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Abstract
This paper aims to offer a new group decision-making (GDM) method based on interval-
valued intuitionistic fuzzy preference relations (IVIFPRs). To furnish this goal, a new addi-
tive consistency definition of IVIFPRs is first proposed. Then, a programming model is 
built to check the additive consistency of IVIFPRs. For incomplete IVIFPRs, two program-
ming models are constructed, which aim at maximizing the consistency and minimizing 
the uncertainty of missing information. To achieve the minimum total adjustment, a goal 
programming model is established to repair inconsistent IVIFPRs. Considering the con-
sensus, a programming model for improving the consensus degree is established, which 
permits different IVIFVs to have different adjustments and makes individual IVIFPRs have 
the smallest total adjustment to remain more original information. Based on these results, a 
consistency- and consensus-based GDM method is proposed. At length, a practical exam-
ple for screening new majors of a private college in China is offered to illustrate the feasi-
bility and efficiency of proposed method.

Keywords Group decision-making · IVIFPR · Additive consistency and consensus · 
Programming model

Mathematics Subject Classification 03E72 · 90B50 · 90Cxx

1 Introduction

As the effectiveness and convenience of preference relations (PRs) for dealing with com-
plex and timely decision-making problems, it has become an important branch in multi-cri-
teria decision making (MCDM) to evaluate the possible alternatives under different criteria 
(Callejas et al. 2019). A lot of research results about decision-making with PRs have been 
achieved by scholars, which promote many new developing categories. Among of which 
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there are two basic types of PRs: multiplicative PRs (Saaty 1980) and fuzzy PRs (Tanino 
1984). Based on this classification, several other kinds of PRs have been proposed, such as 
interval multiplicative PRs (IMPRs) (Saaty and Vargas 1987), fuzzy interval PRs (FIPRs) 
(Xu 2001), linguistic PRs (LPRs) (Herrera and Herrera-Viedma 2000), and interval lin-
guistic PRs (ILPRs) (Tapia García et al. 2012). Their common feature is to only consider 
the membership degree of one compared object over the other.

In view of the limitation of the decision makers (DMs)’ mastery knowledge, the judge-
ments may be inconsistent. For example, a DM thinks that the preferred degree of one 
object over the other is 0.6. However, their non-preferred degree is judged as 0.3 rather 
than 0.4, namely, the hesitancy degree between them is 0.1. To solve this situation, Atan-
assov (1986) introduced the definition of intuitionistic fuzzy sets (IFSs) that can express 
the DMs’ preferred and non-preferred information by the membership and non-member-
ship functions.

Based on IFSs, Xu (2007a) proposed the definition of intuitionistic fuzzy preference 
relation (IFPR), where the elements are intuitionistic fuzzy values (IFVs). Since then, 
many scholars have investigated decision-making with IFPRs. Based on FIPRs’ multiplica-
tive consistency definition, Gong et al. (2009) built a goal programming model to derive 
the intuitionistic fuzzy priority weight vector. Wan et  al. (2016a) gave a TOPSIS-based 
method for group decision-making (GDM) with IFPRs and researched its application in the 
radio frequency identification technology selection. Based on the work of Herrera-Viedma 
et al. (2007), Ureña et al. (2015a) introduced an iterative procedure to determine missing 
values in IFPRs. Meng et al. (2017b) analyzed the limitations of previous multiplicative 
consistency definitions for IFPRs and proposed a new one. Moreover, from the perspective 
of consistency, consensus and prioritization, Xu and Liao (2015) presented a survey on 
decision-making with IFPRs.

Since IFSs cannot denote the uncertainty of DMs’ judgements, Atanassov and Gargov 
(1989) further introduced the interval-valued intuitionistic fuzzy set (IVIFS). As a gener-
alization of the IFS, IVIFS can denote both the preferred and non-preferred degrees simul-
taneously by closed subintervals of [0, 1]. For simplifying the utilization of IVIFSs, Xu 
and Chen (2007) proposed interval-valued intuitionistic fuzzy values (IVIFVs) and intro-
duced them into PRs, which are known as interval-valued IFPRs (IVIFPRs). Xu and Cai 
(2009) studied incomplete IVIFPRs and provided two methods for estimating missing val-
ues using the additive and multiplicative consistency concepts for IVIFPRs. According to 
fuzzy PRs’ multiplicative transitivity (Chiclana et al. 2009), Liao et al. (2014) gave a mul-
tiplicative consistency concept for IVIFPRs and proposed an iterative algorithm to improve 
the consistency level of inconsistent IVIFPRs. Similar to the handling of inconsistency, the 
authors further proposed an iterative algorithm to improve individual IVIFPRs’ consen-
sus level. Using multiplicative consistency definition for IFPRs (Liao and Xu 2014) and 
the induced matrices obtained from IVIFPRs, Wan et al. (2016b) proposed another defini-
tion for IVIFPRs’ multiplicative consistency. According to the additively consistent FIPRs, 
Wan et al. (2017) defined an additive consistency concept for IVIFPRs and then investi-
gated a GDM method. In addition, Wang et al. (2009) used the normalized interval weight 
vector to propose an additive consistency concept for IVIFPRs. Then, the authors gave a 
method for generating the interval-valued intuitionistic fuzzy priority weight vector (IVIF-
PWV) that is based on the offered programming models. By extending the intuitionistic 
fuzzy aggregation operators (Xia and Xu 2012), Liao et al. (2014) proposed an operator to 
aggregate individual IVIFPRs into a collective one. Recently, Tang et al. (2018) and Meng 
et al. (2018) analyzed the limitations of previous additive and multiplicative consistency 
concepts for IVIFPRs separately. Uing 2-tuple preferred fuzzy interval preference relations 
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(2TPFIPRs) and quasi 2TPFIPRs (Q2TPFIPRs), the authors proposed the definitions for 
additively consistent and multiplicatively consistent IVIFPRs. Based on these consistency 
definitions, programming models were constructed to check the consistency and to deter-
mine the missing values. Correspondingly, the consistency- and consensus-based algo-
rithms for GDM with IVIFPRs were developed. Moreover, Wu and Chiclana (2012) ana-
lyzed the limitations of previous ranking methods for IVIFVs and presented the attitudinal 
expected score function for ranking objects from IVIFPRs. In addition to IVIFPRs, there 
are three other types of interval-valued intuitionistic preference relations: interval-valued 
intuitionistic multiplicative preference relations (IVIMPRs) (Meng et  al. 2020), interval-
valued intuitionistic linguistic fuzzy preference relations (IVILFPRs) (Tang et  al. 2019), 
and interval-valued intuitionistic multiplicative linguistic preference relations (IVIMLPRs) 
(Tang et al. 2020). IVIMPRs employ interval-valued intuitionistic multiplicative variables 
(IVIMVs) to denote the uncertain multiplicative preferred and non-preferred judgements of 
the DMs, IVILFPRs adopt interval-valued intuitionistic linguistic fuzzy variables (IVIL-
FVs) to express the uncertain preferred and non-preferred qualitative judgments of the 
DMs, and IVIMLPRs use interval-valued intuitionistic multiplicative linguistic variables 
(IVIMLVs) to show the asymmetrically uncertain preferred and non-preferred qualitative 
judgments of the DMs.

Through the literature review, we find that there are some limitations of research about 
decision-making with IVIFPRs. In the first place, the consistency is dependent on the 
objects’ compared orders, and the contradictory conclusions may be derived from differ-
ent compared orders (Wang 2014). In the second place, some methods are not based on the 
consistency and consensus analysis, which can lead to illogical results (Tang et al. 2018). 
In the third place, the consistency concepts used in some research seem to be not flexible 
enough and the procedure for calculating the IVIFPWV is complex (Meng et  al. 2019). 
Based on the research status analysis of decision-making with IVIFPRs, this paper con-
tinues to investigate GDM with IVIFPRs in a new vision and offers a new approach. The 
major contributions of this paper include:

(i) A new additive consistency concept for IVIFPRs is proposed and a programming model 
is built to check the consistency.

(ii) For IVIFPRs with incomplete preference information, two programming models are 
constructed to determine unknown judgements, which achieve two goals: maximizing 
the consistency level and minimizing the total uncertain degree.

(iii) To repair inconsistent IVIFPRs, a goal programming model is established for deriving 
their associated consistent IVIFPRs, which makes the overall adjustment be minimum.

(iv) A linear programming model is established to improve the consensus level of individual 
IVIFPRs, which endows different IVIFPVs with different adjustments and achieves 
the adjusting individual IVIFPR to have the smallest total adjustment to remain more 
original information.

(v) A new algorithm for GDM with IVIFPRs is provided, and the example of setting up 
new majors in the Chinese private college is taken to illustrate the application of the 
algorithm.

This paper is arranged into seven sections. Section 2 first reviews several basic concepts 
related to the following research. Then, several existing additive consistency definitions of 
IVIFPRs are analyzed. Section 3 proposes a new additive consistency concept for IVIFPRs 
that avoids the issues of existing ones. Meanwhile, a programming model is built to judge 
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IVIFPRs’ additive consistency. Section 4 tackles incomplete and inconsistent IVIFPRs and 
constructs two programming models for determining missing values. Furthermore, a goal 
programming model for repairing inconsistent IVIFPRs is presented. Section 5 discusses 
GDM with incomplete and inconsistent IVIFPRs. To achieve this goal, it first offers two 
formulae to derive the weights of the DMs and measure the consensus degree. To meet the 
given consensus threshold, a programming model for improving the consensus level is pro-
vided. After that, the concrete procedure for GDM with IVIFPRs is put forward. Section 6 
offers two illustrative examples to show the application of proposed method and shows the 
comparison of the new method with previous ones. Conclusions and future remarks are 
conducted in Sect. 7.

2  Basic concepts

Since the new method is based on the transformation from IVIFPRs to FIPRs, and IVIF-
PRs can be viewed as an extension of IFPRs, this section first introduces the concepts of 
FIPRs and IFPRs.

Definition 1 (FIPR) (Xu 2004): A FIPR Ā = (āij)n×n on the finite set X =
{
x1, x2,… , xn

}
 

is an interval fuzzy binary relation, characterized by an interval fuzzy subset of X × X , i.e., 
�̄�Ā ∶ X × X → D[0, 1] such that D[0, 1] is the set of all possible intervals in [0, 1] , where the 
interval āij = �̄�Ā

(
xi, xj

)
 is the interval preferred degree of the object xi over xj . Furthermore, 

its elements satisfy

where i, j = 1, 2,… , n.
Through comparing and analyzing the previous additive consistency concepts, Meng 

et al. (2017a) introduced the below FIPRs’ additive consistency concept.

Definition 2 (Additively consistent FIPR) (Meng et  al. 2017a): Let Ā =
(
āij
)
n×n

 be a 
FIPR. Ā is additively consistent if there is an associated additively consistent quasi FIPR 
(QFIPR) B̄ =

(
b̄ij
)
n×n

 , namely,

for all i, k, j = 1, 2,… , n , where 
{

b̄ij = [aL
ij
, aU

ij
]

b̄ji = [aU
ji
, aL

ji
]
 or 

{
b̄ij = [aU

ij
, aL

ij
]

b̄ji = [aL
ji
, aU

ji
]
 for all i, j = 1, 2,… , n.

Definition 2 shows that Meng et  al.’s concept requires the interval judgements’ end-
points to satisfy the additive transitivity. In contrast to Definition 2, Krejčí (2017) offered 
another additive consistency concept based on intervals’ constrained operations (Lodwick 
and Jenkins 2013) that does not restrict to the endpoints of interval judgements.

Definition 3 (Additively consistent FIPR) (Krejčí 2017): Let Ā =
(
āij
)
n×n

 be a FIPR. Ā is 
additively consistent if

(1)

⎧⎪⎨⎪⎩

āij = [aL
ij
, aU

ij
] ⊆ [0, 1]

aL
ij
≤ aU

ij

aL
ij
+ aU

ji
= aU

ij
+ aL

ji
= 1

,

(2)b̄ij ⊕ [0.5, 0.5] = b̄ik ⊕ b̄kj,
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is true for all i, k, j = 1, 2,… , n.
Based on Definition 3, one can check that formula (3) is equivalent to

for all i, k, j = 1, 2,… , n with k ≠ i, j ∧ i < j.
From formulae (2) and (4), one can find that Definition 2 can be seen as a special case 

of Definition 3. Just as Meng et al. (2019) noted, Definition 3 is more reasonable and flex-
ible than Definition 2.

To express both preferred and non-preferred judgements simultaneously, Xu (2007a) 
introduced intuitionistic fuzzy PRs (IFPRs) on the basis of IFVs.

Definition 4 (IFPR) (Xu 2007a): An IFPR R on the set X = {x1,x2,…,xn} is presented by a 
matrix R =

(
rij
)
n×n

 such that rij =
(
�ij, vij

)
 is an IFV denoting the intuitionistic fuzzy pref-

erence of the object xi over xj, i, j = 1, 2,… , n . Furthermore, its elements are IFVs that 
satisfy the following characteristics:

where i, j = 1, 2,… , n.
To denote preferred and non-preferred uncertain memberships of DMs’ judgements, 

Atanassov and Gargov (1989) further introduced IVIFSs, and Xu and Chen (2007) and 
Xu (2007b) proposed IVIFVs for facilitating the application. Later, Xu (2007a) offered the 
concept of IVIFPRs using IVIFVs.

Definition 5 (IVIFPR) (Xu 2007a): An IVIFPR R̃ on the set X is represented by a matrix 
R̃ =

(
r̃ij
)
n×n

 such that r̃ij =
(
�̄�ij, v̄ij

)
 is the interval-valued intuitionistic fuzzy preference of 

the object xi over xj, i, j = 1, 2,… , n . Furthermore, its elements are IVIFVs that satisfy the 
following characteristics:

where i, j = 1, 2,… , n.
To our knowledge, there are four main additive consistency concepts for IVIFPRs. By 

directly using the addition operation on IVIFVs, Xu and Cai (2009) gave the below addi-
tive consistency concept:

(3)∀aij ∈ āij,∃aik ∈ āik ∧ akj ∈ ākj ⇒ aij = aik + akj − 0.5

(4)

{
aL
ij
≥ aL

ik
+ aL

kj
− 0.5

aU
ij
≤ aU

ik
+ aU

kj
− 0.5

(5)

⎧⎪⎪⎨⎪⎪⎩

�ij, vij ≥ 0

�ij + vij ≤ 1

�ji = vij, vji = �ij

�ii = vii = 0.5

,

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̄�ij = [𝜇l,ij,𝜇u,ij] ⊆ [0, 1]

v̄ij = [vl,ij, vu,ij] ⊆ [0, 1]

�̄�ji = v̄ij, v̄ji = �̄�ij

𝜇u,ij + vu,ij ≤ 1

�̄�ii = v̄ii = [0.5, 0.5]

,
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Definition 6 (Additively consistent IVIFPR) (Xu and Cai 2009): let R̃ =
(
r̃ij
)
n×n

 be an 
IVIFPR. It is additively consistent if the formula

is true for all i, j, k = 1, 2,… , n.
Different from Definition 6 that takes IVIFVs to define IVIFPRs’ additive consistency, 

Wang et al. (2009) adopted the FIPRs’ normalized interval weight vector to offer the below 
additive consistency concept:

Definition 7 (additively consistent IVIFPR) (Wang et  al. 2009): let R̃ =
(
r̃ij
)
n×n

 be an 
IVIFPR. If there is a normalized interval weight vector w̄ = (w̄1, w̄2,… , w̄n) such that

for all i, j = 1, 2,… , n with i < j , then R̃ is additively consistent, where 

w̄i =
[
wL

i
,wU

i

]
⊆ [0, 1] and 

⎧⎪⎨⎪⎩

wU

i
+
�n

j=1,i≠j
wL

j
≤ 1

wL

i
+
�n

j=1,i≠j
wU

j
≥ 1

 for all i = 1, 2,… , n.

Using the transformation formula between IVIFVs and intervals (Bustince 1994), Wan 
et al. (2017) proposed the below concept of additively consistent IVIFPRs that is based on 
Definition 7.

Definition 8 (Additively consistent IVIFPR) (Wan et al. 2017): An IVIFPR R̃ =
(
r̃ij
)
n×n

 
is additively consistent if there is an additively consistent FIPR R̄ =

(
r̄ij
)
n×n

 following Defi-
nition 7, where r̄ij =

[
rL
ij
, rU

ij

]
 satisfies �l,ij ≤ rL

ij
≤ 1 − vu,ij and �u,ij ≤ rU

ij
≤ 1 − vl,ij for all 

i, j = 1, 2,… , n.

Later, Tang et al. (2018) analyzed these additive consistency concepts and listed their 
limitations in some aspects. For example, an IVIFPR is additively consistent follow-
ing Definition 6 if and only if all of its IVIFVs are equal. According to Definition 7, we 
cannot derive the priority vector from additively consistent IVIFPRs in some cases, the 
IVIFPR listed in Example 1 (Wang et  al. 2009) is additively consistent following Defi-
nition 7. However, it derives x3 ≻ x4 from r̃34 = ([0.35, 0.45], [0.15, 0.25]), x4 ≻ x2 from 
r̃42 = ([0.35, 0.45], [0.15, 0.25]) and x2 ≻ x3 from r̃23 = ([0.55, 0.65], [0.15, 0.25]) . There-
fore, we get x3 ≻ x4 ≻ x2 ≻ x3 . This example concretely shows that it is unreasonable to 
define IVIFPRs’ additive consistency using Definition 7. From the relationship between 
Definitions 7 and 8, one can check that Definition 8 has the same issues as that in Defini-
tion 7.

In contrast to the above three additive consistency concepts, Tang et al. (2018) defined 
2TPFIPRs and Q2TPFIPRs, by which the below additive consistency concept is derived.

(7)

r̃ij =
1

2
(r̃ik ⊕ r̃kj)

=

([
1 −

((
1 − 𝜇L

ik

)(
1 − 𝜇L

kj

)) 1

2

, 1 −

((
1 − 𝜇U

ik

)(
1 − 𝜇U

kj

)) 1

2

]
,

[(
vL
ik
vL
kj

) 1

2

(
vU
ik
vU
kj

) 1

2

])

(8)

{
�l,ij ≤ 0.5(wL

i
− wL

j
+ 1) ≤ 1 − vu,ij

�u,ij ≤ 0.5(wU

i
− wU

j
+ 1) ≤ 1 − vl,ij

,
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Definition 9 (2TPFIPR) (Tang et  al. 2018): let R̃ =
(
r̃ij
)
n×n

 be an IVIFPR, where 
r̃ij =

([
𝜇l,ij,𝜇u,ij

]
,
[
vl,ij, vu,ij

])
 for all i, j = 1, 2,… , n . P̃ =

(
p̃ij
)
n×n

 is called a 2TPFIPR, 
where p̃ij =

([
𝜇l,ij, 1 − vl,ij

]
,
[
𝜇u,ij, 1 − vu,ij

])
 denotes the interval possible preferred degree 

of the object xi over xj for all i, j = 1, 2,… , n.

According to 2TPFIPRs, the concept of Q2TPFIPRs is offered as follows:

Definition 10 (Q2TPFIPR) (Tang et  al. 2018): let R̃ =
(
r̃ij
)
n×n

 be an IVIFPR, let 
P̃ =

(
p̃ij
)
n×n

 be its 2TPFIPR as shown in Definition 9. S̃ =
(
s̃ij
)
n×n

 is called a Q2TPFIPR if 
its elements satisfy one of the below four cases:

for all i, j = 1, 2,… , n.
From Definition 10, it can be found that the Q2TPFIPR S̃ =

(
s̃ij
)
n×n

 is composed by 
two QFIPRs �̄� = (�̄�ij)n×n and �̄� = (�̄�ij)n×n , where

for all i, j = 1, 2,… , n.
Based on this fact and Definition 2, Tang et al. (2018) defined the additive consist-

ency of Q2TPFIPRs as below:

Definition 11 (Additively consistent Q2TPFIPR) (Tang et al. 2018): Let R̃ =
(
r̃ij
)
n×n

 be 
an IVIFPR and let S̃ =

(
s̃ij
)
n×n

 be its Q2TPFIPR. S̃ is additively consistent if the QFIPRs 
�̄� = (�̄�ij)n×n and �̄� = (�̄�ij)n×n as shown in formula (10) are both additively consistent, namely,

for all i, k, j = 1, 2,… , n.
Based on Q2TPFIPRs’ additive consistency, Tang et  al. (2018) gave the below 

concept:

Definition 12 (additively consistent IVIFPR) (Tang et al. 2018): Let R̃ =
(
r̃ij
)
n×n

 be an 
IVIFPR, and let S̃ = (s̃ij)n×n be its Q2TPFIPR. If S̃ is additively consistent following Defini-
tion 11, then R̃ is additively consistent.

From Definition 12, one can find that Tang et al.’s additive consistency concept is 
based on Definition 2. The advantage of Definition 12 is to be able to avoid the limi-
tations in Definitions 6, 7 and 8, while the main issue of Definition 12 is not flexible 
enough. The rationality of restriction on the IVIFVs’ endpoints is not discussed.

(9)

(i)

{
s̃ij =

(
[𝜇l,ij, 1 − vl,ij], [𝜇u,ij, 1 − vu,ij]

)
s̃ji =

(
[1 − 𝜇l,ij, vl,ij], [1 − 𝜇u,ij, vu,ij]

) , (ii)

{
s̃ij =

(
[1 − vl,ij,𝜇l,ij], [𝜇u,ij, 1 − vu,ij]

)
s̃ji =

(
[vl,ij, 1 − 𝜇l,ij], [1 − 𝜇u,ij, vu,ij]

)

(iii)

{
s̃ij =

(
[𝜇l,ij, 1 − vl,ij, ], [1 − vu,ij,𝜇u,ij])

)
s̃ji =

(
[1 − 𝜇l,ij, vl,ij], [vu,ij, 1 − 𝜇u,ij]

) , (iv)

{
s̃ij =

(
[1 − vl,ij,𝜇l,ij], [1 − vu,ij,𝜇u,ij]

)
s̃ji =

(
[vl,ij, 1 − 𝜇l,ij], [vu,ij, 1 − 𝜇u,ij]

) ,

(10)

{
�̄�ij = [𝜇l,ij, 1 − vl,ij]

�̄�ji = [1 − 𝜇l,ij, vl,ij]
∨

{
�̄�ij = [1 − vl,ij,𝜇l,ij]

�̄�ji = [vl,ij, 1 − 𝜇l,ij]
and

{
�̄�ij = [𝜇u,ij, 1 − vu,ij]

�̄�ji = [1 − 𝜇u,ij, vu,ij]
∨

{
�̄�ij = [1 − vu,ij,𝜇u,ij]

�̄�ji = [vu,ij, 1 − 𝜇u,ij]
,

(11)

{
�̄�ij ⊕ [0.5, 0.5] = �̄�ik ⊕ �̄�kj

�̄�ij ⊕ [0.5, 0.5] = �̄�ik ⊕ �̄�kj
,
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3  A new additive consistency concept for IVIFPRs

It should be noted that consistency is an important research topic in decision-making with 
PRs to ensure that DMs are neither random nor illogical when providing their preferences (Li 
et al. 2019; Cabrerizo et al. 2018). To obtain the reasonable conclusions from IVIFPRs, many 
scholars have devoted themselves into investigating the consistency of IVIFPRs. Considering 
the limitations of previous additive consistency concepts for IVIFPRs, this section introduces 
a new one based on Krejčí’s additive consistency concept for FIPRs.

Let R̃ =
(
r̃ij
)
n×n

 be an IVIFPR, and let P̃ =
(
p̃ij
)
n×n

 be its 2TPFIPR as shown in Definition 
9, where p̃ij =

([
𝜇l,ij, 1 − vl,ij

]
,
[
𝜇u,ij, 1 − vu,ij

])
 , i, j = 1, 2,… , n.

One can find that the 2TPFIPR P̃ =
(
p̃ij
)
n×n

 is composed by the matrices P̄L =

(
p̄L
ij

)
n×n

 

and P̄U =

(
p̄U
ij

)
n×n

 , where

for all i,j = 1,2,…,n.
Following the concept of IVIFPRs and formula (12), we have

for all i, j = 1, 2,… , n . Therefore, P̄L =

(
p̄L
ij

)
n×n

 and P̄U =

(
p̄U
ij

)
n×n

 are FIPRs.
Based on the above relationship, we can employ the additive consistency of the associated 

FIPRs to define additively consistent 2TPFIPRs.

Definition 13 (Additively consistent 2TPFIPR): Let P̃ =
(
p̃ij
)
n×n

 be the 2TPFIPR of the 
IVIFPR R̃ =

(
r̃ij
)
n×n

 , P̃ is additively consistent if the FIPRs P̄L =

(
p̄L
ij

)
n×n

 and 

P̄U =

(
p̄U
ij

)
n×n

 shown in formula (12) are both additively consistent, namely,

for all i, k, j = 1, 2,… , n.
Following Definition 3, one can easily derive the below theorem:

Theorem 1 Let P̃ =
(
p̃ij
)
n×n

 be the 2TPFIPR of the IVIFPR R̃ =
(
r̃ij
)
n×n

 , P̃ is additively 
consistent according to Definition 13 if and only if the below conclusions

hold for all i, k, j = 1, 2,… , n with k ≠ i, j ∧ i < j.

(12)

{
p̄L
ij
= [𝜇l,ij, 1 − vl,ij]

p̄U
ij
= [𝜇u,ij, 1 − vu,ij]

.

(13)

⎧⎪⎪⎨⎪⎪⎩

p̄L
ij
= [𝜇l,ij, 1 − vl,ij] ⊆ [0, 1]

p̄L
ji
= [𝜇l,ji, 1 − vl,ji] ⊆ [0, 1]

𝜇l,ji + 1 − vl,ij = vl,ij + 1 − vl,ij = 1

𝜇l,ij + 1 − vl,ji = 𝜇l,ij + 1 − 𝜇l,ij = 1

and

⎧⎪⎪⎨⎪⎪⎩

p̄U
ij
= [𝜇u,ij, 1 − vu,ij] ⊆ [0, 1]

p̄U
ji
= [𝜇u,ji, 1 − vu,ji] ⊆ [0, 1]

𝜇u,ji + 1 − vu,ij = vu,ij + 1 − vu,ij = 1

𝜇u,ij + 1 − vu,ji = 𝜇u,ij + 1 − 𝜇u,ij = 1

,

(14)

{
∀pL

ij
∈ p̄L

ij
,∃pL

ik
∈ p̄L

ik
∧ pL

kj
∈ p̄L

kj
⇒ pL

ij
= pL

ik
+ pL

kj
− 0.5

∀pU
ij
∈ p̄U

ij
,∃pU

ik
∈ p̄U

ik
∧ pU

kj
∈ p̄U

kj
⇒ pU

ij
= pU

ik
+ pU

kj
− 0.5

,

(15)

{
�l,ij ≥ �l,ik + �l,kj − 0.5

vl,ij ≥ vl,ik + vl,kj − 0.5
and

{
�u,ij ≥ �u,ik + �u,kj − 0.5

vu,ij ≥ vu,ik + vu,kj − 0.5
,
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Theorem 1 shows that the additive consistency of 2TPFIPRs is based on the additive 
transitivity of the endpoints of IVIFVs in associated IVIFPRs. Thus, we can adopt Defi-
nition 13 to further define the additive consistency of IVIFPRs.

Definition 14 (additively consistent IVIFPR): Let R̃ =
(
r̃ij
)
n×n

 be an IVIFPR. It is addi-
tively consistent if its 2TPFIPR P̃ =

(
p̃ij
)
n×n

 is additively consistent based on Definition 
13, namely, its elements satisfy formula (15).

Thus, formula (15) provides an effective tool to determine whether an IVIFPR satis-
fies the additive consistency. Moreover, according to the independence of Definition 3 
for the compared orders, we can easily derive that Definition 14 is invariant under the 
permutation of objects.

Now, we study the relationship between Definitions 12 and 14 to show the flexibility 
of the new concept.

Theorem 2 Let R̃ =
(
r̃ij
)
n×n

 be an IVIFPR. When R̃ is additively consistent following Def-
inition 12, then it is additively consistent following Definition 14. However, the opposite is 
not true, that is, when R̃ is additively consistent by Definition 14, we cannot conclude that 
it is additively consistent from Definition 12.

Proof Sufficiency: when R̃ =
(
r̃ij
)
n×n

 is additively consistent following Definition 12, by 
formulae (9) and (10) in the literature (Tang et al. 2019), we derive

and

for all i, k, j = 1, 2,… , n.
For case (i) in formula (16), we have

For case (ii) in formula (16), we have

For case (iii) in formula (16), we have

(16)(i)

{
�l,ij + 0.5 = �l,ik + �l,kj

vl,ij + 0.5 = vl,ik + vl,kj

, (ii)

{
�l,kj + 0.5 = �l,ki + �l,ij

vl,kj + 0.5 = vl,ki + vl,ij

, (iii)

{
�l,ik + 0.5 = �l,ij + �l,jk

vl,ik + 0.5 = vl,ij + vl,jk

,

(17)

(i)

{
�u,ij + 0.5 = �u,ik + �u,kj

vu,ij + 0.5 = vu,ik + vu,kj

, (ii)

{
�u,kj + 0.5 = �u,ki + �u,ij

vu,kj + 0.5 = vu,ki + vu,ij

, (iii)

{
�u,ik + 0.5 = �u,ij + �u,jk

vu,ik + 0.5 = vu,ij + vu,jk

{
�l,ij + 0.5 = �l,ik + �l,kj

vl,ij + 0.5 = vl,ik + vl,kj

⇒

{
�l,ij = �l,ik + �l,kj − 0.5

vl,ij = vl,ik + vl,kj − 0.5
⇒

{
�l,ij ≥ �l,ik + �l,kj − 0.5

vl,ij ≥ vl,ik + vl,kj − 0.5
.

{
�l,kj + 0.5 = �l,ki + �l,ij

vl,kj + 0.5 = vl,ki + vl,ij

⇒

{
�l,ij ≥ −(1 − �l,ik) + �l,kj + 0.5

vl,ij ≥ −(1 − vl,ik) + vl,kj + 0.5
⇒

{
�l,ij ≥ �l,ik + �l,kj − 0.5

vl,ij ≥ vl,ik + vl,kj − 0.5
.

{
�l,ik + 0.5 = �l,ij + �l,jk

vl,ik + 0.5 = vl,ij + vl,jk

⇒

{
�l,ij ≥ �l,ik − (1 − �l,kj) + 0.5

vl,ij ≥ vl,ik − (1 − vl,kj) + 0.5
⇒

{
�l,ij ≥ �l,ik + �l,kj − 0.5

vl,ij ≥ vl,ik + vl,kj − 0.5
.
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Similarly, we can derive 

{
�u,ij ≥ �u,ik + �u,kj − 0.5

vu,ij ≥ vu,ik + vu,kj − 0.5
 following three cases in formula (17). 

Thus, R̃ =
(
r̃ij
)
n×n

 is additively consistent according to Definition 14.
Necessity: Considering the IVIFPR,

It can be checked that R̃ is additively consistent according to Definition 14. However, R̃ is 
inconsistent by Definition 12. The proof of Theorem 2 is completed.

Although Definition 14 owns all properties of Definition 3, it is inefficient to directly use 
formula (15) to judge IVIFPRs’ additive consistency. For example, for a n order IVIFPR, we 
derive two n order FIPRs following formula (12). Then, we need to judge n(n − 1)(n − 2) tri-
ples of ( i, k, j ) using formula (15) for judging its additive consistency. Therefore, this method 
is very time consuming. To solve this issue, we next introduce a programming model-based 
method. Let R̃ =

(
r̃ij
)
n×n

 be an IVIFPR. The following programming model can be built to 
judge its additive consistency:

where the first four constraints are obtained from formula (15) by adding the corresponding 
non-negative deviation variables �l,ikj, �l,ikj, �u,ikj, �u,ikj.

In solving model (19), when � ∗ = 0 , we know that R̃ satisfies formula (15), which shows 
the IVIFPR’s additive consistency following Definition 14. Otherwise, R̃ is inconsistent.

4  Programming models for dealing incomplete and inconsistent 
IVIFPRs

For the time pressure, lack of knowledge, the limitation of the DMs’ limited expertise, 
and the incapacity to quantify the preference degree of one object over another, it is not 
always possible for the DMs to provide complete PRs (Cabrerizo et al. 2020; Ureña et al. 
2015b). This section first focuses on incomplete IVIFPRs and builds programming models 
for determining missing values to make the incomplete IVIFPRs have the highest level of 
consistency.

Let R̃ =
(
r̃ij
)
n×n

 be an incomplete IVIFPR, namely, there are missing values in R̃ . If 
it is additively consistent following Definition 14, then formula (15) holds. However, we 

R̃ =

⎛⎜⎜⎝

([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.60], [0.30, 0.40]) ([0.45, 0.60], [0.40, 0.40])

([0.30, 0.40], [0.40, 0.60]) ([0.50, 0.50], [0.50, 0.50]) ([0.35, 0.50], [0.45, 0.50])

([0.40, 0.40], [0.45, 0.60]) ([0.45, 0.50], [0.35, 0.50]) ([0.50, 0.50], [0.50, 0.50])

⎞⎟⎟⎠
.

(18)

𝛤 ∗ = min

n−1�
i=1

n�
j=i+1

�n

k=1,k≠i,j
(𝛼l,ikj + 𝛽l,ikj + 𝛼u,ikj + 𝛽u,ikj),

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜇l,ij + 𝛼l,ikj ≥ 𝜇l,ik + 𝜇l,kj − 0.5

vl,ij + 𝛽l,ikj ≥ vl,ik + vl,kj − 0.5

𝜇u,ij + 𝛼u,ikj ≥ 𝜇u,ik + 𝜇u,kj − 0.5

vu,ij + 𝛽u,ikj ≥ vu,ik + vu,kj − 0.5

i, k, j = 1, 2,… , n, k ≠ i, j, i < j

𝛼l,ikj, 𝛽l,ikj, 𝛼u,ikj, 𝛽u,ikj ≥ 0, i, j = 1, 2,… , n, i < j

,
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usually cannot derive the conclusion that R̃ is consistent. Thus, we relax formula (15) by 
adding the deviation variables, where

for all i, k, j = 1, 2,… , n with k ≠ i, j ∧ i < j , and �l,ikj, �l,ikj, �u,ikj, �u,ikj are non-negative 
variables.

In addition, there are following 15 different types of missing values of an IVIFV 
r̃ij =

([
𝜇l,ij,𝜇u,ij

]
,
[
vl,ij, vu,ij

])
.

where

Each case in formula (20) corresponds to a constraint ci, (i = 1,2,…,15) as listed in the 
following formula:

(19)

⎧
⎪⎪⎨⎪⎪⎩

�l,ij + �l,ikj ≥ �l,ik + �l,kj − 0.5

vl,ij + �l,ikj ≥ vl,ik + vl,kj − 0.5

�u,ij + �u,ikj ≥ �u,ik + �u,kj − 0.5

vu,ij + �u,ikj ≥ vu,ik + vu,kj − 0.5

(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�l,ij ∈ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∉ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∉ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∉ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∉ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∈ U+

v

�l,ij ∈ U−

�
∧ �u,ij ∈ U+

�
∧ vl,ij ∈ U−

v
∧ vu,ij ∈ U+

v

, ,

U−

𝜇
=
{
𝜇l,ij is unknown for all i, j = 1, 2,… , n with i < j

}
,

U+

𝜇
=
{
𝜇u,ij is unknown for all i, j = 1, 2,… , n with i < j

}
,

U−

v
=
{
vl,ij is unknown for all i, j = 1, 2,… , n with i < j

}
,

U+

v
=
{
vu,ij is unknown for all i, j = 1, 2,… , n with i < j

}
.
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As well known, the determined values of unknown judgements make the higher the con-
sistency of incomplete IVIFPRs, the more useful the information will be. Let C = {c1,c2,…
,c15}. We build the following programming model to determine the missing values’ optimal 
results:

where the first four constraints can ensure the incomplete IVIFPR R̃ to have the highest 
consistency level for the determined values of unknown judgements.

Considering the fact that the larger the uncertain degree is, the less useful the information 
will be, we further construct the following programming model:

(21)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 ∶ 0 ≤ �l,ij ≤ �u,ij, vl,ji = �l,ij

c2 ∶ �l,ij ≤ �u,ij ≤ 1 − vu,ij, vu,ji = �u,ij

c3 ∶ 0 ≤ vl,ij ≤ vu,ij,�l,ji = vl,ij

c4 ∶ vl,ij ≤ vu,ij ≤ 1 − �u,ij,�u,ji = vu,ij

c5 ∶ 0 ≤ �l,ij ≤ �u,ij ≤ 1 − vu,ij, vl,ji = �l,ij, vu,ji = �u,ij

c6 ∶ 0 ≤ �l,ij ≤ �u,ij, 0 ≤ vl,ij ≤ vu,ij, vl,ji = �l,ij,�l,ji = vl,ij

c7 ∶ 0 ≤ �l,ij ≤ �u,ij, vl,ij ≤ vu,ij ≤ 1 − �u,ij, vl,ji = �l,ij,�u,ji = vu,ij

c8 ∶ �l,ij ≤ �u,ij ≤ 1 − vu,ij, 0 ≤ vl,ij ≤ vu,ij, vu,ji = �u,ij,�l,ji = vl,ij

c9 ∶ �l,ij ≤ �u,ij ≤ 1 − vu,ij, vl,ij ≤ vu,ij, vu,ji = �u,ij,�u,ji = vu,ij

c10 ∶ 0 ≤ vl,ij ≤ vu,ij ≤ 1 − �u,ij,�l,ji = vl,ij,�u,ji = vu,ij

c11 ∶ 0 ≤ �l,ij ≤ �u,ij ≤ 1 − vu,ij, 0 ≤ vl,ij ≤ vu,ij, vl,ji = �l,ij, vu,ji = �u,ij,�l,ji = vl,ij

c12 ∶ 0 ≤ �l,ij ≤ �u,ij, vl,ij ≤ vu,ij ≤ 1 − �u,ij, vl,ji = �l,ij, vu,ji = �u,ij,�u,ji = vu,ij

c13 ∶ 0 ≤ �l,ij ≤ �u,ij, 0 ≤ vl,ij ≤ vu,ij ≤ 1 − �u,ij, vl,ji = �l,ij,�l,ji = vl,ij,�u,ji = vu,ij

c14 ∶ �l,ij ≤ �u,ij ≤ 1 − vu,ij, 0 ≤ vl,ij ≤ vu,ij, vu,ji = �u,ij,�l,ji = vl,ij,�u,ji = vu,ij

c15 ∶ 0 ≤ �l,ij ≤ �u,ij ≤ 1 − vu,ij, 0 ≤ vl,ij ≤ vu,ij ≤ 1 − �u,ij,

vl,ji = �l,ij, vu,ji = �u,ij,�l,ji = vl,ij,�u,ji = vu,ij

.

f ∗ = min
∑n−1

i=1

∑n

j=i+1

∑n

k=1,k≠i,j

(
�l,ikj + �l,ikj + �u,ikj + �u,ikj

)
,

(22)s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜇l,ij + 𝛼l,ikj ≥ 𝜇l,ik + 𝜇l,kj − 0.5

vl,ij + 𝛽l,ikj ≥ vl,ik + vl,kj − 0.5

𝜇u,ij + 𝛼u,ikj ≥ 𝜇u,ik + 𝜇u,kj − 0.5

vu,ij + 𝛽u,ikj ≥ vu,ik + vu,kj − 0.5

𝛼l,ikj, 𝛽l,ikj, 𝛼u,ikj, 𝛽u,ikj ≥ 0, i, k, j = 1, 2,… , n, k ≠ i, j ∧ i < j

ci ∈ C, i = 1, 2,… , 15

,
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where f* is the optimal value of model (22), and the other constraints are the same as that 
in model (22).

Here, we apply an example to show the utilization of models (22) and (23).

Example 1 (Tang et  al. 2018) Assume that the incomplete IVIFPR R̃ on object set 
X = {x1,x2,x3,x4} is offered as follows:

Based on models (22) and (23), the determined missing values are

From f* = 0, we know that this incomplete IVIFPR R̃ is additively consistent.
Following model (24) (Tang et al. 2018), this incomplete IVIFPR R̃ is inconsistent. This 

example concretely shows that the new concept is more flexible than that of Tang et al.’s.
Next, we consider another case: inconsistent IVIFPRs. Let R̃ =

(
r̃ij
)
n×n

 be any given 
IVIFPR, when it is inconsistent, we need to adjust the original judgements offered by the 
DMs. Meanwhile, the adjustments should be as small as possible for retaining more of the 
original information. Under these conditions, we can build the following goal programming 
model:

(23)

g∗ = min
�

𝜇l,ij∈U
−
𝜇
∨𝜇u,ij∈U

+
𝜇
∨vl,ij∈U

−
v
∨vu,ij∈U

−
v

�
𝜇u,ij − 𝜇l,ij + vu,ij − vl,ij

�
,

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�n−1

i=1

�n

j=i+1

�n

k=1,k≠i,j
(𝛼l,ikj + 𝛽l,ikj + 𝛼u,ikj + 𝛽u,ikj) = f ∗

𝜇l,ij + 𝛼l,ikj ≥ 𝜇l,ik + 𝜇l,kj − 0.5

vl,ij + 𝛽l,ikj ≥ vl,ik + vl,kj − 0.5

𝜇u,ij + 𝛼u,ikj ≥ 𝜇u,ik + 𝜇u,kj − 0.5

vu,ij + 𝛽u,ikj ≥ vu,ik + vu,kj − 0.5

𝛼l,ikj, 𝛽l,ikj, 𝛼u,ikj, 𝛽u,ikj ≥ 0, i, k, j = 1, 2,… , n, k ≠ i, j ∧ i < j

ci ∈ C, i = 1, 2,… , 15

,

R̃ =

⎛⎜⎜⎜⎜⎝

([0.50, 0.50], [0.50, 0.50]) ([0.45, 0.45], [0.25, 0.35]) x x

([0.25, 0.35], [0.45, 0.45]) ([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.60], [0.30, 0.40]) x

x ([0.30, 0.40], [0.40, 0.60]) ([0.50, 0.50], [0.50, 0.50]) ([0.35, 0.50], [0.45, 0.50])

x x ([0.45, 0.50], [0.35, 0.50]) ([0.50, 0.50], [0.50, 0.50])

⎞⎟⎟⎟⎟⎠
.

r̃13 = ([0.55, 0.55], [0.25, 0.25]), r̃14 = ([0.55, 0.55], [0.25, 0.25]), r̃24 = ([0.45, 0.60], [0.40, 0.40]).

�∗ = min
∑n−1

i=1

∑n

j=i+1

(
�+

l,ij
+ �−

l,ij
+ �+

l,ij
+ �−

l,ij
+ �+

u,ij
+ �−

u,ij
+ �+

u,ij
+ �−

u,ij

)
,
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where the first four constraints are obtained from formula (15) by adding the non-nega-
tive deviation variables �+

l,ij
, �−

l,ij
, �+

l,ij
, �−

l,ij
, �+

u,ij
, �−

u,ij
, �+

u,ij
, �−

u,ij
 , i, j = 1, 2,… , n , i < j , for each 

IVIFV in the upper triangular part, the fifth to eleventh constraints are obtained from the 
construction of IVIFVs in IVIFPRs.

By solving model (24), following the determined deviation values �∗+

l,ij
, �∗−

l,ij
, �∗+

l,ij
, �∗−

l,ij
, 

�∗+

u,ij
, �∗−

u,ij
, �∗+

u,ij
, �∗−

u,ij
 for each pair of (i, j) , i, j = 1, 2,… , n , i < j , we derive the adjusted addi-

tively consistent IVIFPR with the smallest total adjustment.
To show the application of model (24), we consider below example:

Example 2 (Wang et al. 2009; Tang et al. 2018) Let the IVIFPR R̃ on object set X = {x1, x2, 
x3, x4} is offered as:

First, we use model (18) to check whether R̃ meets the additive consistency. Due to 
� ∗ = 1.8 , we conclude that the IVIFPR R̃ is inconsistent.

Based on model (24), the adjusting additively consistent IVIFPR R̃∗ is obtained as:

where the adjusted judgements are shown in red. Moreover, from the 
IVIFVs: r̃23 = ([0.55, 0.65], [0.15, 0.25]) , r̃24 = ([0.35, 0.55], [0.35, 0.35]) and 
r̃34 = ([0.30, 0.40], [0.40, 0.50]) , we conclude that x2 ≻ x4 ≻ x3, which avoids the issues in 

(24)s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇l,ij − 𝛼+

l,ij
+ 𝛼−

l,ij
≥ 𝜇l,ik − 𝛼+

l,ik
+ 𝛼−

l,ik
+ 𝜇l,kj − 𝛼+

l,kj
+ 𝛼−

l,kj
− 0.5

vl,ij − 𝛽+
l,ij

+ 𝛽−
l,ij

≥ vl,ik − 𝛽+
l,ik

+ 𝛽−
l,ik

+ vl,kj − 𝛽+
l,kj

+ 𝛽−
l,kj

− 0.5

𝜇u,ij − 𝛼+

u,ij
+ 𝛼−

u,ij
≥ 𝜇u,ik − 𝛼+

u,ik
+ 𝛼−

u,ik
+ 𝜇u,kj − 𝛼+

u,kj
+ 𝛼−

u,kj
− 0.5

vu,ij − 𝛽+
u,ij

+ 𝛽−
u,ij

≥ vu,ik − 𝛽+
u,ik

+ 𝛽−
u,ik

+ vu,kj − 𝛽+
u,kj

+ 𝛽−
u,kj

− 0.5

i, k, j = 1, 2,… , n, k ≠ i, j, i < j;

0 ≤ 𝜇l,ij − 𝛼+

l,ij
+ 𝛼−

l,ij
≤ 𝜇u,ij − 𝛼+

u,ij
+ 𝛼−

u,ij
, i, j = 1, 2,… , n, i < j

0 ≤ vl,ij − 𝛽+
l,ij

+ 𝛽−
l,ij

≤ vu,ij − 𝛽+
u,ij

+ 𝛽−
u,ij
, i, j = 1, 2,… , n, i < j

𝜇u,ij − 𝛼+

u,ij
+ 𝛼−

u,ij
+ vu,ij − 𝛽+

u,ij
+ 𝛽−

u,ij
≤ 1, i, j = 1, 2,… , n, i < j

𝛼−

l,ij
− 𝛼+

l,ij
+ 𝛽+

l,ji
− 𝛽−

l,ji
= 0, i, j = 1, 2,… , n, i < j

𝛽−
l,ij

− 𝛽+
l,ij

+ 𝛼+

l,ji
− 𝛼−

l,ji
= 0, i, j = 1, 2,… , n, i < j

𝛼−
u,ij

− 𝛼+

u,ij
+ 𝛽+

u,ji
− 𝛽−

u,ji
= 0, i, j = 1, 2,… , n, i < j

𝛽−
u,ij

− 𝛽+
u,ij

+ 𝛼+

u,ji
− 𝛼−

u,ji
= 0, i, j = 1, 2,… , n, i < j

𝛼+
l,ij
, 𝛼−

l,ij
, 𝛽+

l,ij
, 𝛽−

l,ij
, 𝛼+

u,ij
, 𝛼−

u,ij
, 𝛽+

u,ij
, 𝛽−

u,ij
≥ 0, i, j = 1, 2,… , n, i < j

,

R̃ =

⎛⎜⎜⎜⎜⎝

([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.35], [0.55, 0.65]) ([0.45, 0.55], [0.25, 0.35]) ([0.35, 0.45], [0.45, 0.55])

([0.55, 0.65], [0.25, 0.35]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.65], [0.15, 0.25]) ([0.15, 0.25], [0.35, 0.45])

([0.25, 0.35], [0.45, 0.55]) ([0.15, 0.25], [0.55, 0.65]) ([0.50, 0.50], [0.50, 0.50]) ([0.35, 0.45], [0.15, 0.25])

([0.45, 0.55], [0.35, 0.45]) ([0.35, 0.45], [0.15, 0.25]) ([0.15, 0.25], [0.35, 0.45]) ([0.50, 0.50], [0.50, 0.50])

⎞⎟⎟⎟⎟⎠
.

R̃
∗ =

⎛⎜⎜⎜⎜⎝

([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.35], [0.50, 0.60]) ([0.45, 0.55], [0.25, 0.35]) ([0.35, 0.45], [0.45, 0.45])

([0.50, 0.60], [0.25, 0.35]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.65], [0.15, 0.25]) ([0.35, 0.55], [0.35, 0.35])

([0.25, 0.35], [0.45, 0.55]) ([0.15, 0.25], [0.55, 0.65]) ([0.50, 0.50], [0.50, 0.50]) ([0.30, 0.40], [0.40, 0.50])

([0.45, 0.45], [0.35, 0.45]) ([0.35, 0.35], [0.35, 0.55]) ([0.40, 0.50], [0.30, 0.40]) ([0.50, 0.50], [0.50, 0.50])

⎞
⎟⎟⎟⎟⎠
,
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the literature (Wang et al. 2009). It is noticeable that the method (Tang et al. 2018) is based 
on the equivalent consistency condition that adjusts all IVIFVs.

5  A new method for GDM with IVIFPRs

To solve the inability of a single DM in dealing with complex decision-making problems, 
GDM has become an effective technology. To tackle this case, this section discusses GDM 
with IVIFPRs.

Suppose that m DMs E = {e1,e2,…,em} are invited to evaluate n objects X = {x1,x2,…
,xn}. Let R̃p = (r̃p,ij)n×n be the individual IVIFPR offered by the DM ep , where 
r̃p,ij = ([𝜇

p

l,ij
,𝜇

p

u,ij
], [v

p

l,ij
, v

p

u,ij
]) for all i, j = 1, 2,… , n , and all p = 1, 2,… ,m . To obtain the 

collective IVIFPR, we need the weights of DMs. Considering the aspect that the higher the 
consensus degree between DMs’ judgements is, the bigger the weights of the DMs will be, we 
use the distance measure between individual IVIFPRs to reflect this point.

Let R̃∗
p
= (r̃∗

p,ij
)n×n be the additively consistent IVIFPR of R̃p , where 

r̃∗
p,ij

= ([𝜇
∗p

l,ij
,𝜇

∗p

u,ij
], [v

∗p

l,ij
, v

∗p

u,ij
]) , i, j = 1, 2,… , n , and p = 1, 2,… ,m . On the basis of the Ham-

ming distance between IVIFVs defined by Xu and Yager (2009), the following formula is used 
to determine the DMs’ weights:

Where

such that �∗
l,ij

= 1 − �∗
u,ij

− v∗
u,ij

 and �∗
u,ij

= 1 − �∗
l,ij

− v∗
l,ij

.
Let w = (w1,w2,…,wm) be the weight vector derived from formula (25). Suppose that 

R̃∗
C
= (r̃∗

C,ij
)n×n is the collective IVIFPR integrated from R̃∗

p
 , p = 1,2,…,m, using IVIF weighted 

averaging operator (Xu and Yager 2009), where

i, j = 1, 2,… , n.

Theorem  3 Let R̃∗
p
= (r̃∗

p,ij
)n×n be the additively consistent IVIFPR of R̃p , p = 1, 2,… ,m. 

Then, the collective IVIFPR R̃∗
C
 integrated as formula (26) is also additively consistent.

Proof To prove the additive consistency of R̃∗
C
 , it only needs to show the following 

condition:

(25)wp =

1

� m∑
t=1,t≠p

D(R̃∗
P
, R̃∗

t
)

∑m

p=1

�
1

�∑m

t=1,t≠p
D(R̃∗

P
, R̃∗

t )

� ,

D(R̃∗

p
, R̃∗

t
) =

∑n

i,j=1,i<j

(|||𝜇
∗p

l,ij
− 𝜇∗t

l,ij

||| +
|||𝜇

∗p

u,ij
− 𝜇∗t

u,ij

||| +
|||v

∗p

l,ij
− v∗t

l,ij

||| +
|||v

∗p

u,ij
− v∗t

u,ij

||| +
|||𝜋

∗p

l,ij
− 𝜋∗t

l,ij

||| +
|||𝜋

∗p

u,ij
− 𝜋∗t

u,ij

|||
)

(26)

r̃∗
C,ij

=

(
[𝜇∗C

l,ij
,𝜇∗C

u,ij
], [v∗C

l,ij
, v∗C

u,ij
]

)
=

([
m∑
p=1

wP𝜇
∗p

l,ij
,

m∑
p=1

wP𝜇
∗p

u,ij

]
,

[
m∑
p=1

wPv
∗p

l,ij
,
∑m

p=1
wPv

∗p

u,ij

])
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for all i, k, j = 1, 2,… , n with k ≠ i, j ∧ i < j.
Following the additive consistency of R̃∗

p
 , p = 1, 2,… ,m , we have

for all i, k, j = 1, 2,… , n with k ≠ i, j ∧ i < j , and p = 1, 2,… ,m.
Combining formulae (26) and (28), it is easy to derive formula (27).
Consensus refers to the unanimity of individual opinions that reflects the option of the 

group. To obtain the representative ranking, the consensus analysis is necessary (Herrera-
Viedma et  al. 2014; Chiclana et  al. 2008). Next, we study the consensus for GDM with 
IVIFPRs.

Definition 15 (Group consensus index): Let R̃∗
p
= (r̃∗

p,ij
)n×n be the additively consistent 

IVIFPR of R̃p = (r̃p,ij)n×n , p = 1, 2,… ,m , and let R̃∗
C
= (r̃∗

C,ij
)n×n be the collective IVIFPR 

shown as formula (26). Then, the group consensus index of the individual IVIFPR R̃∗
p
 is 

defined as:

Let �∗ be the threshold of the consensus. If GCI(R̃∗
p
) < 𝜃∗ for some p = 1, 2,… ,m , we 

need to improve its consensus level. To do this, we construct the following programming 
model:

(27)

⎧
⎪⎪⎨⎪⎪⎩

�∗C
l,ij

≥ �∗C
l,ik

+ �∗C
l,kj

− 0.5

v∗C
l,ij

≥ v∗C
l,ik

+ v∗C
l,kj

− 0.5

�∗C
u,ij

≥ �∗C
u,ik

+ �∗C
u,kj

− 0.5

v∗C
u,ij

≥ v∗C
u,ik

+ v∗C
u,kj

− 0.5

,

(28)

⎧⎪⎪⎨⎪⎪⎩

�
∗p

l,ij
≥ �

∗p

l,ik
+ �

∗p

l,kj
− 0.5

v
∗p

l,ij
≥ v

∗p

l,ik
+ v

∗p

l,kj
− 0.5

�
∗p

u,ij
≥ �

∗p

u,ik
+ �

∗p

u,kj
− 0.5

v
∗p

u,ij
≥ v

∗p

u,ik
+ v

∗p

u,kj
− 0.5

,

(29)

GCI

(
R̃∗

p

)
= 1 −

1

2n(n − 1)

n∑
i,j=1,i<j

(|||𝜇
∗p

l,ij
− 𝜇∗C

l,ij

||| +
|||𝜇

∗p

u,ij
− 𝜇∗C

u,ij

||| +
|||v

∗p

l,ij
− v∗C

l,ij

||| +
|||v

∗p

u,ij
− v∗C

u,ij

|||
)
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where the first constraint is derived from formula (29) that can ensure the adjusted IVIFPR 
to meet the consensus requirement, the second to fifth constraints ensure the adjusted 
IVIFPR to be additively consistent, the seventh and eighth constraints ensure the adjusted 
elements to be IVIFVs, and the last constraint guarantees the endpoints of corresponding 
IVIFVs to have the same adjustment.

To facilitate the solution of model (30), we further introduce a linear programming model. 
Let

where �+
ij
, �−

ij
, �+

ij
, �−

ij
,�+

ij
,�−

ij
, �+

ij
, �−

ij
 are all non-negative variables for all 

i, j = 1, 2,… , n, i < j such that �+
ij
× �−

ij
= �+

ij
× �−

ij
= �+

ij
× �−

ij
= �+

ij
× �−

ij
= 0.

Therefore, we have

(30)

𝜁∗ = max
�n

i,j=1,i<j
(𝛼l,ij + 𝛼u,ij + 𝛽l,ij + 𝛽u,ij)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n

i,j=1,i<j

�����
�
𝛼l,ij𝜇

∗p

l,ij
+ (1 − 𝛼l,ij)𝜇

∗C
l,ij

�
−

�
wp(𝛼l,ij𝜇

∗p

l,ij
+ (1 − 𝛼l,ij)𝜇

∗C
l,ij
) +

∑m

t=1,t≠p
wt𝜇

∗t
l,ij

�����
+
����
�
𝛼u,ij𝜇

∗p

u,ij
+ (1 − 𝛼u,ij)𝜇

∗C
u,ij

�
−

�
wp(𝛼u,ij𝜇

∗p

u,ij
+ (1 − 𝛽u,ij)𝜇

∗C
u,ij
) +

∑m

t=1,t≠p
wt𝜇

∗t
u,ij

�����
+
����
�
𝛽l,ijv

∗p

l,ij
+ (1 − 𝛽l,ij)v

∗C
l,ij

�
−

�
wp(𝛽l,ijv

∗p

l,ij
+ (1 − 𝛽l,ij)v

∗C
l,ij
) +

∑m

t=1,t≠p
wtv

∗t
l,ij

�����
+
����
�
𝛽u,ijv

∗p

u,ij
+ (1 − 𝛽u,ij)v

∗C
u,ij

�
−

�
wp(𝛽u,ijv

∗p

u,ij
+ (1 − 𝛽u,ij)v

∗C
u,ij
) +

∑m

t=1,t≠p
wtv

∗t
u,ij

�����
�

≤ 2n(n − 1)(1 − 𝜃∗)

i, j = 1, 2,… , n, i < j

𝛼l,ij𝜇
∗p

l,ij
+ (1 − 𝛼l,ij)𝜇

∗C
l,ij

≥ (𝛼l,ik𝜇
∗p

l,ik
+ (1 − 𝛼l,ik)𝜇

∗C
l,ik
) + (𝛼l,kj𝜇

∗p

l,kj
+ (1 − 𝛼l,kj)𝜇

∗C
l,kj
) − 0.5

𝛼u,ij𝜇
∗p

u,ij
+ (1 − 𝛼u,ij)𝜇

∗C
u,ij

≥ (𝛼u,ik𝜇
∗p

u,ik
+ (1 − 𝛼u,ik)𝜇

∗C
u,ik

) + (𝛼u,kj𝜇
∗p

u,kj
+ (1 − 𝛼u,kj)𝜇

∗C
u,kj

) − 0.5

𝛽l,ijv
∗p

l,ij
+ (1 − 𝛽l,ij)v

∗C
l,ij

≥ (𝛽l,ikv
∗p

l,ik
+ (1 − 𝛽l,ik)v

∗C
l,ik
) + (𝛽l,kjv

∗p

l,kj
+ (1 − 𝛽l,kj)v

∗C
l,kj
) − 0.5

𝛽u,ijv
∗p

u,ij
+ (1 − 𝛽u,ij)v

∗C
u,ij

≥ (𝛽u,ikv
∗p

u,ik
+ (1 − 𝛽u,ik)v

∗C
u,ik

) + (𝛽u,kjv
∗p

u,kj
+ (1 − 𝛽u,kj)v

∗C
u,kj

) − 0.5

0 ≤ 𝛼l,ij, 𝛼l,ik, 𝛼l,kj, 𝛼u,ij, 𝛼u,ik, 𝛼u,kj, 𝛽l,ij, 𝛽l,ik, 𝛽l,kj, 𝛽u,ij, 𝛽u,ik, 𝛽u,kj ≤ 1

i, k, j = 1, 2,… , n, k ≠ i, j ∧ i < j

𝛼l,ij𝜇
∗p

l,ij
+ (1 − 𝛼l,ij)𝜇

∗C
l,ij

≤ 𝛼u,ij𝜇
∗p

u,ij
+ (1 − 𝛼u,ij)𝜇

∗C
u,ij
, i, j = 1, 2,… , n, i < j

𝛽l,ijv
∗p

l,ij
+ (1 − 𝛽l,ij)v

∗C
l,ij

≤ 𝛽u,ijv
∗p

u,ij
+ (1 − 𝛽u,ij)v

∗C
u,ij
, i, j = 1, 2,… , n, i < j

𝛼l,ij = 𝛽l,ji, 𝛼u,ij = 𝛽u,ji, 𝛽l,ij = 𝛼l,ji, 𝛽u,ij = 𝛼u,ji, i, j = 1, 2,… , n, i < j

,

(31)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�l,ij�
∗p

l,ij
+ (1 − �l,ij)�

∗C
l,ij

−

�
wp(�l,ij�

∗p

l,ij
+ (1 − �l,ij)�

∗C
l,ij

) +
�m

t=1,t≠p
wt�

∗t
l,ij

�
− �+

ij
+ �−

ij
= 0

�u,ij�
∗p

u,ij
+ (1 − �u,ij)�

∗C
u,ij

−

�
wp(�u,ij�

∗p

u,ij
+ (1 − �u,ij)�

∗C
u,ij

) +
�m

t=1,t≠p
wt�

∗t
u,ij

�
− �+

ij
+ �−

ij
= 0

�l,ijv
∗p

l,ij
+ (1 − �l,ij)v

∗C
l,ij

−

�
wp(�l,ijv

∗p

l,ij
+ (1 − �l,ij)v

∗C
l,ij
) +

�m

t=1,t≠p
wtv

∗t
l,ij

�
− �+

ij
+ �−

ij
= 0

�u,ijv
∗p

u,ij
+ (1 − �u,ij)v

∗C
u,ij

−

�
wp(�u,ijv

∗p

u,ij
+ (1 − �u,ij)v

∗C
u,ij

) +
�m

t=1,t≠p
wtv

∗t
u,ij

�
− �+

ij
+ �−

ij
= 0

,
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Following formula (32), we derive below linear programming model:

Model (33) not only guarantees the additive consistency and consensus of the 
adjusted individual IVIFPR, but also endows different IVIFVs with different adjust-
ments. Furthermore, the adjusted individual IVIFPR has the smallest total adjustment 
so that more original information can be remained.

Based on the above discussion, this paper develops the following GDM method.
Algorithm.

 Step 1. If all individual IVIFPRs R̃p = (r̃p,ij)n×n, p = 1, 2,… ,m , are all complete, go to 
Step 2. Otherwise, models (22) and (23) are adopted to determine the missing values.

 Step 2. Model (18) is used to judge the additive consistency. When individual IVIFPRs 
R̃p = (r̃p,ij)n×n , p = 1, 2,… ,m , are all additively consistent, go to Step 3. Otherwise, 

(32)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�����l,ij�
∗p

l,ij
+ (1 − �l,ij)�

∗C
l,ij

−

�
wp(�l,ij�

∗p

l,ij
+ (1 − �l,ij)�

∗C
l,ij
) +

�m

t=1,t≠p
wt�

∗t
l,ij

����� = �+
ij
+ �−

ij

�����u,ij�
∗p

u,ij
+ (1 − �u,ij)�

∗C
u,ij

−

�
wp(�u,ij�

∗p

u,ij
+ (1 − �u,ij)�

∗C
u,ij
) +

�m

t=1,t≠p
wt�

∗t
u,ij

����� = �+
ij
+ �−

ij

�����l,ijv
∗p

l,ij
+ (1 − �l,ij)v

∗C
l,ij

−

�
wp(�l,ijv

∗p

l,ij
+ (1 − �l,ij)v

∗C
l,ij
) +

�m

t=1,t≠p
wtv

∗t
l,ij

����� = �+

ij
+ �−

ij

�����u,ijv
∗p

u,ij
+ (1 − �u,ij)v

∗C
u,ij

−

�
wp(�u,ijv

∗p

u,ij
+ (1 − �u,ij)v

∗C
u,ij
) +

�m

t=1,t≠p
wtv

∗t
u,ij

����� = �+
ij
+ �−

ij

.

(33)

𝜁∗ = max
�n

i,j=1,i<j
(𝛼l,ij + 𝛼u,ij + 𝛽l,ij + 𝛽u,ij)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n

i,j=1,i<j
(𝜏+

ij
+ 𝜏−

ij
+ 𝜂+

ij
+ 𝜂−

ij
+ 𝜙+

ij
+ 𝜙−

ij
+ 𝜀+

ij
+ 𝜀−

ij
) ≤ 2n(n − 1)(1 − 𝜃∗)

𝛼l,ij𝜇
∗p

l,ij
+ (1 − 𝛼l,ij)𝜇

∗C
l,ij

−

�
wp(𝛼l,ij𝜇

∗p

l,ij
+ (1 − 𝛼l,ij)𝜇

∗C
l,ij
) +

�m

t=1,t≠p
wt𝜇

∗t
l,ij

�
− 𝜏+

ij
+ 𝜏−

ij
= 0

𝛼u,ij𝜇
∗p

u,ij
+ (1 − 𝛼u,ij)𝜇

∗C
u,ij

−

�
wp(𝛼u,ij𝜇

∗p

u,ij
+ (1 − 𝛼u,ij)𝜇
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model (24) is applied to derive the additively consistent IVIFPRs, which can be 
denoted as R̃∗

p
= (r̃∗

p,ij
)n×n, p = 1, 2,… ,m.

 Step 3. Formula (25) is used to determine the weights of DMs, and formula (26) is adopted 
to obtain the collective IVIFPR R̃∗

C
= (r̃∗

C,ij
)n×n.

 Step 4. Formula (29) is employed to measure the consensus. Let �∗ be the given consensus 
threshold. If we have GCI(R̃∗

p
) > 𝜃∗ for all p = 1, 2,… ,m , go to Step 5. Otherwise, 

model (33) is applied to improve the consensus level of the corresponding individual 
IVIFPR.

 Step 5. Calculating the row arithmetic means of R̃∗
C
 , where

for all i = 1, 2,… , n.

 Step 6. Using the score and accuracy functions (Xu 2007b), we have

where r̃i = ([𝜇l,i,𝜇u,i], [vl,i, vu,i]) for all i = 1, 2,… , n.
Then, the ranking of objects x1, x2,… , xn is derived following the order relationship of 

r̃i , i = 1, 2,… , n.

6  Case study and comparison

To illustrate the application of the proposed algorithm and compare the new method with 
previous ones, this section offers two examples.

Remark 1 Tang et  al. (2018) have demonstrated the advantages of their method com-
pared with the previous ones, this paper mainly focuses on the comparison of the proposed 
method with Tang et al.’s method (Tang et al. 2018) through case study.

Example 3 At present, there are more than 2600 colleges in China, among which over 700 
are private that accounts for nearly 1/3. Compared with public colleges, the private ones 
lack the financial support of the state. Besides the quality of talent training, another goal 
that deserves the attention is the economic benefits. Tuition as the main source of income 
largely depends on the number of students. To ensure the scale of students, private col-
leges must apply to the ministry of education for new enrollment majors in due course. 
To this end, there are a few factors that need to be considered, such as regional economic 
development, recruiting company manpower needs, synergy effect with existing majors, 
and conditions for running school. There are usually a few majors to choose. Therefore, the 
choice of new majors in private colleges can be classified as a MCDM problem. Moreover, 
the development of social economy is rapid, which increases the difficulty of tackling the 
problem. Due to the complexity of this problem, a single decision-making body is unable 
to cope with it, and GDM is a powerful tool.

(34)r̃i =
([

1

n

∑n

j=1
𝜇∗C
l,ij
,
1

n

∑n

j=1
𝜇∗C
u,ij

]
,

[
1

n

∑n

j=1
v∗C
l,ij
,
1

n

∑n

j=1
v∗C
u,ij

])

(35)S
(
r̃i
)
= 0.5

(
𝜇l,i + 𝜇u,i − vl,i − vu,i

)
,

(36)H
(
r̃i
)
= 0.5

(
𝜇l,i + 𝜇u,i + vl,i + vu,i

)
,
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Qingdao Institute of Technology is a private college in Shandong province of China. 
With the improvement of running conditions, the College Board plans to expand the 
enrollment. After preliminary screening, there are four major finalists: energy and power 
engineering, financial management, aviation logistics management and underground 
city space engineering, shown as X = {x1,x2,x3,x4}. In addition to the factors mentioned 
above, the quota provided by the competent authority is usually one or two. To guaran-
tee permission, three DMs E = {e1,e2,e3} are invited to give their preferences and to rank 
these majors. Due to the limitations of different professional backgrounds and their pref-
erences, they are allowed to offer the uncertain preferred and non-preferred judgements 
simultaneously, which comes down to the GDM with IVIFPRs. Suppose that the three 
DMs’ individual IVIFPRs are listed in Tables 1, 2 and 3.

 Step 1. Since the individual IVIFPRs are all complete, go to Step 2.
 Step 2. Based on the three DMs’ additively consistent IVIFPRs and formula (25), the 

weights of the DMs are derived as w1 = 0.337, w2 = 0.291 and w3 = 0.372.
 Step 3. Using model (18), we have � ∗

1
= 0.05 , � ∗

2
= 0.5 , � ∗

3
= 0.05 . Thus, all of them are 

inconsistent. To derive their additively consistent IVIFPRs, model (24) is adopted, by 
which the associated results are shown in Tables 4, 5 and 6.

Using formula (26), the collective IVIFPR R̃∗
C
 is obtained as shown in Table 7.

Step 4. Let �∗ = 0.9 be the given consensus threshold. Using formula (29), we have

Table 1  IVIFPR R̃1 offered by the DM e1

e1 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.40,0.55], 
[0.30,0.40])

([0.40,0.65], 
[0.15,0.25])

([0.60,0.80], [0.05,0.15])

x2 ([0.30,0.40], 
[0.40,0.55])

([0.50,0.50], 
[0.50,0.50])

([0.35,0.60], 
[0.25,0.35])

([0.45,0.75], [0.15,0.25])

x3 ([0.15,0.25], 
[0.40,0.65])

([0.25,0.35], 
[0.35,0.60])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.60], [0.25,0.30])

x4 ([0.05,0.15], 
[0.60,0.80])

([0.15,0.25], 
[0.45,0.75])

([0.25,0.30], 
[0.40,0.60])

([0.50,0.50], [0.50,0.50])

Table 2  IVIFPR R̃2 offered by the DM e2

e2 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.25,0.35], 
[0.40,0.60])

([0.40,0.55], 
[0.30,0.40])

([0.40,0.55], [0.35,0.40])

x2 ([0.40,0.60], 
[0.25,0.35])

([0.50,0.50], 
[0.50,0.50])

([0.50,0.75], 
[0.10,0.20])

([0.45,0.60], [0.30,0.35])

x3 ([0.30,0.40], 
[0.40,0.55])

([0.10,0.20], 
[0.50,0.75])

([0.50,0.50], 
[0.50,0.50])

([0.20,0.35], [0.45,0.60])

x4 ([0.35,0.40], 
[0.40,0.55])

([0.30,0.35], 
[0.45,0.60])

([0.45,0.60], 
[0.20,0.35])

([0.50,0.50], [0.50,0.50])
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Because GCI(R̃∗
2
) < 0.9 , model (33) is applied to improve its consensus level. Further-

more, the associated adjusting IVIFPR R̃�∗
2

 is listed in Table 8.
Using formula (25), the weights are w1 = 0.334, w2 = 0.304 and w3 = 0.362, and the asso-

ciated collective IVIFPR R̃∗
C
 is obtained as shown in Table 9.

Using formula (29), we have GCI(R̃∗
1
) = 0.939,GCI(R̃�∗

2
) = 0.918 , and GCI(R̃∗

3
) = 0.947 , 

which meets the consensus requirement.
Step 5. Following R̃�∗

C
 and formula (34), we have

GCI(R̃∗

1
) = 0.930, GCI(R̃∗

2
) = 0.891, GCI(R̃∗

3
) = 0.941.

Table 3  IVIFPR R̃3 offered by the DM e3

e3 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.30,0.40], 
[0.40,0.55])

([0.35,0.50], 
[0.30,0.45])

([0.55,0.70], [0.15,0.25])

x2 ([0.40,0.55], 
[0.30,0.40])

([0.50,0.50], 
[0.50,0.50])

([0.45,0.55], 
[0.25,0.35])

([0.65,0.80], [0.05,0.15])

x3 ([0.30,0.45], 
[0.35,0.50])

([0.25,0.35], 
[0.45,0.55])

([0.50,0.50], 
[0.50,0.50])

([0.50,0.65], [0.20,0.30])

x4 ([0.15,0.25], 
[0.55,0.70])

([0.05,0.15], 
[0.65,0.80])

([0.20,0.30], 
[0.50,0.65])

([0.50,0.50], [0.50,0.50])

Table 4  Additively consistent IVIFPR R̃∗
1

e1 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.40,0.55], 
[0.30,0.40])

([0.40,0.65], 
[0.15,0.25])

([0.60,0.80], [0.05,0.15])

x2 ([0.30,0.40], 
[0.40,0.55])

([0.50,0.50], 
[0.50,0.50])

([0.35,0.55], 
[0.25,0.35])

([0.45,0.75], [0.15,0.25])

x3 ([0.15,0.25], 
[0.40,0.65])

([0.25,0.35], 
[0.35,0.55])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.60], [0.25,0.30])

x4 ([0.05,0.15], 
[0.60,0.80])

([0.15,0.25], 
[0.45,0.75])

([0.25,0.30], 
[0.40,0.60])

([0.50,0.50], [0.50,0.50])

Table 5  Additively consistent IVIFPR R̃∗
2

e2 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.25,0.35], 
[0.40,0.60])

([0.40,0.60], 
[0.30,0.35])

([0.40,0.50], [0.35,0.45])

x2 ([0.40,0.60], 
[0.25,0.35])

([0.50,0.50], 
[0.50,0.50])

([0.50,0.75], 
[0.10,0.20])

([0.45,0.60], [0.30,0.35])

x3 ([0.30,0.35], 
[0.40,0.60])

([0.10,0.20], 
[0.50,0.75])

([0.50,0.50], 
[0.50,0.50])

([0.20,0.35], [0.45,0.60])

x4 ([0.35,0.45], 
[0.40,0.50])

([0.30,0.35], 
[0.45,0.60])

([0.45,0.60], 
[0.20,0.35])

([0.50,0.50], [0.50,0.50])
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Step 6. Using the score function for IVIFVs, we obtain s(r̃1) = 0.135 , s(r̃2) = 0.183 , 
s(r̃3) = −0.066 , and s(r̃4) = −0.250.

Therefore, the ranking order is x2 ≻ x1 ≻ x3 ≻ x4.
From the above ranking, we find that energy and power engineering and financial man-

agement should be applied for the quota of two majors. If there is only one quota, the prior-
ity should be given to financial management.

Next, we briefly explore the analysis process for this example using the method (Tang 
et al. 2018).

 Step 1. For the individual IVIFPRs in Example 3, the individually additively consistent 
QFIPRs are derived as follows:

r̃1 = ([0.431, 0.552], [0.319, 0.394]), r̃2 = ([0.455, 0.579], [0.292, 0.376])

r̃3 = ([0.333, 0.438], [0.399, 0.505]), r̃4 = ([0.273, 0.321], [0.480, 0.614])

Table 6  Additively consistent IVIFPR R̃∗
3

e3 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.30,0.40], 
[0.40,0.55])

([0.35,0.50], 
[0.30,0.45])

([0.55,0.70], [0.15,0.25])

x2 ([0.40,0.55], 
[0.30,0.40])

([0.50,0.50], 
[0.50,0.50])

([0.45,0.60], 
[0.25,0.35])

([0.65,0.80], [0.05,0.15])

x3 ([0.30,0.45], 
[0.35,0.50])

([0.25,0.35], 
[0.45,0.60])

([0.50,0.50], 
[0.50,0.50])

([0.50,0.65], [0.20,0.30])

x4 ([0.15,0.25], 
[0.55,0.70])

([0.05,0.15], 
[0.65,0.80])

([0.20,0.30], 
[0.50,0.65])

([0.50,0.50], [0.50,0.50])
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50

0,
0.
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0]
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0.

50
0,

0.
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)
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0.
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0.
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2]
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20
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0.
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0.
52

4,
0.
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0.

14
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)

x
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([
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([
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)
([

0.
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0.
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6]

, [
0.

52
2,

0.
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)

([
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28
3,

0.
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0.
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)
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0.
50

0,
0.

50
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0.

50
0,

0.
50
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 Step 2. Following model (35) (Tang et al. 2018), the weights are equal to 1/3. Then, the 
collectively additively consistent QFIPRs are

Let �∗ = 0.9 , the consensus degrees based on formula (29) are GCI1 = 0.8990

,GCI2 = 0.8962 , and  GCI3 = 0.9054. Using the iterative method for improving the consensus 
level (Tang et al. 2018), the adjusted additively consistent QFIPRs are

�̄�∗
1
=

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.3000, 0.8750] [0.4500, 0.8500] [0.6500, 0.8750]

[0.7000, 0.1250] [0.5000, 0.5000] [0.6500, 0.4750] [0.8500, 0.5000]

[0.5500, 0.1500] [0.3500, 0.5250] [0.5000, 0.5000] [0.7000, 0.5250]

[0.3500, 0.1250] [0.1500, 0.5000] [0.3000, 0.4750] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
,

�̄�∗
1
=

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.6000, 0.5500] [0.7250, 0.6625] [0.8750, 0.7875]

[0.4000, 0.4500] [0.5000, 0.5000] [0.6250, 0.6125] [0.7750, 0.7375]

[0.2750, 0.3375] [0.3750, 0.3875] [0.5000, 0.5000] [0.6500, 0.6250]

[0.1250, 0.2125] [0.2250, 0.2625] [0.3500, 0.3750] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
,

�̄�∗
2
=

⎛⎜⎜⎜⎝

[0.5000, 0.5000] [0.3625, 0.4313] [0.6500, 0.5625] [0.4375, 0.6063]

[0.6375, 0.5867] [0.5000, 0.5000] [0.7875, 0.6313] [0.5750, 0.6750]

[0.3500, 0.4375] [0.2125, 0.3687] [0.5000, 0.5000] [0.2875, 0.5438]

[0.5625, 0.3937] [0.4250, 0.3250] [0.7125, 0.4562] [0.5000, 0.5000]

⎞⎟⎟⎟⎠
,

�̄�∗
2
=

⎛⎜⎜⎜⎝

[0.5000, 0.5000] [0.3875, 0.3625] [0.6500, 0.6000] [0.5625, 0.4875]

[0.6125, 0.6375] [0.5000, 0.5000] [0.7625, 0.7375] [0.6750, 0.6250]

[0.3500, 0.4000] [0.2375, 0.2625] [0.5000, 0.5000] [0.4125, 0.3875]

[0.4375, 0.5125] [0.3250, 0.3750] [0.5875, 0.6125] [0.5000, 0.5000]

⎞⎟⎟⎟⎠
,

�̄�∗
3
=

⎛⎜⎜⎜⎝

[0.5000, 0.5000] [0.4250, 0.4125] [0.5625, 0.5000] [0.7625, 0.6875]

[0.5750, 0.5875] [0.5000, 0.5000] [0.6375, 0.5875] [0.8375, 0.7750]

[0.4375, 0.5000] [0.3625, 0.4125] [0.5000, 0.5000] [0.7000, 0.6875]

[0.2375, 0.3125] [0.1625, 0.2250] [0.3000, 0.3125] [0.5000, 0.5000]

⎞⎟⎟⎟⎠
,

�̄�∗
3
=

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.5125, 0.3500] [0.7000, 0.3750] [0.9375, 0.4750]

[0.4875, 0.6500] [0.5000, 0.5000] [0.6875, 0.5250] [0.9250, 0.6250]

[0.3000, 0.6250] [0.3125, 0.4750] [0.5000, 0.5000] [0.7375, 0.6000]

[0.0625, 0.5250] [0.0750, 0.3750] [0.2625, 0.4000] [0.5000, 0.5000]

⎞⎟⎟⎟⎠

�̄�∗ =

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.3917, 0.5521] [0.6000, 0.5958] [0.6750, 0.6521]

[0.6083, 0.4479] [0.5000, 0.5000] [0.7083, 0.5438] [0.7833, 0.6000]

[0.4000, 0.4042] [0.2917, 0.4562] [0.5000, 0.5000] [0.5750, 0.5563]

[0.3250, 0.3479] [0.2167, 0.4000] [0.4250, 0.4437] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
,

�̄�∗ =

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.4708, 0.4417] [0.6458, 0.5875] [0.7333, 0.6542]

[0.5292, 0.5583] [0.5000, 0.5000] [0.6750, 0.6458] [0.7625, 0.7125]

[0.3542, 0.4125] [0.3250, 0.3542] [0.5000, 0.5000] [0.5875, 0.5667]

[0.2667, 0.3458] [0.2375, 0.2875] [0.4125, 0.4333] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
.
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Furthermore, the corresponding collectively additively consistent QFIPRs are

and the associated consensus levels are GCI1 = 0.9034 , GCI2 = 0.9089 , GCI3 = 0.9088.

 Step 3. With respect to the collectively additively consistent QFIPRs �̄��∗ and �̄��∗ , the cor-
responding collectively additively consistent IVIFPR is

Following R̃∗ and the score function for IVIFVs, we obtain s(r̃1) = 0.152,s(r̃2) = 0.191 , 
s(r̃3) = −0.092 , and s(r̃4) = −0.251 , by which the ranking order is x2 ≻ x1 ≻ x3 ≻ x4 . This 
result is the same as the ranking derived from the new method.

To see the ranking results obtained from these two methods visually, see Fig. 1.
Example 3 offers a GDM with complete IVIFPRs to show the concrete application of 

the new method. The following example gives a GDM with incomplete IVIFPRs to show 
its utilization.

Example 4 (Tang et  al. 2018) To effectively promote the construction of “double first-
class” university, a university formulates a plan for talents introduction. After the prelimi-
nary screening, there are four eligible candidates X = {x1, x2, x3, x4}. To rank these candi-
dates, four experts E = {e1, e2, e3, e4} are invited to give their judgements. Because of the 
difference in professional background, it is difficult for these experts to offer exact evalua-
tions, and they are allowed to offer the preferred and non-preferred judgements simultane-
ously. Furthermore, when the experts are unable to give judgements for the comparisons of 
some candidates, the missing values are permitted. The four individual IVIFPRs offered by 
the experts are listed in Tables 10, 11, 12 and 13.

�̄�
�∗

2
=

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.3729, 0.4555] [0.6492, 0.5692] [0.4896, 0.6155]

[0.6271, 0.5445] [0.5000, 0.5000] [0.7763, 0.6138] [0.6167, 0.6600]

[0.3508, 0.4308] [0.2237, 0.3862] [0.5000, 0.5000] [0.3404, 0.5463]

[0.5104, 0.3845] [0.3833, 0.3400] [0.6596, 0.4537] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
,

�̄�
�∗

2
=

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.4204, 0.3783] [0.6492, 0.5975] [0.5805, 0.5208]

[0.5796, 0.6217] [0.5000, 0.5000] [0.7288, 0.7192] [0.6600, 0.6425]

[0.3508, 0.4025] [0.2712, 0.2808] [0.5000, 0.5000] [0.4313, 0.4233]

[0.4195, 0.4792] [0.3400, 0.3575] [0.5684, 0.5767] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
.

�̄�
�∗ =

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.4260, 0.5602] [0.6456, 0.5981] [0.7393, 0.6552]

[0.5740, 0.4398] [0.5000, 0.5000] [0.7195, 0.5379] [0.8132, 0.5950]

[0.3544, 0.4019] [0.2805, 0.4621] [0.5000, 0.5000] [0.5937, 0.5571]

[0.2607, 0.3448] [0.1868, 0.4050] [0.4063, 0.4429] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
,

�̄�
�∗ =

⎛
⎜⎜⎜⎝

[0.5000, 0.5000] [0.4818, 0.4527] [0.6456, 0.5981] [0.7393, 0.6710]

[0.5182, 0.5473] [0.5000, 0.5000] [0.6638, 0.6454] [0.7575, 0.7183]

[0.3544, 0.4019] [0.3362, 0.3546] [0.5000, 0.5000] [0.5937, 0.5729]

[0.2607, 0.3290] [0.2425, 0.2817] [0.4063, 0.4271] [0.5000, 0.5000]

⎞
⎟⎟⎟⎠
.

R̃
∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

([0.5000, 0.5000], [0.5000, 0.5000]) ([0.4260, 0.4527], [0.4398, 0.5182]) ([0.5981, 0.5981], [0.3544, 0.3544]) ([0.6552, 0.6710], [0.2607, 0.2607])

([0.4398, 0.5182], [0.4260, 0.4527]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5379, 0.6454], [0.2805, 0.3362]) ([0.5950, 0.7183], [0.1868, 0.2425])

([0.3544, 0.3544], [0.5981, 0.5981]) ([0.2805, 0.3362], [0.5379, 0.6454]) ([0.5000, 0.5000], [0.5000, 0.5000]) ([0.5571, 0.5729], [0.4063, 0.4063])

([0.2607, 0.2607], [0.6552, 0.6710]) ([0.1868, 0.2425], [0.5950, 0.7183]) ([0.4063, 0.4063], [0.5571, 0.5729]) ([0.5000, 0.5000], [0.5000, 0.5000])

⎞
⎟⎟⎟⎟⎟⎟⎠

..
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 Step 1. With respect to each incomplete individual IVIFPR, the missing values following 
models (22) and (23) are obtained as follows:

Fig. 1  The associated ranking 
results

Table 10  IVIFPR R̃1 offered by the expert e1

e1 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.40,0.50], 
[0.20,0.30])

([y, y], [y, y]) ([0.55,0.60], [0.30,0.35])

x2 ([0.20,0.30], 
[0.40,0.50])

([0.50,0.50], 
[0.50,0.50])

([0.35,0.55], 
[0.25,0.30])

([y, y], [y, y])

x3 ([y, y], [y, y]) ([0.25,0.30], 
[0.35,0.55])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.50], [0.30,0.45])

x4 ([0.30,0.35], 
[0.55,0.60])

([y, y], [y, y]) ([0.30,0.45], 
[0.40,0.50])

([0.50,0.50], [0.50,0.50])

Table 11  IVIFPR R̃2 offered by the expert e2

e2 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.30,0.40], 
[0.40,0.45])

([0.40, y], [y, 0.45]) ([y, 0.50], [0.20, y])

x2 ([0.40,0.45], 
[0.30,0.40])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.45], 
[0.35,0.40])

([0.30,0.35], [0.25,0.45])

x3 ([y, 0.45], [0.40, y]) ([0.35,0.40], 
[0.40,0.45])

([0.50,0.50], 
[0.50,0.50])

([0.30, y], [y, 0.50])

x4 ([0.20, y], [y, 0.50]) ([0.25,0.45], 
[0.30,0.35])

([y, 0.50], [0.30, y]) ([0.50,0.50], [0.50,0.50])
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 Step 2. Using model (18), it can be checked that the complete individual IVIFPR R̃4 is 
additively consistent, while the others are not. Model (24) is applied to repair the 
inconsistency of the first three individual IVIFPRs, and the associated additively con-
sistent IVIFPRs are shown in Tables 14, 15, 16 and 17.

 Step 3. Based on the four experts’ additively consistent IVIFPRs and formula (25), the 
weights of the experts are w1 = 0.228, w2 = 0.270, w3 = 0.232, and w4 = 0.270.

Based on formula (26), the collectively additively consistent IVIFPR R̃∗
C
 is shown in 

Table 17.

 Step 4. Let �∗ = 0.9 be the given threshold of the consensus. Using formula (29), we have

r̃1,13 = ([0.50, 0.55], [0.25, 0.25]), r̃1,24 = ([0.40, 0.45], [0.30, 0.30]),

𝜇2

u,13
= 0.50, v2

l,13
= 0.30, 𝜇2

l,14
= 0.40, v2

u,14
= 0.45, 𝜇2

u,34
= 0.40, v2

l,34
= 0.40,

r̃3,14 = ([0.55, 0.55], [0.30, 0.35]), r̃3,34 = ([0.60, 0.65], [0.25, 0.25]),

r̃4,12 = ([0.40, 0.40], [0.40, 0.40]), r̃4,23 = ([0.35, 0.45], [0.40, 0.40]),

v4
u,14

= 0.30, 𝜇4

l,34
= 0.45.

Table 12  IVIFPR R̃3 offered by the expert e3

e3 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.35,0.40], 
[0.40,0.50])

([0.30,0.40], 
[0.40,0.60])

([y, y], [y, y])

x2 ([0.40,0.50], 
[0.35,0.40])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.50], 
[0.35,0.45])

([0.50,0.65], [0.25,0.30])

x3 ([0.40,0.60], 
[0.30,0.40])

([0.35,0.45], 
[0.40,0.50])

([0.50,0.50], 
[0.50,0.50])

([y, y], [y, y])

x4 ([y, y], [y, y]) ([0.25,0.30], 
[0.50,0.65])

([y, y], [y, y]) ([0.50,0.50], [0.50,0.50])

Table 13  IVIFPR R̃4 offered by the expert e4

e4 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([y, y], [y, y]) ([0.25,0.45], 
[0.30,0.40])

([0.30,0.45], [0.25, y])

x2 ([y, y], [y, y]) ([0.50,0.50], 
[0.50,0.50])

([y, y], [y, y]) ([0.30,0.55], [0.35,0.40])

x3 ([0.30,0.40], 
[0.25,0.45])

([y, y], [y, y]) ([0.50,0.50], 
[0.50,0.50])

([y, 0.45], [0.25,0.40])

x4 ([0.25, y], [0.30,0.45]) ([0.35,0.40], 
[0.30,0.55])

([0.25,0.40], [y, 0.45]) ([0.50,0.50], [0.50,0.50])



123

147 Page 30 of 35 S. Zhang, F. Meng 

 Step 5. Following R̃∗
C
 and formula (34), we have

GCI(R̃∗

1
) = 0.933, GCI(R̃∗

2
) = 0.947, GCI(R̃∗

3
) = 0.925 and GCI(R̃∗

4
) = 0.960.

r̃1 = ([0.416, 0.473], [0.357, 0.420]), r̃2 = ([0.400, 0.467], [0.373, 0.417]),

r̃3 = ([0.397, 0.444], [0.384, 0.463]), r̃4 = ([0.338, 0.409], [0.436, 0.494]).

Table 14  Additively consistent IVIFPR R̃∗
1

e1 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.40,0.45], 
[0.20,0.30])

([0.50,0.55], 
[0.25,0.25])

([0.55,0.60], [0.30,0.35])

x2 ([0.20,0.30], 
[0.40,0.45])

([0.50,0.50], 
[0.50,0.50])

([0.35,0.55], 
[0.25,0.30])

([0.40,0.45], [0.30,0.30])

x3 ([0.25,0.25], 
[0.50,0.55])

([0.25,0.30], 
[0.35,0.55])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.40], [0.30,0.45])

x4 ([0.30,0.35], 
[0.55,0.60])

([0.30,0.30], 
[0.40,0.45])

([0.30,0.45], 
[0.40,0.40])

([0.50,0.50], [0.50,0.50])

Table 15  Additively consistent IVIFPR R̃∗
2

e2 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.30,0.40], 
[0.40,0.40])

([0.40,0.50], 
[0.30,0.45])

([0.40,0.45], [0.20,0.45])

x2 ([0.40,0.40], 
[0.30,0.40])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.45], 
[0.35,0.40])

([0.30,0.35], [0.25,0.45])

x3 ([0.30,0.45], 
[0.40,0.50])

([0.35,0.40], 
[0.40,0.45])

([0.50,0.50], 
[0.50,0.50])

([0.30,0.40], [0.40,0.50])

x4 ([0.20,0.45], 
[0.40,0.45])

([0.25,0.45], 
[0.30,0.35])

([0.40,0.50], 
[0.30,0.40])

([0.50,0.50], [0.50,0.50])

Table 16  Additively consistent IVIFPR R̃∗
3

e3 x1 x2 x3 x4

x1 ([0.50,0.50], 
[0.50,0.50])

([0.35,0.40], 
[0.40,0.50])

([0.30,0.40], 
[0.40,0.55])

([0.55,0.55], [0.30,0.35])

x2 ([0.40,0.50], 
[0.35,0.40])

([0.50,0.50], 
[0.50,0.50])

([0.40,0.45], 
[0.35,0.45])

([0.50,0.65], [0.25,0.30])

x3 ([0.40,0.55], 
[0.30,0.40])

([0.35,0.45], 
[0.40,0.45])

([0.50,0.50], 
[0.50,0.50])

([0.60,0.65], [0.25,0.25])

x4 ([0.30,0.35], 
[0.55,0.55])

([0.25,0.30], 
[0.50,0.65])

([0.25,0.25], 
[0.60,0.65])

([0.50,0.50], [0.50,0.50])
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 Step 6. Using the score function for IVIFVs, we obtain s(r̃1) = 0.056,s(r̃2) = 0.039 , 
s(r̃3) = −0.003 , and s(r̃4) = −0.092.

Thus, the ranking order is x1 ≻ x2 ≻ x3 ≻ x4.
According to the results in the literature (Tang et  al. 2018), the ranking values of 

the four candidates are s(r̃1) = 0.050,s(r̃2) = 0.066 , s(r̃3) = 0.028 , and s(r̃4) = 0.040 , and 
the corresponding ranking order is x2 ≻ x1 ≻ x4 ≻ x3, which is different from the above 
ranking.

To see the ranking results obtained from these two methods visually, please see 
Fig. 2.

Remark 2 The commonalities between the method (Tang et  al. 2018) and the proposed 
method include:

 (i) both of them are based on the consistency and consensus analysis to solve GDM 
problems with IVIFPRs, which can ensure the logical ranking results;

 (ii) the using additive consistency definitions are independent of compared objects;
 (iii) both of them can address incomplete and inconsistent IVIFPRs.

Compared with the method (Tang et al. 2018), the proposed method has the follow-
ing advantages:

 (i) Since there is no need to transform IVIFPRs to QFIPRs, the new method is simpler 
than Tang et al.’s method.

 (ii) The new method is based on Definition 3 that is more flexible than Tang et al.’s 
method.

 (iii) Programming models for improving the consistency and consensus level permit dif-
ferent judgements to have different adjustments, while Tang et al.’s method adjusts 
all judgements without considering their differences. Furthermore, our method can 
guarantee the minimum total adjustment, while Tang et al.’s method cannot.

Fig. 2  The associated ranking 
results
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7  Conclusion

To promote the application of IVIFPRs in decision making, this paper proposes a new 
GDM method based on IVIFPRs. First of all, a new additive consistency concept for IVIF-
PRs is defined, which can avoid the limitations of the previous ones. By constructing pro-
gramming models, the consistency of an IVIFPR can be checked and the additively consist-
ent IVIFPRs can be obtained. For incomplete IVIFPRs, a programming model is provided 
to obtain missing information. Afterwards, a linear programming model to improve the 
individual consensus level is established that ensures the least adjustment. Finally, an addi-
tive consistency and consensus based GDM algorithm is put forward and the practical 
decision-making examples are applied to illustrate the feasibility and efficiency of the new 
method.

Just as other types of PRs, there are two types of consistency concepts for IVIFPRs: 
the additive consistency concept and the multiplicative consistency concept. This paper 
focuses on the former and we shall continue to research IVIFPRs’ multiplicative consist-
ency. Furthermore, about the main research contents of GDM with IVIFPRs, there are also 
some issues need for further investigation, such as setting the consensus threshold, and 
determining the priority of objects (Wan et al. 2017). Last but not least, in addition to the 
offered practical decision-making problems, the proposed method can also be similarly 
extended to other fields, such as the selection of investment strategy (Xian et  al. 2018), 
human resource assessment (He 2019), and social networks (Morente-Molinera et  al. 
2019).
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