
Computational and Applied Mathematics (2020) 39:133
https://doi.org/10.1007/s40314-020-01156-0

Solving fuzzy linear systems by a block representation of
generalized inverse: the core inverse

Hongjie Jiang1 · Hongxing Wang1 · Xiaoji Liu1

Received: 14 November 2019 / Revised: 16 February 2020 / Accepted: 1 April 2020 /
Published online: 27 April 2020
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020

Abstract
This paper presents a method for solving fuzzy linear systems, where the coefficient matrix
is an n × n real matrix, using a block structure of the Core inverse, and we use the Hartwig–
Spindelböck decomposition to obtain the Core inverse of the coefficient matrix A. The aim
of this paper is twofold. First, we obtain a strong fuzzy solution of fuzzy linear systems, and
a necessary and sufficient condition for the existence strong fuzzy solution of fuzzy linear
systems are derived using the Core inverse of the coefficient matrix A. Second, general strong
fuzzy solutions of fuzzy linear systems are derived, and an algorithm for obtaining general
strong fuzzy solutions of fuzzy linear systems by Core inverse is also established. Finally,
some examples are given to illustrate the validity of the proposed method.

Keywords Core inverse · Fuzzy linear systems · Block structure · Hartwig–Spindelböck
decomposition · Strong fuzzy solution

Mathematics Subject Classification 08A72 · 15A09

1 Introduction

Linear systems play an important role in various fields, such as information acquisition,
optimization control, physics, statistics, engineering, economics, and even social science.

Therefore, it is meaningful to study general strong fuzzy solutions of fuzzy liner system
(FLS) and promote various disciplines using program algorithms. In Friedman et al. (1998),
proposed a generalmodel for solving FLS,whose right-hand side column is an arbitrary fuzzy
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number vector and the coefficient matrix is crisp, by the embedded method. Based on the
result of Friedman et al. (1998), in Allahviranloo (2004), Allahviranloo andGhanbari (2012),
Lodwick and Dubois (2015) introduced various methods for solving the FLS. Abbasbandy
et al. (2008) introduced an interesting approach to solve the FLS using the generalized
inverses. However, using aforementioned methods, the general solution of the FLS can not
be obtained. Mihailović et al. (2018a, b) proposed two different methods for obtaining all
solutions of the FLS using the Moore–Penrose inverse and group inverse, and brought to
light the importance of the core inverse of the coefficient matrix in solving FLS.

Friedman et al. (1998) presented a method for solving square FLS and the solution vector
called either a strong fuzzy solution or a weak fuzzy solution. However, some authors think
that weak fuzzy solutions are not solutions of the FLS, for example, in Allahviranloo (2003)
and Lodwick and Dubois (2015). In addition, it is known that the sufficient condition for
the existence of unique solution of a square FLS is not a necessary condition Allahviranloo
(2003), Friedman et al. (2003), andwe try to clarify it. Based on themethod of Friedman et al.
(1998),Mihailović et al. (2018a, b) used the coefficientsmatrix unique block representation of
Moore–Penrose inverse andGroup inverse to get general solution of the FLS, andmeanwhile,
the form of algorithm for obtaining general solution of the FLS by Moore–Penrose inverse
and {1}-inverse are established, respectively. However, in [Th. 5, 12] and [Th. 6, 13], the
author assumed that Moore–Penrose inverse and {1}-inverse are nonnegative to obtain a
strong fuzzy solution. On the other hand, the matrices of index one are called group matrices
[P. 141, 7] or Core matrices [P. 47, 14]; Baksalary and Trenkler (2010) introduced the Core
inverse and studied the properties of Core inverse and one special partial order. Next, Wang
(2016) gave theCore-EP decomposition for studying theCore-EP inverse and its applications,
where the Core-EP inverse is a generalization of the Core inverse. It is well known that Core
inverse is unique and can solve general linear equations, see Baksalary and Trenkler (2010)
and Ben-Israel and Greville (2003). Although the authors in Mihailović et al. (2018a, b)
proposed a necessary and sufficient condition for the existence of a solution of all FLS of
Friedman type, and meanwhile, they established the general solution of a square FLS in
terms of any {1}-inverse of its coefficient matrix. However, the author also stated that the
first important step is finding one strong fuzzy number vector whichwill be the starting vector
for the determination of all strong fuzzy number vector solutions of the FLS, see [Th. 5,12].
Therefore, our goal now is to take a closer look on a square FLS and investigate the block
structure of unique Core inverse.

Inspired by the above discussion, in this paper,we state a necessary and sufficient condition
for the existence of S{1} ≥ 0 (S{1} is called {1}-inverse of the coefficient matrix S). Next,
we obtain a necessary and sufficient condition for the existence of S #© ≥ 0 (S #© is called
core inverse of the coefficient matrix S) to obtain a strong fuzzy number solution of FLS.
Moreover, the core inverse of the coefficient matrix A is employed to obtain a necessary
and sufficient condition for the solution existence of the FLS. Meanwhile, all strong fuzzy
number solutions of the FLS are given by the core inverse of its coefficient matrix, and an
algorithm for solving all strong fuzzy number solutions of the FLS is derived. Finally, some
examples are given to illustrate the validity of an algorithm.

This paper is divided into five sections. In Sect. 2, we introduce some characteristics of
generalized inverses and fuzzy numbers. In Sect. 3, a method for finding a strong fuzzy
solution of the FLS based on S #© calculation, is given when the coefficient matrix of model
FLS is real 2n×2n matrix. In Sect. 4, another method for finding general solution of the FLS
based on A #© calculation, is given when the coefficient matrix of the FLS is a real matrix.
Next, an algorithm for solving FLS is derived, and we use some examples to explain the new
algorithm. In Sect. 5, we give a summary of this work.
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2 Preliminary

This section mainly contains two aspects. On the one hand, we review the definition of fuzzy
numbers, fuzzy sets, and the symbols commonly used in FLS.On the other hand,we introduce
generalized inverses and some common symbols.

2.1 The concept of the FLS

Definition 2.1 (Mihailović et al. 2018b, Definition 1) A fuzzy set z̃ with a membership
function z̃ : R → [0, 1] satisfying the following three conditions are called a fuzzy number.

1. z̃(x) = 0 outside of interval [a, b].
2. z̃ is the upper semi-consistent continuous function.
3. There are real numbers c and d such that a ≤ c ≤ d ≤ b.

3.1. z̃(x) is monotonic increasing on [a, c],
3.2. z̃(x) is monotonic decreasing on [d, b],
3.3. z̃(x) = 1, c ≤ x ≤ d .

The set of all fuzzy numbers is denoted by ξ . The α-cut of a fuzzy number is the crisp set, a
bounded closed interval for each α ∈ [0, 1], denoted with [z̃]α , such that [z̃]α = [z

¯
(α), z̄(α)],

where z̄(α) = sup{x ∈ R : z̃(x) ≥ α} and z
¯
(α) = inf{x ∈ R : z̃(x) ≥ α} . Using the lower

and upper branches, z
¯
and z̄, a fuzzy number z̃ can be equivalently defined as a pair of function

(z
¯
, z̄) where z

¯
: [0, 1] → R is a non-increasing left-continuous function, z̄ : [0, 1] → R is a

non-decreasing left-continuous function and z
¯
(α) ≤ z̄(α), for each α ∈ [0, 1].

Definition 2.2 (Mihailović et al. 2018b, Definition 3) Let arbitrary fuzzy numbers z̃ =
(z
¯
(α), z̄(α)), ũ = (u

¯
(α), ū(α)) for each α ∈ [0, 1] and real number k, we define the scalar

multiplication and the addition of fuzzy numbers.

1. [ũ + z̃]α = [z
¯
(α) + u

¯
(α), z̄(α) + ū(α)],

2. [kz̃]α =
{ [kz

¯
(α), kz̄(α)], k ≥ 0,

[kz̄(α), kz
¯
(α)], k < 0,

3. z̃ = ũ ⇔ z
¯
(α) = u

¯
(α) and z̄(α) = ū(α).

Definition 2.3 (Friedman et al. 1998) The fuzzy linear matrix system AX̃ = Ỹ is as follows:⎛
⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̃11
x̃21
· · ·
x̃n1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ỹ11
ỹ21
· · ·
ỹn1

⎞
⎟⎟⎠ , (2.1)

where the matrix A = [ai j ] is a real matrix (ỹi j ∈ ξ, x̃i j ∈ ξ). Satisfying the above
equations and conditions, it is called FLS. At the same time, let Z̃ = (z̃1, z̃2, . . . z̃)∗n
([z̃ j ]α = [z

¯ j
(α), z̄ j (α)], α ∈ [0, 1]) be a solution of the FLS (2.1), where ()∗ indicates

the transposition of (). We have⎡
 n∑

j=1

ai j z̃ j

⎤
⎦

α

= [ỹi ]α, i = 1, 2 . . . n.
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Then,

n∑
j=1

a+
i j z¯ j

(α) −
n∑
j=1

a−
i j z̄ j (α) = y

¯ i
(α),

n∑
j=1

a+
i j z̄ j (α) −

n∑
j=1

a−
i j z¯ j

(α) = ȳi (α),

where a+
i j = ai j ∨ 0 and a−

i j = −ai j ∨ 0. Then, we have

⎛
⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

[x̃1]α
[x̃2]α
· · ·

[x̃n]α

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

[ỹ1]α
[ỹ2]α
· · ·

[ỹn]α

⎞
⎟⎟⎠ ,

where [X̃ ]α = ([x̃1]α, [x̃2]α, · · · [x̃n]α)∗ and [Ỹ ]α = ([ỹ1]α, [ỹ2]α, · · · [ỹn]α)∗, α ∈ [0, 1].
The matrix form of this family of interval linear systems, is A[X̃ ]α = [Ỹ ]α , and its solution is
an interval-valued vector [Z̃ ]α , where its components are an intervals [z̃ j ]α = [z

¯ j
(α), z̄ j (α)]

and z
¯ j

(α) ≤ z̄ j (α), for each α ∈ [0, 1], such that (z
¯
, z̄) determines the parametric form of a

fuzzy number, for 1 ≤ j ≤ n.
We have

SX(α) = Y (α), α ∈ [0, 1], (2.2)

where

skp =
{
a+
i j k = i, p = j + n or k = i + n, p = j,

a−
i j k = i, p = j + n or k = i + n, p = j,

and

X(α) = (x
¯1

, x
¯2

, . . . , x
¯n

,−x̄1,−x̄2, . . . ,−x̄n)
∗,

Y (α) = (y
¯1

, y
¯2

, . . . , y
¯n

,−ȳ1,−ȳ2, . . . ,−ȳn)
∗.

The matrix S is as follows:

S =
[
D E
E D

]
, (2.3)

where D and E are n × n matrices, D = [a+
i j ] and E = [a−

i j ]. According to Friedman et al.

(1998), if S is non-negative and X0 = S−1Y is defined as a solution of the (2.2), then X̃0 ∈ ξ

is a strong fuzzy number solution of the FLS (2.1). Next, according to Allahviranloo (2003),
and Friedman et al. (1998, 2003), sufficient conditions for FLS (2.1) having a strong fuzzy
number solution can be obtained. However, a solution vector of (2.2), does not need to be
the representative vector of any fuzzy number vector (Table 1). But, if there exists a solution
vector of (2.2), such that it is the representative vector of a fuzzy number vector, then that
fuzzy number vector is a solution of the FLS (2.1). If a solution exists, we say that the FLS
(2.1) is consistent. The matrix S will be called the matrix associated to the FLS (2.1).
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2.2 The block representation of the core inverse

In this aspect, we review the characteristics of the Core inverse and the Hartwig–Spindelböck
decomposition. Many characteristics of generalized inverses can be found in Wang (2016),
Wang (2011) and Wang and Liu (2016). Let Rm×n , rk(P) and In be the set of m × n real
matrices, the rank of P , and the identity matrix of rank n, respectively. If the singular matrix
P satisfies rk(P2) = rk(P), then the index of it is one. If P is nonsingular, the index of it
is zero. Denote

R
CM
n = {P ∈ Rn,n : rk(P2) = rk(P)}.

According to Hartwig and Spindelböck (1983), eachmatrix has the following form of decom-
position (called Hartwig–Spindelböck decomposition):

P = U

[
�K �L
0 0

]
U∗, (2.4)

where U ∈ Rn×n is unitary, � = diag(α1, α2, . . . , αr ) is the diagonal matrix of singular
values of A, α1 ≥ α2 ≥ . . . ≥ αr > 0, and K ∈ Rr×r , L ∈ Rr×(n−r) satisfies (see Baksalary
and Trenkler 2010)

KK ∗ + LL∗ = Ir . (2.5)

Some matrices equations for a matrix P ∈ Rm×n will be reviewed as follows:

PX P =P (1), X PX = X (2), (PX)∗ = PX (3),

(X P)∗ =X P (4), PX2 = X (2)′, PX = X P (5).

Definition 2.4 (Berman and Plemmons 1994; Wang 2016; Zhou et al. 2012) For any
P ∈ Rm×n , let T{i, j, . . . h} denotes the set of matrices X ∈ Rm×n which fulfill equa-
tions (i), ( j), . . . , (h) among the equations (1)–(5) and (2)′. The matrix X ∈ T{i, j, . . . h}
is called an {i, j, . . . h}-inverse of P and is denoted by P{i, j,...h}.
(i) If the matrix X ∈ Rm×n satisfies (1)–(4), then it is called the Moore–Penrose inverse of

P ∈ Rm×n . It is denoted by P† or P{1,2,3,4}.
(ii) If the matrix X ∈ Rn×n satisfies (1), (2) and (5), then it is called group inverse of

P ∈ R
CM
n . It is denoted by P� or P{1,2,5}.

(iii) If the matrix X ∈ Rn×n satisfies (1), (2)′ and (3), then it is called core inverse of
P ∈ R

CM
n . It is denoted by P #© or P{1,2′,3}.

For the given P = [pi j ], P ∈ Rm×n , we denote it with |P| whose entries are the absolute
of entries of P , |P| = [|Pi j |], |P| ∈ Rm×n . We say that P is non-negative matrix if pi j ≥ 0,
for each i and j .

Lemma 2.1 (Baksalary and Trenkler 2010; Hartwig and Spindelböck 1983) The P� and P #©
can be obtained as follows:

P� = U

[
K−1�−1 K−1�−1K−1L
0 0

]
U∗, (2.6)

P #© = P�PP† = U

[
(�K )−1 0
0 0

]
U∗. (2.7)
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Table 1 Common mathematical
symbols

Notation Symbolic meaning

Rm×n m × n real matrices

R
CM
n The set of matrices of the index are one or zero

P{i, j ,...h} An {i, j, . . . h}-inverse of the matrix P

P∗ Transposition of the matrix P

P† Moore–Penrose inverse of the matrix P

P� Group inverse of the matrix P

P #© Core inverse of the matrix P

R(P) Range space of P

As we all know, different generalized inverses have different purposes. We can be found
some properties and applications of core inverse and group inverse in Ma and Li (2019),
Wang and Zhang (2019) and Zhou et al. (2012).

3 Block structure of core inverse of the associatedmatrix S

In this section, a matrix block structure of core inverse of S is crucial for our further consid-
eration.

Lemma 3.1 (Ben-Israel and Greville 2003) A vector X(α) is a solution of the consistent (2.2)
if and only if

SX(α) = SS{1}Y (α).

Thus, the general solution is

X(α) = S{1}Y (α) + (In − S{1}S)O,

where S{1} is a {1}-inverse of S and O is an arbitrary vector.

Lemma 3.2 (Ma and Li 2019) Let X(α) ∈ R(S) and S ∈ R
CM
2n , the vector X(α) is unique

solution of the consistent (2.2) if and only if

SX(α) = SS #©Y (α).

Thus, the unique solution is

X(α) = S #©Y (α).

Lemma 3.3 (Wang and Zhang (2019)) Let X(α) ∈ R(S) and S ∈ R
CM
2n , the vector X(α) is

unique least square solution of the inconsistent (2.2) if and only if

SX(α) = SS #©Y (α).

Thus, the unique least squares solution is

X(α) = S #©Y (α).
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By the above lemma, we know that the general solution of the consistent (2.2) can be
expressed as X(α) = S{1}Y (α) + (In − S{1}S)O . However, this paper studies correlated
fuzzy linear vector general solution to FLS (2.1). On the other hand, if the inconsistent (2.2)
satisfies X(α) ∈ R(S), its unique least squares solution can be expressed as X(α) = S #©Y (α).
Next, a matrix block structure of Core inverse as S is crucial for our further consideration.

Theorem 3.4 Let S ∈ R
CM
2n be the coefficient matrix of (2.2). The Core inverse S #© of the

associated singular matrix S is

S #© =
[
H Z
Z H

]
, (3.1)

if and only if

H =1

2

[
(D + E) #© + (D − E) #©]

, (3.2)

Z =1

2

[
(D + E) #© − (D − E) #©]

. (3.3)

Proof Let A be the coefficient matrix of FLS (2.1) and S is its associated matrix from (2.3).
We have A = A+ − A− = D − E and |A| = A+ + A− = D + E .
Necessity: according to (1), we have[

D E
E D

] [
H Z
Z H

] [
D E
E D

]
=

[
D E
E D

]
.

It gives

(DH + EZ)D + (DZ + EH)E = D,

(DH + EZ)E + (DZ + EH)D = E .

We have

(D + E)(H + Z)(D + E) = (D + E), (3.4)

(D − E)(H − Z)(D − E) = (D − E). (3.5)

According to (1), we have

H + Z =(D + E){1},
H − Z =(D − E){1}.

Thus,

H =1

2
[(D + E){1} + (D − E){1}], (3.6)

Z =1

2
[(D + E){1} − (D − E){1}]. (3.7)

According to (2)′, we have[
D E
E D

] [
H Z
Z H

] [
H Z
Z H

]
=

[
H Z
Z H

]
.

It gives

(DH + EZ)H + (DZ + EH)Z = H ,

(DH + EZ)Z + (DZ + EH)H = Z .
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We obtain

(D + E)(H + Z)(H + Z) = (H + Z), (3.8)

(D − E)(H − Z)(H − Z) = (H − Z). (3.9)

According to (2)′, we have

H + Z =(D + E){2′},

H − Z =(D − E){2′}.

We get

H =1

2
[(D + E){2′} + (D − E){2′}], (3.10)

Z =1

2
[(D + E){2′} − (D − E){2′}]. (3.11)

According to (3), we have[
H Z
Z H

]∗ [
D E
E D

]∗
=

[
D E
E D

] [
H Z
Z H

]
.

It gives

(DH + EZ)∗ = DH + EZ ,

(DZ + EH)∗ = DZ + EH .

We have

[(D + E)(H + Z)]∗ = (D + E)(H + Z), (3.12)

[(D − E)(H − Z)]∗ = (D − E)(H − Z). (3.13)

According to (3), we have

H + Z =(D + E){3},
H − Z =(D − E){3},

It is easy to obtain

H =1

2

[
(D + E){3} + (D − E){3}

]
, (3.14)

Z =1

2

[
(D + E){3} − (D − E){3}

]
. (3.15)

Then,

H =1

2

[
(D + E) #© + (D − E) #©]

,

Z =1

2

[
(D + E) #© − (D − E) #©]

.

Sufficiency: using (3.2) and (3.3) we get H + Z = |A| #© and H − Z = |A| #©, i.e. H + Z
and H − Z are the Core inverses of |A| and A, respectively. We have

(D + E)(H + Z)(D + E) = (D + E),

(D − E)(H − Z)(D − E) = (D − E),
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(D + E)(H + Z)(H + Z) = (H + Z),

(D − E)(H − Z)(H − Z) = (H − Z),

[(D + E)(H + Z)]∗ = (D + E)(H + Z),

[(D − E)(H − Z)]∗ = (D − E)(H − Z).

It is easy to know that

D = 1

2
(D + E) + 1

2
(D − E)

= 1

2
(D + E)(H + Z)(D + E) + 1

2
(D − E)(H − Z)(D − E)

= (DH + EZ)D + (DZ + EH)E,

E = 1

2
(D + E) − 1

2
(D − E)

= 1

2
(D + E)(H + Z)(D + E) − 1

2
(D − E)(H − Z)(D − E)

= (DH + EZ)E + (DZ + EH)D.

Then, [
D E
E D

] [
H Z
Z H

] [
D E
E D

]
=

[
D E
E D

]
.

We have

H = 1

2
(H + Z) + 1

2
(H − Z)

= 1

2
(D + E)(H + Z)(H + Z) + 1

2
(D − E)(H − Z)(H − Z)

= (DH + EZ)H + (DZ + EH)Z ,

Z = 1

2
(H + Z) − 1

2
(H − Z)

= 1

2
(D + E)(H + Z)(H + Z) − 1

2
(D − E)(H − Z)(H − Z)

= (DH + EZ)Z + (DZ + EH)H .

Then, [
D E
E D

] [
H Z
Z H

] [
H Z
Z H

]
=

[
H Z
Z H

]
.

We have

DH + EZ = 1

2
(D + E)(H + Z) + 1

2
(D − E)(H − Z)

= 1

2
(H + Z)∗(D + E)∗ + 1

2
(H − Z)∗(D − E)∗

= H∗D∗ + Z∗E∗

= (DH + EZ)∗,
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and

EH + DZ = 1

2
(D + E)(H + Z) − 1

2
(D − E)(H − Z)

= 1

2
(H + Z)∗(D + E)∗ − 1

2
(H − Z)∗(D − E)∗

= H∗E∗ + Z∗D∗

= (EH + DZ)∗.

We get [
H Z
Z H

]∗ [
D E
E D

]∗
=

[
D E
E D

] [
H Z
Z H

]
.

Then,

S #© =
[
H Z
Z H

]
.

��
Remark 3.1 From Theorem 3.4, we note that if the matrix S ∈ R

CM
2n , we need the matrix

A ∈ R
CM
n and the matrix |A| ∈ R

CM
n . Meanwhile, it is well known that the matrix S is

non-singular if and only if A and |A| are both non-singular, see Friedman et al. (1998).
Furthermore, we know that ind(S)=1 if and only if (ind(A),ind(|A|))∈ {(0, 1), (1, 0), (1, 1)},
see Mihailović et al. (2018b). Then, we know that if the matrix S ∈ R

CM
2n , we can get the

matrix A and the matrix |A| to be non-singular matrix or singular matrix with index one.

Theorem 3.5 S ∈ R
CM
2n is obtained from the singular matrix of consistent (2.2), giving a

representative vector Y . If S #© is a non-negative matrix and it admits (3.1), then X0 = S #©Y
represents a solution vector of (2.2), and the correlated fuzzy number vector X̃0 is one
solution of the FLS (2.1).

Proof Let Y =
[
Y
−̄Ȳ

]
, according to X0 = S #©Y ,

X
¯
0 = [

H Z
]
Y , (3.16)

X̄0 = [−Z −H
]
Y . (3.17)

It follows from (3.16) and (3.17) that

X̄0 − X
¯
0 = [−H −Z

]
Y − [

H Z
]
Y

= [−(Z + H) −(Z + H)
]
Y

= (H + Z)(Ȳ − Y
¯
).

Then,

X̄0 − X
¯
0 = (H + Z)(Ȳ − Y

¯
). (3.18)

Since each α ∈ [0, 1], it holds: Ȳ ≥ Y
¯
and H + Z is non-negative, so we have X̄0 ≥ X

¯
0.

Since H and Z are non-negative, we know that for all i, x
¯
0
i (α) (resp. x̄0i (α)) is bounded,

non-decreasing (resp. non-increasing) and left-continuous as the linear combination of
functions of the same type on the unit interval. Therefore, X̃ = (x̃01 , . . . , x̃

0
n )

∗, where
x̃0i = (x

¯
0
i , x̄0i ), i = 1, . . . , n, is a fuzzy number vector. The family of linear systems
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SX(α) = Y (α) is consistent, therefore, X0 = S #©Y is one of its solutions, and by the
construction of S, X̃0 is a solution of the FLS (2.1). ��
Corollary 3.6 S ∈ R

CM
2n is obtained from the singular matrix of consistent (2.2) with X(α) ∈

R(S), giving a representative vector Y . If S #© is a non-negative matrix and it admits (3.1),
then X0 = S #©Y represents the unique solution vector of inconsistent (2.2), and the correlated
fuzzy number vector X̃0 is a solution of the consistent FLS (2.1).

Corollary 3.7 S ∈ R
CM
2n is obtained from the singular matrix of inconsistent (2.2) with

X(α) ∈ R(S), giving a representative vector Y . If S #© is a non-negative matrix and it admits
(3.1), then X0 = S #©Y represents the unique least square solution vector of inconsistent
(2.2), and the correlated fuzzy number vector X̃0 is a least square solution of the inconsistent
FLS (2.1).

Remark 3.2 From Theorem 3.4, we know that if S #© is non-negative and linear equation
SX(α) = Y (α) is consistent, then we will get a strong fuzzy solution X̃0 of the FLS (2.1)
through the representative solution vector X0 = S #©Y of the (2.2). On the other hand, in
[Th. 5, 12] and [Th. 6, 13], the author assumed that Moore–Penrose inverse and {1}-inverse
are nonnegative to obtain a strong fuzzy solution. However, the coefficient matrix S admits a

non-negative {1}-inverse if and only if S has a {2}-inverse of the form

[
B1D∗B3 B1E∗B4

B2E∗B3 B2D∗B4

]
,

where B1, B2, B3, and B4 are non-negative diagonal matrices (see Zheng and Wang 2006).
Therefore, we will give some results for such S #© and S� to be non-negative in the next
section.

Theorem 3.8 S #© ≥ 0 if and only if

S #© =
[
BD∗ BE∗
BE∗ BD∗

]
(3.19)

for some positive diagonal matrix B. Meanwhile, (D + E) #© = B(D + E)∗, (D − E) #© =
B(D − E)∗.

Proof According to Berman and Plemmons (1994), it is easy to find that S #© ≥ 0 if and only

if S #© = B•S∗ for some positive diagonal matrix B• =
[
B1 0
0 B2

]
. We have

[ 1
2 [(D + E) #© + (D − E) #©] 1

2 [(D + E) #© − (D − E) #©]
1
2 [(D + E) #© − (D − E) #©] 1

2 [(D + E) #© + (D − E) #©]

]
=

[
B1D∗ B1E∗
B2E∗ B2D∗

]
.

Therefore, B1D∗ = B2D∗ and B1E∗ = B2E∗.
Let B1 = diag(b11, b12, . . . , b1n), B2 = diag(b21, b22, . . . , b2n),

D =

⎡
⎢⎢⎢
d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
...

...

dn1 dn2 · · · dnn

⎤
⎥⎥⎥⎦ , E =

⎡
⎢⎢⎢
e11 e12 · · · e1n
e21 e22 · · · e2n
...

...
...

...

en1 en2 · · · enn

⎤
⎥⎥⎥⎦ .

We have

B1D
∗ =

⎡
⎢⎢⎢
b11d11 b11d21 · · · b11dn1
b12d12 b12d22 · · · b12dn2
...

...
...

...

b1nd1n b1nd2n · · · b1ndnn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢
b21d11 b21d21 · · · b21dn1
b22d12 b22d22 · · · b22dn2
...

...
...

...

b2nd1n b2nd2n · · · b2ndnn

⎤
⎥⎥⎥⎦ = B2D

∗,
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B1E
∗ =

⎡
⎢⎢⎢
b11e11 b11e21 · · · b11en1
b12e12 b12e22 · · · b12en2
...

...
...

...

b1ne1n b1ne2n · · · b1nenn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢
b21e11 b21e21 · · · b21en1
b22e12 b22e22 · · · b22en2
...

...
...

...

b2ne1n b2ne2n · · · b2nenn

⎤
⎥⎥⎥⎦ = B2E

∗.

From the structure of the (2.3), of d1i , . . . , dni , e1i , . . . , eni (i = 1, . . . , n), at least one is
nonzero. Let dni 
= 0, we know b1i dni = b2i dni , then d1i = d2i (i = 1, . . . , n), etc. We
know B1 = B2 = B. Since

S #© =
[ 1

2 [(D + E) #© + (D − E) #©] 1
2 [(D + E) #© − (D − E) #©]

1
2 [(D + E) #© − (D − E) #©] 1

2 [(D + E) #© + (D − E) #©]

]
=

[
BD∗ BE∗
BE∗ BD∗

]
,

it is easy to obtain (D + E) #© = B(D + E)∗, (D − E) #© = B(D − E)∗. ��
Theorem 3.9 S� ≥ 0 if and only if

S� =
[
ND∗ NE∗
NE∗ ND∗

]
(3.20)

for some positive diagonal matrix N. Meanwhile, (D + E)� = N (D + E)∗, (D − E)� =
N (D − E)∗.
Proof The proof goes in the same manner as the proof of Theorem 3.8. ��

We explain previous Theorems and Definitions by example.

Example 3.1 It is a 2 × 2 order consistent fuzzy linear system.

x̃1 − 2x̃2 = (−1 + 3α, 3 − α)

−2x̃1 + 4x̃2 = (−6 + 2α, 2 − 6α).

By (2.7), the matrices U , U∗ and sub-matrices �, K , and L are:

U =
[−0.4472 0.8944
0.8944 0.4472

]
, U∗ =

[−0.4472 0.8944
0.8944 0.4472

]
,

and

� = [5], K = [1], L = [0].
We obtain

A #© =
[
0.04 −0.08

−0.08 0.16

]
.

According to 3.19, we have

S #© =
[
BD∗ BE∗
BE∗ BD∗

]
=

⎡
⎢⎢
0.04 0 0 0.8
0 0.16 0.08 0
0 0.08 0.04 0

0.08 0 0 0.16

⎤
⎥⎥⎦

for some positive diagonal matrix B =
[
0.04 0
0 0.04

]
. According to formula X0 = S #©Y , we

obtain a strong fuzzy solution X̃0 = (x̃01 , x̃
0
2 )

∗,

x̃01 = (−0.2 + 0.6α, − 0.2α + 0.6) ,

x̃02 = (−1.2 + 0.4α, − 1.2α + 0.4) .
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4 Amethod for solving FLS

In this section, we present the general solution of the FLS (2.1). First, we determine one
fuzzy number vector X̃ ı which refers to general solution set of the FLS (2.1). Let F ∈ Rn×n ,
A ∈ R

CM
n , F = A{1,2′,3} = A #© and |F | = [| fi j |]. Let the form of SF ∈ R2n×2n be as

follows:

SF =
[
F+ F−
F− F+

]
, (4.1)

where F+ = [ f +
i j ] and F− = [ f −

i j ]. Let Y be an arbitrary representative vector, and Xı =
SFY . Since F+, F− and SF are non-negative, with the same argumentation as in the proof
of Theorem 3.4, we obtain that X̃ ı is a fuzzy number vector, even if the FLS (2.1) has no
solution.

Theorem 4.1 A ∈ R
CM
n is a singular coefficient matrix of the consistent FLS (2.1), where Ỹ

is a column of fuzzy vectors as the FLS (2.1) If Xı = SFY , F = A #©, |F | = [| fi j |], where
SF is in the form (4.1). The following statements hold:

(i) A(X̄ ı + X
¯
ı ) = Ȳ + Y

¯
.

(ii) If |F | is the Core inverse of |A|, then it holds |A|(X̄ ı − X
¯
ı ) = Ȳ − Y

¯
, and fuzzy number

vector X̃ ı is a solution of the FLS (2.1).

Proof (i) Let’s compute Xı = SFY , then

X
¯
ı = [

F+ F−]
Y , (4.2)

X̄ ı = [−F− −F+]
Y . (4.3)

It follows from (4.2) and (4.3) that

X̄ ı + X
¯
ı = [−F− −F+]

Y + [
F+ F−]

Y

= [
(F+ − F−) −(F+ − F−)

]
Y

= [
F −F

]
Y .

Then,

X̄ ı + X
¯
ı = F(Ȳ + Y

¯
). (4.4)

Since the FLS (2.1) are consistent, A(X̄ + X
¯
) = Ȳ + Y

¯
is a consistent family of classical

linear systems (for α ∈ [0, 1]). Furthermore, F = A #©, so from (4.4) we obtain:

Ȳ + Y
¯

= A(X̄ ı + X
¯
ı ). (4.5)

(ii) According to (4.2) and (4.3), we have

X̄ ı − X
¯
ı = |F |(Ȳ − Y

¯
). (4.6)

Since |F | is the Core inverse of |A|, we have |A| #© = |A #©| = |F | then
|A| #© = |F | = F+ + F−, A #© = F = F+ − F−.

According to Theorem 3.4, we have H = F+, Z = F−. Then

H = 1

2
[|A| #© + A #©],

Z = 1

2
[|A| #© − A #©],
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and

S #© =
[
H Z
Z H

]
.

Hence S #© = SF , then Xı is a solution to (2.2). Through (4.4), (4.5), and (4.6) , we have

Ȳ − Y
¯

= |A|(X̄ ı − X
¯
ı ). (4.7)

Any matrix A ∈ Rn×n has A+ = 1
2 (|A| + A) and A− = 1

2 (|A| − A). It follows from
(4.5), (4.6) and (4.7) that

Ȳ = A+ X̄ ı − A−X
¯
ı = [−A− −A+]

Xı ,

Y
¯

= −A− X̄ ı + A+X
¯
ı = [

A+ A−]
Xı .

Therefore, the conclusion is proved. ��
In the following theorem, we give the general solution to FLS (2.1).

Theorem 4.2 The coefficient matrix of the FLS (2.1) is A, an arbitrary fuzzy vector
Ỹ = (ỹ1, ỹ2, . . . , ỹn), such that for Xı = SFY it has A(X̄ ı + X

¯
ı ) = Ȳ + Y

¯
. Let

W = (w1(α),w2(α), . . . , wn(α))∗, where W = Y
¯

− [
A+ A−]

Xı ,
[
A+ A−]

is n × 2n
order matrix. Define � = (λ1(α), λ2(α), . . . , λn(α))∗ and � = (θ1(α), θ2(α), . . . , θn(α))∗,
where � and � are solutions of A� = 0 and |A|� = W, respectively. We have

X̃ =
{
X
¯
ı + 1

2
� + �, X̄ ı + 1

2
� − �

}
.

Proof Using the general solution in Lemma 3.1, with F = A #© the proof goes in the same
manner as the proof of [Th. 8, 12]. ��

Next we will present an algorithm to solve the FLS (2.1). The coefficient matrix of FLS
(2.1) is A = [ai j ]. The matrix SF is given by the formula (4.1).

We will explain our previous Theorems, Definitions and validity of Algorithm through
examples. The Example 4.1 is a 2× 2 order consistent fuzzy linear system. In Example 4.1,

123



Solving fuzzy linear systems by a block representation… Page 15 of 20 133

A and |A| are singular, and S #© is nonnegative. It is easy to know that we can give a strong
fuzzy solution of the Example 4.1 through a solution vector X0 = S #©Y or a solution vector
Xı = SFY . Next, we can give general solution of the Example 4.1 through above Algorithm.
The Example 4.2 is a 3×3 order consistent fuzzy linear system. In Example 4.2, the matrix A
is singular and |A| is non-singular. Through calculation, we know that S #© is not nonnegative.
To further verify the validity of an Algorithm, we will consider the general solution of the
Example 4.2 through the above Algorithm. The Example 4.3 is a 2 × 2 order inconsistent
fuzzy linear system. In Example 4.3, since the inconsistent fuzzy linear system satisfies
X(α) ∈ R(S), we can get the unique least squares solution of inconsistent (2.2). Further, we
get a least squares solution in the Example 4.3.

Example 4.1 It is a 2 × 2 order consistent fuzzy linear system.

−2x̃1 + x̃2 = (−7.5 + 0.5α, 0.5 − 7.5α)

4x̃1 − 2x̃2 = (−1 + 15α, 15 − α).

By (2.7), we have

A #© =
[−0.05 0.10
0.10 −0.20

]
,

where matrices U , U∗, �, and K are:

U =
[−0.4472 0.8944
0.8944 0.4472

]
, U∗ =

[−0.4472 0.8944
0.8944 0.4472

]
,

and

� = [5], K = [−0.8].
According to formula Xı = SFY , we obtain a general fuzzy solution X̃ ı = (x̃ ı1, x̃

ı
2)

∗

x̃ ı1 = (−0.125 + 1.875α, − 0.125α + 1.875) ,

x̃ ı2 = (−3.750 + 0.250α, − 3.750α + 0.250) .

The solution vector for equation A� = 0 is � = (2 f (α), 4 f (α))∗, and for any α ∈ [0, 1].
Let f (α) ∈ F ı , where F ı (depends on X̃ ı ) denotes the class of functions on the unite
interval y = f (α), such that the adequate functions x

¯
ı�(α) (resp.x̄ ı�(α)) are bounded,

non-decreasing (recp.non-increasing) and left-continuous. Hence, we have

x̃ ı�1 = (−0.125 + 1.875α + f (α), − 0.125α + 1.875 + f (α)) ,

x̃ ı�2 = (−3.75 + 0.250α + 2 f (α), − 3.750α + 0.250 + 2 f (α)) .

By formula W = Y
¯

− S
¯
Xı for each �, we have

w1(α) = −7.5 + 0.5α − (−7.5 + 0.5α) = 0,

w2(α) = −1 + 15α − (−1 + 15α) = 0.

By formula |A|� = W , we have

2θ1(α) + θ2(α) = 0,

4θ1(α) + 2θ2(α) = 0.

From the above formula, we can denote � = (h(α),−2h(α)), where h(α), α ∈ [0, 1] is an
arbitrary function on the unit interval. We need h(α) ∈ F ı�, (F ı� depends on X̃ ı�), and the
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additional necessary constrains, to obtain proper intervals, adequate to represent α-cuts of
fuzzy numbers:

θ1(α) ≤ x̄ ı1(α) − x
¯
ı
1(α)

2
= 2 − 2α

2
,

θ2(α) ≤ x̄ ı2(α) − x
¯
ı
2(α)

2
= 4 − 4α

2
.

Since θ2(α) = −2θ1(α), we have α − 1 ≤ θ1(α) ≤ 1 − α. Finally, we have X̃ = (x̃1, x̃2),
where f (α) ∈ F ı�, θ1 = h(α) ∈ F ı�, and α − 1 ≤ h(α) ≤ 1 − α, for all α ∈ [0, 1] :

x̃1 = (−0.125 + 1.875α + f (α) + h(α), − 0.125α + 1.875 + f (α) − h(α)) ,

x̃2 = (−3.75 + 0.250α + 2 f (α) − 2h(α), − 3.750α + 0.250 + 2 f (α) + 2h(α)) .

For example, for h(α) = −0.25 + 0.25α and f (α) = 1.125 + 0.125α, we have

x̃1 = (0.75 + 2.25α, − 0.25α + 3.25),

x̃2 = (−1, − 3α + 2), etc.

On the other hand, the matrices U , U∗ K , and � are:

U =

⎡
⎢⎢
0.4472 0 −0.4364 0.7801

0 −0.8944 −0.3904 −0.2182
0 −0.4472 0.7807 0.4364

0.8944 0 0.2182 −0.3904

⎤
⎥⎥⎦ ,

U∗ =

⎡
⎢⎢

0.4472 0 0 0.8944
0 −0.8944 −0.4472 0

−0.4364 −0.3904 0.7807 0.2182
0.7801 −0.2182 0.4364 −0.3904

⎤
⎥⎥⎦ ,

and

� =
[
5 0
0 5

]
, K =

[
0 −0.8

−0.8 0

]
.

According to (2.7), we have

S #© =
[
BD∗ BE∗
BE∗ BD∗

]
=

⎡
⎢⎢

0 0.1 0.05 0
0.1 0 0 0.2
0.05 0 0 0.1
0 0.2 0.1 0

⎤
⎥⎥⎦ ,

where the positive diagonal matrix B =
[
0.025 0
0 0.10

]
. Hence

X0 =

⎡
⎢⎢
x
¯
0
1(α)

x
¯
0
2(α)

−x̄01 (α)

−x̄02 (α)

⎤
⎥⎥⎦ = S #©Y = S #©

⎡
⎢⎢

−7.5 + 0.5α
−1 + 15α
7.5α − 0.5
α − 15

⎤
⎥⎥⎦ =

⎡
⎢⎢

−0.125 + 1.875α
−3.750 + 0.250α
0.125α − 1.875
3.75α − 0.250

⎤
⎥⎥⎦ .
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Since S #© is a non-negative matrix, a correlated fuzzy linear vector solution to FLS (2.1) is
X̃0 = (x̃01 , x̃

0
2 )

∗, given by

x̃01 = (−0.125 + 1.875α, − 0.125α + 1.875) ,

x̃02 = (−3.750 + 0.250α, − 3.75α + 0.250) .

All other fuzzy linear vector solutions of the FLS (2.1) can be determined by applying
Algorithm with X̃0 (We note that if S #© is non-negative, then X̃0 = X̃ ı holds).

Example 4.2 It is a 3 × 3 order consistent fuzzy linear system.

x̃1 − 3x̃3 = (−1 + α, 1 − α)

−x̃1 + 2x̃2 = (−4 + 4α, 4 − 4α)

2x̃2 − 3x̃3 = (−5 + 5α, 5 − 5α).

According to (2.4), the matrices U , U∗, � and K are:

U =
⎡
−0.6172 0.5345 −0.5774

−0.1543 −0.8018 −0.5774
−0.7715 −0.2673 0.5774

⎤
⎦ ,

U∗ =
⎡
−0.6172 −0.1543 −0.7715

0.5345 −0.8018 −0.2673
−0.5774 −0.5774 0.5774

⎤
⎦ ,

and

� =
[
4.5826 0

0 2.6458

]
, K =

[−0.5767 0.0270
0.0468 0.9989

]
.

Hence

A #© =
⎡
−0.0477 −0.1904 −0.2381

−0.1904 0.2381 0.0476
−0.2381 0.0476 −0.1905

⎤
⎦ .

According to formula Xı = SFY , we obtain the fuzzy number vector X̃ ı = (x̃ ı1, x̃
ı
2, x̃

ı
3)

∗,

x̃ ı1 = (−1.9998 + 1.9998α, − 1.9998α + 1.9998) ,

x̃ ı2 = (−1.3808 + 1.3808α, − 1.3808α + 1.3808) ,

x̃ ı3 = (−1.3810 + 1.3810α, − 1.3810α + 1.3810) .

The solution vector for equation A� = 0 is � = (6 f (α), 3 f (α), 2 f (α))∗, and for any
α ∈ [0, 1]. Let f (α) ∈ F ı , where F ı (depends on X̃ ı ) denotes the class of functions on the
unite interval y = f (α), such that the adequate functions x

¯
ı�(α) (resp.x̄ ı�(α)) are bounded,

non-decreasing (recp.non-increasing) and left-continuous. Hence, we have

x̃ ı�1 = (−1.9998 + 1.9998α + 3 f (α), − 1.9998α + 1.9998 + 3 f (α)) ,

x̃ ı�2 =
(

−1.3808 + 1.3808α + 3

2
f (α), − 1.3808α + 1.3808 + 3

2
f (α)

)
,

x̃ ı�3 = (−1.3810 + 1.3810α + f (α), − 1.3810α + 1.3810 + f (α)) .
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By formula W = Y
¯

− S
¯
Xı for each �, we have

w1(α) = 5.1428 − 5.1428α,

w2(α) = 0.7614 − 0.7614α,

w2(α) = 1.9046 − 1.9046α.

By formula |A|� = W , we have

θ1(α) + 3θ3(α) = 5.1428 − 5.1428α,

θ1(α) + 2θ2(α) = 0.7614 − 0.7614α,

2θ2(α) + 3θ3(α) = 1.9046 − 1.9046α.

From the above equation, |A|� = W has the unique solution � = (1.9998 −
1.9998α,−0.6192 + 0.6192α, 1.0477 − 1.0477α), α ∈ [0, 1]. Therefore, we obtain
X̃ = (x̃1, x̃2, x̃3), where f (α) ∈ F ı .

x̃1 = (3 f (α), 3 f (α)),

x̃2 =
(

−2 + 2α + 3

2
f (α), 2 − 2α + 3

2
f (α)

)
,

x̃3 =
(

−1

3
+ 1

3
α + f (α),

1

3
− 1

3
α + f (α)

)
.

Example 4.3 It is a 2 × 2 order inconsistent fuzzy linear system with X(α) ∈ R(S).

x̃1 + 2x̃2 = (−1 + α, 1 − α)

−x̃1 − 2x̃2 = (−2 + α, 2 − 3α).

According to (2.4), the matrices U , U∗, � and K are:

U =

⎡
⎢⎢

0.0000 −0.7071 −0.7071 −0.0000
−0.7071 0 0 0.7071
−0.7071 0 0 −0.7071
−0.0000 −0.7071 0.7071 0.0000

⎤
⎥⎥⎦ ,

U∗ =

⎡
⎢⎢

0.0000 −0.7071 −0.7071 −0.0000
−0.7071 0 0 −0.7071
−0.7071 0 0 0.7071
−0.0000 0.7071 −0.7071 0.0000

⎤
⎥⎥⎦ ,

and

� =
[
3.1623 0

0 3.1623

]
, K =

[
0.3162 0.6325
0.6325 0.3162

]
.

Hence

S #© =

⎡
⎢⎢

−0.1666 0.3332 0.3332 −0.1666
0.3332 −0.1666 −0.1666 0.3332
0.3332 −0.1666 −0.1666 0.3332

−0.1666 0.3332 0.3332 −0.1666

⎤
⎥⎥⎦ .
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By formula Xı = S #©Y , we obtain the unique least squares solution as follow:

Xı =

⎛
⎜⎜⎝

−0.5000 + 0.0001α
−0.4999 + 0.9998α
−0.4999 + 0.9998α
−0.5000 + 0.0001α

⎞
⎟⎟⎠ .

Then, a least squares fuzzy solution X̃ ı = (x̃ ı1, x̃
ı
2)

∗ as follow:

x̃ ı1 = (−0.5000 + 0.0001α, 0.4999 − 0.9998α) ,

x̃ ı2 = (−0.4999 + 0.9998α, 0.5000 − 0.0001α) .

5 Conclusion

In this paper, a new algorithm is proposed to solve the FLS whose the coefficient matrix is a
real matrix. We use the Hartwig–Spindelböck decomposition to get the Core inverse of the
coefficient matrix A, and a numerical algorithm for finding an arbitrary solution of the FLS
is established by the Core inverse of the coefficient matrix A. The method is also connected
to the original Friedman et al. approach from Friedman et al. (1998). For future work, we try
to solve “inconsistent FLS (2.1)” and discuss about their general least squares solution sets.

Acknowledgements The first author was supported partially by Innovation Project of Guangxi Graduate Edu-
cation [No.YCSW2019135], theNewCentauryNationalHundred, Thousand andTenThousandTalent Project
of Guangxi [No. GUIZHENGFA210647HAO], the School-level Research Projectin Guangxi University for
Nationalities [No. 2018MDQN005], and the Special Fund for Bagui Scholars of Guangxi [No. 2016A17].
The second author was supported partially by Guangxi Natural Science Foundation [No. 2018GXNS-
FAA138181], by the Xiangsihu Young Scholars Innovative Research Team of Guangxi University for
Nationalities [No.GUIKE AD19245148], and the Special Fund for Science and Technological Bases and Tal-
ents of Guangxi [No. 2019AC20060]. The third author was supported partially by the National Natural Science
Foundation of China [No. 61772006], Guangxi Natural Science Foundation [No. 2018GXNSFDA281023] and
the Science and Technology Major Project of Guangxi [No. AA17204096].

Compliance with ethical standards

Conflict of interest No potential conflict of interest was reported by the authors.

References

Abbasbandy S, Otadi M, Mosleh M (2008) Minimal solution of general dual fuzzy linear systems. Chaos
Solitons Fractals 37(4):1113–1124

Allahviranloo T (2003) A comment on fuzzy linear systems. Fuzzy Sets Syst 140(3):559–559
Allahviranloo T (2004) Numerical methods for fuzzy system of linear equations. Appl Math Comput

155(2):493–502
Allahviranloo T, GhanbariM (2012) On the algebraic solution of fuzzy linear systems based on interval theory.

Appl Math Model 36(11):5360–5379
Baksalary OM, Trenkler G (2010) Core inverse of matrices. Linear Multilinear Algebra 58(6):681–697
Ben-Israel A, Greville TNE (2003) Generalized inverses: theory and applications. Springer Science and Busi-

ness Media, Berlin
Berman A, Plemmons R J (1994) Nonnegative matrices in the mathematical sciences. Society for Industrial

and Applied Mathematics
Friedman M, Ming M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96(2):201–209

123



133 Page 20 of 20 H. Jiang et al.

Friedman M, Ma M, Kandel A (2003) Author’s reply: “A comment on: ‘fuzzy linear systems’ ”[Fuzzy Sets
and Systems 140 (2003), no. 3, 559; MR2035088] by T. Allahviranloo. Fuzzy Sets Syst 140(3): 561–561

Hartwig RE, Spindelböck K (1983) Matrices for which A∗ and A† commute. Linear Multilinear Algebra
14(3):241–256

Lodwick WA, Dubois D (2015) Interval linear systems as a necessary step in fuzzy linear systems. Fuzzy Sets
Syst 281:227–251

Ma H, Li T (2019) Characterizations and representations of the core inverse and its applications. Linear
Multilinear Algebra. https://doi.org/10.1080/03081087.2019.1588847
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