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Abstract
A fast iteration method based on HSS is proposed for solving the nonsymmetric general-
ized saddle point problem. It converges to the unique solution of the generalized saddle
point problem unconditionally. We devise a new preconditioner induced by the new itera-
tion method. We analyze the spectrum of the preconditioned coefficient matrix, and reveal
the relation between the theoretically required number of iteration steps and the dimension
of the preconditioned Krylov subspace. Furthermore, some practical inexact variants of the
new preconditioner have been developed to reduce the computational overhead. Numerical
experiments validate the effectiveness of the proposed preconditioners.

Keywords Generalized saddle point problem · Preconditioner · Hermitian and
skew-Hermitian splitting · Krylov subspace method
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1 Introduction

We consider the solution of the generalized saddle point linear system[
A BT

−B C

] [
x
y

]
=

[
f

−g

]
, or Au = b, (1)

where A is an n×n symmetric and positive definite matrix, B is anm×n full-rank matrix,C
is an m ×m symmetric and positive semidefinite matrix and m ≤ n. With such assumptions,
the existence and uniqueness of the solution of (1) can be assured. The block linear system (1)
stems from many real-world applications, including the constrained optimal control (Betts
2001), the computational fluid dynamics (Saad 2003) and the mixed finite element of elliptic
PDEs (Benzi et al. 2005), etc.
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Recent years have witnessed vigorous developments in the numerical algorithms for solv-
ing (1). Due to the large size and sparsity of the coefficient matrix A, iterative methods are
usually favored. In addition to those ad hoc ones, existing approaches include the stationary
iteration schemes (Bai et al. 2005b; Zhang and Shang 2010; Yun 2013; Zhang et al. 2019),
the matrix-splitting methods (Bai et al. 2008; Cao et al. 2016; Bai and Golub 2007; Li and
Wu 2015; Liang and Zhang 2016; Shen 2014; Zeng andMa 2016), the more involved Krylov
subspacemethods (Bai 2015; Saad 2003) and their hybrid variants (Cao andYi 2016). Among
all methods, the restarted GMRESmethod (Saad and Schultz 1986) has received much atten-
tion and been used extensively in view of their effectiveness. However, it is known that
GMRES(k) often suffers from slow convergence or even stagnation. Therefore, a reasonable
preconditioner must be chosen to accelerate GMRES(k). By far, some kinds of precondi-
tioners pertaining to Krylov subspace methods have been proposed, including the HSS-type
preconditioners (Cao et al. 2016; Bai and Golub 2007; Huang et al. 2009; Liao and Zhang
2019), thematrix splitting preconditioners (Bai et al. 2005a; Ling and Liu 2017;Murphy et al.
2000; Shen and Shi 2016; Simoncini 2004; Zhang et al. 2014, 2017), the constraint precondi-
tioners (Keller et al. 2000; Shen et al. 2019; Zhang et al. 2011) and the dimensional splitting
preconditioners (Ke and Ma 2017; Cao et al. 2013); see (Benzi et al. 2005) for developments
up to the year 2005 and more recent surveys (Bai 2015; Rozložník 2018; Wathen 2015).

The essential idea behind developing a good preconditioner is that the preconditioner is
expected to approximate the coefficient matrix in some sense such that the preconditioned
matrix will have a clustered spectrum (away from the origin) or readily be computed. For this
reason, we are interested in constructing efficient preconditioners that preserve the structure
of the original coefficient matrix in (1) as much as possible. In the context of solving (gener-
alized) saddle point system, some efforts have been made towards this goal in recent years.
For example, Murphy et al. (2000) propose a Schur-complement-based block-diagonal pre-
conditioner which yields a preconditioned matrix with exactly three or exactly two distinct
eigenvalues. Following this reasoning, de Sturler and Liesen (2005) derive block-diagonal
preconditioners from the splitting of the (1,1)-block matrix given in Murphy et al. (2000)
from which the solution of the original problem can be restored by solving a smaller related
linear system; see also (Beik et al. 2017). By incorporating the (1,2) and (2,1) matrix blocks,
Keller et al. (2000) devise a constraint preconditioner that is different from the original sys-
tem only in the (1,1)-block. Pan et al. (2006) propose a deteriorated positive-definite and
skew-symmetric splitting (DPSS) preconditioner which stimulates the research of matrix-
splitting-based preconditioners (Cao et al. 2015; Zhang et al. 2014).

In the literature, a common way of implementing the HSS iteration (Bai et al. 2003)
is to alternate between the Hermitian and skew-Hermitian parts of the coefficient matrix.
By switching the role of the two splitting matrices in the Hermitian and skew-Hermitian
splitting, Zhang (2018) proposes an efficient variant of HSS preconditioner (EVHSS) for
solving (1). In that work, it is noted that the contraction factors differ though swapping the
Hermitian part with the skew-Hermitian part gives the same asymptotic convergence rate as
in the original HSS iteration. The theoretical result on convergence is proved in Zhang (2018)
and is further refined by Chen (2018). Numerical performance of EVHSS is very promising
when compared with some existing HSS-type preconditioners.

When implementing EVHSS, one often needs to strike a balance in choosing the relax-
ation parameter to make the EVHSS preconditioner maximally preserve the structure of A,
though a theoretical quasi-optimal parameter is given. Motivated by this observation, we
propose a new iteration scheme for solving (1). The unconditional convergence of the new
stationary method is proved. Induced by the newmethod, an HSS-type preconditioner is also
devised to accelerate the convergence of GMRES. By construction, the new preconditioner
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resembles more from the coefficient matrix A than EVHSS. Theoretical analysis shows that
the preconditioned matrix with the new preconditioner is endowed with a well-clustered
eigenvalue distribution which is a welcome for Krylov subspace methods. To make the new
preconditioner practical, we also give a framework for developing inexact preconditioners
tailored to large and sparse generalized saddle point problems.

The remainder of this paper is as follows. In Sect. 2, we first give a quick recap of the
EVHSS iteration/preconditioner, and then introduce the new stationary iteration and analyze
its unconditional convergence. In Sect. 3, we present the new preconditioner induced by the
new iteration scheme in Sect. 2, investigate the spectrum information of the preconditioned
matrix, and come up with a framework of practical inexact preconditioners. In Sect. 4, we
employ some numerical experiments to verify the effectiveness of the new preconditioner
and its inexact variants. Finally, some conclusions are given in Sect. 5.

2 A new iteration scheme and its convergence analysis

The new iteration method in this work is motivated by the EVHSS iteration (Zhang 2018).
Therefore, we first give a sketch of the EVHSS iteration method/preconditioner in this sec-
tion. Aware of the possible problem of choosing the relaxation parameter in EVHSS, we
then present the new iteration scheme for solving (1) and finally establish the unconditional
convergence result.

2.1 The EVHSS iteration/preconditioner

In the language of the Hermitian and skew-Hermitian splitting (Bai et al. 2003), the gener-
alized saddle point matrix A in (1) admits the following splitting:

A =
[
A 0
0 C

]
+

[
0 BT

−B 0

]
≡ H + S,

where H and S are the Hermitian and skew-Hermitian parts of A, respectively. The corre-
sponding HSS preconditioner for (1) is then given by

PHSS = 1

2α
(α I + H)(α I + S), (2)

where α > 0. In Zhang (2018), it is stated that the contraction factor can be different if the
Hermitian and skew-Hermitian parts are interchanged.

Motivated by this finding, Zhang proposes an efficient variant of PHSS by swapping
α I + H and α I + S in (2). The resulting preconditioner EVHSS reads as

PEVHSS = 1

α

[
A BT

−B α I

] [
α I 0
0 α I + C

]
=

[
A BT (I + 1

α
C)

−B α I + C

]
. (3)

The difference between PEVHSS and A is given by

REVHSS = PEVHSS − A =
[
0 1

α
BTC

0 α I

]
. (4)

Based on the matrix splitting (4), Zhang constructs the EVHSS iteration by

x (k+1) = Gx (k) + c̃,

where G = P−1
EVHSSREVHSS and c̃ = P−1

EVHSSb.
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2.2 A new iterationmethod

In Zhang (2018), the EVHSS preconditioner is shown to outperform some other existing
HSS-based preconditioners with appropriate choices of α. In practice, however, we require
to strike a balance between the value of α and 1/α, as observed from (4); sufficiently large
value of α makes the (1,2)-block a better approximation to the zero matrix but a (2,2)-block
matrix with large entries in (4), and vice versa. In this work, we sidestep this problem by
simply abandoning the (2,2)-block α I in (4), which yields the new preconditioner

Pnew =
[

A BT ( 1
α
C + I )

−B C

]
, (5)

where α > 0. We note that another variant can be obtained by letting the (1,2)-block in (4)
be zero. Nevertheless, we only consider the variant in (5) since it is efficient and easier to
be analyzed theoretically. Consequently, the corresponding difference matrix between Pnew

and A presents to be

Rnew = Pnew − A =
[
0 1

α
BTC

0 0

]
. (6)

Hence, the following stationary iteration scheme induced from the splitting (6) is given by[
A BT ( 1

α
C + I )

−B C

] [
x (k+1)

y(k+1)

]
=

[
0 1

α
BTC

0 0

] [
x (k)

y(k)

]
+ b,

or in a compact form, i.e.,

x (k+1) = Γ x (k) + c, (7)

where Γ = P−1
newRnew, c = P−1

newb and k = 0, 1, . . ..
It is known that the iteration (7) converges if the spectral radius of the iteration matrix Γ

is less than 1, which is guaranteed by the following theorem.

Theorem 1 Suppose that the matrices A, B and C are defined in (1), and α is a positive
constant. Let (θi , vi ) be the i th eigenpair of the matrix α−1S−1BA−1BTC, where S =
C + BA−1BT (α−1C + I ). Then ρ(Γ ) < 1, that is, the iterative scheme (7) converges to the
unique solution of (1) unconditionally.

Proof The new preconditioner Pnew in (5) can be factorized as

Pnew =
[
A 0
0 I

] [
I A−1BT ( 1

α
C + I )

−B C

]

=
[
A 0
0 I

] [
I 0

−B I

] [
I 0
0 S

] [
I A−1BT ( 1

α
C + I )

0 I

]
,

(8)

where S = C + BA−1BT ( 1
α
C + I ). As a result, we have

P−1
new =

[
I −A−1BT ( 1

α
C + I )

0 I

] [
I 0
0 S−1

] [
I 0
B I

] [
A−1 0
0 I

]
. (9)

Using (7) and (9), we rewrite the iteration matrix Γ as

Γ = P−1
newRnew =

[
0 T1
0 T2

]
, (10)
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where T1 = α−1A−1BTC−α−1A−1BT (α−1C+I )S−1BA−1BTC and T2 = α−1S−1BA−1

BTC . From (10), it is clear thatΓ has the eigenvalue 0withmultiplicity nwhile the remaining
eigenvalues of Γ are given by those of T2. Then it suffices to look into the eigenvalues of T2.
Let (θi , vi ) be the i th eigenpair of the matrix T2, i.e.,

BA−1BTCvi = αθi Svi . (11)

Multiplying v∗
i /v

∗
i vi on both sides of (11) yields

v∗
i B A−1BTCvi

v∗
i vi

= αθi
v∗
i Svi

v∗
i vi

. (12)

By the definition of S, we obtain from (12) that

v∗
i B A−1BTCvi

v∗
i vi

= θi

(
α

v∗
i Cvi

v∗
i vi

+ v∗
i B A−1BTCvi

v∗
i vi

+ α
v∗
i B A−1BT vi

v∗
i vi

)
. (13)

Denote by

μi = v∗
i Cvi

v∗
i vi

, εi + ηi ι = v∗
i B A−1BTCvi

v∗
i vi

, γi = v∗
i B A−1BT vi

v∗
i vi

, (14)

where ι is the imaginary unit. It follows from (13) and (14) that

θi = εi + ηi ι

εi + ηi ι + α(μi + γi )
.

Therefore, the spectral radius of the iteration matrix Γ is given by

ρ(Γ ) = max
i

|θi | = max
i

∣∣∣∣ εi + ηi ι

εi + ηi ι + α(μi + γi )

∣∣∣∣
= max

i

√
ε2i + η2i

(εi + αμi + αγi )2 + η2i
.

Since A is symmetric positive definite, B is of full rank, andC is symmetric positive semidef-
inite, then we obtain from (14) that γi > 0 and μi ≥ 0, which, coupled with α > 0, shows
that ρ(Γ ) < 1. Therefore, the new iteration converges to the unique solution of (1) uncon-
ditionally. ��

3 A new preconditioner and its properties

The convergence rate of the stationary methods (including the classical Jacobi, Gauss–Seidel
and SOR ) can be slowwhen comparedwith themore sophisticatedKrylov subspacemethods.
For this reason, we will not elaborate on the implementation details of the new iteration
scheme (7). Alternatively, we are interested in exploiting the matrix Pnew as a preconditioner
to accelerate the Krylov subspace methods, which is the main task of this section.

3.1 Spectrum of the preconditionedmatrix

It is known that the convergence behavior of preconditioned iterative methods relies heavily
on eigen-information of the preconditioned matrix. Therefore, we investigate the eigenvalue
distribution of the preconditioned matrix AP−1

new in this subsection.
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We begin the discussion by considering the eigenvalue problem

[
A BT

−B C

] [
A BT ( 1

α
C + I )

−B C

]−1 [
p
q

]
= λ

[
p
q

]
. (15)

The following result describes the eigenvalue distribution of the preconditioned matrix.

Theorem 2 The eigenvalues ofAP−1
new are either 1 (with multiplicity at least n) or of the form

λi = α(μi + γi )

α(μi + γi ) + εi + ηi ι
, (16)

where μi , γi , εi and ηi are defined in (14).

Proof Since the right-preconditionedmatrixAP−1
new is similar to its left-preconditioned coun-

terpart P−1
newA, then it reduces to examining the eigenvalues of P−1

newA. By using (10), we
have

P−1
newA = P−1

new(Pnew − Rnew) = I − Γ =
[
I −T1
0 I − T2

]
, (17)

where T1, T2 are defined in (10). It follows from (11) and (14) that the eigenvalues of I − T2
are of the form

λi = α(μi + γi )

α(μi + γi ) + εi + ηi ι
,

which completes the proof. ��
Remark 1 As shown in (16), the nonunit eigenvalues λi approach 1 if α is sufficiently large.
Under this condition, all nonunit eigenvalues ofAP−1

new huddle around the point (1, 0), which
is appealing for the convergence of Krylov subspace methods; see the numerical examples
in Sect. 4.

3.2 Right-preconditioned GMRES

In this subsection, we employ the new preconditioner to speed up the convergence of GMRES
(Saad and Schultz 1986). The implementation details are given in Algorithm 1. With right
preconditioning, the resulting Krylov subspace now becomes

Kk(AP−1
new, b) = span{b,AP−1

newb, . . . , (AP−1
new)k−1b}. (18)

It is known that GMRES converges very fast if the approximation of the exact solution is
found in a low-dimensional subspace. The next result reveals the intrinsic relation between
the dimension of the Krylov subspaceK(AP−1

new, b) and the size of (2, 2)-block matrix inA.

Theorem 3 The minimal polynomial of the preconditioned matrix AP−1
new has a degree not

exceeding m + 1. Thus, the dimension of the corresponding Krylov subspace K(AP−1
new, b)

is at most m + 1.

Proof From (17), we know that

P−1
newA =

[
I −T1
0 I − T2

]
. (19)
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Algorithm 1 Restarted GMRES with the new preconditioner.

1: Compute r (1)
0 = f − Ax0 − BT y0 and r (2)

0 = −g + Bx0 − Cy0, then r0 = [r (1)
0 , r (2)

0 ]T .
Set σ = ‖r0‖2 and v1 = r0/σ .

2: for j = 1, . . . , k do
3: z j = P−1

newv j
4: w = Az j
5: for i = 1, . . . , j do
6: hi j = wT vi
7: w = w − hi j vi
8: end for
9: Compute h j+1, j = ‖w‖2 and v j+1 = w/h j+1, j
10: Define Vk = [v1, . . . , vk ], H̄k = {hi j }, 1 ≤ i ≤ k + 1, 1 ≤ j ≤ k
11: end for
12: Compute yk = arg min

y∈Rk
‖σe1 − H̄k y‖2, xk = x0 + P−1

newVk yk , where e1 = [1, 0, . . . , 0]T .
13: If converged then stop; otherwise set x0 = xk and goto line 1.

Since AP−1
new = Pnew(P−1

newA)P−1
new, then AP−1

new and P−1
newA are similar. Similar matrices

have the same minimal polynomial (Horn and Johnson 1990, Corollary 3.3.3). Therefore,
it reduces to prove that the minimal polynomial of P−1

newA has a degree at most m + 1. It
follows from Theorem 2 that the characteristic polynomial of P−1

newA is given by

(P−1
newA − I )n ·

m∏
i=1

(P−1
newA − λi I ), (20)

where λi is the nonunit eigenvalue defined in (16). By expanding the polynomial (P−1
newA −

I ) · ∏m
i=1(P−1

newA − λi I ), we have

(P−1
newA − I ) ·

m∏
i=1

(P−1
newA − λi I ) =

⎡
⎢⎢⎣
0 −T1

∏m
i=1[(1 − λi )I − T2]

0 −T2
∏m

i=1[(1 − λi )I − T2]

⎤
⎥⎥⎦ ,

where 1 − λi are the eigenvalues of T2 for i = 1, . . . ,m; see Theorem 2. By the Cayley–
Hamilton theorem, we have

m∏
i=1

[(1 − λi )I − T2] = 0.

In otherwords, the degree of theminimal polynomial ofP−1
newA is atmostm+1.Consequently,

the degree of the minimal polynomial of the right preconditioned matrix AP−1
new is at most

m + 1. From (Saad 2003, Proposition 6.1), it is known that the degree of the minimal
polynomial is equal to the dimension of the corresponding Krylov subspace K(AP−1

new, b)
which completes the proof. ��
Remark 2 As stressed in Remark 1, the nonunit eigenvalues λi approach 1 if the value of α is
sufficiently large. Therefore, a further reduction in the iteration steps (much less than m + 1)
can be anticipated if some nonunit eigenvalues λi approximate 1 well. This is confirmed by
numerical examples in Sect. 4.

Now let us have a close look at Algorithm 1. The major difference between Algorithm 1
and its unpreconditioned counterpart (Saad and Schultz 1986) is that an extra matrix-vector
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Algorithm 2 Implementation of z = P−1
newr .

1: Solve
[
A−1 0
0 I

] [
ra
rb

]
=

[
u(1)

v(1)

]
,

which involves solving Au(1) = ra and v(1) = rb .
2: Solve

[
I 0
B I

] [
u(1)

v(1)

]
=

[
u(2)

v(2)

]
,

which reduces to u(2) = u(1) and v(2) = Bu(1) + v(1).
3: Solve

[
I 0
0 S−1

] [
u(2)

v(2)

]
=

[
u(3)

v(3)

]
,

which involves solving Sv(3) = v(2) and updating u(3) = u(2), where S = C + BA−1BT (α−1C + I ).
4: Solve

[
I −A−1BT ( 1αC + I )
0 I

] [
u(3)

v(3)

]
=

[
za
zb

]
,

which involves solving Aṽ(3) = BT (α−1C + I )v(3), za = u(3) − ṽ(3) and zb = v(3).

Algorithm 3 Practical implementation of z = P−1
newr .

1: Solve Au = ra .
2: Solve Sv = Bu + rb , where S = C + BA−1BT (α−1C + I ).
3: Solve Aṽ = BT (α−1C + I )v, za = u − ṽ and zb = v.

product involving P−1
new in line 3 (thus line 12) requires to be computed. To this end, a naive

approach is to compute P−1
new explicitly and then do the resulting matrix-vector product.

However, this is not preferred numerically and even prohibited in most situations. Instead, it
is often accomplished by solving an equivalent linear systems. For example, we solve r from
the linear systems Pnewz = r if P−1

newr is needed, where r = (rTa , rTb )T and z = (zTa , zTb )T .
Using the decomposition (9), we transform the problem of solving z = P−1

newr into the
following form:

[
za
zb

]
=

[
I −A−1BT ( 1

α
C + I )

0 I

] [
I 0
0 S−1

] [
I 0
B I

] [
A−1 0
0 I

] [
ra
rb

]
, (21)

whose implementation details are presented in Algorithm 2.
Algorithm 2 shows clearly how operations like P−1

newr are done. From a numerical point
of view, however, the process is not optimized and can be improved to be more efficient; for
instance, the intermediate vectors v(1) (Step 1), u(2), v(2) (Step 2) and u(3) (Step 4) need not
be stored. In light of this, we give a practical version of Algorithm 2 which is employed in
our numerical experiments; see Algorithm 3.
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3.3 Inexact variants

In Algorithm 3, the main computational overhead consists of solving three linear systems
associated with two different coefficient matrices. In particular, one needs to solve a sub-
linear system with the Schur complement coefficient matrix S = C + BA−1BT (α−1C +
I ). In the context of solving saddle point linear systems, it can be done either directly or
iteratively; see, for instance, (Cao et al. 2015; Rozložník 2018). Alternatively, an efficient
work-around is to replace A with its approximation Ã that is easier to implement. Many
possible candidates for approximating A are available; for instance, A can be approximated by
its diagonal/tridiagonal part ormatrix factors derived from incompleteLU factorization. Thus,
the approximation of the preconditioner Pnew and the associated factorization (reminiscent
of (8)) can be presented as

P̃new =
[
Ã 0
0 I

] [
I 0

−B I

] [
I 0
0 S̃

] [
I Ã−1BT ( 1

α
C + I )

0 I

]

=
[

Ã BT ( 1
α
C + I )

−B C

]
, (22)

where S̃ = C + B Ã−1BT (α−1C + I ) with Ã being the approximation to A. It is easy to
check that solving P̃−1

newr is in essence the same as Algorithm 3 except for A being replaced
by Ã.

The underlying idea of the aforementioned two approaches is either to solve the Schur
complement linear systems with direct/iterative methods or to obtain an inexpensive approx-
imation of the matrix A. In fact, we can also make use of the properties/structures of
the saddle point matrix and develop efficient approximations to the Schur complement
matrix. Below are some related ways that give us a hint to this end. In the context of
solving PDE-constrained optimization problem, Pearson and Wathen (2012) take S̃ =
(K +1/

√
βM)M−1(K +1/

√
βM) as the approximation of the Schur complement S, where

the saddle point problem is of the following form:⎡
⎣ M 0 K

0 βM −M
K −M 0

⎤
⎦

⎡
⎣ y
u
p

⎤
⎦ =

⎡
⎣ b
0
d

⎤
⎦ . (23)

It is validated in Pearson andWathen (2012) that the eigenvalues of S̃−1S are contained in the
interval [0.5, 1]. In Axelsson (2019), Axelsson further tailors the approximation S̃ given in
Pearson andWathen (2012) tomore standard type of problems. However, we cannot apply the
approximation to our problem straightforwardly since the blockmatrices in (23) fail to satisfy
restrictions needed in (1). One may also employ the Schur complement method (Rozložník
2018, p. 34) to solve the Schur complement linear systems. In spite of this, it should be noted
that constructing an efficient approximation to the Schur complement is still a challenge for
general saddle point problems and deserves a special treatment (Cao et al. 2019). Moreover,
the focus of this subsection is on introducing a framework of inexact preconditioners, and a
thorough analysis of approximation to Schur complement is beyond the scope of this work.
Therefore, we will not dwell on this topic and regard it as an interesting future work. For
more on approximations to the Schur complement from different engineering fields, we refer
to Deuring (2009), Kay et al. (2002), Loghin and Wathen (2002), Olshanskii and Vassilevski
(2007), Pearson and Wathen (2018) and references therein. Numerical examples in Sect. 4
indicate that the inexact preconditioner can be very practical if provided with suitable choices
of Ã.
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Fig. 1 Spectrum of A andAP−1
new for 32 × 32 uniform (left) and stretched (right) grids

4 Numerical experiments

In this section, we present some numerical experiments to show the effectiveness of the new
preconditioners for the generalized saddle point problem (1) in terms of the number of iter-
ation steps/restarts (Iter), CPU time in seconds (CPU) and the relative residual norm (Res).
The unpreconditioned GMRES with restarting (GMRES(k)) (Saad and Schultz 1986) and
EVHSS (Zhang 2018) are used for comparison with the new preconditioners. For complete-
ness, we record both the number of restarts and the number of inner steps in the last restart;
see Tables 1, 2, 3, 4, 5. In what follows, the restarting frequency k is set to be 10. The initial
guess is chosen to be the zero vector, and algorithms are terminated if ||ri ||2/||b||2 < 10−8

within 1500 restarts, where ri = b− Axi is the i th residual. All experiments are run on a PC
using MATLAB 2014b under Windows 10 operating system.

We consider the generalized saddle point problems arising from the discretization of
Stokes equation {−Δu + ∇ p = f ,

∇ · u = 0,
(24)

in a bounded domainΩ ∈ R
2 with suitable boundary conditions, where u is the velocity, p is

the pressure, Δ represents the vector Laplacian operator, ∇ stands for the gradient, and ∇ · u
is the divergence of u. As in Zhang (2018), the test problems generated here are “leaky” two-
dimensional lid-driven cavity problems. The stabilized Q1− P0 finite element is employed
for discretization on both uniform and stretched grids. The IFISS software package (Elman
et al. 2014) is used to generate the linear systems (1). We follow the practice in Zhang (2018)
by deleting the first two rows of the original matrix B generated by IFISS (and thus the first
two rows and columns of C) such that the resulting matrix B is of full rank.
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Example 1 This example serves to illustrate the eigenvalue clustering effect by the new pre-
conditioner. As stated in Theorem 2, the eigenvalues of the preconditioned matrix AP−1

new
are either 1 or of the form (16). If the value of α is sufficiently large, then the nonunit
eigenvalues will approach 1; see Remark 1. Figure 1 depicts the eigenvalue distribution
of the original saddle point matrix A and its right-preconditioned counterpart AP−1

new for
32 × 32 grid of different types. It should be stressed that the five ticks 1.0000 on the x-
axis in the lower-left subplot (α = 100, 32 × 32 uniform grid) are different from the value
1. In fact, the real parts of all eigenvalues (corresponding to the x-axis values) therein lie
in the interval [0.999973966055229, 1] which are rounded to 1.0000 and displayed. We
are now in a position to see the clustering effect by the new preconditioner. Take the left
subplots in Fig. 1 for example. Without preconditioning, the eigenvalues of the original
matrix A are well spread between the two points (0,0) and (4,0). However, the eigenval-
ues become clustered even with a small value of α; see the subplot with α = 0.01 on
the left of Fig. 1. Such clustering effect becomes more pronounced when α is chosen to
be moderately large, say α = 100. A well-clustered spectrum is desirable for Krylov sub-
space methods. Apart from that, the conditioning of the original saddle point matrix A is
also improved via the new preconditioner. For instance, the condition number of the origi-
nal saddle point matrix A in the left subplot of Fig. 1 is 1.013 × 106, which indicates the
associated linear systems make standard Krylov subspace methods cumbersome. With the
proposed preconditioner, however, the condition number decreases to 1.125 × 104 (with
α = 0.01) and further to 1.011 (with α = 100). As suggested in Benzi’s survey (Benzi
2002, p. 420), a good preconditioner should be chosen such that the preconditioned coef-
ficient matrix will have a smaller spectral condition number, and/or eigenvalues clustered
around 1. In light of this, we conclude that the new preconditioner is appealing, and we
shall look into how it affects the convergence of Krylov subspace methods in the following
examples.

Example 2 The purpose of this example is threefold: (i) showing the accelerating effect of the
new preconditioner when applied to the Krylov subspace method; (ii) analyzing the choice
of the experimentally optimal parameter α for both PEVHSS and Pnew; (iii) comparing the
numerical results when the inner sub-linear system of equations in Algorithm 3 are solved
either directly or iteratively.

Let us beginwith examining the accelerating effect of the newpreconditionerwhen applied
to theKrylov subspacemethod. Two other candidates, including (unpreconditioned) GMRES
(Saad and Schultz 1986) and GMRES preconditioned by EVHSS (Zhang 2018), are used
for comparison. For the moment, the inner sub-linear system of equations in Algorithm 3
are solved by the direct method. The numerical results are tabulated in Tables 1 and 2.
It should be noted that the unpreconditioned GMRES fails to reach the required accuracy
within 1500 restarts for most cases here. Therefore, we only display the results of PEVHSS

and Pnew in the two tables. As observed from Tables 1 and 2, both PEVHSS and Pnew are
superior to their unpreconditioned peer. When α is relatively small, the new preconditioner
is on par with EVHSS regarding CPU time; sometimes EVHSS is slightly better than the
new preconditioner or vice versa. As α grows, however, the new preconditioner outperforms
EVHSS for different grid sizes; see, for instance, EVHSS even fails to reach the prescribed
accuracywithin 1500 restarts (denoted by “–”) inTable 2 for 32×32 stretched grid.As pointed
out earlier, the quantity “Iter” includes both the number of restarts and the number of inner
steps in the last restart. For instance, the notation “3(1)” denotes that EVHSS-preconditioned
GMRES uses three restarts and the number of inner iterations in the last restart is 1. To put
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it another way, the total number of (inner) steps for EVHSS-preconditioned GMRES is 211.
We also note that GMRES preconditioned by Pnew often takes only one restart due to the
favorable eigenvalue clustering ofAP−1

new which is echoed by Fig. 1 and Remark 2. A similar
conclusion can also be drawn from Table 2.

Next we give an in-depth analysis of the influence of the parameter α upon EVHSS
and the new preconditioner. In Zhang (2018, Table 1), Zhang presents the experimentally
optimal parameters to illustrate the potential of EVHSS. For fairness, we compare EVHSS
(using the experimentally optimal parameters) with the new preconditioner. As stated in
Remark 1, large values of α often bring about a tight spectrum. However, this does not
imply that we have to use unduly large values of α. Instead, a moderately large value, say
α = 100, is sufficient for practical use; see Fig. 1. To further justify our statement, we
carry out more detailed comparisons between PEVHSS and Pnew with varying values of α for
different uniform grids in Figs. 2, 3, 4. As given in Zhang (2018, Table 1), the experimentally
optimal parameters of EVHSS for 16 × 16, 32 × 32, and 64 × 64 are found in the interval
(0, 0.01) (Zhang 2018). Therefore, we plot the iteration step andCPU time curves on different
scales, that is, the intervals in which α locates in Figs. 2, 3, 4 are, respectively, (0, 0.01],
(0.01, 1] and (1, 100]. Some remarks are in order. Owing to a clustered spectrum, the new
preconditioner requires fewer iteration steps than EVHSS for α ranging from 1 to 100. In
Fig. 2, EVHSS achieves its optimal performance in terms of the CPU time and is slightly
better than the new preconditioner when α varies from 0 to 0.01. However, the advantage of
the new preconditioner dominates when α is greater than 0.01; see Figs. 3, 4. Besides, there
are many oscillations in the iteration step and CPU time curves of EVHSS which implies
EVHSS is sensitive to the choice of α (especially when α becomes large). Fortunately, this
undesirable property does not carry over to the new preconditioner. In this sense, the new
preconditioner is more applicable than EVHSS. To figure out the practical choice of α for the
new preconditioner, we take for example the 32×32 case (bottom subplots) in Fig. 4. In that
case, the improvement regarding total iteration steps and CPU time becomes negligible for
α greater than 20. Thus, each value between 20 and 100 can be a reasonable choice of α for
the new preconditioner. In accordance with Remark 2 and Fig. 1, we adopt a relatively large
α, that is, α = 100 as the experimental optimal value for the new preconditioner. The results
are listed in Table 3. In Zhang (2018), the restarting frequency in GMRES(k) is k = 30
(instead of k = 10 as chosen here) and the stopping tolerance is 10−6 (instead of 10−8 as
chosen here), which explains the difference in the number of iterations between Zhang (2018,
Tables 2–3) and Table 3. For most tests, the new preconditioner reaches a higher accuracy
with shorter CPU time than that of EVHSS; see Table 3. This verifies the effectiveness of the
new preconditioner.

Finally, we shall touch upon the matter of inner linear systems solvers in Algorithm 3.
We use previously the direct methods, say the MATLAB command backslash to solve the
inner sub-linear systems, the numerical results of which are tabulated in Table 3. However,
we can also use iterative methods to obtain approximations to these sub-linear systems.
This inner iteration, together with the outer GMRES iteration, yields the well-known inner–
outer iteration (Simoncini and Szyld 2003). Here we use the restarted GMRES method to
solve the sub-linear systems with an inner tolerance 10−4 and a maximum 100 restarts. For
fair comparison, the inner linear systems in EVHSS are also solved in an iterative manner.
Choices of α are the same as in Table 3. The results are presented in Table 4. Some remarks
are available by comparing Table 4 with Table 3. Loosely speaking, the preconditioners

1 In this case, EVHSS-preconditioned GMRES uses two full restarts (each of 10 inner steps) and a restart
with just 1 inner step. Thus, the total number of inner steps is (3 − 1) × 10 + 1 = 21.
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Table 1 Numerical results for Stokes equation with different uniform grids

Grids α EVHSS Pnew
Iter CPU Res Iter CPU Res

16 × 16 0.01 3(1) 0.0537 4.5867e−09 1(10) 0.1358 7.3705e−09

1 14(2) 0.2930 9.4243e−09 1(3) 0.0480 6.4302e−09

100 54(2) 1.126 9.757e−09 1(2) 0.0344 3.4185e−10

32 × 32 0.01 7(1) 1.8365 7.955e−09 1(6) 1.8372 7.2844e−09

1 59(2) 17.0561 9.9688e−09 1(3) 0.9124 7.4029e−11

100 162(8) 47.1439 9.9797e−09 1(2) 0.6199 1.5619e−11

64 × 64 0.01 114(1) 864.3565 9.8015e−09 1(5) 56.2271 1.4616e−10

1 350(10) 2648.0636 9.9819e−09 1(2) 22.4823 6.9718e−09

100 251(10) 1897.4545 9.9995e−09 1(2) 22.4291 6.9777e−13

Table 2 Numerical results for Stokes equation with different stretched grids

Grids α EVHSS Pnew
Iter CPU Res Iter CPU Res

16 × 16 0.01 4(4) 0.3942 9.1448e−09 2(6) 0.6060 5.8924e−09

1 500(6) 10.0706 9.9994e−09 1(4) 0.0585 8.1187e−10

100 753(8) 14.9417 9.9992e−09 1(2) 0.0347 1.2047e−09

32 × 32 0.01 178(9) 51.3762 9.9967e−09 1(10) 3.1710 5.9088e−09

1 1330(7) 380.4173 9.997e−09 1(3) 0.9144 1.7114e−09

100 − − − 1(2) 0.6108 4.5475e−11

64 × 64 0.01 37(10) 279.4618 9.9006e−09 1(7) 78.8612 1.2548e−09

1 312(3) 2334.8392 9.9753e−09 1(3) 33.8358 2.0001e−11

100 436(9) 3283.5052 9.9917e−09 1(2) 22.5768 1.3983e−12

PEVHSS and Pnew with a direct inner solver usually ends up with a higher accuracy than their
counterparts with an iterative inner solver, though there exist occasional exceptions. Besides,
preconditioners with a direct inner solver appear more suitable for the stretched grids, while
preconditioners with an iterative inner solver seem more appropriate for the uniform grids.
Moreover, choosing an iterative or a direct inner linear systems solver has less impact onPnew

than onPEVHSS in terms of iteration steps and CPU time; see, for instance, the stretched cases
in Tables 3 and 4. For either direct or iterative approach, the new preconditioner surpasses
EVHSS regarding iteration steps and CPU time.

Example 3 Example 2 shows that the new preconditioner is competitive with EVHSS in
speeding up the convergence of GMRES. As reported in Sect. 3.3 and Algorithm 3, however,
a sub-linear system with the coefficient matrix S needs to be solved per iteration. If A is
large and relatively dense, then solving the linear systems involving S can be rather time-
consuming; it can bemonitored by evoking theMATLABprofiling toolProfiler. As noted
in (22), it poses no difficulty if inexpensive approximations to the matrix A in S are available.
Several candidates are at our disposal, including the diagonal, triangular or incomplete LU
factorization matrices of A (Bai et al. 2005b; Benzi et al. 2005).
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Fig. 2 Total iteration steps and CPU time of GMRES preconditioned by PEVHSS and Pnew with α ranging
from 0 to 0.01 for 16 × 16 (top) and 32 × 32 (bottom) uniform grids, respectively

Table 3 Numerical results of EVHSS and Pnew with practical optimal values of α, where the inner linear
systems are solved by a direct method

Grids EVHSS Pnew
Type Size Iter CPU Res Iter CPU Res

Uniform 16 × 16 3(2) 0.0779 3.2715e−09 1(2) 0.0354 3.4185e−10

32 × 32 2(9) 0.5667 4.6684e−09 1(2) 0.6035 1.5619e−11

64 × 64 4(10) 31.4061 6.6043e−09 1(2) 22.4257 6.9777e−13

Stretched 16 × 16 4(4) 0.0909 5.8081e−09 1(2) 0.0355 1.2047e−09

32 × 32 15(4) 4.0856 9.966e−09 1(2) 0.6061 4.5475e−11

64 × 64 4(9) 30.0677 9.0157e−09 1(2) 22.5537 1.3983e−12

This example serves to demonstrate the potential of the inexact preconditioner P̃new when
compared with the exact preconditionerPnew. For the moment, we only consider the simplest
case by superseding A with its diagonal part, i.e., Ã = diag(diag(A)) in (22). It does not
imply that using the diagonal part to replace A is optimal. Numerical practice with other
inexact variants or finding efficient approximations of the Schur complement matrix needs
further investigation and thus is regarded as an important future work. The numerical results
are given in Table 5, where the inner linear systems are solved by the direct method. For
coarse grids, as indicated in Table 5, the exact preconditioner Pnew is sometimes better than
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Fig. 3 Total iteration steps and CPU time of GMRES preconditioned by PEVHSS and Pnew with α ranging
from 0.01 to 1 for 16 × 16 (top) and 32 × 32 (bottom) uniform grids, respectively

Table 4 Numerical results of EVHSS and Pnew with practical optimal values of α, where the inner linear
systems are solved by an iterative method

Grids EVHSS Pnew
Type Size Iter CPU Res Iter CPU Res

Uniform 16 × 16 3(1) 0.1316 6.6153e−09 1(2) 0.0341 5.9771e−09

32 × 32 2(9) 0.8015 3.8036e−09 1(2) 0.4573 9.5494e−09

64 × 64 5(9) 22.571 9.3383e−09 1(2) 12.0615 8.7442e−09

Stretched 16 × 16 4(4) 0.2169 7.9022e−09 1(3) 0.0701 1.5547e−12

32 × 32 15(10) 8.9815 9.5483e−09 1(2) 0.8052 7.8152e−09

64 × 64 4(9) 41.1991 9.5302e−09 1(2) 25.7432 9.9792e−09

its inexact counterpart P̃new (in CPU time) by a small margin or vice versa; see, for instance,
the 16×16 case in Table 5.As the grids get finer, however, the inexact preconditioner becomes
much better than the exact one in terms of CPU time, albeit with more iteration steps. This
can be exemplified by the case 128 × 128 grid with α = 100 where the CPU time ratio of
the inexact preconditioner to its exact counterpart is merely 10.3%.

Another interesting observation is that the CPU time exhausted by P̃new is less sensitive to
the grid size compared with those by EVHSS andPnew; cf. Tables 1, 2, 3, 4, and 5. This drops
us a hint that the inexact preconditioner is more appropriate for solving large-scale linear

123



154 Page 16 of 19 K. Zhang, L.-N. Wang

0 10 20 30 40 50 60 70 80 90 100

Ite
r

100

101

102

103

EVHSS
new

0 10 20 30 40 50 60 70 80 90 100

C
P

U

10-2

10-1

100

101

EVHSS
new

0 10 20 30 40 50 60 70 80 90 100

Ite
r

100

101

102

103

104

EVHSS
new

0 10 20 30 40 50 60 70 80 90 100

C
P

U

10-1

100

101

102

EVHSS
new

Fig. 4 Total iteration steps and CPU time of GMRES preconditioned by PEVHSS and Pnew with α ranging
from 1 to 100 for 16 × 16 (top) and 32 × 32 (bottom) uniform grids, respectively

systems (1). Apart from that, it appears that the value of α hasmuch less impact on the inexact
preconditioner than it does on the exact prototype. Since the spectrum of the preconditioned
matrix is closely related to GMRES convergence, it is inspiring to ask: how well do the
eigenvalues cluster after using an inexact preconditioner and how does it affect the related
convergence? To answer this question, we plot the eigenvalue distribution ofAP̃−1

new in Fig. 5.
As shown in Fig. 5, the eigenvalues ofAP−1

new become more clustered as α goes up, which in
turn leads to a faster convergence regarding iteration steps. Nevertheless, this does not apply
to the spectrum ofAP̃−1

new. In fact, the spectrum ofAP̃−1
new does not change too much even if α

increases from 0.01 to 100; see the right subplots in Fig. 5. This explains why the acceleration
is not so remarkable for P̃new when compared withPnew in terms of iteration steps. However,
since the computational overhead involved in using the inexact preconditioner P̃new is far less
than that of the exact preconditioner Pnew, then the CPU time of the former can be expected
to be much less than that of the latter. In most practical situations, it is the CPU time that
we are really concerned with. With this insight in hand, we conclude that P̃new can be an
efficient alternative for Pnew when the linear systems (1) is large and sparse.

5 Conclusion

Wepresent a fast HSS-type iterative scheme for solving the generalized saddle point problem.
Theoretical results on unconditional convergence, eigenvalue distribution of the precondi-
tioned saddle point matrix and the speed-up effect on GMRES have been established. Based
on the new preconditioner, a framework for developing practical inexact preconditioners is
also proposed. Numerical experiments show that the new preconditioner and its practical
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Table 5 Numerical results for exact and inexact preconditioners on uniform grids

Grids α Pnew P̃new
Iter CPU Res Iter CPU Res

16 × 16 0.01 1(10) 0.1580 7.3705e−09 4(10) 0.0688 7.4726e−09

1 1(3) 0.0407 6.4302e−09 4(10) 0.0837 8.0367e−09

100 1(2) 0.0311 3.4185e−10 4(10) 0.0679 8.0227e−09

32 × 32 0.01 1(6) 1.9770 7.2844e−09 10(4) 0.6789 9.7079e−09

1 1(3) 0.9280 7.4029e−11 10(4) 0.6863 8.7563e−09

100 1(2) 0.6185 1.5619e−11 10(4) 0.6962 8.7604e−09

64 × 64 0.01 1(5) 57.4575 1.4616e−10 26(7) 9.6544 9.9047e−09

1 1(2) 22.7494 6.9718e−09 26(10) 9.6785 9.915e−09

100 1(2) 22.6678 6.9777e−13 26(10) 9.7584 9.9139e−09

128 × 128 0.01 1(3) 2462.1403 8.9629e−09 83(8) 170.9418 9.9581e−09

1 1(2) 1696.4994 3.0923e−10 83(8) 171.3698 9.9678e−09

100 1(2) 1665.8702 3.1361e−14 83(8) 171.2660 9.9652e−09
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Fig. 5 Eigenvalue distributions ofAP−1
new andAP̃−1

new for 32 × 32 uniform grid

inexact variants are superior to EVHSS for most cases in terms of the CPU time. Future work
includes constructing efficient approximations to the Schur complement for large, sparse and
structured saddle point linear systems from different applied fields.
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