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Abstract
This paper is devoted to constructing Wolfe and Mond–Weir dual models for interval-valued
pseudoconvex optimization problem with equilibrium constraints, as well as providing weak
and strong duality theorems for the same using the notion of contingent epiderivatives
with pseudoconvex functions in real Banach spaces. First, we introduce the Mangasarian–
Fromovitz type regularity condition and the two Wolfe and Mond–Weir dual models to such
problem. Second, under suitable assumptions on the pseudoconvexity of objective and con-
straint functions, weak and strong duality theorems for the interval-valued pseudoconvex
optimization problem with equilibrium constraints and its Mond–Weir and Wolfe dual prob-
lems are derived. An application of the obtained results for the GA-stationary vector to such
interval-valued pseudoconvex optimization problem on sufficient optimality is presented.
We also give several examples that illustrate our results in the paper.

Keywords Interval-valued pseudoconvex optimization problem with equilibrium
constraints · Wolfe type dual · Mond–Weir type dual · Optimality conditions ·
Subdifferentials · Pseudoconvex functions

Mathematics Subject Classification 90C46 · 49J52 · 45N15

1 Introduction

Optimality condition and duality for interval-valued optimization problems with equilibrium
constraints play a crucial role in nonlinear analysis and optimization theory because of their
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fields of application. For example, these problems arise frequently in various real-world
problems such as robotics, fuzzy sets, robust optimizations, engineering designs, optimal
controls, image restoration problems, power unit problems, optimal shape design problems,
and molecular distance geometry problems, e.g., in Bot et al. (2009), Bonnel et al. (2005),
Iusem and Mohebbi (2019), López and Still (2007), Luo et al. (1996), Mangasarian (1969),
Mangasarian (1965), Mond and Weir (1981), Movahedian and Nabakhtian (2010), Pandey
andMishra (2016), Pandey andMishra (2018), Suneja andKohli (2011), Ye (2005) andWolfe
(1961) and the references therein. The interval-valued optimization problem with equilib-
rium constraints is extended from the constrained interval-valued optimization involving set,
generalized inequality and equality constraints, which belongs to the class of constrained
vector optimization problems in which the coefficients of objective and constraint functions
are taken as closed intervals. These problems may provide an alternative choice for consider-
ing uncertainty in vector optimization. Extending the concept of lower–upper (in short, LU)
optimal solution in Wu (2008), and as well as in Jayswal et al. (2011), we may receive the
notion of lower–upper optimal solution to the interval-valued optimization problems with
constraints, even in any vector optimization problem with equilibrium constraints. Based on
the fact that the class of interval-valued nonlinear programming problems has been exten-
sively studied on optimality and duality by many researchers in recent years, e.g., in Bhurjee
and Panda (2015), Bhurjee and Panda (2016), Bot and Grad (2010), Jayswal et al. (2011),
Jayswal et al. (2016), Luu and Mai (2018), More (1983), Wu (2008) and the construction
of Wolfe and Mond–Weir dual models to these has not been established yet, we continue to
study and develop these result on optimality and duality to the interval-valued optimization
problemwith equilibrium constraints and an application of the obtained results for these dual
models will be presented in the literature.

There are many tools which involving generalized derivatives have been used for
establishing optimality conditions and as well as strong and weak duality theorems in con-
strained interval-valued optimization problems. For example, under suitable assumptions
on convexificators, Jayswal et al. (2016) obtained duality and optimality conditions for the
interval-valued nonlinear programming problems without constraints in finite-dimensional
spaces. More recently, Luu and Mai (2018) gave Fritz John and Karush–Kuhn–Tucker
necessary and sufficient optimality conditions for the local lower–upper optimal solution
of interval-valued optimization problem with set, inequality and equality constraints with
locally Lipschitz functions and regular functions in the sense of Clarke. They also used
these obtained results for establishing a Mond–Weir type dual model to such problem. As
far as we known, there have not been results on strong and weak duality theorems as well
as optimality conditions for the interval-valued optimization problem with equilibrium con-
straints with pseudo-convex functions in terms of contingent epiderivatives. The notion of
contingent epiderivatives with pseudoconvex functions was first introduced in the book of
Aubin and Frankowska (1990), used after by many other authors, which these is one of the
good calculus tools for establishing optimality conditions in vector optimization (see, e.g.
Aubin 1981; Aubin and Frankowska 1990; Jahn and Khan 2003, 2013; Jahn and Rauh 1997;
Jiménez and Novo 2008; Jiménez et al. 2009; Luc 1989, 1991; Luu and Hang 2015; Luu and
Su 2018; Rodríguez-Marín and Sama 2007a, b; Su 2016, 2018; Su and Hien 2019 and the
references therein). These notion plays a key role for constructing Mond–Weir and Wolfe
dual models for the interval-valued optimization problems with equilibrium constraints, and
as well as for establishing weak and strong duality theorems for the same. Therefore, it would
be interesting to construct two Wolfe and Mond–Weir dual models for the interval-valued
optimization problems with equilibrium constraints, and investigate weak and strong duality
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theorems for the same. Besides, an application of these results for the GA-stationary vector
is also mentioned.

Motivated and inspired by these observations, our main purpose in the paper is devoted to
constructing two Mond–Weir and Wolfe dual models for the interval-valued optimization
problem with equilibrium constraints in real Banach spaces in terms of contingent epi-
derivatives with pseudoconvex functions (also called as the interval-valued pseudoconvex
optimization problem with equilibrium constraints in our paper). These epiderivatives com-
bined with pseudoconvex functions, the weak and strong duality theorems are derived. As
an application, sufficient optimality conditions for the lower–upper optimality solution (also
known as LU-optimal solutions in this paper) of interval-valued pseudoconvex optimization
problemwith equilibrium constraints are also provided. The content of this paper is organized
as follows. In Sect. 2, we give some preliminaries and recall the main notions of contingent
derivative, epiderivative and hypoderivative for extended real-valued functions and then give
the two concepts to the pseudoconvex functions in Banach spaces. Section 3 is devoted
to formulating the two Wolfe and Mond–Weir dual models for the interval-valued pseudo-
convex optimization problem with equilibrium constraints. Section 4 presents the results on
weak and strong duality theorems for the interval-valued pseudoconvex optimization problem
with equilibrium constraints and its Mond–Weir andWolfe dual models. Section 5 deals with
sufficient optimality conditions for the generalized alternatively stationary vector of interval-
valued pseudoconvex optimization problem with equilibrium constraints. Some examples
are also provided to illustrate the obtained result in the paper.

2 Preliminaries

In this section, we recall some basic concepts and results, which will be needed in what
follows. The set of real numbers (resp., natural numbers) is denoted by R (resp., N), and the
positive real number sequence (tn)n≥1 with limit 0 is expressed as tn → 0+. We use the
symbol Rm+ to denote the nonnegative orthant of the m−dimensional Euclidean space Rm,

and use the symbol intRm+ to denote the interior of Rm+. Let X be a real Banach space and X∗
topological dual space of X . We also use the symbol B(x, δ) := {x ∈ X : ‖x − x‖ < δ} to
denote the open ball of radius δ around x ∈ X . For each C ⊂ X , as usual we write clC and
intC instead of the closure and the interior of C, respectively. Let ∅ 	= C ⊂ X and x ∈ clC,

the contingent cone to the set C at the point x, is defined by

T (C, x) = {v ∈ X | ∃tn → 0+, ∃vn → v such that x + tnvn ∈ C (∀n ∈ N)}.
The normal cone to the set C at the point x, is defined by

N (C, x) = {ξ ∈ X∗ : 〈ξ, v〉 ≤ 0 ∀ v ∈ T (C, x)}.
Let us denote I the set of all closed and bounded intervals inR. For each A = [a1, a2] ∈ I,

B = [b1, b2] ∈ I, a partial ordering for intervals can be formulated as follows (see More
More 1983, for instance):

A ≤I B ⇐⇒ a1 ≤ b1, a2 ≤ b2,

A <I B ⇐⇒ A ≤I B, A 	= B.

Let F be a mapping from X into I, defined by

F(x) = [F1(x), F2(x)] (∀ x ∈ X),
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where F1 and F2 be two functions defined on X with F1(x) ≤ F2(x) (∀ x ∈ X). Let
g : X → R

m, h : X → R
n, G : X → R

p and H : X → R
p be mappings defined on X and

letC be a closed subset of X .Then g = (g1, . . . , gm); h = (h1, . . . , hn); G = (G1, . . . , G p)

and H = (H1, . . . , Hp). For the sake of convenience in the statements, one writes gIg(x)

instead of (gi )i∈Ig(x); g ≤ 0 stands for gi ≤ 0 for all i ∈ Im; h = 0 for hi = 0 for all i ∈ In

and G ≥ 0 (resp. H ≥ 0) for Gi ≥ 0 (resp. Hi ≥ 0) for every i ∈ Ip.

We consider an interval-valued pseudoconvex optimization problem with equilibrium
constraints (shortly, IOPEC) of the following form:

(I O P EC) : min F(x) = [F1(x), F2(x)] subject to x ∈ K ,

where K := {
x ∈ C : g(x) ≤ 0, h(x) = 0, G(x) ≥ 0, H(x) ≥ 0, G(x)T H(x) = 0

}

indicates the feasible set of problem (IOPEC), and T signifies the transpose.
We now introduce the notion of local LU -optimal solution to the (IOPEC).

Definition 1 A vector x ∈ K is said to be a local LU -optimal solution for the problem
(IOPEC) iff, there exists a real number δ > 0 such that there is no x ∈ K ∩ B(x, δ)

satisfying

F(x) <I F(x),

which means that F(x) ≤I F(x) and F(x) 	= F(x).

We describe next the relationship between interval-valued optimization problems and
vector optimization problems in some details. If the mapping F̃ : X → R

2 is defined
by F̃(x) = (F1(x), F2(x)) for all x ∈ X , then a local LU -optimal solution of problem
(IOPEC) will become a local weak minimum of the following vector optimization problem
with equilibrium constraints:

(MPEC) min F̃(x) subject to x ∈ K .

In fact, by the definition one finds δ > 0 such that there is no x ∈ K ∩ B(x, δ) satisfying
either Fi (x) < Fi (x) (i = 1, 2), or Fi (x) < Fi (x) and Fj (x) ≤ Fj (x) for each i, j ∈
{1, 2}, i 	= j, and so, F̃(x) − F̃(x) /∈ −intR2+ for any x ∈ K ∩ B(x, δ).

Wemention that this problem has been studied deeply, and the literature for duality results
is very very rich. Many results regarding pseudoconvexity may be found in Bot, Grad and
Wanka’s book in 2009 (see Bot et al. 2009, for instance). The difference between a local
LU-optimal solution with a local efficient solution is only the order relation.

Regarding the vector equilibrium problems, consider a bifunction F̂ : X × X → R
2 is

defined by F̂(x, y) = F̃(y)− F̃(x) for any x, y ∈ X .Then for any local LU -optimal solution
for the problem (IOPEC) will become local weakly efficient solution of the following vector
equilibrium problem with equilibrium constraints (VEPEC): finding x ∈ K such that

F̂(x, x) /∈ −intR2+, ∀ x ∈ K ∩ B(x, δ) (2.1)

for some δ > 0. We mention that if the vector x solves (2.1), then x is said to be a local
weakly efficient solution for the problem (VEPEC).

Let a set-valued mapping S from X into a real Banach space Y with Q be a partial
ordering cone in Y . For the sake of brevity, we recall the notion of domain, graph, epigraph
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and hypograph of S which will be defined, respectively, by

domS := {x ∈ X : S(x) 	= ∅},
graphS := {(x, y) ∈ X × Y : x ∈ domS, y ∈ S(x)},
epiS := {(x, y) ∈ X × Y : x ∈ domS, y ∈ S(x) + Q},
hypS := {(x, y) ∈ X × Y : x ∈ domS, y ∈ S(x) − Q}.

In the sequel, we provide the concepts of contingent derivative, epiderivative and hypoderiva-
tive, which were first introduced in the books of Aubin and Frankowska and Luc (see Aubin
and Frankowska 1990; Luc 1989 for more details), used after by many authors such as Luc
(1991), Rodríguez-Marín and Sama (2007a, b), and Su (2016, 2018); Su and Hien (2019).

Definition 2 (Aubin 1981; Aubin and Frankowska 1990; Luc 1989, 1991) The contingent
derivative of S at (x, y) ∈ graphS is the set-valued mapping Dc S(x, y) from X into Y which
defined by

graph Dc S(x, y) = T (graphS, (x, y)).

When S := s is single valued, we set Dcs(x) := Dcs(x, s(x)). In this case, it is well known
that definition 2 is of the following form (see Jiménez and Novo 2008, for instance):

Dc s(x)v =
{

y ∈ Y |∃(tn, vn) → (0+, v) such that

lim
n→∞

s(x + tnvn) − s(x)

tn
= y

}
.

Definition 3 (Aubin and Frankowska 1990) The contingent epiderivative of S at (x, y) ∈
graphS is the single-valued mapping D S(x, y) from X into Y which is defined by

epi D S(x, y) = T (epiS, (x, y)). (2.2)

When S := s is single valued, Y := R, Q := R+, the contingent epiderivative of s at
x ∈ X is denoted as D↑s(x) and given by (seeAubin andFrankowska 1990;Rodríguez-Marín
and Sama 2007a, b, for instance)

D↑s(x)u = lim inf
t→0+, u′→u

s(x + tu′) − s(x)

t
. (2.3)

The concept of contingent hypoderivatives D S(x, y) and D↓s(x)u is defined similarly. It is
not hard to check that D↓s(x) = −D↑(−s)(x), where

D↓s(x)u = lim sup
t→0+, u′→u

s(x + tu′) − s(x)

t
. (2.4)

Definition 4 (Aubin and Frankowska 1990) (Subdifferential) The contingent generalized
gradient (or subdifferential) of an extended real-valued function s defined on X at x ∈ doms
is a closed convex subset ∂↑s(x) given by

∂↑s(x) =
{
ξ ∈ X∗ : ∀ v ∈ X , 〈ξ, v〉 ≤ D↑s(x)v

}
.

Hereafter, we provide the concept of pseudo-convexity to the set-valued mapping S at the
point (x, y) ∈ graphS, which plays a crucial role in the paper. We mention that the pseudo-
convexity notion here is different. Pseudoconvex functions are a subclass of the quasi-convex
functions which are differentiable and satisfies other properties. In this paper, we define
pseudoconvexity using aweaker differentiability notion, that is, via the contingent derivative.
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Definition 5 (Aubin and Frankowska 1990) We say that S is pseudo-convex at the point
(x, y) ∈ graphS, iff

∀ x ∈ domS, S(x) ⊂ Dc S(x, y)(x − x) + y (2.5)

(i.e. if its graph is pseudo-convex at (x, y)).

Definition 6 (Aubin and Frankowska 1990) We say that an extended real-valued function
s defined on X is pseudo-convex at the point x ∈ doms, if its graph is pseudo-convex at
the point (x, s(x)). In addition, ±s are said to be pseudoconvex at x iff, both s and −s are
pseudo-convex at that point.

It is well known that an important property of pseudoconvex functions is that every local
minimum is global minimum, e.g., in Mangasarian (1965). This important property is still
true for the sense of the Definition 6. In fact, if x ∈ doms is a local minimizer of s on X , in
view of Theorem 6.1.9 in Aubin and Frankowska’s book (see Aubin and Frankowska 1990,
for instance), x is a solution to the following variational inequality:

∀ u ∈ X , 0 ≤ D↑s(x)u.

Consequently,

∀ x ∈ doms, 0 ≤ D↑s(x)(x − x). (2.6)

By observing (2.5), one has on the one side

∀ x ∈ doms, s(x) − s(x) ∈ Dcs(x)(x − x). (2.7)

On the other hand, it is well known that (see Rodríguez-Marín and Sama 2007a, b, for
instance)

Dcs(x)(x − x) ⊂ D↑s(x)(x − x) + R+,

which combined with both (2.6) and (2.7), we deduce that

∀ x ∈ doms, 0 ≤ D↑s(x)(x − x) ≤ s(x) − s(x).

By the definition, x achieves the minimum of s, as it was checked.

3 TheWolfe andMond–Weir dual models

Based on the fact that necessary and sufficient optimality conditions for the local LU -optimal
solution of constrained interval-valued optimization problems were well known in many
literature, e.g., in Bhurjee and Panda (2015, 2016), Jayswal et al. (2011, 2016), Wu (2008),
Luu and Mai (2018), and the obtained results for the local efficient solution types of vector
equilibrium problems, e.g., in Gong (2010), Luu and Hang (2015); Luu and Su (2018), our
main aim here is to construct the two Wolfe and Mond–Weir dual models for the interval-
valued pseudoconvex optimization problem with equilibrium constraints (IOPEC) in terms
of contingent epiderivatives.

Given a feasible vector x ∈ K , we denote the following index sets:

In := {1, 2, . . . , n}, n = 1, 2, . . . ;
Ig := Ig(x) = {i ∈ Im : gi (x) = 0};
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α := α(x) := {i ∈ Ip : Gi (x) = 0, Hi (x) > 0};
β := β(x) := {i ∈ Ip : Gi (x) = 0, Hi (x) = 0};
γ := γ (x) := {i ∈ Ip : Gi (x) > 0, Hi (x) = 0};
ν1 := α ∪ β; ν2 = β ∪ γ.

The set β is called the degenerate set. If the set β is null, then the vector x is said to
satisfy the strict complementarity condition. Until now, for simplicity we use the notions
λG

γ = (λG
i )i∈γ , λH

α = (λH
i )i∈α, μG

γ = (μG
i )i∈γ , μH

α = (μH
i )i∈α μ = (μh, μG , μH ) ∈

R
n+2p and λ = (λg, λh, λG , λH ) ∈ R

m+n+2p.

Definition 7 (Wolfe dual) The Wolfe dual (WIOPEC) for the interval-valued pseudoconvex
optimization problem with equilibrium constraints (IOPEC) is defined by

max
u,s,λ

[
F(u) +

∑

i∈Ig

λ
g
i gi (u) +

∑

j∈In

(λh
j − μh

j )h j (u) −
∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)]

subject to 0 ∈ s∂↑F1(u) + (1 − s)∂↑F2(u) +
∑

i∈Ig

λ
g
i ∂↑gi (u)

+
∑

j∈In

[
λh

j ∂↑h j (u) + μh
j ∂↑(−h j )(u)

]

+
∑

i∈Ip

[
λG

i ∂↑(−Gi )(u) + λH
i ∂↑(−Hi )(u)

]
+ N (C, u),

u ∈ C, 0 < s < 1, λ
g
Ig(x) ≥ 0, λh

j ≥ 0, μh
j ≥ 0, j ∈ In,

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0, i ∈ Ip,

λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0.

An example is provided as follows.

Example 1 Let X = R, C = [0, 1] and m = n = p = 1. Consider the interval-valued
mapping F : R → I is defined by F(x) = [F1(x), F2(x)] (∀ x ∈ R), where

F1(x) = −x − 1

2
, ∀ x ∈ R;

F2(x) =
{

|x | + 1
2 , if x < 0,

x2 + x + 1
2 , if x ≥ 0.

We have the following interval-valued pseudoconvex optimization problem (IOPEC) in R :
min F(x) = [F1(x), F2(x)]

subject to g(x) := x2 − x ≤ 0,

G(x) := x ≥ 0, H(x) := 0, x ∈ [0, 1].
It is evident that F(x) ∈ I for all x ∈ C . By directly calculating, Ig(x) = β = {1}, α = γ =
∅, and for all u ∈ C, one obtains on the one side ∂↑F1(u) = {−1}, ∂↑F2(u) = {2u + 1},
∂↑g(u) = {2u − 1}, ∂↑(−G)(u) = {−1} and ∂↑(−H)(u) = {0}. On the other side, the
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normal cone to the set C at the point u is given by

N (C, u) =

⎧
⎪⎨

⎪⎩

{0}, if 0 < u < 1,

R−, if u = 0,

R+, if u = 1.

Thus, theWolfe dual problem (WIOPEC) for the interval-valued pseudoconvex optimiza-
tion problem with equilibrium constraints (IOPEC) is rewritten as follows:

(WIOPEC) : max
u,s,λg

1 ,λ
G
1

[
F(u) + λ

g
1(u

2 − u) − λG
1 u

]

subject to 0 ∈ −s + (1 − s)(2u + 1) + λ
g
1(2u − 1) − λG

1 + N (C, u),

0 ≤ u ≤ 1, 0 < s < 1, λ
g
1 ≥ 0, λG

1 ≥ 0.

Definition 8 (Mond–Weir dual)
The Mond–Weir dual (MWIOPEC) for the interval-valued pseudoconvex optimization

problem with equilibrium constraints (IOPEC) is defined by

max
u,s,λ

F(u) =
[

F1(u), F2(u)
]

subject to 0 ∈ s∂↑F1(u) + (1 − s)∂↑F2(u) +
∑

i∈Ig

λ
g
i ∂↑gi (u)

+
∑

j∈In

[
λh

j ∂↑h j (u) + μh
j ∂↑(−h j )(u)

]

+
∑

i∈Ip

[
λG

i ∂↑(−Gi )(u) + λH
i ∂↑(−Hi )(u)

]
+ N (C, u),

gIg(x)(u) ≥ 0, hIn (u) = 0, Gν1(u) ≤ 0, Hν2(u) ≤ 0,

u ∈ C, 0 < s < 1, λ
g
Ig(x) ≥ 0, λh

j ≥ 0, μh
j ≥ 0, j ∈ In,

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0, i ∈ Ip,

λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0.

The forthcoming example will be provided to illustrate theMond–Weir dual (MWIOPEC)
for the problem (IOPEC).

Example 2 Consider the interval-valued pseudoconvex optimization problem with equilib-
rium problem (IOPEC) is defined as in Example 1. Similarly, we also have the following
Mond–Weir dual (MWIOPEC) for the problem (IOPEC):

(MWIOPEC) : max
u,s,λg

1 ,λ
G
1

F(u) =
[

F1(u), F2(u)
]

subject to 0 ∈ −s + (1 − s)(2u + 1) + λ
g
1(2u − 1) − λG

1 + N (C, u),

u2 − u ≥ 0, u ≤ 0, 0 ≤ u ≤ 1,

0 < s < 1, λ
g
1 ≥ 0, λG

1 ≥ 0.
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4 Duality theorems

This section presents strong and weak duality theorems for the interval-valued pseudoconvex
optimization problem with equilibrium constraints (IOPEC) and its Wolfe and Mond–Weir
dual models, say (WIOPEC) and (MWIOPEC), in terms of contingent epiderivatives with
pseudoconvex functions in Banach spaces.

For the sake of convenience in the statements, for each feasible vector x ∈ K , we define
the following index sets:

α+
μ := {i ∈ α : μG

i > 0};
γ +
μ := {i ∈ γ : μH

i > 0};
βG

μ := {i ∈ β : μH
i = 0, μG

i > 0};
βH

μ := {i ∈ β : μG
i = 0, μH

i > 0};
Lμ := α+

μ ∪ γ +
μ ∪ βG

μ ∪ βH
μ .

A weak duality theorem for the interval-valued pseudoconvex optimization problem with
equilibrium constraints (IOPEC) and its Wolfe dual (WIOPEC) will be derived.

Theorem 1 (Weak duality) Let x and (u, s, λ) be the feasible vectors to the primal problem
(IOPEC) and the dual problem (WIOPEC), respectively. Suppose that

(i) C is convex and Lμ = ∅;
(ii) The functions F1, F2, gi (i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are

pseudoconvex at u.

Then for any x is feasible vector to the primal problem (IOPEC), we have

F(x) 	<I F(u) +
∑

i∈Ig(x)

λ
g
i gi (u) +

∑

j∈In

(λh
j − μh

j )h j (u) −
∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
.

Proof By the initial assumptions, one has the following system:

gi (x) ≤ 0 ∀ i ∈ Ig(x), (4.1)

h j (x) = 0 ∀ j ∈ In, (4.2)

−Gi (x) ≤ 0 ∀ i ∈ Ip, (4.3)

−Hi (x) ≤ 0 ∀ i ∈ Ip. (4.4)

It follows from the convexity of C that x − u ∈ T (C, u). Since (u, s, λ) is a feasible of
(WIOPEC), there exist ξi ∈ ∂↑Fi (u) (i = 1, 2), ξ

g
i ∈ ∂↑gi (u) (i ∈ Ig), ξ h

j ∈ ∂↑h j (u)

( j ∈ In), ηh
j ∈ ∂↑(−h j )(u) ( j ∈ In), ξG

i ∈ ∂↑(−Gi )(u) (i ∈ Ip) and ξ H
i ∈ ∂↑(−Hi )(u)

(i ∈ Ip) such that for each ξs := sξ1 + (1 − s)ξ2, one obtains
〈

ξs +
∑

i∈Ig

λ
g
i ξ

g
i +

∑

j∈In

(
λh

j ξ
h
j + μh

j η
h
j

) +
∑

i∈Ip

(
λG

i ξG
i + λH

i ξ H
i

)
, x − u

〉

≥ 0. (4.5)

Because Fi (i=1,2) is a pseudoconvex function at u, which equivalents its graph is pseudo-
convex at (u, Fi (u)), i.e.

∀ y ∈ domFi , Fi (y) ∈ Dc Fi (u)(y − u) + Fi (u). (4.6)
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By taking y = x in (4.6), we deduce that

F1(x) − F1(u) ∈ Dc F1(u)(x − u) ⊂ D↑F1(u)(x − u) + R+, (4.7)

F2(x) − F2(u) ∈ Dc F1(u)(x − u) ⊂ D↑F2(u)(x − u) + R+. (4.8)

Therefore,

F1(x) − F1(u) ≥ D↑F1(u)(x − u) ≥ 〈ξ1, x − u〉 , (4.9)

F2(x) − F2(u) ≥ D↑F2(u)(x − u) ≥ 〈ξ2, x − u〉 . (4.10)

In the same way as above, we also obtain the following results:

gi (x) − gi (u) ≥ D↑gi (u)(x − u) ≥ 〈
ξ

g
i , x − u

〉 ∀ i ∈ Ig, (4.11)

h j (x) − h j (u) ≥ D↑h j (u)(x − u) ≥
〈
ξ h

j , x − u
〉

∀ j ∈ In, (4.12)

(−h j )(x) − (−h j )(u) ≥ D↑(−h j )(u)(x − u) ≥
〈
ηh

j , x − u
〉

∀ j ∈ In, (4.13)

(−Gi )(x) − (−Gi )(u) ≥ D↑(−Gi )(u)(x − u) ≥
〈
ξG

i , x − u
〉

∀ i ∈ ν1, (4.14)

(−Hi )(x) − (−Hi )(u) ≥ D↑(−Hi )(u)(x − u) ≥
〈
ξ H

i , x − u
〉

∀ i ∈ ν2. (4.15)

If Lμ = ∅ then multiplying (4.9)–(4.15) by s > 0, 1 − s > 0, λ
g
i ≥ 0 (i ∈ Ig), λh

j > 0

( j ∈ In), μh
j > 0 ( j ∈ In), λG

i > 0 (i ∈ ν1), λH
i > 0 (i ∈ ν2), respectively, and adding

(4.9)–(4.15), it holds that

s(F1(x) − F1(u)) + (1 − s)(F2(x) − F2(u)) +
∑

i∈Ig(x)

λ
g
i gi (x) −

∑

i∈Ig(x)

λ
g
i gi (u)

+
∑

j∈In

λh
j h j (x) −

∑

j∈In

λh
j h j (u) −

∑

j∈In

μh
j h j (x) +

∑

j∈In

μh
j h j (u)

−
∑

i∈Ip

λG
i Gi (x) +

∑

i∈Ip

λG
i Gi (u) −

∑

i∈Ip

λH
i Hi (x) +

∑

i∈Ip

λH
i Hi (u)

≥
〈

ξs +
∑

i∈Ig

λ
g
i ξ

g
i +

∑

j∈In

(
λh

j ξ
h
j + μh

j η
h
j

) +
∑

i∈Ip

(
λG

i ξG
i + λH

i ξ H
i

)
, x − u

〉

. (4.16)

In fact, the left-hand side of the inequality (4.16) is greater than or equal to

(
s D↑F1(u) + (1 − s)D↑F2(u) +

∑

i∈Ig(x)

λ
g
i D↑gi (u) +

∑

j∈In

λh
j D↑h j (u)

)
(x − u)

+
( ∑

j∈In

μh
j D↑(−h j )(u) +

∑

i∈Ip

λG
i D↑(−Gi )(u) +

∑

i∈Ip

λH
i D↑(−Hi )(u)

)
(x − u)

≥ 〈ξs, x − u〉 +
∑

i∈Ig(x)

λ
g
i

〈
ξ

g
i , x − u

〉 +
∑

j∈In

λh
j

〈
ξ h

i , x − u
〉

+
∑

j∈In

μh
j

〈
ηh

j , x − u
〉
+

∑

i∈Ip

λG
i

〈
ξG

i , x − u
〉
+

∑

i∈Ip

λH
i

〈
ξ H

i , x − u
〉
,
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while the right-hand side of the preceding obtained inequality is equal to the right-hand side
of the inequality (4.16), it means that (4.16) is valid. This combined with (4.5) yields that

s(F1(x) − F1(u)) + (1 − s)(F2(x) − F2(u)) +
∑

i∈Ig(x)

λ
g
i gi (x) −

∑

i∈Ig(x)

λ
g
i gi (u)

+
∑

j∈In

λh
j h j (x) −

∑

j∈In

λh
j h j (u) −

∑

j∈In

μh
j h j (x) +

∑

j∈In

μh
j h j (u)

−
∑

i∈Ip

λG
i Gi (x) +

∑

i∈Ip

λG
i Gi (u) −

∑

i∈Ip

λH
i Hi (x) +

∑

i∈Ip

λH
i Hi (u) ≥ 0. (4.17)

Combining (4.1)–(4.4), we have

M :=
∑

i∈Ig(x)

λ
g
i gi (x) +

∑

j∈In

λh
j h j (x) −

∑

j∈In

μh
j h j (x) −

∑

i∈Ip

λG
i Gi (x) −

∑

i∈Ip

λH
i Hi (x) ≤ 0.

This along with (4.17) leads to

s F1(x) + (1 − s)F2(x) ≥ s F1(u) + (1 − s)F2(u) +
∑

i∈Ig(x)

λ
g
i gi (u)

+
∑

j∈In

(λh
j − μh

j )h j (u) −
∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
. (4.18)

Setting θh
j = λh

j − μh
j for j ∈ In . Let us see that

F(x) 	<I F(u) +
∑

i∈Ig

λ
g
i gi (u) +

∑

j∈In

θh
j h j (u) −

∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
. (4.19)

Indeed, if (4.19) does not true, then there would be

F(x) <I F(u) +
∑

i∈Ig

λ
g
i gi (u) +

∑

j∈In

θh
j h j (u) −

∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
.

By the definition, we have
{

F1(x) < F1(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

F2(x) < F2(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

or
{

F1(x) < F1(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

F2(x) ≤ F2(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

or
{

F1(x) ≤ F1(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

F2(x) < F2(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
.

Since s, 1 − s ∈]0, 1[ and s + (1 − s) = 1, the following strict inequality holds:

s F1(x) + (1 − s)F2(x) < s F1(u) + (1 − s)F2(u) +
∑

i∈Ig(x)

λ
g
i gi (u)

+
∑

j∈In

θh
j h j (u) −

∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,
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which contradicts (4.18). So we have checked that (4.19) holds, as it was shown. ��
To obtain strong duality theorem for the Wolfe dual (WIOPEC) and the interval-valued
pseudoconvex optimization problemwith equilibriumconstraints (IOPEC),we also introduce
next the Mangasarian–Fromovitz type regularity condition (RCt ) : there exist t ∈ {1, 2},
v0 ∈ T (C, x) and positive real numbers ag

i (i ∈ Ig(x)), aG
i (i ∈ ν1), aH

i (i ∈ ν2), bk

(k ∈ {1, 2}, k 	= t) such that

(i)
〈
ξ

g
i , v0

〉 ≤ −ag
i (∀ ξ

g
i ∈ ∂↑gi (x), ∀ i ∈ Ig(x));〈

ξG
i , v0

〉 ≤ −aG
i (∀ ξG

i ∈ ∂↑(−Gi )(x), ∀ i ∈ ν1);〈
ξ H

i , v0
〉 ≤ −aH

i (∀ ξ H
i ∈ ∂↑(−Hi )(x), ∀ i ∈ ν2);

〈ξk, v0〉 ≤ −bk (∀ ξk ∈ ∂↑Fk(x), k ∈ {1, 2}, k 	= t);

(ii)
〈
ξ h

i , v0
〉 = 0 (∀ ξ h

j ∈ ∂↑h j (x), ∀ j ∈ In);
〈
ηh

i , v0
〉 = 0 (∀ ηh

j ∈ ∂↑(−h j )(x), ∀ j ∈ In).

Hereafter, we give a strong duality theorem for the problems (IOPEC) and (WIOPEC).

Theorem 2 (Strong duality) Let x ∈ K be a local LU-optimal solution to the interval-
valued pseudoconvex optimization problem (IOPEC). Suppose that the functions F1, F2, gi

(i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are pseudo-convex at x . If
dimX < +∞, C is convex, Lμ = ∅ and the regularity condition of the (RCt ) type holds

(for t = 1, 2). Then there exist s ∈ R and λ =
(
λ

g
, λ

h
, λ

G
, λ

H
)

∈ R
m+n+2p such that

(x, s, λ) is a LU- optimal solution of the dual (WIOPEC) and the respective objective values
are equal.

Proof Since x is a local LU-optimal solution of (IOPEC), there exists a real number δ > 0
such that there is no x ∈ K ∩ B(x, δ) satisfying

{
F1(x) < F1(x)

F2(x) < F2(x)
or

{
F1(x) < F1(x)

F2(x) ≤ F2(x)
or

{
F1(x) ≤ F1(x)

F2(x) < F2(x)
.

We consider the mappings F̃(x) = (F1(x), F2(x)) and F̂x (x) = F̂(x, x) = F̃(x) − F̃(x)

for all x ∈ X . It is evident that

F̂x (x) = (
F1(x) − F1(x), F2(x) − F2(x)

)
,

F̃(x) − F̃(x) /∈ −intR2+ (∀ x ∈ K ∩ B(x, δ)).

On the one hand, the vector x is a local weakly minimum to the following problem (MPEC):

min F̃(x) s.t . x ∈ K .

Following Gong’s result Gong (2010), one can find a continuous positively homogeneous
subadditive function f on R

2 such that

a − b ∈ intR2+ �⇒ f (a) < f (b),

f0 F̂x (x) ≥ f0 F̂x (x) = 0, ∀ x ∈ K ∩ B(x, δ).

It can be easily seen that

∂↑ F̂i,x (x) = ∂↑Fi (x), i = 1, 2.
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On the other hand, using the continuity and subadditively of f , it holds that

∂↑ f0
(
F̂x (x)

) = {ξ ∈ R
2 : ∀ a ∈ R

2, 〈ξ, a〉 ≤ f (a)}.
Notice that the contingent generalized gradients of objective and constraint functions in
(IOPEC) at x are closed convex subsets and further X is finite-dimensional space. Arguing
similarly as for proving Theorem 4.1 and Corollary 3.2 (see Luu andMai 2018, for instance),
invoking the set ∂ F̂i,x (x) instead of ∂↑ F̂i,x (x) (i = 1, 2), and the set ∂∗gi (x) (i ∈ I (x))

stands for the sets ∂↑gi (x) (i ∈ Ig(x)), ∂↑(−Gi )(x) (i ∈ ν1) and ∂↑(−Hi )(x) (i ∈ ν2), there
exists the feasible vector (s, λ, μ) ∈ R

1+m+2n+4p,where s ∈ [0, 1], λ = (λg, λh, λG , λH ) ∈
R

m+n+2p and μ = (μh, μG , μH ) ∈ R
n+2p satisfying

0 ∈ s∂↑F1(x) + (1 − s)∂↑F2(x) +
∑

j∈In

[
λh

j ∂↑h j (x) + μh
j ∂↑(−h j )(x)

]

+
∑

i∈Ig

λ
g
i ∂↑gi (x) +

∑

i∈Ip

[
λG

i ∂↑(−Gi )(x) + λH
i ∂↑(−Hi )(x)

]
+ N (C, x),

0 ≤ s ≤ 1, λ
g
Ig(x) ≥ 0, λh

j ≥ 0, μh
j ≥ 0, j ∈ In,

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0, i ∈ Ip,

λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0.

By reasons of similarly, we proof only the case s < 1 under the regularity condition of the
(RCt ) type (for t = 1, 2). Indeed, we may assume that this assertion holds for s = 1, or
equivalently,

0 ∈ ∂↑F1(x) +
∑

i∈Ig

λ
g
i ∂↑gi (x) +

∑

j∈In

[
λh

j ∂↑h j (x) + μh
j ∂↑(−h j )(x)

]

+
∑

i∈Ip

[
λG

i ∂↑(−Gi )(x) + λH
i ∂↑(−Hi )(x)

]
+ N (C, x).

For t = 2, there exists v0 ∈ T (C, x) and there exist positive real numbers b1, ag
i (i ∈ Ig(x)),

aG
i (i ∈ ν1), aH

i (i ∈ ν2) satisfying

〈ξ1, v0〉 ≤ −b1(∀ ξ1 ∈ ∂↑F1(x));
〈
ξ

g
i , v0

〉 ≤ −ag
i (∀ ξ

g
i ∈ ∂↑gi (x), ∀ i ∈ Ig(x));

〈
ξG

i , v0

〉
≤ −aG

i (∀ ξG
i ∈ ∂↑(−Gi )(x), ∀ i ∈ ν1);

〈
ξ H

i , v0

〉
≤ −aH

i (∀ ξ H
i ∈ ∂↑(−Hi )(x), ∀ i ∈ ν2);

〈
ξ h

i , v0

〉
= 0(∀ ξ h

j ∈ ∂↑h j (x), ∀ j ∈ In);
〈
ηh

i , v0

〉
= 0(∀ ηh

j ∈ ∂↑(−h j )(x), ∀ j ∈ In).

In other words, we can find the linear functions defined on X such as ξ1 ∈ ∂↑F1(x), ξ
g
i ∈

∂↑gi (x) (i ∈ Ig(x)), ξ h
j ∈ ∂↑h j (x) ( j ∈ In), ηh

j ∈ ∂↑(−h j )(x) ( j ∈ In), ξG
i ∈ ∂↑(−Gi )(x)

(i ∈ Ip), and ξ H
i ∈ ∂↑(−Hi )(x) (i ∈ Ip) satisfying

〈

ξ1 +
∑

i∈Ig

λ
g
i ξ

g
i +

∑

j∈In

(
λh

j ξ
h
j + μh

j η
h
j

) +
∑

i∈Ip

(
λG

i ξG
i + λH

i ξ H
i

)
, v0

〉

≥ 0. (4.20)
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Furthermore, we also have
〈

ξ1 +
∑

i∈Ig

λ
g
i ξ

g
i +

∑

j∈In

(
λh

j ξ
h
j + μh

j η
h
j

) +
∑

i∈Ip

(
λG

i ξG
i + λH

i ξ H
i

)
, v0

〉

≤ −
(

b1 +
∑

i∈Ig

λ
g
i ag

i +
∑

i∈Ip

(
λG

i aG
i + λH

i aH
i

))
< 0,

which conflicts with (4.20). So the inequality 0 < s < 1 holds true. To finish the proof of
theorem, we set s = s, λ = λ, μ = μ, it results that

0 ∈ s∂↑F1(x) + (1 − s)∂↑F2(x) +
∑

j∈In

[
λ

h
j ∂↑h j (x) + μh

j ∂↑(−h j )(x)
]

+
∑

i∈Ig

λ
g
i ∂↑gi (x) +

∑

i∈Ip

[
λ

G
i ∂↑(−Gi )(x) + λ

H
i ∂↑(−Hi )(x)

]
+ N (C, x),

0 < s < 1, λ
g
Ig(x) ≥ 0, λ

h
j ≥ 0, μh

j ≥ 0, j ∈ In,

λ
G
i ≥ 0, λ

H
i ≥ 0, μG

i ≥ 0, μH
i ≥ 0, i ∈ Ip,

λ
G
γ = λ

H
α = μG

γ = μH
α = 0, ∀ i ∈ β, μG

i = 0, μH
i = 0.

Taking into account the definition of (WIOPEC), we shall be allowed to say that (x, s, λ) is
a feasible vector of that problem. By virtue of Theorem 1, for θh

j = λh
j − μh

j ( j ∈ In), the
following result holds:

F(x) 	<I F(u) +
∑

i∈Ig(x)

λ
g
i gi (u) +

∑

j∈In

θh
j h j (u) −

∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
(4.21)

for any feasible solution (u, s, λ) for theWolfe dual (WIOPEC). Since i ∈ Ig(x), gi (x) = 0,
j ∈ In, h j (x) = 0 and i ∈ ν1, Gi (x) = 0, i ∈ ν2, Hi (x) = 0, it holds that

s F1(x) + (1 − s)F2(x) = s F1(x) + (1 − s)F2(x) +
∑

i∈Ig(x)

λ
g
i gi (x)

+
∑

j∈In

(λ
h
j − μh

j )h j (x) −
∑

i∈Ip

(
λ

G
i Gi (x) + λ

H
i Hi (x)

)
. (4.22)

This along with (4.21)–(4.22) yields that

s F1(x) + (1 − s)F2(x) +
∑

i∈Ig(x)

λ
g
i gi (x) +

∑

j∈In

(λ
h
j − μh

j )h j (x)

−
∑

i∈Ip

(
λ

G
i Gi (x) + λ

H
i Hi (x)

)

≥ s F1(u) + (1 − s)F2(u) +
∑

i∈Ig(x)

λ
g
i gi (u) +

∑

j∈In

(λh
j − μh

j )h j (u)

−
∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
.

Thus, the vector (x, s, λ) is an optimal solution to the Wolfe dual (WIOPEC) and, moreover,
the respective objective values are equal, which completes the proof. ��

123



Duality results for interval-valued pseudoconvex optimization problem… Page 15 of 24 127

For the next result considering the objective and constraints functions are affine, we obtain a
strong duality theorem for the problem (IOPEC) and the Wolfe dual (WIOPEC) as follows.

Corollary 1 (Strong duality) Let x ∈ K be a local LU-optimal solution to the interval-
valued pseudoconvex optimization problem (IOPEC). Assume that the functions F1, F2, gi

(i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are affine. If dimX < +∞, C
is convex, Lμ = ∅ and the regularity condition of the (RCt ) type holds (for t = 1, 2). Then

there exist s ∈ R and λ =
(
λ

g
, λ

h
, λ

G
, λ

H
)

∈ R
m+n+2p such that (x, s, λ) is a LU- optimal

solution of the dual (WIOPEC) and the respective objective values are equal.

Proof Since the objective and constraint functions defined on X are affine, which entails
that all them are pseudo-convex at x . By directly applying Theorem 2, we get the desired
conclusion. ��
Remark 1 If (x, s, λ) is a LU-optimal solution to the problem (WIOPEC), then there is no
(u, s, λ) feasible solution for the problem (WIOPEC) such that
{

F1(x) < F1(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

F2(x) < F2(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

or
{

F1(x) < F1(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

F2(x) ≤ F2(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

or
{

F1(x) ≤ F1(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
,

F2(x) < F2(u) + ∑
i∈Ig

λ
g
i gi (u) + ∑

j∈In
θh

j h j (u) − ∑
i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
.

We next give an example to illustrate the strong duality theorem for the problem (IOPEC)
and its Wolfe dual problem (WIOPEC).

Example 3 Let X = R, C = [0, 1] and m = n = p = 1. Let F : R → I be defined as
F(x) = [F1(x), F2(x)] (∀ x ∈ R), where

F1(x) = −x − 1, ∀ x ∈ R,

F2(x) =
{

−x + 1, if x < 0,

x2 − x + 1, if x ≥ 0.

Consider the following interval-valued optimization problem (IOPEC) in R :
(I O P EC) : min F(x) = [F1(x), F2(x)]
subject to g(x) := x2 − 2x ≤ 0,

G(x) := 3x ≥ 0,

H(x) := −x2 + x ≥ 0,

G(x)H(x) := 3x(−x2 + x) = 0, x ∈ [0, 1].
It can be easily seen that F1(x) ≤ F2(x), and so, F(x) ∈ I for all x ∈ C . By direct
computation, the feasible set of problem (IOPEC) is K = {0, 1}. Obviously, for a real
number 0 < δ < 1, there is no x ∈ K ∩ B(0, δ) such that F(x) <I F(x), it means that
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x = 0 is a local LU-optimal solution for the problem (IOPEC). Invoking the concept of
contingent cone T (C, u) with u ∈ C, it holds that

T (C, u) =

⎧
⎪⎨

⎪⎩

R, if 0 < u < 1

R+, if u = 0

R−, if u = 1

�⇒ N (C, u) =

⎧
⎪⎨

⎪⎩

{0}, if 0 < u < 1,

R−, if u = 0,

R+, if u = 1.

In other words, let u ∈ C be arbitrary, it is not difficult to see that ∂↑F1(u) = {−1},
∂↑F2(u) = {2u −1}, ∂↑g(u) = {2(u −1)}, ∂↑(−G)(u) = {−3} and ∂↑(−H)(u) = {2u −1}.
We thus conclude that the functions F1, F2, g1, ±h1, −G1 and −H1 are pseudo-convex at
x in the sense of Definition 6. Further, one gets Ig(x) = β = {1}, α = γ = ∅, C is
convex, dim(X) = 1 < +∞, Lμ = ∅ and the regularity condition of the (RCt ) type holds
for t = 1, 2. Then the Wolfe dual problem (WIOPEC) for the interval-valued optimization
problem with equilibrium constraints (IOPEC) is given as

(WIOPEC) : max
u,s,λg

1 ,λ
G
1

[
F(u) + λ

g
1(u

2 − 2u) − 3λG
1 u − λH

1 (−u2 + u)
]

subject to 0 ∈ −s + (1 − s)(2u − 1) + 2λg
1(u − 1) − 3λG

1 + λH
1 (2u − 1) + N (C, u),

0 ≤ u ≤ 1, 0 < s < 1, λ
g
1 ≥ 0, λG

1 ≥ 0, λH
1 ≥ 0.

Applying Theorem 2 above, we will be allowed to conclude that there exist s ∈ R and

λ =
(
λ

g
1, λ

h
1, λ

G
1 , λ

H
1

)
∈ R

4 such that (x, s, λ) is a LU- optimal solution of the Wolfe dual

problem (WIOPEC) and the respective objective values are equal.

In what follows, a weak duality theorem for the Mond–Weir dual problem (MWIOPEC)
and the interval-valued pseudoconvex optimization problem with equilibrium constraints
(IOPEC) will be stated as follows.

Theorem 3 (Weak duality) Let x and (u, s, λ) be the feasible vectors to the interval-valued
pseudoconvex optimization problem (IOPEC) and the dual problem (MWIOPEC), respec-
tively. Assume that

(i) C is convex and Lμ = ∅;
(ii) The functions F1, F2, gi (i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are

pseudo-convex at u.

Then for any x is feasible vector to the primal problem (IOPEC), we have

F(x) 	<I F(u).

Proof Let x be a feasible vector to the interval-valued pseudoconvex optimization problem
with equilibrium constraints (IOPEC). By an argument analogous to that used for the proof
of Theorem 1, it holds that

s F1(x) + (1 − s)F2(x) ≥ s F1(u) + (1 − s)F2(u) +
∑

i∈Ig(x)

λ
g
i gi (u)

+
∑

j∈In

(λh
j − μh

j )h j (u) −
∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

)
. (4.23)

Since gi (u) ≥ 0 (i ∈ Ig(x)), h j (u) = 0 ( j ∈ In), Gi (u) ≤ 0 (i ∈ ν1), Hi (u) ≤ 0
(i ∈ ν2), λ

g
i ≥ 0 (i ∈ Ig(x)), λG

i ≥ 0, λH
i ≥ 0, μG

i ≥ 0, μH
i ≥ 0, i ∈ Ip, λG

γ = λH
α =
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μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0, μH

i = 0, it results in
∑

i∈Ig(x)

λ
g
i gi (u) +

∑

j∈In

(λh
j − μh

j )h j (u) −
∑

i∈Ip

(
λG

i Gi (u) + λH
i Hi (u)

) ≥ 0. (4.24)

Combining (4.23)–(4.24), we obtain that

s F1(x) + (1 − s)F2(x) ≥ s F1(u) + (1 − s)F2(u) with 0 < s < 1. (4.25)

Note that (4.25) is equivalent to

s
(
F1(x) − F1(u)

) + (1 − s)
(
F2(x) − F2(u)

) ≥ 0 with 0 < s < 1. (4.26)

Therefore, the following systems are impossible:
{

F1(x) < F1(u)

F2(x) < F2(u)
;

{
F1(x) < F1(u)

F2(x) ≤ F2(u)
;

{
F1(x) ≤ F1(u)

F2(x) < F2(u)
.

This means that F(x) 	<I F(u), which completes the proof. ��
Hereafter, we shall derive a strong duality theorem for the problem (IOPEC) and its

Mond–Weir dual problem (MWIOPEC).

Theorem 4 (Strong duality) Let x ∈ K be a local LU-optimal solution to the interval-
valued pseudoconvex optimization problem (IOPEC). Assume that the functions F1, F2, gi

(i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are pseudo-convex at x . If
dimX < +∞, C is convex, Lμ = ∅ and the regularity condition of the (RCt ) type holds

(for t = 1, 2) then there exist s ∈ R, λ =
(
λ

g
, λ

h
, λ

G
, λ

H
)

∈ R
m+n+2p such that (x, s, λ)

is a LU- optimal solution of the dual (MWIOPEC) and the respective objective values are
equal.

Proof By a similar argument as in the proof of Theorem 2 with observing Theorem 3, we
get the desired conclusions. ��
Remark 2 According to Corollary 1, we see that the obtained result in Theorem 4 is still true
in the sense the functions F1, F2, gi (i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi

(i ∈ ν2) are affine.

We next give some examples to illustrate the above-obtained result as follows.

Example 4 Consider the interval-valued pseudoconvex optimization problem with equilib-
rium constraints (IOPEC) is given as in Example 3. Then the Mond–Weir dual (MWIOPEC)
for the problem (IOPEC) is rewritten as follows:

(MW I O P EC) : max
u,s,λg

1 ,λ
G
1

F(u) =
[

F1(u), F2(u)
]

subject to 0 ∈ −s + (1 − s)(2u − 1) + 2λg
1(u − 1)

− 3λG
1 + λH

1 (2u − 1) + N (C, u),

u2 − 2u ≥ 0, u ≤ 0, −u2 + u ≤ 0,

0 ≤ u ≤ 1, 0 < s < 1,

λ
g
1 ≥ 0, λG

1 ≥ 0, λH
1 ≥ 0.
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Thanks to the obtained result ofTheorem4, there exist s ∈ R andλ =
(
λ

g
1, λ

h
1, λ

G
1 , λ

H
1

)
∈ R

4

such that (x, s, λ) is a LU- optimal solution of problem (MWIOPEC) and the respective
objective values are equal. In fact, in this setting, we can verify directly that u = 0, i.e.,
u ≡ x, the normal cone to C at u has form N (C, 0) = −R+, which proves that

1 + 2λg
1 + 3λG

1 + λH
1 ≤ 0.

They mean that there is no (û, ŝ, λ̂) feasible vector for the problem (MWIOPEC) such that
F(u) <I F(û), and Theorem 4 is, therefore, checked completely.

Example 5 Let X = R
2, C = [0, 1] × [0, 1], x = (0, 0), m = n = p = 1, and the interval-

valued mapping F : R → I be defined by F(x) = [F1(x), F2(x)] ∀ x = (x1, x2) ∈ R
2,

where

F1(x) =
{

x1 − x2 − 1, if x1 ≤ 0,

−x1 − x2 + 1, if x1 > 0,

F2(x) =

⎧
⎪⎨

⎪⎩

−x2 + 1, if 0 < x1 ≤ 1,

−x2, if x1 > 1,

−x2 − 1, if x1 ≤ 0.

Consider the following interval-valued pseudoconvex optimization problem (IOPEC) inR2 :

(IOPEC) : min F(x) = [F1(x), F2(x)]
subject to g(x) := x22 − x2 ≤ 0,

G(x) := x1 + x2 ≥ 0,

H(x) := −x1 + x2 ≥ 0,

G(x)H(x) := (x1 + x2)(−x1 + x2) = 0,

x = (x1, x2) ∈ [0, 1] × [0, 1].

It is obvious that F1(x) ≤ F2(x), and so, F(x) ∈ I for all x ∈ C . By directly calculating,
the feasible set of problem (IOPEC) is of the form K = {(a, a) ∈ R : 0 ≤ a ≤ 1}. Taking
δ = 1

2 , there is no x ∈ K ∩ B(0, δ) such that F(x) <I F(x), which means that the vector
x = (0, 0) is a local LU-optimal solution for the problem (IOPEC). By making use of the
concept of contingent cone T (C, u) for any u = (u1, u2) ∈ C,

T (C, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R × R, if 0 < u1 < 1, 0 < u2 < 1,

R × R−, if 0 < u1 < 1, u2 = 1,

R × R+, if 0 < u1 < 1, u2 = 0,

R− × R, if u1 = 1, 0 < u2 < 1,

R− × R−, if u1 = 1, u2 = 1,

R− × R+, if u1 = 1, u2 = 0,

R+ × R, if u1 = 0, 0 < u2 < 1,

R+ × R−, if u1 = 0, u2 = 1,

R+ × R+, if u1 = 0, u2 = 0.
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By the definition of normal cone N (C, u), one obtains on the one hand

N (C, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 0)}, if 0 < u1 < 1, 0 < u2 < 1,

{0} × R+, if 0 < u1 < 1, u2 = 1,

{0} × R−, if 0 < u1 < 1, u2 = 0,

R+ × {0}, if u1 = 1, 0 < u2 < 1,

R+ × R+, if u1 = 1, u2 = 1,

R+ × R−, if u1 = 1, u2 = 0,

R− × {0}, if u1 = 0, 0 < u2 < 1,

R− × R+, if u1 = 0, u2 = 1,

R− × R−, if u1 = 0, u2 = 0.

On the other hand, by directly calculating for any u = (u1, u2) ∈ C, ∂↑F1(u1, u2) =
{(−1,−1)} and ∂↑F1(0, u2) = {(1,−1)}, ∂↑F2(u) = {(0,−1)}, ∂↑g(u) = {(0, 2u2 − 1)},
∂↑(−G1)(u) = {(−1,−1)} and ∂↑(−H1)(u) = {(1,−1)}. It is not hard to verify that the
mappings F1, F2, g1, −G1 and −H1 are pseudo-convex at x in the sense of Definition 6.
Further, one also gets Ig(x) = β = {1}, α = γ = ∅, C is convex, dim(X) = 2 < +∞,

Lμ = ∅ and the regularity condition of the (RCt ) type holds for t = 1, 2. Thus, the Mond–
Weir dual problem (MWIOPEC) for the interval-valued pseudoconvex optimization problem
(IOPEC) is expressed as

(WIOPEC) : max
u,s,λg

1 ,λ
G
1

F(u) =
[

F1(u), F2(u)
]

subject to 0 ∈ s∂↑F1(u) + (1 − s)∂↑F1(u) + λ
g
1∂↑g1(u) + λG

1 ∂↑(−G1)(u)

+ λH
1 ∂↑(−G2)(u) + N (C, u),

u2
2 − u2 ≥ 0, u1 + u2 ≤ 0, −u1 + u2 ≤ 0,

0 ≤ ui ≤ 1, i = 1, 2, 0 < s < 1,

λ
g
1 ≥ 0, λG

1 ≥ 0, λH
1 ≥ 0.

Thanks to the obtained result of Theorem 4, we shall be allowed to conclude that there exist

s ∈ R and λ =
(
λ

g
1, λ

h
1, λ

G
1 , λ

H
1

)
∈ R

4 such that (x, s, λ) is a LU- optimal solution of the

Mond–Weir dual (MWIOPEC) and the respective objective values are equal.
In fact, in this setting, we can verify directly that u = (0, 0), i.e., u ≡ x and moreover,

N (C, 0) = R− × R−. It is plain that 1 + λ
g
1 + λG

1 + λH
1 ≤ 0 and s − λG

1 + λH
1 ≥ 0, which

means that there is no (û, ŝ, λ̂) feasible vector for (MWIOPEC) such that F(u) <I F(û). So
Theorem 4 is checked completely.

5 Applications

In this section, we shall derive sufficient optimality conditions for the generalized alter-
natively stationary (GA-stationary) vector of interval-valued pseudoconvex optimization
problem with equilibrium constraints (IOPEC) involving the pseudo-convexity of objec-
tive and constraint functions. First of all, we introduce the concept for the GA-stationary
vector of problem (IOPEC).
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Definition 9 (GA-stationary vector) A feasible vector x of problem (IOPEC) is said to be
the GA-stationary vector iff, there exist s ∈ R, λ = (λg, λh, λG , λH ) ∈ R

m+n+2p and
μ = (μh, μG , μH ) ∈ R

n+2p satisfying

0 ∈ s∂↑F1(x) + (1 − s)∂↑F2(x) +
∑

i∈Ig

λ
g
i ∂↑gi (x) +

∑

j∈In

[
λh

j ∂↑h j (x) + μh
j ∂↑(−h j )(x)

]

+
∑

i∈Ip

[
λG

i ∂↑(−Gi )(x) + λH
i ∂↑(−Hi )(x)

]
+ N (C, x),

0 < s < 1, λ
g
Ig

≥ 0, λh
j ≥ 0, μh

j ≥ 0, j ∈ In,

λG
i ≥ 0, λH

i ≥ 0, μG
i ≥ 0, μH

i ≥ 0, i ∈ Ip,

λG
γ = λH

α = μG
γ = μH

α = 0, ∀ i ∈ β, μG
i = 0 or μH

i = 0.

In what follows, sufficient optimality conditions for the GA-stationary vector of the problem
(IOPEC) will be derived.

Theorem 5 Let x be a feasible GA-stationary vector to the interval-valued pseudoconvex
optimization problem (IOPEC). Suppose that

(i) C is convex and Lμ = ∅;
(ii) the functions F1, F2, gi (i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are

pseudo-convex at x with respect to C .

Then x is a LU-optimal solution of (IOPEC).

Proof By invoking the Definition 1, we will be allowed to deduce that x is a LU-optimal
solution of (IOPEC) iff, there is no x ∈ K satisfying

F(x) <I F(x), (5.1)

which means that F1(x) ≤ F1(x), F2(x) ≤ F2(x) and F(x) 	= F(x). Let x be an arbitrarily
feasible vector to the problem (IOPEC). Using the convexity of C, it ensures that x − x ∈
T (C, x) because x ∈ C .Hence, 〈ξ, x − x〉 ≥ 0 for every ξ ∈ −N (C, x). Since x is a feasible
GA-stationary vector to the interval-valued pseudoconvex optimization problem (IOPEC),
one finds ξi ∈ ∂↑Fi (x) (i = 1, 2), ξ

g
i ∈ ∂↑gi (x) (i ∈ Ig), ξ h

j ∈ ∂↑h j (x) ( j ∈ In),

ηh
j ∈ ∂↑(−h j )(x) ( j ∈ In), ξG

i ∈ ∂↑(−Gi )(x) (i ∈ Ip) and ξ H
i ∈ ∂↑(−Hi )(x) (i ∈ Ip)

satisfying
〈

ξs +
∑

i∈Ig

λ
g
i ξ

g
i +

∑

j∈In

(
λh

j ξ
h
j + μh

j η
h
j

) +
∑

i∈Ip

(
λG

i ξG
i + λH

i ξ H
i

)
, x − x

〉

≥ 0, (5.2)

where ξs = sξ1 + (1− s)ξ2. Since Fi (i=1, 2) is pseudo-convex function at x, it follows that
its graph is pseudo-convex at (x, Fi (x)), i.e.,

∀ y ∈ domFi , Fi (y) ∈ Dc Fi (u)(y − x) + Fi (x). (5.3)

By taking y = x in (5.3), we deduce that

F1(x) − F1(x) ∈ Dc F1(x)(x − x) ⊂ D↑F1(x)(x − x) + R+, (5.4)

F2(x) − F2(x) ∈ Dc F1(x)(x − x) ⊂ D↑F2(x)(x − x) + R+. (5.5)

Therefore,

F1(x) − F1(x) ≥ D↑F1(x)(x − x) ≥ 〈ξ1, x − x〉 , (5.6)
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F2(x) − F2(x) ≥ D↑F2(x)(x − x) ≥ 〈ξ2, x − x〉 . (5.7)

In the same way as above, we also obtain the following inequalities:

gi (x) − gi (x) ≥ D↑gi (x)(x − x) ≥ 〈
ξ

g
i , x − x

〉 ∀ i ∈ Ig, (5.8)

h j (x) − h j (x) ≥ D↑h j (x)(x − x) ≥
〈
ξ h

j , x − x
〉

∀ j ∈ In, (5.9)

(−h j )(x) − (−h j )(x) ≥ D↑(−h j )(x)(x − x) ≥
〈
ηh

j , x − x
〉

∀ j ∈ In, (5.10)

(−Gi )(x) − (−Gi )(x) ≥ D↑(−Gi )(x)(x − x) ≥
〈
ξG

i , x − x
〉

∀ i ∈ ν1, (5.11)

(−Hi )(x) − (−Hi )(x) ≥ D↑(−Hi )(x)(x − x) ≥
〈
ξ H

i , x − x
〉

∀ i ∈ ν2. (5.12)

If Lμ = ∅ then multiplying (5.6)–(5.12) by s > 0, 1 − s > 0, λ
g
i ≥ 0 (i ∈ Ig), λh

j > 0

( j ∈ In), μh
j > 0 ( j ∈ In), λG

i > 0 (i ∈ ν1), λH
i > 0 (i ∈ ν2), respectively, and adding

(5.6)–(5.12), it yields that

s(F1(x) − F1(x)) + (1 − s)(F2(x) − F2(x)) +
∑

i∈Ig(x)

λ
g
i gi (x) −

∑

i∈Ig(x)

λ
g
i gi (x)

+
∑

j∈In

λh
j h j (x) −

∑

j∈In

λh
j h j (x) −

∑

j∈In

μh
j h j (x) +

∑

j∈In

μh
j h j (x)

−
∑

i∈Ip

λG
i Gi (x) +

∑

i∈Ip

λG
i Gi (x) −

∑

i∈Ip

λH
i Hi (x) +

∑

i∈Ip

λH
i Hi (x)

≥
(

s D↑F1(x) + (1 − s)D↑F2(x) +
∑

i∈Ig(x)

λ
g
i D↑gi (x) +

∑

j∈In

λh
j D↑h j (x)

)
(x − x)

+
( ∑

j∈In

μh
j D↑(−h j )(x) +

∑

i∈Ip

λG
i D↑(−Gi )(x) +

∑

i∈Ip

λH
i D↑(−Hi )(x)

)
(x − x)

≥ 〈ξs, x − x〉 +
∑

i∈Ig(x)

λ
g
i

〈
ξ

g
i , x − x

〉 +
∑

j∈In

λh
j

〈
ξ h

i , x − x
〉

+
∑

j∈In

μh
j

〈
ηh

j , x − x
〉
+

∑

i∈Ip

λG
i

〈
ξG

i , x − x
〉
+

∑

i∈Ip

λH
i

〈
ξ H

i , x − x
〉

=
〈

ξs +
∑

i∈Ig

λ
g
i ξ

g
i +

∑

j∈In

(
λh

j ξ
h
j + μh

j η
h
j

) +
∑

i∈Ip

(
λG

i ξG
i + λH

i ξ H
i

)
, x − x

〉

.

This together with (5.2) yields that

s(F1(x) − F1(x)) + (1 − s)(F2(x) − F2(x)) +
∑

i∈Ig(x)

λ
g
i gi (x) −

∑

i∈Ig(x)

λ
g
i gi (x)

+
∑

j∈In

λh
j h j (x) −

∑

j∈In

λh
j h j (x) −

∑

j∈In

μh
j h j (x) +

∑

j∈In

μh
j h j (x)

−
∑

i∈Ip

λG
i Gi (x) +

∑

i∈Ip

λG
i Gi (x) −

∑

i∈Ip

λH
i Hi (x) +

∑

i∈Ip

λH
i Hi (x) ≥ 0. (5.13)
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From the fact x ∈ K , we obtain

M(x):=
∑

i∈Ig(x)

λ
g
i gi (x)+

∑

j∈In

λh
j h j (x) −

∑

j∈In

μh
j h j (x)−

∑

i∈Ip

λG
i Gi (x) −

∑

i∈Ip

λH
i Hi (x) ≤ 0,

which combined with (5.13), we have the following inequality:

s F1(x) + (1 − s)F2(x) ≥ s F1(x) + (1 − s)F2(x) + M(x). (5.14)

Together M(x) = 0 with (5.13), we deduce that

s F1(x) + (1 − s)F2(x) ≥ s F1(x) + (1 − s)F2(x). (5.15)

Let us see that

F(x) 	<I F(x).

Indeed, if it was not true, then there would be

F(x) <I F(x).

By the definition, we obtain
{

F1(x) < F1(x)

F2(x) < F2(x)
or

{
F1(x) < F1(x)

F2(x) ≤ F2(x)
or

{
F1(x) ≤ F1(x),

F2(x) < F2(x).

Since s, 1 − s ∈]0, 1[, the following strict inequality is valid:

s F1(x) + (1 − s)F2(x) < s F1(x) + (1 − s)F2(x),

which contradicting inequality (5.15), and the conclusion follows. ��
The following corollary is inspired by Theorem 5.

Corollary 2 Let x be a feasible GA-stationary vector to the interval-valued pseudoconvex
optimization problem (IOPEC). Suppose that

(i) C is convex and Lμ = ∅;
(ii) the functions F1, F2, gi (i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈ ν2) are

affine.

Then x is a LU-optimal solution of problem (IOPEC).

Proof Since the functions Fi (i ∈ Ig(x)), ±h j ( j ∈ In), −Gi (i ∈ ν1) and −Hi (i ∈
ν2) defined on X are affine, they are pseudo-convex at x . Thanks to the obtained result of
Theorem 5, we deduce that the vector x is a LU-optimal solution of problem (IOPEC), which
proves the claim. ��
Remark 3 In the sense that C may be taken as the whole space X , then the normal cone
N (C, u) for any u ∈ C in the two Wolfe and Mond–Weir dual problems and in Definition 9
can be removed because

T (C, u) = cl cone(C − u) = cl cone(X − u) = X ,

which ensures that N (C, u) = {0}, as required.
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6 Conclusion

We have formulated two Mond–Weir and Wolfe dual problems for the interval-valued pseu-
doconvex optimization problemwith equilibrium constraints (IOPEC) in terms of contingent
epiderivatives in real Banach spaces. We established the theorems on strong and weak dual-
ity for the problem (IOPEC) and its Wolfe and Mond–Weir dual problems (WIOPEC) and
(MWIOPEC) in terms of contingent epiderivatives and subdifferentials with pseudoconvex
functions. An application of the results for the GA-stationary vector of the problem (IOPEC)
is presented. Our results in this article are new and therefore these results are not coincide
with the existing one in the literature.
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