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Abstract
Herein, we consider an effective numerical scheme for numerical evaluation of three classes
of space-time-fractional partial differential equations (FPDEs). We are going to solve these
problems via composite collocation method. The procedure is based upon the bivariate
Müntz–Legendrewavelets (MLWs). The bivariateMüntz–Legendrewavelets are constructed
for first time. The bivariate MLWs operational matrix of fractional-order integral is con-
structed. The proposed scheme transforms FPDEs to the solution of a system of algebraic
equations which these systems will be solved using the Newton’s iterative scheme. Also, the
error analysis of the suggested procedure is determined. To test the applicability and validity
of our technique, we have solved three classes of FPDEs.

Keywords Bivariate Müntz–Legendre wavelets · Composite collocation method · Caputo
derivative · Numerical technique

Mathematics Subject Classification 35R11 · 34K28 · 65M70

1 Introduction

In recent years, fractional equations appear in modeling of various real-life phenomena, for
example dynamic viscoelasticity modeling (Larsson et al. 2015), hydrologic (Benson et al.
2013), economics (Baillie 1996), temperature and motor control (Bohannan 2008), solid
mechanics (Rossikhin and Shitikova 1997), bioengineering (Magin 2004), medicine (Hall
and Barrick 2008), porous media (He 1998), fluid-dynamic traffic model (He 1999), etc.
Therefore, there is an increasing demand for numerical and analytical solutions of various
types of fractional differential equations such as finite-difference/finite-element technique
(Dehghan and Abbaszadeh 2018a, b, 2019), compact difference schemes (Hu and Zhang
2012), homotopy analysis method (Dehghan et al. 2010), homotopy perturbation method
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(Abdulaziz et al. 2008), dual reciprocity boundary elements method (Dehghan and Safar-
poor 2016), fifth-kind orthonormal Chebyshev polynomial method (Abd-Elhameed and
Youssri 2018), B-spline functions (Lakestani et al. 2012), fractional-order Bernoulli function
method (Rahimkhani et al. 2017), hybridmethod (Mashayekhi andRazzaghi 2015), Legendre
wavelet method (Heydari et al. 2014), fractional-order Lagrange polynomials (Sabermahani
et al. 2018), fractional-order Bernoulli wavelets method (Rahimkhani et al. 2016), Müntz–
Legendre wavelet method (Rahimkhani et al. 2018), etc.

Spectral schemes have received noticeable consideration for approximate solutions of
various FPDEs, for example fractional diffusion equation (Lin and Xu 2007), fractional
modified anomalous sub-diffusion equation (Dehghan et al. 2016), fractional cable equation
(Lin et al. 2011), fractional Fokker–Planck equation (Zheng et al. 2015), FPDEs (Bhrawy
and Zaky 2015), fractional advection–diffusion equations (Bhrawy and Baleanu 2013), etc.

In mathematical research, wavelets have been applied in different engineering fields for
instance, signal analysis, image processing, edge extrapolation, optimal control problems,
time–frequency analysis, fast algorithms,multiscale phenomenamodeling, and pattern recog-
nition (Chui 1997; Shamsi and Razzaghi 2005; Lakestani et al. 2006; Beylkin et al. 1991).

In recent years, diverse wavelets have been employed for numerical solution of several
differential equations, for example Bernoulli wavelet (Rahimkhani et al. 2017), CAS wavelet
(Saeedi et al. 2011), Chebyshev wavelet (Li 2010), second-kind Chebyshev wavelet (Zhu
and Fan 2013), and Legendre wavelet (Rehman and Rahmat 2011; Heydari et al. 2013).

In this work, we present a computational scheme based on bivariate MLWs basis for
solving three classes of FPDEs. First, bivariate MLWs are constructed. Then, we construct
the bivariateMLWs’ operationmatrix of fractional integral. Finally, this operational is applied
to convert the solution of the FPDEs to the solution of algebraic equations. Therefore, there
are some questions to be answered:

– How to construct the Riemann–Liouville fractional integral operation matrix of bivariate
MLWs.

– How to analyze FPDEs via fractional integration operational matrix of the bivariate
MLWs.

– How to choose parameter of fractional-order (γ ) of bivariate MLWs.
– How to select points of collocation methods.
– How long does CPU time of proposed method.

The current a paper is as follows:
In Sect. 2, we construct the bivariate MLWs and give some their properties. In Sect. 3, we

derive the fractional-order integral operational matrix for bivariate MLWs. The problem is
expressed in Sect. 4. In Sect. 5, a technique for numerical solution of three classes of FPDEs
is presented. In Sect. 6, we give the convergence of approximate solution and the error of our
scheme. Numerical findings are reported in Sect. 7. Also, Sect. 8 contains a conclusion.

2 Wavelets and bivariate MLWs

The bivariate MLWs are defined on [0, 1) × [0, 1) as:
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ψn,m,n′,m′(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2λm + 1)
1
2 (2λm′ + 1)

1
2 2

k+k′
2 −1Lm(2k−1x − n̂)Lm′(2k

′−1t − ñ),

n̂
2k−1 ≤ x < n̂+1

2k−1 ,
ñ

2k′−1 ≤ t < ñ+1
2k′−1 ,

0, otherwise,
(1)

where

n̂ = n − 1, ñ = n′ − 1, n = 1, 2, . . . , 2k−1; n′ = 1, 2, . . . , 2k
′−1,

m = 0, 1, 2, . . . , M − 1; m′ = 0, 1, 2, . . . , M ′ − 1;
and

m̂ = 2k−1M; m̃ = 2k
′−1M ′.

Here, Lm(x) and Lm′(t) are the Müntz–Legendre functions (MLFs) on [0, 1] as Rahimkhani
et al. (2018):

Lm(x) =
m∑

s=0

cs,mx
λs , cs,m = Πm−1

j=0 (λs + λ j + 1)

Πm
j=0, j �=s(λs − λ j )

, (m ∈ N0), (2)

and

Lm′(t) =
m′
∑

s′=0

c′
s′,m′ tλs′ , c′

s′,m′ = Πm′−1
j=0 (λs′ + λ j + 1)

Πm′
j=0, j �=s′(λs′ − λ j )

, (m′ ∈ N0). (3)

These functions satisfy the following orthogonality condition: (Rahimkhani et al. 2018):
∫ 1

0
Ln(x)Lm(x)dx = δn,m

(2λm + 1)
, (m > n).

Also, the bivariate MLFs are defined on [0, T1) × [0, T2) as:

Lm,n(x, t) =
m′
∑

s′=0

m∑

s=0

cs,mc
′
s′,m′

xλs tλs′

T λs
1 T

λs′
2

. (4)

In this article, we consider λk = kγ, where γ is a real constant. Figures 1 and 2 demonstrate
plots of 2D-MLWs for γ = 1.

Fig. 1 Plot of 2D-MLWs and its contour with n = n′ = 1;m = 2,m′ = 3 and γ = 1
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Fig. 2 Plot of 2D-MLWs and its contour with n = n′ = 2;m = 3,m′ = 4 and γ = 1

Remark 1 We consider order of Müntz–Legendre polynomials fits by paper (Esmaeili et al.
2011).

Let f ∈ L2
([0, 1) × [0, 1)) and the best approximation of f obtained using bivariate

MLWs (Pk,k′
M,M ′ f ), and then:

f (x, t) � Pk,k′
M,M ′ f (x, t) =

2k−1
∑

n=1

M−1∑

m=0

2k
′−1

∑

n′=1

M ′−1∑

m′=0

cn,m,n′,m′ψn,m,n′,m′(x, t) (5)

=
(m̂m̃)−1∑

i=0

ciψi (x, t) = CTΨ (x, t), (6)

where
C = [

c0, c1, c2, . . . , c(m̂m̃)−1
]T

, (7)

and
Ψ (x, t) = [

ψ0(x, t), ψ1(x, t), ψ2(x, t), . . . , ψ(m̂m̃)−1(x, t)
]T

. (8)

3 Fractional integral operational matrix of bivariate MLWs

If Ψ (x, t) is the vector in accordance with relation (8), then:

R
0 I

α
x Ψ (x, t) = Λ(x, α)Ψ (x, t) = (Pm̂×m̂(x, α) ⊗ Im̃×m̃)Ψ (x, t), (9)

and
R
0 I

α
t Ψ (x, t) = Λ′(t, β)Ψ (x, t) = (Im̂×m̂ ⊗ P ′

m̃×m̃(t, β))Ψ (x, t); (10)

here:

– I is matrix of identity,
– Λ(x, α) andΛ′(t, β) are (m̂m̃)×(m̂m̃) the 2D-MLWs operational matrices of fractional-

order integration,
– P(x, α) and P ′(t, β) are the 1D-MLWs operational matrices of fractional-order integra-

tion obtained on [0, 1) as Rahimkhani et al. (2018):

P(x, α) = ζ−1F(x, α)ζ, (11)
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and
P ′(t, β) = ζ−1F ′(t, β)ζ, (12)

– ζ−1 is the convert matrix of the MLWs to the piecewise fractional-order Taylor functions
(PFTFs),

– matrices F(x, α) and F ′(t, α) are the PFTFs’ operational matrices of fractional integra-
tion that these matrices are obtained in Rahimkhani et al. (2018).

4 Problem statement

In this study, we restrict ourselves on the following space-time FPDEs.

4.1 Problem a

The following FPDEs as:

C
0 Dα

x u(x, t) = F
(
x, t, u(x, t), C0 Dβ

x u(x, t), C0 Dν
t u(x, t)

)
, 0 ≤ x, t < 1, (13)

with Dirichlet boundary conditions as:

u(x, 0) = f0(x), u(0, t) = g0(t), u(1, t) = g1(t), (14)

where 1 < α ≤ 2, 0 < β, ν ≤ 1 and C
0 Dα is Caputo fractional derivative.

4.2 Problem b

The FPDEs in Eq. (13) with boundary conditions as:

u(x, 0) = f0(x), u(0, t) = h1(t), ux (0, t) = h2(t). (15)

4.3 Problem c

The FPDEs with proportional delays as:

C
0 Dα

x u(x, t) = F
(
x, t, u(a0x, b0t),

C
0 Dβ

x u(a1x, b1t),
C
0 Dν

t u(a2x, b2t)
)

, 0 ≤ x, t < 1,

(16)
subject to the initial and boundary conditions in Eq. (14).

5 Description of the bivariate Müntz–Legendre wavelets composite
collocationmethod

In this part, we introduced the 2DMüntz–Legendre wavelets composite collocation method.
For this purpose, let xm(m = 0, 1, . . . , M − 1) and tm′ , (m′ = 0, 1, . . . , M ′ − 1) be zeros
of the shifted Legendre polynomials PM (x) and PM ′(t). Therefore, we define the composite
collocation points as:

xnm = 1

2k−1 (xm + n − 1), n = 1, 2, . . . , 2k−1;m = 0, 1, . . . , M − 1, (17)
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tn′m′ = 1

2k′−1
(tm′ + n′ − 1), n′ = 1, 2, . . . , 2k

′−1;m′ = 0, 1, . . . , M ′ − 1. (18)

We use the bivariate MLWs’ operational matrix of fractional-order integration, properties of
Caputo fractional derivative, and the composite collocation scheme for solving problems (a),
(b), and (c).

5.1 Problem a

For numerical solution of problem (a), we expand ∂α+νu(x,t)
∂xα∂tν by the bivariate MLWs as:

∂α+νu(x, t)

∂xα∂tν
� CTΨ (x, t). (19)

Integrating of relation (19) of order ν with respect to t achieves:

C
0 Dα

x u(x, t) � C
0 Dα

x P
k,k′
M,M ′u(x, t) = CTΛ′(t, ν)Ψ (x, t) + C

0 Dα
x u(x, t)

∣
∣
∣
∣
t=0

= CTΛ′(t, ν)Ψ (x, t) + C
0 Dα

x f0(x). (20)

Also, by fractional integration from Eq. (19) of order α with respect to x, we get:

C
0 Dν

t u(x, t) � CTΛ(x, α)Ψ (x, t) + C
0 Dν

t u(x, t)

∣
∣
∣
∣
x=0

+ x
∂

∂x

(
C
0 Dν

t u(x, t)
) ∣

∣
∣
∣
x=0

. (21)

We put x = 1 in Eq. (21), and using Eq. (14), we get:

C
0 Dν

t u(x, t) � C
0 Dν

t P
k,k′
M,M ′u(x, t) = CTΛ(x, α)Ψ (x, t)

−xCTΛ(1, α)Ψ (1, t) + (1 − x)C0 Dν
t g0(t) + xC0 Dν

t g1(t). (22)

Integrating Eq. (20) of order α with respect to x yields:

u(x, t) � CTΛ′(t, ν)Λ(x, α)Ψ (x, t) + f0(x) − f0(0) − x f ′
0(0) + g0(t) + x

∂u(x, t)

∂x

∣
∣
∣
∣
x=0

.

(23)
We let x = 1 in Eq. (23), and considering Eq. (14), then Eq. (23) can be expressed as:

u(x, t) � Pk,k′
M,M ′u(x, t) = CTΛ′(t, ν)Λ(x, α)Ψ (x, t)

−xCTΛ′(t, ν)Λ(1, α)Ψ (1, t) + ω(x, t), (24)

where

ω(x, t) = g0(t) + f0(x) − f0(0) − x f ′
0(0) + x (g1(t) − g0(t)) + x

(− f0(1) + f0(0) + f ′
0(0)

)
.

By derivative of order β with respect to x from Eq. (24), we get:

C
0 Dβ

x u(x, t) � C
0 Dβ

x P
k,k′
M,M ′u(x, t) = CTΛ′(t, ν)Λ(x, α − β)Ψ (x, t)

− x1−β

Γ (2 − β)
CTΛ′(t, ν)Λ(1, α)Ψ (1, t) + C

0 Dβ
x ω(x, t). (25)

By substituting above approximations into Eq. (13) and replacing � by = and collocating
this equation at the composite collocation points given into Eqs. (17) and (18), we achieve:

C
0 Dα

x P
k,k′
M,M ′u(xn,m, tn′,m′) = F(xn,m, tn′,m′ , Pk,k′

M,M ′u(xn,m, tn′,m′),
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C
0 Dβ

x P
k,k′
M,M ′u(xn,m, tn′,m′), C0 Dν

t P
k,k′
M,M ′u(xn,m, tn′,m′)),

n = 1, 2, . . . , 2k−1, m = 0, 1, . . . , M − 1,

n′ = 1, 2, . . . , 2k
′−1, m′ = 0, 1, . . . , M ′ − 1. (26)

Equation (26) gives m̂×m̃ equations, after solving this system by applyingNewton’s iterative
scheme (Stoer and Bulirsch 2002), we get unknown vector CT .

For example 1, when k = k′ = 2, M = M ′ = 2 and γ = 1, we let: c(0)
i = 0, , i =

0, . . . , 15.
Using Newton’s iterative scheme, we get:

c(1)
0 = c(2)

0 = · · · = 0.210757,

c(1)
1 = c(2)

1 = · · · = 0.144816,

c(1)
2 = c(2)

2 = · · · = 1.38863,

c(1)
3 = c(2)

3 = · · · = 0.12982,

c(1)
4 = c(2)

4 = · · · = 0.101842,

c(1)
5 = c(2)

5 = · · · = 0.0710262,

c(1)
6 = c(2)

6 = · · · = 0.457712,

c(1)
7 = c(2)

7 = · · · = 0.035036,

c(1)
8 = c(2)

8 = · · · = 0.106264,

c(1)
9 = c(2)

9 = · · · = 0.0621804,

c(1)
10 = c(2)

10 = · · · = 0.216712,

c(1)
11 = c(2)

11 = · · · = 0.028955,

c(1)
12 = c(2)

12 = · · · = 0.0528427,

c(1)
13 = c(2)

13 = · · · = 0.0320725,

c(1)
14 = c(2)

14 = · · · = 0.157604,

c(1)
15 = c(2)

15 = · · · = 0.0320673.

5.2 Problem b

For solving problem (b), we expand ∂3u(x,t)
∂x2∂t

by the bivariate MLWs as:

∂3u(x, t)

∂x2∂t
� CTΨ (x, t). (27)

Integrating with respect to x of Eq. (27) gives:

∂2u(x, t)

∂x∂t
� CTΛ(x, 1)Ψ (x, t) + ∂2u(x, t)

∂x∂t

∣
∣
∣
∣
x=0

= CTΛ(x, 1)Ψ (x, t) + h′
2(t). (28)

Also, integrating from Eq. (27) with respect to t :

∂2u(x, t)

∂x2
� CTΛ′(t, 1)Ψ (x, t) + ∂2u(x, t)

∂x2

∣
∣
∣
∣
t=0

= CTΛ′(t, 1)Ψ (x, t) + f ′′
0 (x). (29)
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Integrating with respect to x of Eq. (28) gives:

∂u(x, t)

∂t
� CTΛ2(x, 1)Ψ (x, t) + h′

2(t)x + ∂u(x, t)

∂t

∣
∣
∣
∣
x=0

= CTΛ2(x, 1)Ψ (x, t) + h′
2(t)x + h′

1(t), (30)

and
u(x, t) � CTΛ2(x, 1)Λ′(t, 1)Ψ (x, t) + �(x, t), (31)

where

�(x, t) = x(h2(t) − h2(0)) + (h1(t) − h1(0)) + f0(x).

For 1 < α ≤ 2 by integrating from Eq. (29) with respect to x of order 2 − α, we achieve:

C
0 Dα

x u(x, t) = R
0 I

2−α
x

(
∂2u(x, t)

∂x2

)

� CTΛ′(t, 1)Λ(x, 2 − α)Ψ (x, t) + R
0 I

2−α
x

C
0 D2

x f0(x)

= CTΛ′(t, 1)Λ(x, 2 − α)Ψ (x, t) + C
0 Dα

x f0(x). (32)

Also, for 0 < ν ≤ 1 by integrating from Eq. (30) with respect to t of order 1 − ν, we get:

C
0 Dν

t u(x, t) = R
0 I

1−ν
t

(
∂u(x, t)

∂t

)

� CTΛ2(x, 1)Λ′(t, 1 − ν)Ψ (x, t)

+x R0 I
1−ν
t

C
0

(
∂h2(t)

∂t

)

+ R
0 I

1−ν
t

C
0 Dt

(
∂h1(t)

∂t

)

= CTΛ2(x, 1)Λ′(t, 1 − ν)Ψ (x, t) + xC0 Dν
t h2(t) + C

0 Dν
t h1(t). (33)

By derivative from Eq. (31) with respect to x of order β yields:

C
0 Dβ

x u(x, t) = � CTΛ2(x, 1 − β)Λ′(t, 1)Ψ (x, t)

+ x1−β

Γ (2 − β)
(h2(t) − h2(0)) + C

0 Dβ
x f0(x). (34)

We substitute above approximations in relation (13) and collocate obtained equation in com-
posite collocation points (xn,m, tn′,m′) given in Eqs. (17) and (18). This equation gives m̂m̃
algebraic equations; after solving this system by applying Newton’s iterative scheme (Stoer
and Bulirsch 2002), we achieve unknown vector CT .

5.3 Problem c

For solving problem (c), by applying relations (22), (24) and (25), we get:

C
0 Dν

t u(a2x, b2t) � C
0 Dν

t P
k,k′
M,M ′u(a2x, b2t) = CTΛ(a2x, α)Ψ (a2x, b2t)

−a2xC
TΛ(1, α)Ψ (1, b2t) + (1 − a2x)

C
0 Dν

t g0(b2t) + a2x
C
0 Dν

t g1(b2t),

(35)

and

u(a0x, b0t) � Pk,k′
M,M ′u(a0x, b0t) = CTΛ′(b0t, ν)Λ(a0x, α)Ψ (a0x, b0t)

−a0xC
TΛ′(b0t, ν)Λ(1, α)Ψ (1, b0t) + ω(a0x, b0t), (36)

and
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C
0 Dβ

x u(a1x, b1t) � C
0 Dβ

x P
k,k′
M,M ′u(a1x, b1t) = CTΛ′(b1t, ν)Λ(a1x, α − β)Ψ (a1x, b1t)

− (a1x)1−β

Γ (2 − β)
CTΛ′(b1t, ν)Λ(1, α)Ψ (1, b1t) + C

0 Dβ
x ω(a1x, b1t).

(37)

By substituting Eqs. (20) and (35)–(37) into Eq. (16) and taking composite collocation
points (xn,m, tn′,m′ , n = 1, 2, . . . , 2k−1,m = 0, 1, . . . , M − 1, n′ = 1, 2, . . . , 2k

′−1,m′ =
0, 1, . . . , M ′ − 1), in the obtained equation, we get:

C
0 Dα

x P
k,k′
M,M ′u

(
xn,m, tn′,m′

) = F
(
xn,m, tn,m, Pk,k′

M,M ′u
(
a0xn,m, b0tn′,m′

)
,

C
0 Dβ

x P
k,k′
M,M ′u

(
a1xn,m, b1tn′,m′

)
,

C
0 Dν

t P
k,k′
M,M ′u

(
a2xn,m, b2tn′,m′

))
. (38)

This system is solved using Newton iteration scheme (Stoer and Bulirsch 2002) for finding
vector C . Therefore, we achieve the approximate solution of the problem (c).

6 Convergence analysis

In this part, we derive the convergence of the approximate solutionwith respect to the bivariate
Müntz–Legendre wavelets basis. Then, we give an error analysis of present method.

6.1 Error bound for the interpolation

We indicate convergence the bivariate MLWs expansion of a function u(x, t). First, we
present some necessary symbols as:

Ik,n =
[
n − 1

2k−1 ,
n

2k−1

)

, Ik′,n′ =
[
n′ − 1

2k′−1
,

n′

2k′−1

)

,

Λ = Ik,n × Ik′,n′ , Ω = [0, 1) × [0, 1),
Rk,k′
M,M ′ = sup(x,t)∈Ω

∣
∣
∣
C
0 DMγ

x (C0 DM ′γ
t u(x, t))

∣
∣
∣ ,

rk,k
′

M,M ′ = sup(x,t)∈Λ

∣
∣
∣
C
0 DMγ

x (C0 DM ′γ
t u(x, t))

∣
∣
∣ ,

L2(Ω) = {ϑ : ϑ is measurable on Ω and ‖ϑ‖ < ∞}.

Theorem 1 Let C
0 D

iγ
x (C0 D

jγ
t u(x, t)) ∈ C(Ω) for i = 0, 1, . . . , M; j = 0, 1, . . . , M ′ and

Δ
k,k′
M,M ′ = span{L0,1(x, t), L0,2(x, t), . . . , L0,M ′−1(x, t), L1,0(x, t) . . . , LM−1,M ′−1(x, t)}

. If we show the best approximation solution of function u(x, t) from Δ
k,k′
M,M ′ on Λ by

pk,k
′

M,M ′u(x, t), then the error bound of the approximate solution Pk,k′
M,M ′u(x, t) by applying

bivariate Müntz–Legendre wavelets series on the interval Ω would be obtained as:

‖u(x, t) − Pk,k′
M,M ′u(x, t)‖L2(Ω) ≤ Rk,k′

M,M ′

Γ (Mγ + 1)Γ (M ′γ + 1)
√

(2Mγ + 1)(2M ′γ + 1)
.

(39)
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Proof We define:

hk,k
′

M,M ′(x, t) =
M−1∑

i=0

M ′−1∑

j=0

xiγ t jγ

Γ (iγ + 1)Γ ( jγ + 1)
C
0 Diγ

x (C0 D jγ
t u(x, t))

∣
∣
∣
∣
(0,0)

. (40)

Multi-variable Taylor formula (Hormander 1990) and generalized Taylor’s formula (Odibat
and Shawagfeh 2007) yield:

|u(x, t) − hk,k
′

M,M ′(x, t)| ≤ xMγ t M
′γ

Γ (Mγ + 1)Γ (M ′γ + 1)
rk,k

′
M,M ′ . (41)

Since pk,k
′

M,M ′u(x, t) is the best approximation solution of u(x, t) out of Δ
k,k′
M,M ′ on Λ, we get:

‖u(x, t) − Pk,k′
M,M ′u(x, t)‖2L2(Ω)

= ‖u(x, t) − CTΨ (x, t)‖2L2(Ω)

=
2k−1
∑

n=1

2k
′−1

∑

n′=1

‖u(x, t) − pk,k
′

M,M ′u(x, t)‖2L2(Λ)

≤
2k−1
∑

n=1

2k
′−1

∑

n′=1

‖u(x, t) − hk,k
′

M,M ′ (x, t)‖2L2(Λ)

≤
2k−1
∑

n=1

2k
′−1

∑

n′=1

∫

Ik,n

∫

Ik′ ,n′

[
xMγ t M

′γ

Γ (Mγ + 1)Γ (M ′γ + 1)
rk,k

′
M,M ′

]2

dtdx

≤
∫ 1

0

∫ 1

0

[
xMγ t M

′γ

Γ (Mγ + 1)Γ (M ′γ + 1)
Rk,k′
M,M ′

]2

dtdx

≤ 1

Γ (Mγ + 1)2Γ (M ′γ + 1)2(2Mγ + 1)(2M ′γ + 1)
(Rk,k′

M,M ′ )2,

(42)

as a result of Eq. (42), we get Eq. (39) 
�

Now, we can express the convergence of the presented scheme, which depends on two param-
eters (M, M ′). By increasing M, M ′, it implies that:

M, M ′ → ∞, ‖u(x, t) − Pk,k′
M,M ′u(x, t)‖L2(Ω) → 0.

6.2 Error analysis of present method

Now, we want to obtain error of present method; for this aim, we present following theorems.

Theorem 2 Suppose that u(x, t), pk,k
′

M,M ′u(x, t) and C
0 D

iγ
x (C0 D

jγ
t u(x, t)) satisfy the condi-

tions of Theorem 1. Then:

‖C0 Dα
x u(x, t) − C

0 Dα
x P

k,k′
M,M ′u(x, t)‖L2(Ω)

≤ 1

Γ (Mγ + 1 − α)Γ (M ′γ + 1)
√

(2Mγ − 2α + 1)(2M ′γ + 1)
Rk,k′
M,M ′ . (43)
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Proof According to Eq. (40) and properties of Caputo fractional derivative, we can write:

∣
∣
∣
C
0 Dα

x u(x, t) − C
0 Dα

x h
k,k′
M,M ′(x, t)

∣
∣
∣ ≤ xMγ−αt M

′γ

Γ (Mγ + 1 − α)Γ (M ′γ + 1)
rk,k

′
M,M ′ ; (44)

then:
∥
∥
∥
C
0 Dα

x u(x, t) − C
0 Dα

x P
k,k′
M,M ′u(x, t)

∥
∥
∥
2

L2(Ω)

=
2k−1
∑

n=1

2k
′−1

∑

n′=1

∥
∥
∥
C
0 Dα

x u(x, t) − C
0 Dα

x p
k,k′
M,M ′u(x, t)

∥
∥
∥
2

L2(Λ)

≤
2k−1
∑

n=1

2k
′−1

∑

n′=1

∥
∥
∥
C
0 Dα

x u(x, t) − C
0 Dα

x h
k,k′
M,M ′(x, t)

∥
∥
∥
2

L2(Λ)

≤
2k−1
∑

n=1

2k
′−1

∑

n′=1

∫

Ik,n

∫

Ik′,n′

[
xMγ−α t M

′γ

Γ (Mγ + 1 − α)Γ (M ′γ + 1)
rk,k

′
M,M ′

]2

dtdx

≤
∫ 1

0

∫ 1

0

[
xMγ−αt M

′γ

Γ (Mγ + 1 − α)Γ (M ′γ + 1)
Rk,k′
M,M ′

]2

dtdx

≤ 1

Γ (Mγ + 1 − α)2Γ (M ′γ + 1)2(2Mγ − 2α + 1)(2M ′γ + 1)
(Rk,k′

M,M ′)2. (45)

Therefore, the theorem is proved. 
�
Corollary 1 According to the assumptions of Theorem 2, it yields:

∥
∥
∥
C
0 Dβ

x u(x, t) − C
0 Dβ

x P
k,k′
M,M ′u(x, t)

∥
∥
∥
L2(Ω)

≤ 1

Γ (Mγ + 1 − β)Γ (M ′γ + 1)
√

(2Mγ − 2β + 1)(2M ′γ + 1)
Rk,k′
M,M ′ . (46)

Proof It is an immediate consequence of Theorem 2. 
�
Corollary 2 According to the assumptions of Theorem 2, we have:

∥
∥
∥
C
0 Dν

t u(x, t) − C
0 Dν

t P
k,k′
M,M ′u(x, t)

∥
∥
∥
L2(Ω)

≤ 1

Γ (Mγ + 1)Γ (M ′γ + 1 − ν)
√

(2Mγ + 1)(2M ′γ + 1 − 2ν)
Rk,k′
M,M ′ . (47)

Proof It is an immediate consequence of Theorem 2. 
�
Theorem 3 According to the assumptions of Theorem2and suppose F inEq. (13) is Lipschitz,
with the Lipschitz constants η1, η2 and η3. The error bound (Ek,k′

M,M ′) is given by:

‖Ek,k′
M,M ′(x, t)‖L2(Ω) ≤ Rk,k′

M,M ′

Γ (Mγ + 1 − α)Γ (M ′γ + 1)
√

(2Mγ − 2α + 1)(2M ′γ + 1)

+η1
Rk,k′
M,M ′

Γ (Mγ + 1)Γ (M ′γ + 1)
√

(2Mγ + 1)(2M ′γ + 1)
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+η2
Rk,k′
M,M ′

Γ (Mγ + 1 − β)Γ (M ′γ + 1)
√

(2Mγ − 2β + 1)(2M ′γ + 1)

+η3
Rk,k′
M,M ′

Γ (Mγ + 1)Γ (M ′γ + 1 − ν)
√

(2Mγ + 1)(2M ′γ + 1 − 2ν)
.

(48)

Proof We know:

‖Ek,k′
M,M ′(x, t)‖L2(Ω) =

∥
∥
∥
C
0 Dα

x P
k,k′
M,M ′u(x, t) − F(x, t, Pk,k′

M,M ′u(x, t),

C
0 Dβ

x P
k,k′
M,M ′u(x, t), C0 Dν

t P
k,k′
M,M ′u(x, t))

∥
∥
∥
L2(Ω)

. (49)

By applying relation (13), we obtain:

‖Ek,k′
M,M ′(x, t)‖L2(Ω) =

∥
∥
∥
C
0 Dα

x u(x, t) − F
(
x, t, u(x, t), C0 Dβ

x u(x, t), C0 Dν
t u(x, t)

)

−C
0 Dα

x P
k,k′
M,M ′u(x, t) + F

(
x, t, Pk,k′

M,M ′u(x, t),

C
0 Dβ

x P
k,k′
M,M ′u(x, t), C0 Dν

t P
k,k′
M,M ′u(x, t)

)∥
∥
∥
L2(Ω)

, (50)

since F satisfies a Lipschitz condition with Lipschitz constants η1, η2 and η3, we have:

‖Ek,k′
M,M ′(x, t)‖L2(Ω) ≤

∥
∥
∥
C
0 Dα

x u(x, t) − C
0 Dα

x P
k,k′
M,M ′u(x, t)

∥
∥
∥
L2(Ω)

+η1

∥
∥
∥u(x, t) − Pk,k′

M,M ′u(x, t)
∥
∥
∥
L2(Ω)

+η2

∥
∥
∥
C
0 Dβ

x u(x, t) − C
0 Dβ

x P
k,k′
M,M ′u(x, t)

∥
∥
∥
L2(Ω)

+η3

∥
∥
∥
C
0 Dν

t u(x, t) − C
0 Dν

t P
k,k′
M,M ′u(x, t)

∥
∥
∥
L2(Ω)

. (51)

Using Eqs. (39), (43), (46), and (47), we yield:

‖Ek,k′
M,M ′(x, t)‖L2(Ω)

≤ 1

Γ (Mγ + 1 − α)Γ (M ′γ + 1)
√

(2Mγ − 2α + 1)(2M ′γ + 1)
Rk,k′
M,M ′

+η1
1

Γ (Mγ + 1)Γ (M ′γ + 1)
√

(2Mγ + 1)(2M ′γ + 1)
Rk,k′
M,M ′

+η2
1

Γ (Mγ + 1 − β)Γ (M ′γ + 1)
√

(2Mγ − 2β + 1)(2M ′γ + 1)
Rk,k′
M,M ′

+η3
1

Γ (Mγ + 1)Γ (M ′γ + 1 − ν)
√

(2Mγ + 1)(2M ′γ + 1 − 2ν)
Rk,k′
M,M ′ ; (52)

therefore, the proof is complete. 
�

Remark 2 Error of method of problems (b) and (c) is similar of problem (a) that we obtain
above theorems.
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7 Numerical experiments

In this part, we present five examples to show the validity and applicability of the applied
technique. The computations were performed on a personal computer, and the codes were
written in Mathematica 10.

7.1 Problem a

Example 1 Consider the space-time-fractional Convection–Diffusion equation as: (Wei et al.
2012; Chen et al. 2014)

C
0 Dν

t u(x, t)+x0.8ux (x, t)−(Γ (2.8)x/2)C0 Dα
x u(x, t)+x1.5u(x, t) = f (x, t), 0 ≤ x, t < 1,

(53)
where

f (x, t) = Γ (3)x2(1 − x)t1.2

Γ (2.2)
+

[

2x1.8 − 3x2.8 − Γ (2.8)Γ (3)x1.5

2Γ (1.5)
+ Γ (2.8)Γ (4)x2.5

2Γ (2.5)
+ x3.5 − x4.5

]

t2

and

u(x, 0) = u(0, t) = u(1, t) = 0.

For the above equation, we have the analytical solution u(x, t) = x2(1 − x)t2, when α =
1.5, ν = 0.8.

In Tables 1 and 2 we compare absolute error of proposed scheme for M = M ′ = 3; k =
k′ = 2; γ = 1 with Haar wavelet method (Chen et al. 2014) for m = n = 3 and Tau method
based on fractional-order Legendre functions (Wei et al. 2012) for m = 8. Also, CPU time
of suggested scheme is presented in Tables 1 and 2.

Example 2 Consider the following nonlinear fractional heat equation as: Daftardar-Gejji and
Bhalekar (2010)

C
0 Dν

t u(x, t) = uxx (x, t) + u(x, t)ux (x, t), 0 < ν ≤ 1, (54)

subject to

u(x, 0) = 2 − x, u(0, t) = 2

1 + t
, u(1, t) = 1

1 + t
.

Table 1 Comparison of absolute
error for k = k′ = 2, γ = 1 of
Example 1

(x, t) Chen et al. (2014) Our method
m = n = 3 M = M ′ = 3

(0.1, 0.1) 2.09 × 10−4 1.30 × 10−5

(0.4, 0.1) 1.62 × 10−3 9.78 × 10−5

(0.7, 0.1) 2.20 × 10−3 4.82 × 10−6

(0.1, 0.5) 3.24 × 10−3 7.54 × 10−3

(0.7, 0.5) 9.34 × 10−3 1.63 × 10−6

CPU times – 1.25
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Table 2 Comparison of absolute
error for k = k′ = 2, γ = 1 of
Example 1

(x, t) Wei et al. (2012) Our method
m = 8 M = M ′ = 3

(0, 0) 1.36 × 10−5 0

(1/8, 1/8) 2.25 × 10−5 1.63 × 10−5

(2/8, 2/8) 1.45 × 10−4 6.34 × 10−7

(3/8, 3/8) 2.33 × 10−4 2.76 × 10−3

(4/8, 4/8) 2.61 × 10−4 1.83 × 10−4

(5/8, 5/8) 3.34 × 10−4 4.64 × 10−4

CPU times – 1.25

The analytical solution is u(x, t) = 2−x
1+t , when ν = 1.

We solve the above problem by applying the bivariate MLWs with M = M ′ = 1; k =
k′ = 2; ν = 1 and every value of γ . Let:

∂2+νu(x, t)

∂x2∂tν
� c0ψ0(x, t) + c1ψ1(x, t) + c2ψ2(x, t) + c3ψ3(x, t) = CTΨ (x, t), (55)

where

CT = [c0, c1, c2, c3], Ψ (x, t) = [ψ0(x, t), ψ1(x, t), ψ2(x, t), ψ3(x, t)]T .

Using Eqs. (20), (22), (24), (25), (55), and conditions of problem for α = 2, β = 1, achieve:

uxx (x, t) � CTΛ′(t, ν)Ψ (x, t), (56)

C
0 Dν

t u(x, t) � CTΛ(x, 2)Ψ (x, t) − xCTΛ(1, 2)Ψ (1, t) + x − 2

(1 + t)2
, (57)

u(x, t) � CTΛ′(t, ν)Λ(x, 2)Ψ (x, t) − xCTΛ′(t, ν)Λ(1, 2)Ψ (1, t) + 2 − x

1 + t
,

(58)

and

ux (x, t) � CTΛ′(t, ν)Λ(x, 1)Ψ (x, t) − CTΛ′(t, ν)Λ(1, 2)Ψ (1, t) − 1

1 + t
. (59)

By substituting Eqs. (56)–(59) into Eq. (54) and collocating this equation in the following
composite collocation points:

x1,0 = t1,0 = 0.25, x1,1 = t1,1 = 0.75,

and by solving the obtained system of equations yields:

c0 = c1 = c2 = c3 = 0.

Therefore, by employing relation (58), we obtain u(x, t) = 2−x
1+t which is the analytical

solution of problem.
In Fig. 3, we compare our numerical results with a iterative technique in Daftardar-Gejji

and Bhalekar (2010), Adomian decomposition technique, and the exact solution for case
ν = 1 at t = 0.3. Figure 4a, b shows approximate solutions with Daftardar-Gejji and
Bhalekar (2010) and the suggested method, respectively, for ν = 1. Also, the CPU time (in
seconds) of this problem is 0.250.
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Fig. 3 Comparison of our numerical results at M = M ′ = 1, k = k′ = 2 with other schemes of Example 2

Fig. 4 Comparison of our numerical results at M = M ′ = 1, k = k′ = 2 with iterative scheme of Example 2

7.2 Problem b

Example 3 Consider the space fractional advection-dispersion equation as:Momani andOdi-
bat (2008)

C
0 Dα

x u(x, t) = ux (x, t) + ut (x, t) + f (x, t), 1 < α ≤ 2, (60)

where

f (x, t) = 2 − 2t − 2x,

subject to:

u(x, 0) = x2, u(0, t) = t2, ux (0, t) = 0.

For the above equation, we have the analytical solution u(x, t) = x2 + t2 when α = 2.
For solving the above example, we let k = k′ = 2, M = M ′ = 2, with every value of

0 < γ ≤ 1. Using approximating ∂3u(x,t)
∂x2∂t

, we obtain:

∂3u(x, t)

∂x2∂t
�

15∑

i=0

ciψi (x, t) = CTΨ (x, t). (61)
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From Eqs. (32), (30), and (31), we have:

C
0 Dα

x u(x, t) � CTΛ′(t, 1)Λ(x, 2 − α)Ψ (x, t) + 2

Γ (3 − α)
x2−α, (62)

∂u(x, t)

∂t
� CTΛ2(x, 1)Ψ (x, t) + 2t, (63)

and
u(x, t) � CTΛ2(x, 1)Λ′(t, 1)Ψ (x, t) + x2 + t2. (64)

Now, by derivative from Eq. (64) of order 1 with respect to x , achieve:

∂u(x, t)

∂x
� CTΛ(x, 1)Λ′(t, 1)Ψ (x, t) + 2x . (65)

By substituting Eqs. (62)–(65) into Eq. (60) and collocating this equation in the following
composite collocation point:

x1,0 = t1,0 = 0.105662, x1,1 = t1,1 = 0.394338,

x2,0 = t2,0 = 0.605662, x2,1 = t2,1 = 0.894338,

and by solving the obtained system of equations yields:

ci = 0, i = 0, 1, . . . , 15.

By applying relation (64), we obtain the exact value u(x, t) for α = 2. Also, The CPU time
(in seconds) of this problem for this case is 0.625.

We plot the numerical solution of u(0.6, t) and u(x, 0.6) for γ = 1 with different values
of α in Fig. 5a, b. Results indicate that when α approaches to 2, the numerical solutions tend
to the analytical solution. Figures. 6, 7, 8 represent the graphs of the numerical solutions and
contour plot using the proposed method with γ = 1

3 and M = M ′ = 2; k = k′ = 2 for
α = 2, 1.9, 1.8, respectively.

Example 4 Consider the following time FPDEs as (Chen et al. 2010; Saadatmandi et al.
2012):

C
0 Dν

t u(x, t) = −uxx (x, t) − xux (x, t) + f (x, t), 0 < ν ≤ 1, (66)

where

f (x, t) = 2x2 + 2tν + 2,

Fig. 5 Numerical solution of present approach for different values of α with k = k′ = 2, M = M ′ = 2, γ = 1
for Example 3
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Fig. 6 a Numerical solution and b contour plot with α = 2 and γ = 1
3 for Example 3

Fig. 7 a Numerical solution and b contour plot with α = 1.9 and γ = 1
3 for Example 3

Fig. 8 a Numerical solution and b contour plot with α = 1.8 and γ = 1
3 for Example 3
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Table 3 Comparison of absolute error for ν = 0.5, t = 0.5, γ = α of Example 4

x Chen et al. (2010) Saadatmandi et al. (2012) Our method
m = 64 m = 25 k = k′ = 2, M = M ′ = 1

0.1 1.2 × 10−3 6.5 × 10−6 0

0.2 1.3 × 10−3 1.6 × 10−5 0

0.3 1.9 × 10−3 2.3 × 10−5 0

0.4 7.4 × 10−3 2.7 × 10−5 0

0.5 1.0 × 10−6 2.8 × 10−5 0

0.6 7.5 × 10−3 2.5 × 10−5 0

0.7 1.7 × 10−3 2.0 × 10−5 0

0.8 5.0 × 10−3 1.3 × 10−5 0

0.9 1.7 × 10−2 4.7 × 10−6 0

CPU times – – 0.016

subject to:

u(x, 0) = x2, u(0, t) = 2Γ (ν + 1)

Γ (2ν + 1)
t2ν, ux (0, t) = 0.

For above equation, we have the exact solution u(x, t) = x2 + 2Γ (ν+1)
Γ (2ν+1) t

2ν when ν = 1.
For solving the above example, we let k = k′ = 2, M = M ′ = 1 with every value of

0 < γ, ν ≤ 1. By attention Eqs. (33), (29), and (31), yield:

C
0 Dν

t u(x, t) � CTΛ2(x, 1)Λ′(t, 1 − ν)Ψ (x, t) + 2tν, (67)

uxx (x, t) � CTΛ′(t, 1)Ψ (x, t) + 2, (68)

and

u(x, t) � CTΛ2(x, 1)Λ′(t, 1)Ψ (x, t) + 2Γ (ν + 1)

Γ (2ν + 1)
t2ν + x2. (69)

By derivative from Eq. (69) of order 1 with respect to x, we obtain:

ux (x, t) � CTΛ(x, 1)Λ′(t, 1)Ψ (x, t) + 2x . (70)

By substituting Eqs. (67)–(70) into Eq. (66) and collocating this equation in the composite
collocation points given in (17) and (18), we obtain the unknown vector C , and by applying
Eq. (69), we achieve the exact solution for every value of ν.

Table 3 establishes the comparison of absolutes error of suggested scheme for M =
M ′ = 1, k = k′ = 2 together with the Haar wavelet (Chen et al. 2010) for m = 64 and
Sinc–Legendre collocation technique (Saadatmandi et al. 2012) for m = 25. The graphs of
numerical solution and contour plot are shown in Fig. 9a, b.

7.3 Problem c

Example 5 Consider the time fractional Burgers equation with proportional delay as Singh
and Kumar (2017):
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Fig. 9 a Numerical solution and b contour plot with γ = ν = 0.5 of Example 4

C
0 Dν

t u(x, t) = uxx (x, t) + u

(
x

2
,
t

2

)

ux

(

x,
t

2

)

+ 1

2
u(x, t), 0 < ν ≤ 1, (71)

subject to:

u(x, 0) = x, u(0, t) = 0, u(1, t) = et .

For above equation, we have the analytical solution u(x, t) = xet when ν = 1.
For numerical solution of this example, we select k = k′ = 2; M = M ′ = 2 and γ = 1

2 .

From Eqs. (20), (22), (36), (37), and (24) for α = 2 and β = 1, we have:

uxx (x, t) � CT Λ′(t, ν)Ψ (x, t), (72)
C
0 Dν

t u(x, t) � CT Λ(x, 2)Ψ (x, t) − xCT Λ(1, 2)Ψ (1, t) + xt1−νE1,2−ν(t), (73)

u

(
x

2
,
t

2

)

� CT Λ′
(
t

2
, ν

)

Λ
( x

2
, 2

)
Ψ

(
x

2
,
t

2

)

− x

2
CT Λ′

(
t

2
, ν

)

Λ(1, 2)Ψ

(

1,
t

2

)

+ x

2
e
t
2 ,

(74)

ux

(

x,
t

2

)

� CT Λ′
(
t

2
, ν

)

Λ(x, 1)Ψ

(

x,
t

2

)

− CT Λ′
(
t

2
, ν

)

Λ(1, 2)Ψ

(

1,
t

2

)

+ e
t
2 , (75)

u(x, t) � CT Λ′(t, ν)Λ(x, 2)Ψ (x, t) − xCT Λ′(t, ν)Λ(1, 2)Ψ (1, t) + xet . (76)

By substituting Eqs. (72)–(76) into Eq. (71) and collocating this equation in the composite
collocation points given in (17) and (18), and Newton’s iterative scheme, we achieve the
analytical solution for ν = 1.

Table 4 displays the absolute error of suggested scheme by choosing k = k′ = 2; M =
M ′ = 2; ν = 1 and γ = 1

2 , 1 together with homotopy perturbation transform method (Singh
and Kumar 2017). In addition, CPU time for γ = 1

2 and γ = 1 are revealed in Table 4. The
plots of the solution with present method and Singh and Kumar (2017) for various values of
ν = 0.8, 0.9, 1 are depicted in Fig. 10. Also, the numerical solutions behavior of u(x, t) and
contour plots for various values of ν = 0.8, 0.9, 1 are depicted in Figs. 11, 12, and 13.
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Table 4 Comparison of absolute
error for k = k′ = 2, M = M ′ =
2, γ = 1

2 , 1 for Example 5

x t Singh and Kumar (2017) Our method

γ = 1
2 γ = 1

0.25 0.25 2.122401 × 10−6 0 0

0.50 7.094268 × 10−5 0 0

0.75 5.634807 × 10−4 0 0

1.00 2.487124 × 10−3 0 0

0.5 0.25 4.244802 × 10−6 0 0

0.50 1.418854 × 10−4 0 0

0.75 1.126961 × 10−3 0 0

1.00 4.974248 × 10−3 0 0

0.75 0.25 6.369688 × 10−6 0 0

0.50 2.128250 × 10−4 0 0

0.75 1.690020 × 10−3 0 0

1.00 7.461370 × 10−3 0 0

CPU times – 2.593 0.250

Fig. 10 Approximate solutions of (left side): present method with γ = 1 and (right side): Singh and Kumar
(2017) with ν = 0.8, 0.9, 1 for Example 5

Fig. 11 a Numerical solution and b contour plot with ν = 1, γ = 1
2 for M = M ′ = 2 and k = k′ = 2 of

Example 5
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Fig. 12 a Numerical solution and b contour plot with ν = 0.9, γ = 1
2 at M = M ′ = 2 and k = k′ = 2 of

Example 5

Fig. 13 a Numerical solution and b contour plot with ν = 0.8, γ = 1
2 for M = M ′ = 2 and k = k′ = 2 of

Example 5

8 Discussion and future work

The aim of this studywas to present an effective numerical algorithm for solving three classes
of FPDEs using bivariate MLWs. The MLWs’ operational matrix of fractional integration is
derived. This operational matrix and the composite collocation scheme are used to transform
FPDEs into systems of nonlinear equations to provide an approximate solution of FPDEs.
The obtained results by our technique emphasized that:

1. The scheme is very easy to implement and achieves high accurate approximate solutions.
2. Few terms of bivariate MLWs are applied to provide effective and accuracy results.
3. The bivariate MLWs’ scheme has less CPU time when compared to the other schemes.
4. There are three degrees of freedom (k, M, γ ) for MLWs, but two degrees of freedom

(k, M) for other wavelets.
5. Stability analysis of the suggested technique for numerical solution of FPDEs is an

interesting problem for future work.
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