analysis and finite-time (Q,V, R)− ˛ dissipative

Theorem 1 System (7) is FTB with respect to
(
c21, c

2
2, d

2, Tc, Rc
)
at the origin with

�(ETPE, ρ) contained in the domain of attraction for positive constants c1,d,Tc,δ and
matrix Rc > 0, if there exist a constant c2 > 0, a nonsingular matrix P, matrices
Q1 > 0, Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Xal(a = 1, 2; l = 1, 2, 3) and
�(ETPE, ρ) ⊂ �(Hi ) such that

E PT = PET ≥ 0, (10)

Φa =

⎡

⎢
⎢
⎣

Ω + d12Γ2E + d12ETΓ T
2 d1Γ1 d12Γ1 d12Xa

∗ −Z−1
1 0 0

∗ ∗ −Z−1
2 0

∗ ∗ ∗ −Z2

⎤

⎥
⎥
⎦ < 0, (11)

[λ2 + d1λ3 + d2(λ4 + λ5) + d31
2
λ6 + d312

2
λ7]c21 + d2(1 − e−δTc ) < λ1c

2
2e

−δTc , (12)
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where

Ω =

⎡

⎢
⎢
⎢
⎢
⎣

Δ PETZ1E Ad 0 Bω
∗ −Q1 − ETZ1E 0 0 0
∗ ∗ −(1 − h)Q3 0 0
∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ −δ I

⎤

⎥
⎥
⎥
⎥
⎦
,

Δ = APT + PAT + PQ1PT + PQ2PT + PQ3PT − PETZ1EPT − δEPT,

Γ1 = [
APT 0 Ad 0 Bω

]T
, Γ2 = [

0 X1 X2 − X1 −X2 0
]
,

Xa =
[
0 XT

a1 XT
a2 XT

a3 0
]T
, a = 1, 2, d12 = d2 − d1,

P−1E = ETR
1
/
2

c P̄ R
1
/
2

c E, Q1 = R
1
/
2

c Q̄1R
1
/
2

c , Q2 = R
1
/
2

c Q̄2R
1
/
2

c ,

Q3 = R
1
/
2

c Q̄3R
1
/
2

c , Z1 = R
1
/
2

c Z̄1R
1
/
2

c , Z2 = R
1
/
2

c Z̄2R
1
/
2

c ,

λ1 = λmin
(
P̄
)
, λ2 = λmax

(
P̄
)
, λ3 = λmax

(
Q̄1

)
, λ4 = λmax

(
Q̄2

)
,

λ5 = λmax
(
Q̄3

)
, λ6 = λmax

(
Z̄1

)
, λ7 = λmax

(
Z̄2

)
.

Proof First, we prove the regular and impulse-free of system (7). Since rank(E) = r < n,
we assume G1 and G2 are non-singular matrices such that

G1EG2 =
[
Ir 0
0 0

]

,G1AG2 =
[
A1 A2

A3 A4

]

,

G1PG
−T
2 =

[
P1 P2
P3 P4

]

,G−T
1 Z1G

−1
1 =

[
Z11 Z12

Z13 Z14

]

.

From EPT = PET, we can easily obtain P3 = 0 and P1 = PT
1 . From (11), we have that

Δ < 0. Pre-and post-multiply Δ by GT
2 and G2, respectively. Moreover, Q1, Q2, Q3 > 0,

so it is easily obtained
[ ∗ ∗
* A4PT

4 + P4AT
4

]

< 0.

From the above discussion, we can obtain A4PT
4 + P4AT

4 < 0, which implies A4 is
nonsingular. Thus, det(sE − A) is not identity zero and deg(det(sE − A))= rankE . In the
light of Definition 1, the closed-loop system (7) is regular and impulse free.

Now, we prove the system is FTB, choosing the following Lyapunov functional candidate
as

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)), (13)

where

V1(x(t)) = xT(t)P−1Ex(t),

V2(x(t)) = t∫
t−d1

eδ(t−s)xT(s)Q1x(s)d

+
∫ t

t−d2
eδ(t−s)xT(s)Q2x(s)ds

+ t∫
t−d(t)

eδ(t−s)xT(s)Q3x(s)ds,
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V3(x(t)) = d1

∫ 0

−d1

∫ t

t+θ

eδ(t−s) ẋT(s)ETZ1Eẋ(s)dsdθ,

V4(x(t)) = d12

∫ −d1

−d2

∫ t

t+θ

eδ(t−s) ẋT(s)ETZ2Eẋ(s)dsdθ.

Then

V̇1(x(t)) = 2xT(t)P−1Eẋ(t),

V̇2(x(t)) = δ
∫ t
t−d1

eδ(t−s)xT(s)Q1x(s)ds + xT(t)Q1x(t)

−e−δd1xT(t − d1)Q1x(t − d1)

+δ
∫ t
t−d2

eδ(t−s)xT(s)Q2x(s)ds + xT(t)Q2x(t)

−e−δd2 xT(t − d2)Q2x(t − d2)

+δ
∫ t
t−d(t) e

δ(t−s)xT(s)Q3x(s)ds + xT(t)Q3x(t)

−(1 − ḋ(t))e−δd(t)xT(t − d(t))Q3x(t − d(t))

≤ δV2(x(t)) + xT(t)(Q1 + Q2 + Q3)x(t)

−xT(t − d1)Q1x(t − d1) − xT(t − d2)Q2x(t − d2)

−(1 − h)xT(t − d(t))Q3x(t − d(t)),

V̇3(x(t)) = δV3(x(t)) + d1
∫ 0
−d1

ẋT(s)ETZ1Eẋ(s)dθ

−d1
∫ t
t−d1

eδ(t−s) ẋT(s)ETZ1Eẋ(s)ds

≤ δV3(x(t)) + d21 ẋ
T(t)ETZ1Eẋ(t)

−d1
∫ t
t−d1

ẋT(s)ETZ1Eẋ(s)ds,

V̇4(x(t)) = δV4(x(t)) + d12
∫ −d1
−d2

ẋT(s)ETZ2Eẋ(s)dθ

−d12
∫ t−d1
t−d2

eδ(t−s) ẋT(s)ETZ2Eẋ(s)ds

≤ δV4(x(t)) + d212 ẋ
T(t)ETZ2Eẋ(t)

−d12
∫ t−d1
t−d2

ẋT(s)ETZ2Eẋ(s)ds,

(14)

from (13) to (14), we can get

V̇ (x(t)) ≤ δV2(x(t)) + xT(t)(Q1 + Q2 + Q3)x(t) + 2xT(t)PEẋ(t)

−xT(t − d1)Q1x(t − d1) − xT(t − d2)Q2x(t − d2)

−(1 − h)xT(t − d(t))Q3x(t − d(t)) + d21 ẋ
T(t)ETZ1Eẋ(t)

+d212 ẋ
T(t)ETZ2Eẋ(t) − d1

∫ t
t−d1

ẋT(s)ETZ1Eẋ(s)ds

−d12
∫ t−d1
t−d2

ẋT(s)ETZ2Eẋ(s)ds.
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Via Lemma 4 and Lemma 5, it is obtained that

−d1

∫ t

t−d1
ẋT(s)ETZ1Eẋ(s)ds ≤

[
x(t)

x(t − d1)

]T [−ETZ1E ETZ1E
ETZ1E −ETZ1E

] [
x(t)

x(t − d1)

]

,

(15)

− ∫ t−d1
t−d2

ẋT(s)ETZ2Eẋ(s)ds ≤ ξT(t)
{
(d(t) − d1)X1Z

−1
2 XT

1 + (d2 − d(t))X2Z
−1
2 XT

2

+ [
X1 X2 − X1 −X2

]
E + ET

[
X1 X2 − X1 −X2

]T
}
ξ(t)

,

(16)

where ξ(t), Xa satisfies Eq. (9). Using Lemma 6, (16) is equivalent to

ξT(t)
{
d12X1Z

−1
2 XT

1+ [
X1 X2 − X1 −X2

]
E + [

X1 X2 − X1 −X2
]T

ET} ξ(t) < 0

and

ξT(t)
{
d12X2Z

−1
2 XT

2+ [
X1 X2 − X1 −X2

]
E + [

X1 X2 − X1 −X2
]T

ET} ξ(t) < 0.

Then it can be obtained that

V̇ (x(t)) − δV (x(t)) − δωT(t)ω(t)
= ζT(t)[Ω + d21Γ

T
1 Z1Γ1 + d212Γ

T
1 Z2Γ1 + d212X

T
a Z

−1
2 Xa + d12Γ3E + d12ETΓ T

3 ]ζ(t),

where ζT(t) = [
xT(t) xT(t − d1) xT(t − d(t)) xT(t − d2) wT(t)

]
.

Pre- and post-multiplying (11) with diag

⎧
⎨

⎩
P−1, I , · · · I

︸ ︷︷ ︸
7

⎫
⎬

⎭
and diag

⎧
⎨

⎩
P−T, I , · · · I

︸ ︷︷ ︸
7

⎫
⎬

⎭
,

respectively. And by Schur complement, it yields

V̇ (x(t)) − δV (x(t)) − δωT(t)ω(t) < 0. (17)

First, both sides of (17) pre-and post-multiplying by e−δt , then integrating it from 0 to
t, (t ∈ [0, Tc]), we can derive

V (x(t)) < eδTc [V (x(0)) + δ

∫ Tc

0
e−δsωT(t)ω(t)dt].

From (11) and Definition 2, we can obtain

V (x(0)) = xT(0)P−1Ex(0) + ∫ 0
−d1

e−δs xT(s)Q1x(s)ds + ∫ 0
−d2

e−δs xT(s)Q2x(s)ds

+ ∫ 0
−d(t) e

−δs xT(s)Q3x(s)ds + d1
∫ 0
−d1

∫ 0
θ
e−δs ẋT(s)ETZ2Eẋ(s)dsdθ

+d12
∫ −d1
−d2

∫ 0
θ
e−δs ẋT(s)ETZ2Eẋ(s)dsdθ

≤ λ2xT(0)Rcx(0) + [d1λ3 + d2(λ4 + λ5) + d31
2 λ6 + d312

2 λ7]
sup

−d2≤θ≤0

{
xT(θ)Rcx(θ), ẋT(θ)Rcẋ(θ)

}

≤ [λ2 + d1λ3 + d2(λ4 + λ5) + d31
2 λ6 + d312

2 λ7]c21.
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Combine with (2), then

V (x(t)) ≤ [λ2 + d1λ3 + d2(λ4 + λ5) + d31
2
λ6 + d312

2
λ7]c21 + d2(1 − e−δTc ).

On the other hand,

V (x(t)) ≥ xT(t)P−1Ex(t) ≥ λ1x
T(t)ETRcEx(t).

Then from condition (12), we have xT(t)ETRcEx(t) ≤ c22. According to Definition 2,
system (7) is finite-time bounded. The proof is completed. ��

Theorem 2 System (7) is finite-time (Q, V , R) − α dissipative with respect to
(
c21, c

2
2, d

2,

Tc, α, Rc) at the origin with �(ETPE, ρ) contained in the domain of attraction for positive
constants c1, d, Tc, δ and matrix Rc > 0, if there exist a constant c2 > 0, a nonsingular
matrix P, matrices Q1 > 0, Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Xal(a = 1, 2; l = 1, 2, 3)
and �(ETPE, ρ) ⊂ �(H) such that

E PT = PET ≥ 0, (18)

Φa =

⎡

⎢
⎢
⎢
⎢
⎣

Ω + d12Γ2E + d12ETΓ T
2 d1Γ1 d12Γ1 d12Xa Γ T

3
∗ −Z−1

1 0 0 0
∗ ∗ −Z−1

2 0 0
∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦
< 0, (19)

[λ2 + d1λ3 + d2(λ4 + λ5) + d31
2
λ6 + d312

2
λ7]c21 + d2(1 − e−δTc ) < λ1c

2
2e

−δTc , (20)

where

Ω =

⎡

⎢
⎢
⎢
⎢
⎣

Δ PETZ1E Ad 0 Bω − PCTV
∗ −Q1 − ETZ1E 0 0 0
∗ ∗ −(1 − h)Q3 0 −CT

d V∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ −(R − α I ) − DT

ωV − V Dω

⎤

⎥
⎥
⎥
⎥
⎦
,

Δ = APT + PAT + P(Q1 + Q2 + Q3)PT − PETZ1EPT − δEPT,

Γ1 = [
APT 0 Ad 0 Bω

]T
, Γ2 = [

0 X1 X2 − X1 −X2 0
]
,

Γ3 = [√−QCPT 0
√−QCd 0

√−QDω

]
, Xa = [

0 XT
a1 XT

a2 XT
a3 0

]T
.

P−1E = ETR
1
/
2

c P̄ R
1
/
2

c , Q1 = R
1
/
2

c Q̄1R
1
/
2

c E, Q2 = R
1
/
2

c Q̄2R
1
/
2

c ,

Q3 = R
1
/
2

c Q̄3R
1
/
2

c , Z1 = R
1
/
2

c Z̄1R
1
/
2

c , Z2 = R
1
/
2

c Z̄2R
1
/
2

c ,

λ1 = λmin
(
P̄
)
, λ2 = λmax

(
P̄
)
, λ3 = λmax

(
Q̄1

)
, λ4 = λmax

(
Q̄2

)
,

λ5 = λmax
(
Q̄3

)
, λ6 = λmax

(
Z̄1

)
, λ7 = λmax

(
Z̄2

)
.

Proof In the part, we prove system (7) is finite-time dissipative. First, let

J (t) = zT(t)Qz(t) + 2ωT(t)V z(t) + ωT(t)(R − α I )ω(t).

From (19) and Schur complement, it is easily obtained

V̇ (x(t)) − δV (x(t)) − J (t) = ζT(t)[Δ + d21Γ
T
1 Z1Γ1 + d212Γ

T
1 Z2Γ1 + d212X

T
a Z

−1
2 Xa

+ d12Γ2E + d12ETΓ T
2 + Γ T

3 Γ3]ζ(t) < 0.
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With zero initial state, the following equality holds

0 < V (x(t)) < eδTc
∫ t
0 J (t)dt

⇒ ∫ t
0 z

T(t)Qz(t) + 2ωT(t)V z(t) + ωT(t)Rω(t)dt > α
∫ t
0 ω

T(t)ω(t)dt .

From Definition 2, system (7) is finite-time bounded and (Q, V , R)− α dissipative. The
proof is completed. ��

3.2 Finite-time state feedback dissipative controller design

Remark 3 The following we replace coefficient matrices in Theorem 2 with (8) and Eq. (3).
On the basis of Theorem 2, the stability conditions in form of LMIs can be obtained in
Theorem 3.

Theorem 3 System (7) with state feedback control law (6) and K j = Fj P−T is finite-
time (Q, V , R) − α dissipative with respect to

(
c21, c

2
2, d

2, Tc, α, Rc
)
at the origin with

�(ETPE, ρ) contained in the domain of attraction for the constants c1 > 0, d > 0, Tc >
0, δ > 0, α > 0 and matrix Rc > 0, if there exist a constant c2 > 0, a nonsingular
matrix P, matrices Q̃1 > 0, Q̃2 > 0, Q̃3 > 0, Ẑ1 > 0, Z̃1 > 0, Z̃2 > 0, Xal , X̄al

(a = 1, 2; l = 1, 2, 3), scalars εi j > 0, such that the following set of LMIs satisfies

E PT = PET ≥ 0, (21)
⎡

⎣
Σi isa Υ T

1 εi iΥ2

∗ −εi i I 0
∗ ∗ −I

⎤

⎦ < 0, i = 1, 2, . . . , r , (22)

⎡

⎣
Σi jsa Υ T

1 εi jΥ2

∗ −εi j I 0
∗ ∗ −I

⎤

⎦ +
⎡

⎣
Σ j isa Υ T

1 ε j iΥ2

∗ −ε j i I 0
∗ ∗ −I

⎤

⎦ < 0, i < j, i = 1, 2, . . . , r , (23)

[−ρ−1 y jk
yTjk −E P̃ET

]

≤ 0, k = 1, 2, . . . , l; j = 1, 2, . . . , r , (24)

μ1 I < R1
/
2Uψ1UTR1

/
2
< I , Q̃1 > −P − PT − μ2R−1

c , Q̃2 > −P − PT − 2μ3R−1
c ,

Q̃3 > −P − PT − 2μ4R−1
c , Z̃1 > −P − PT − 1

2μ5R−1
c , Z̃2 > −P − PT − 1

2μ6R−1
c ,

(25)
[
(d1μ2 + d2μ3 + d2μ4 + d31μ5 + d312μ6)c1 + d(1 − e−δTc ) − c2e−δTc c1
∗ −μ1

]

< 0, (26)

where

Σi jsa =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ωi js + d12Sym(Γ̃2E) d1Γ1i js d12Γ1i js d12 X̄a Γ T
3i js PT PT PT

∗ −Z̃1 0 0 0 0 0 0
∗ ∗ −Z̃2 0 0 0 0 0
∗ ∗ ∗ Σ1 0 0 0 0
∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ −Q̃1 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q̃2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̃3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Σi jsa =

⎡

⎢
⎢
⎢
⎢
⎣

Ωi js + d12Sym(Γ̃2E) d1Γ1i js d12Γ1i js d12 X̄a Γ T
3i js

∗ Σ1 0 0 0
∗ ∗ Σ2 0 0
∗ ∗ ∗ −Z̃2 0
∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦
,

Ωi js =

⎡

⎢
⎢
⎢
⎢
⎣

Δi js E Ẑ1ET Adi PT 0 Ω1

∗ Ω2 0 0 0
∗ ∗ Ω3 0 −CT

di V
∗ ∗ ∗ Q̃2 0
∗ ∗ ∗ ∗ Ω4

⎤

⎥
⎥
⎥
⎥
⎦
,

Δi js = Ai PT + Bi (Es Fj + E−
s Y j ) + PAT

i + (Es Fj + E−
s Y j )

TBT
i − E Ẑ1ET − δEPT

+Q̃1 + Q̃2 + Q̃3,

Γ1i js = [
Ai PT + Bi (Es Fj + E−

s Y j ) 0 Adi PT 0 Bωi
]T
, Γ̃2 = [

0 X̃1 X̃2 − X̃1 −X̃2 0
]
,

Γ3i js = [√−QCi PT + √−QDi (Es Fj + E−
s Y j ) 0

√−QCdi PT 0
√−QDωi

]
,

Υ1 = [
Ni PT + Nbi (Es Fj + E−

s Y j ) 0 Ndi PT 0 Nωi 0 0 0 0
]
,

Υ2 =
[

HT
1 0 0 0 −HT

2 V d1HT
1 d12HT

1 0 HT
2

√−Q
T
]T
,

X̄a = [
0 X̄T

a1 X̄T
a2 X̄T

a3 0
]T
, X̃a = [

0 X̃T
a1 X̃T

a2 X̃T
a3 0

]T
, a = 1, 2,

Ω1 = Bωi − (Ci PT + Di (Es Fj + E−
s Y j ))

TV ,Σ1 = P+PT+ Z̃1,Σ
2 = P + PT + Z̃2,

Ω2 = Q̃1 − E Ẑ1ET,Ω3 = (1 − h)Q̃3,Ω
4 = −(R − α I ) − DT

ωi V − V Dωi .

Proof According to (19) in Theorem 2, we have

Φa =
r∑

i=1

r∑

j=i

γ∑

s=1
hi h jαs(Φi jsa + ΔΦi jsa)

=
γ∑

s=1
αs

[
r∑

i=1
h2i (Φi isa + ΔΦi isa)+

r∑

i< j
hi h j [(Φi jsa + Φ j isa)+(ΔΦi jsa + ΔΦ j isa)]

]

< 0,

where

�i jsa =

⎡

⎢
⎢
⎢
⎢
⎣

�i js + d12�2E + d12ET�T
2i js d1�1i js d12�1i js d12Xa �T

3i js

* −Z−1
1 0 0 0

* ∗ −Z−1
2 0 0

* ∗ ∗ −Z2 0
* ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦
, (27)

�i js =

⎡

⎢
⎢
⎢
⎢
⎣

� PETZ1E Adi 0 �1

* −Q1 − ETZ1E 0 0 0
* ∗ −(1 − h)Q3 0 −CT

di V
* ∗ ∗ −Q2 0
* ∗ ∗ ∗ −(R − α I ) − DT

ωi V − V Dωi

⎤

⎥
⎥
⎥
⎥
⎦
,

�i js = Ai PT + Bi (EsK j + E−
s Hj )PT + PAT

i + P(EsK j + E−
s Hj )

TBT
i+P(Q1 + Q2 + Q3)PT − PETZ1EPT − δEPT,

�1i js = [
Ai PT + Bi (EsK j + E−

s Hj )PT 0 Adi 0 Bωi
]T
,

�2i js = [
0 X1 X2 − X1 −X2 0

]
, Xa = [

0 XT
a1 XT

a2 XT
a3 0

]T
,

�3i js = [√−QCi PT + √−QDi (EsK j + E−
s Hj )PT 0

√−QCdi 0
√−QDωi

]
,

�1 = Bωi − P(Ci + Di (EsK j + E−
s Hj ))

TV .
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Since hi , h j , αs > 0, then Eq. (27) holds if matrix inequality Φi isa + ΔΦi isa < 0 and
(Φi jsa+Φ j isa)+(ΔΦi jsa+ΔΦ j isa) < 0 is constructed.Refer toLemma2,Φi isa+ΔΦi isa <

0 equals to the following equality if there exists a positive εi i such that

Φi isa + Υ1F(t)Υ2 + Υ T
2 FT(t)Υ T

1

≤ Φi isa + εi iΥ1Υ
T
1 + ε−1

i i Υ T
2 Υ2. (28)

Pre- and post-multiplying Eq. (22) by

diag

⎧
⎨

⎩
I , P−1, P−1, P−1, I , . . . , I

︸ ︷︷ ︸
3

, P−1, I , . . . , I
︸ ︷︷ ︸

4

⎫
⎬

⎭
and

diag

⎧
⎨

⎩
I , P−T, P−T, P−T, 0, . . . , 0

︸ ︷︷ ︸
3

, P−T, 0, . . . , 0
︸ ︷︷ ︸

3

⎫
⎬

⎭
.

Denote Ẑ1 = PTZ1P, Z̃1 = PZ1PT, Q̃l = PQ1PT, X̄al = PXal PT, X̃al = PXal P
(a = 1, 2; l = 1, 2, 3), K j = Fj P−T. Using Lemma 3, we can get −Z−1

1 ≤ P + PT + Z̃1,
−Z−1

2 ≤ P + PT + Z̃2. From (22), (28) and considering Schur complement, condition (19)
can be obtained.

Using Lemma 3, we can obtain λ3 < μ2 from Q̃1 < −P − PT − μ2R−1
c . Similarly,

we can get λ4 < μ3, λ5 < μ4, λ6 < 2μ5, λ7 < 2μ6 from Q̃2 < −P − PT − 2μ3R−1
c ,

Q̃3 < −P − PT − 2μ4R−1
c , Z̃1 < −P − PT − 0.5μ5R−1

c , Z̃2 < −P − PT − 0.5μ6R−1
c ,

respectively.
Noting that P is nonsingular matrix, we can obtain the decomposition of E as follows by

Lemma 6, if there exist two orthogonal matrices U and V :

E = U

[
Σr 0
∗ 0

]

V T = U

[
Ir 0
∗ 0

]

νT,

where Σr = diag {σ1, σ2, . . . , σr } with σk > 0 for all k = 1, 2, . . . , r . Partition U =[
U1 U2

]
, V = [

V1 V2
]
and ν = [

V1Σr V2
]
withUT

2 E = 0 and EV2 = 0. Let P̃ = UTPν,

from (21), P̃ is of the following form

[
P11 P12
0 P22

]

and P can be expressed as follows:

P = Eν−Tψ1ν
−1 +Uψ2V

T
2 ,

where ψ1 = diag {P11, ψ12}, ψ2 = diag
{
PT
12, P

T
22

}
with a parameter matrix ψ12. If

we choose ψ > 0 and symmetric, then ψ1 > 0 and symmetric. Furthermore, P̄ =
R−1

/
2Uψ−1

1 UTR−1
/
2 is a solution of P−1E = ETR1

/
2 P̄ R1

/
2E and P satisfies

PET = EPT = Eν−Tψ1ν
−1ET.

On the other hand, let I < P̄ < μ−1
1 I and noting that P̄ = R−1

/
2Uψ−1

1 UTR−1
/
2 and

ψ1 is an orthogonal matrix, so μ1 I < R1
/
2Uψ1UTR1

/
2
< I , we have λ1 > 1, λ2 < μ1.

123



201 Page 14 of 22 J. Zhang et al.

From the above discussion, condition (20) can be guaranteed by

μ−1
1 c1 + (d1μ2 + d2μ3 + d2μ4 + d31μ5 + d212μ6)c1 + d(1 − e−δTc )− c2e

−δTc < 0. (29)

Given Schur complement Lemma, (29) can be rewritten as
[
(d1μ2 + d2μ3 + d2μ4 + d31μ5 + d312μ6)c1 + d(1 − e−δTc ) − c2e−δTc √

c1
∗ −μ1

]

< 0.

First, for every x(t) ∈ �(ETPE, ρ), by �(ETPE, ρ) ⊂ �(Hi ), then x(t) ∈ �(Hi ). We
can obtain the following singular with orthogonal matrices U , V and non-singular matrix
Σr

UTEV =
[
Σr 0
0 0

]

, UTPU =
[
P̄1 P̄2
P̄T
2 P̄3

]

, V Tx(t) =
[
x1(t)
x2(t)

]

, HiV = [
Hi1 Hi2.

]

It follows that Hi2 = 0, otherwise, let x1(t) = 0 and |hi2k x2(t)| > ρ
1
//

2, then

xT(t)ETPEx(t) = 0 that is |hik x(t)| > ρ
1
/
2, it contradicts that �(ETPE, ρ) ⊂ �(Hi ).

Then xT(t)ETPEx(t) = xT1 (t)P1x1(t) ≤ ρ, Hi x(t) = Hi1x1(t).
From the discussion, the condition �(ETPE, ρ) ⊂ �(Hi ) in Theorem 1 is equivalent to

hi1k(Σ
T
r P1Σr )

−1hTi1k ≤ ρ−1, k = 1, 2, . . . , l.

Using Schur complements, we have
[−ρ−1 hi1k
hTi1k −ΣT

r P1Σr

]

≤ 0, k = 1, 2, . . . , l

or ⎡

⎣
−ρ−1

[
hi1k 0

]

[
hi1k 0

]T −
[
Σr 0
0 0

]T [
P̄1 P̄2
P̄T
2 P̄3

] [
Σr 0
0 0

]

⎤

⎦ ≤ 0, k = 1, 2, . . . , l, (30)

where hi1k is the kth row of Hi1.
Denote Y j = Hj PT, pre-and post-multiplying Eq.(30) by diag {I , PV } and

diag
{
IT, V TPT

}
. y jk is the kth row of Y j , so we can obtain (24). The proof is complete. ��

Remark 4 To achieve the goal of reducing the result conservatism, we choose the largest
ellipsoid that satisfies the conditions of Theorem 1. In this way, the gravitational domain is
more accurate.

Then the size of the ellipsoids is surveyed by a form reference set. x0 ∈ Rn is the initial
state. To verify the stability of initial state x0 ∈ Rn , we can establish the optimization problem
as follows:

max
P,Q>0,K j ,Hj ,α>0

β

s.t .

⎧
⎨

⎩

(1)βχR ⊂ �(ETPE, ρ)
(2)Inequality(24 − 26, 28)

(3)|hiq x(t)| ≤ 1,∀x(t) ∈ �(ETPE, ρ)

. (31)

Moreover, condition (1) in (31) is equivalent to

β2xT0 E
TPEx0 ≤ ρ.
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By Schur’s complements, it can be represented as
[−μ xT0 E

T

* −P−1

]

≤ 0, , (32)

where μ = ρ
/
β2.

Pre-and post-multiplying (32) by diag {I , P} and diag {
IT, PT

}
, one sufficient condition

satisfying (32) is [−μ xT0 E
TPT

∗ −PT

]

≤ 0, . (33)

By Theorem 3 and the above certificate, the problem in (31) is equivalent to the minimiza-
tion problem

minμ
s.t .inequality(24) ∼ (28), (36).

(34)

Remark 5 In Theorem 3, the results that guarantee finite-time dissipative of the uncertain
systems can transform to a LMI problem with parameter δ, if there is a known Tc:

min c22 + α

P,Q̃1,Q̃2,Q̃3,Ẑ1,Z̃1,Z̃2,Xal ,X̄al ,μ,δ

s.t(24) ∼ (28), (36).
(35)

4 Numerical examples

In this section, two examples are introduced to show the effectiveness of our results.

Example 1 Consider the inverted pendulum model as follows (Han et al. 2012a, b):

ẋ1 = x2,[
(M + m)(J + ml2) − m2l2cos2x1

]
ẋ2

= (M + m)mgx3 − m2l2x3cos2x1 − ml cos x1u,
0 = l sin x1 − x3,

where x1 ∈ (−π
/
2, π

/
2) stands for the angle of from the vertical to the pendulum, x2 is the

angular velocity, x3 is the horizontal distance from cart to the center of pendulum,Mkg andm
are themass of the cart and the pendulum, J = ml2

/
3 is themoment of inertia, g = 9.8m

/
s2

is the gravity constant, l is the length from shaft axis to the pendulum center of mass and u is
the force exert on the cart.β stands for themaximal angular velocity, and x22 (t) = β2Δ(x2(t))
with Δ2(x2(t)) ≤ 1. Choose membership function h1(x1) = (sin2θ0 − sin2x1(t))/sin2θ0, ,
h2(x1) = 1 − h1(x1), θ0 ∈ (−π

/
2, π

/
2). And external disturbances ω(t) = sin(5t). Let

M = 1.3282, m = 0.22, β = 3, l = 0.304. Thus, the global fuzzy systems is represented by
the following systems:

Eẋ(t) =
2∑

i=1
hi (ξ(t))[(Ai + ΔAi )x(t) + Biu(t) + Bωiω(t)],

z(t) =
2∑

i=1
hi (ξ(t))[Ci x(t) + Dωiω(t)],
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Fig. 1 The local optimal bound of α and δ(Example 1)

where

E =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ , A1 =
⎡

⎣
0 1 0
0 0 89.0189
0.3040 0 −1

⎤

⎦ , A2 =
⎡

⎣
0 1 0
0 0 81.7087
0.2514 0 −1

⎤

⎦ ,

Ci =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ , B1 =
⎡

⎣
0
−1.7836
0

⎤

⎦ , B2 =
⎡

⎣
0
−0.8186
0

⎤

⎦ , Bωi =
⎡

⎣
0
1
0

⎤

⎦ , Dωi =
⎡

⎣
1
1
0

⎤

⎦ ,

H1 = [
0 −0.3924 0

]T
, H2 = [

0 −0.1801 0
]T
, Ni = [

0 0 9
]
.

Given Q = −0.1I3, V = [
1.5 1.5 1.5

]T
, R = 1. From Theorem 3, it is easy to know

that the minimum value of c22 + α is related to δ. Figure 1 depicts the corresponding value
with various δ. Choosing δ = 1.4, α = 0.1 and the optimal value c2 = 3.9300, we have the
value of Ki as follows:

K1 = [−1.8859 −1.9997 −39.1980
]
,

K2 = [−2.3255 −2.8000 −26.3229
]
.

The state response and the state response of the system for initial situation are shown
in Figs. 2 and 3. It can explain that the systems are finite-time bound and (Q, V , R) − α

dissipative under the controllers, which implies that the result is well achieved and supports
our theoretical.
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Fig. 2 The simulation of state response of the open-loop system (Example 1)

Fig. 3 The simulation of state response of the closed-loop system(Example 1)

Example 2 Consider the following fuzzy system described by T–S fuzzy model with two
fuzzy rules:

Ex(t) =
2∑

i=1

hi (ε(t))[(Ai + ΔAi (t))x(t) + (Adi + ΔAdi (t))x(t − d(t))

+Bi sat(u(t)) + Bωiω(t)],

z(t) =
2∑

i=1

hi (ε(t))[Ci x(t) + Cdi x(t − d(t)) + Diu(t) + Dωiω(t)],
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where

E =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ , A1 =
⎡

⎣
0 1 1
0 0 1
0.1 0 1

⎤

⎦ , A2 =
⎡

⎣
1 1 1
0 0 1
0.1 0 1

⎤

⎦ , Ad1 =
⎡

⎣
1 1 0.1
1 1 0
0.1 0 0.1

⎤

⎦ ,

Ad2 =
⎡

⎣
0 1 0.1
1 1 0
1 0 0.1

⎤

⎦ ,C1 =
⎡

⎣
1 0 0
0 0.1 0
0 0 0

⎤

⎦ ,C2 =
⎡

⎣
1 0 1
0 0.1 0
0 0 0.1

⎤

⎦ , Bi =
⎡

⎣
0.1
0.1
0.1

⎤

⎦ ,

Cd1 =
⎡

⎣
0.1 0 0
0 0.1 0
0 0 0.1

⎤

⎦ ,Cd2 =
⎡

⎣
1 0 0
0 0.1 0
0 0 0

⎤

⎦ , D1 =
⎡

⎣
0.1
0.1
0.1

⎤

⎦ , D2 =
⎡

⎣
0.1
0
0.1

⎤

⎦ ,

Bwi =
⎡

⎣
1 0 0
0 1 0
0 0 0.1

⎤

⎦ , Dwi =
⎡

⎣
0.1 0 0
0 0.3 0
0 0 0.1

⎤

⎦ , H1i = H2i =
⎡

⎣
0.1
0.1
0.1

⎤

⎦ ,

Ni = [
0.1 0.1 0.1

]
, Ndi = [

0.1 0.1 0.1
]
, Nwi = [

0.1 0.1 0.1
]
.

We let

Q =
⎡

⎣
−0.01 0 0
0 −0.01 0
0 0 −0.01

⎤

⎦ , V =
⎡

⎣
0.1 0 0
0 0.1 0
0 0 0.1

⎤

⎦ , R =
⎡

⎣
1 0 0
0 2 0
0 0 2

⎤

⎦ .

Choose δ = 0.285, ε11 = ε21 = 0.21, ε12 = ε22 = 0.2, d1 = 0, d2 = 1, Tc = 2, d = 1,
then the following results are obtained by LMIs Toolbox in Matlab,

P =
⎡

⎣
−36.9566 −23.0220 0.2704
−17.0093 −32.4030 0.0292
−0.2738 0.0549 −0.0950

⎤

⎦ ,Z̃2 =
⎡

⎣
8.8451 19.0409 0.0082
19.0409 39.6309 −0.0799
0.0082 −0.0799 0.1905

⎤

⎦ ,

Z̃1 = 1.0e + 003 ∗
⎡

⎣
2.6207 −0.0000 0.0000
−0.0000 2.6207 −0.0000
0.0000 −0.0000 2.6207

⎤

⎦ ,

Ẑ1 = 1.0e + 003 ∗
⎡

⎣
8.8451 0.5222 0
0.5222 7.6363 0
0 0 0

⎤

⎦ ,

Q̃1 = 1.0e + 003 ∗
⎡

⎣
1.6556 −0.0056 −0.0003
−0.0056 1.6554 −0.0001
−0.0003 −0.0001 0.0002

⎤

⎦ ,

Q̃2 = 1.0e + 003 ∗
⎡

⎣
1.6556 −0.0056 −0.0003
−0.0056 1.6554 −0.0001
−0.0003 −0.0001 0.0002

⎤

⎦ ,

Q̃3 = 1.0e + 003 ∗
⎡

⎣
1.9812 0.0858 −0.0011
0.0858 1.7466 −0.0003
−0.0011 −0.0003 0.0002

⎤

⎦ .

The state feedback gain matrix is obtained as

K1 = [−1.1724 −0.0116 4.8657
]
, K2 = [−1.0967 −0.3054 4.0653

]
,

H1 = [−0.3581 0.1926 1.1706
]
, H2 = [

0.3926 −0.4335 −1.3598
]
.
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Fig. 4 The simulation of state response of the closed-loop system (Example 2)

Fig. 5 The simulation of the control input (Example 2)

We take the initial condition is x0 = [−1 1 0.5
]T
, handle the LMI optimization prob-

lem (34), the value of μmin = 0.0069. Let the fuzzy weighting function be h1(x1) =
1
/[1 + exp(0.5(x1))], h2(x2) = 1 − h1(x1), disturbance input is ω(t) = exp(−t) sin(−t),

uncertainty is Fi (t) = sin t . The state trajectories of the system are shown in Fig. 4. Figure 5
gives the simulation of the control input, and Fig. 6 is the invariant ellipsoids and a trajectory.
Those imply the feasibility and superiority of our results.

5 Conclusions

This paper studies the problem of finite-time dissipative control for uncertain singular T–S
fuzzy time-varying delay systems subject to actuator saturation. Initially, based on appropriate
Lyapunov–Krasovskii functional, introducing some free matrices and using the convexity
property of the matrix inequality, sufficient conditions are derived to ensure the closed-
loop system is finite-time bounded and satisfies dissipative disturbance attenuation level
in a given finite-time interval. Then a designed controller is provided by solving a linear
matrix inequality optimization problem. Finally, some results are provided to explain the
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Fig. 6 The invariant ellipsoids and a trajectory (Example 2)

feasibility and superiority of the proposed method. However, we consider actuator saturation
without estimating the domain of attraction of delay. To this point, further study would focus
on it.
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