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Abstract
This paper investigates mathematical models of predator-prey systems where a transmissible
disease spreads only among the prey species. Two mathematical models are proposed, anal-
ysed and compared to assess the influence of hidden or explicit resources for the predator. The
predator is assumed to be a generalist in the first model and a specialist on two prey species in
the second one. Existence and boundedness of the solutions of the models are established, as
well as local and global stability and bifurcations. The equilibria of two systems possessing
the same biological meaning are compared. The study shows that the relevant ecosystem
behaviour including stability switching, extinction and persistence for any species depends
on four important parameters, viz., the reproduction rate and the infection rate of the main
prey, the mortality rate of infected prey and the reproduction rate of the alternative prey. This
study ultimately indicates that the simpler formulation with the hidden resource already cap-
tures the salient features of the ecosystem. Therefore, modeling explicitly the substitute prey
is not needed unless a particular emphasis is placed on the alternative resource behaviour. In
such case, the extended model is preferable, at the expenses of a more complicated formu-
lation and analysis. Ultimately, the choice of the model to be used should be guided by the
reasons of its formulation and the answers that are sought.

Keywords Hidden prey · Explicit prey · Bifurcation · Predator–prey model

Mathematics Subject Classification 92D25 · 92D40
1 Introduction

Currently, mathematical models in ecoepidemiology play an important tools in the analy-
sis of the spread and control of infectious diseases among interacting animal communities
(Anderson andMay 1986; Hadeler and Freedman 1989; Venturino 1994). Most models deal-
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ing with the transmission of infectious diseases descend from the classic SIR model (Haque
and Venturino 2006; Kermack and McKendrick 1927; Venturino 2016). However, in this
paper we consider models only of type SI, Venturino (2011), to keep the presentation simple
without obscuring the main goals with unnecessary mathematical complications.

The main focus of this investigation concerns the fact that in modeling some selected
features in nature are chosen as being part of the general picture one wants to set in the
mathematical framework,while necessarily someothers are neglected. The situation is similar
to a well-known story that cartographers were asked to produce a very accurate map of the
terrain, and to obtain that any scale smaller than the 1:1 would be insufficient. But the result
was that such a map would cover completely the ground and, therefore, be absolutely useless.
When looking at ecological situations, apart from including or excluding particular features
of the ecosystem at hand, it is important to decide which dependent variables are essential
for the effective description of the picture. In that respect, including too many may lead to a
full illustration of the system dynamics, which can be simulated via numerical devices but
excludes any sort of mathematical qualitative analysis, in view of its complexity. Needless to
say, the simulations must be repeated over and over again giving each time different values to
the relevant parameters, to obtain qualitative information on the future system behaviour. On
the contrary, the mathematical analysis, if it can be carried out, would answer these evolution
questions in a relatively easy fashion. When it comes to quantitative predictions, the roles
reverse, and it is the numerical simulations that could provide more or less reliable answers,
but those would depend on the accurate measurements of the parameters of the model, which
may not all be known or available.

Setting our perspective from the qualitative viewpoint, sometimes of the many actors on
the scene, i.e. the several species interacting in a natural scenery, some should be excluded
in order to render the mathematical description analytically tractable. It may thus happen
that some populations are judged to play a less relevant role and are not, therefore, modeled
as system’s variables. For instance, a (generalist) predator may subsist on several prey, but
to reduce the number of interacting populations in the dynamical system formulation, only
the main one is explicitly taken into account. But in so doing, something is lost and it is not
clear if this entails relevant consequences for the ensuing analysis. Here, we would like to
consider exactly this issue, and exploring namely what are the implications of omitting one
explicit (prey) population from the dynamical formulation of a predator–prey interaction.
We thus compare two models, one in which the omission is compensated by some “generic”
alternative resources available for the predator, and a second one in which the previously
omitted population is instead explicitly accounted for as a system variable. In nature there
are very many such instances, we mention for instance the pine marten Martes martes L.,
that can feed possibly on grey squirrel Sciurus carolinensis and the European hare Lepus
Europaeus, both now invasive species in Northern Italy, Gosso et al. (2012), La Morgia and
Venturino (2017). Either one could be forgotten, if the focus of the model is for instance
finding eradication measures for the other one.

The main objective of this paper is, therefore, the comparative study of two predator–prey
ecoepidemic models, an example of which is discussed in Bravo and Tamburino (2011);
Haque et al. (2013), although food webs can also be considered, see for instance Jiang and
Niu (2017). We assume that the disease spreads among the prey population. The difference
between the models is represented by the predator having an alternative food source, which is
implicit in the first formulation and explicit in the second one. Thus, the predator is assumed
to be generalist in the first model, while in the second model, because of this explicitly
accounted for alternative food resource, the predator is regarded as specialist on both prey
species. In the papers de Assis et al. (2018), Khan et al. (1998), Turchin (2003), purely
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demographic systems are analysed, in this work, we extend some of those systems to the
Ecoepidemic situation, there is, we include the dynamics of a disease in the prey population.

The presentation is organized as follows: In Sect. 2, we present themodel for the generalist
predator and, we present the corresponding model with two prey and the specialist predator
in Sect. 3. In both situations, we show that the systems trajectories remain confined within a
compact set; we study local and global stability, and determine existing bifurcations between
the equilibria of the model. The outcomes of the two models are compared in Sect. 4 and a
final discussion concludes this paper.

2 Themodel with hidden resources

Let the prey population be denoted by X , the infected prey population U , which is assumed
to be weakened by the disease so as not to be able to reproduce nor to interfere with the
susceptibles, and the predator population Z . The predator population has an alternative food
supply, indicated by a suitable logistic growth term. The model, in which all the parameters
are nonnegative, reads

dX

dt
= r X

(
1 − X

K

)
− aZ X − λXU ,

dU

dt
= λXU − cZU − μU , (1)

dZ

dt
= uZ

(
1 − Z

L

)
+ eZ(aX + cU ).

The first equation of model (1) describes the healthy prey population dynamics. The
first term on the right-hand side expresses logistic growth with r being the per capita net
reproduction rate and K the carrying capacity of the environment. The second term models
the hunting process of predators on healthy individuals at rate a and the third term describes
the infection process by “successful” contacts with an infected individual via a simple mass
action law, with contact rate λ. The second equation describes the infected prey evolution,
recruited by the infection process at rate c, hunted via a classical mass action term and
subject to natural plus disease-related mortality μ. The third equation contains the dynamics
of the predators, who in the absence of both healthy and infected prey have an alternative
resource, that is hidden in the model and originating a logistic growth, with per capita net
reproduction rate u and the carrying capacity of the environment L . The term eZ(aX + cU )

instead accounts for the reward obtained by hunting healthy and infected prey, respectively,
e denoting the conversion factor. The equilibria of this model are denoted by the superscript
[p_ehp], the first “p” referring to predators and the second one to prey, “e” standing for
“epidemics” and “h” for “hidden”.

In shorthand notation, the model (1) can be rewritten in a vector form

dP

dt
= f (P), P = (X ,U , Z)T , f = ( f1, f2, f3)

T , (2)

with the components of f given by the right-hand side of model (1).

2.1 Boundedness

To obtain a well-posed model, we need to show that the trajectories of the system remain
confined within a compact set. Consider the total environment population ϕ(t) = X(t) +
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U (t) + Z(t). Taking an arbitrary 0 < η < μ, summing the equations in model (1), we
obtain

dϕ(t)

dt
= r X

(
1 − X

K

)
+ uZ

(
1 − Z

L

)
− μU + (e − 1)(aX Z + cU Z). (3)

Since e ≤ 1, from (3) we can obtain

dϕ(t)

dt
= r X

(
1 − X

K

)
+ uZ

(
1 − Z

L

)
− μU + (e − 1)(aX Z + cU Z)

≤ r X

(
1 − X

K

)
+ uZ

(
1 − Z

L

)
− μU . (4)

Adding ηϕ(t) on both sides of inequality (4), we find the estimate

dϕ(t)

dt
+ ηϕ(t) ≤ r X

(
1 − X

K
+ η

r

)
+ uZ

(
1 − Z

L
+ η

u

)

+(η − μ)U ≤ p1(X) + p2(Z),

p1(X) = r X

(
1 − X

K
+ η

r

)
, p2(X) =

(
1 − Z

L
+ η

u

)
.

The functions p1(X) and p2(Z) are concave parabolae, with maxima located at X∗, Z∗, and
corresponding maximum values

M1 = p1(X
∗) = r K

4

(
1 + η

r

)2
, M2 = p2(Z

∗) = uL

4

(
1 + η

u

)2
.

Thus

dϕ(t)

dt
+ ηϕ(t) ≤ M; M1 + M2 = M .

Integrating the differential inequality, we find

ϕ(t) ≤
(

ϕ(0) − M

η

)
e−ηt + M

η
≤ max

{
ϕ(0),

M

η

}
. (5)

From this result, since 0 ≤ X ,U , Z ≤ ϕ, the boundedness of the original ecosystem popu-
lations is immediate. Thus, for model (1) the solutions are always non-negative, in view of
the existence and uniqueness theorem Perko (2001), and contained within a compact set.

2.2 Local stability analysis

The Jacobian matrix of the system (1) is given by

J [p_ehp] =

⎛
⎜⎜⎝

J [p_ehp]
11 −λX −aX

λU −cZ + λX − μ −cU

aeZ ceZ J [p_ehp]
33

⎞
⎟⎟⎠ (6)

with

J [p_ehp]
11 = −λU − aZ + r

(
1 − 2X

K

)
, J [p_ehp]

33 = u − 2u
Z

L
+ eaX + ecU ,

There are 7 equilibria for model (1), but four must be rejected. At first, the two are always
feasible but unstable points: the origin P [p_ehp]

1 = (0, 0, 0), with eigenvalues r ,−μ, u, and
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P [p_ehp]
2 = (K , 0, 0), with eigenvalues −r , Kλ − μ, u + aeK . In addition, for the equi-

librium point P [p_ehp]
3 = (μλ−1, rλ−1(1− μλ−1K−1), 0) the feasibility condition requires

U [p_ehp]
3 ≥ 0 which explicitly is given by 1 ≥ μλ−1K−1. Furthermore, the Jacobian matrix

(6) evaluated at P [p_ehp]
3 gives one explicit eigenvalue which should be negative to ensure

stability, i.e. u+aeμλ−1+cerλ−1(1−μλ−1K−1) < 0 must be satisfied. Clearly, if the con-
dition for feasibility of P [p_ehp]

3 holds, this eigenvalue is positive and thus P [p_ehp]
3 is unstable

whenever feasible. Finally, the point P [p_ehp]
4 = (0,−(uμ + ucL)e−1c−2L−1,−μc−1) is

not feasible.
The equilibrium point P [p_ehp]

5 = (0, 0, L) is always feasible and stable if

r

a
< L. (7)

The point P [p_ehp]
6 = (X [p_ehp]

6 , 0, Z [p_ehp]
6 ), with explicit populations levels:

X [p_ehp]
6 = urK − auK L

a2eK L + ur
, Z [p_ehp]

6 = L(aerK + ur)

a2eK L + ur
,

is feasible if r

a
≥ L. (8)

The characteristic equation of the Jacobian matrix (6) evaluated at P [p_ehp]
6 can be factorized

into the product of one linear equation and one quadratic equation providing one explicit
eigenvalue producing the following condition, written both in implicit and explicit forms:

λX [p_ehp]
6 < cZ [p_ehp]

6 + μ, λ <
acerK L + ucr L + uμr + a2eμK L

uK (r − aL)
, (9)

while the Routh–Hurwitz conditions for the remaining minor

J
[p_ehp]
P6 =

⎛
⎝ − ru(r−aL)

ur+a2eK L
− auK (r−aL)

ur+a2eK L
aer L(aeK+u)

ur+a2eK L
− ru(aeK+u)

ur+a2eK L

⎞
⎠

are always satisfied, if the feasibility condition (8) holds sharply, namely

tr(J
[p_ehp]
P6 ) = −ru(r − aL) − ruaeK − ru2

ur + a2eK L
< 0 (10)

and

det(J
[p_ehp]
P6 ) = (r − aL)(aeK + u)(a2uerK L + r2u2)

(a2eK L + ru)2
> 0. (11)

Thus, if the condition (9) is satisfied, equilibrium P [p_ehp]
6 is stable.

For the coexistence P [p_ehp]
7 = (X [p_ehp]

7 ,U [p_ehp]
7 , Z [p_ehp]

7 ), we find

X [p_ehp]
7 = cZ [p_ehp]

7 + μ

λ
, U [p_ehp]

7 = r

λ

(
1 − μ

λK

)
− Z [p_ehp]

7

λ

(
a + rc

λK

)

and

Z [p_ehp]
7 = L

Kλ2u + c2er L
(aeμλK + uλ2K + cerλK − cerμ).
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36 Page 6 of 25 L. M. E. de Assis et al.

Feasibility requirements for U [p_ehp]
7 ≥ 0 and Z [p_ehp]

7 ≥ 0 are given, respectively, by

λ ≥ auλK L + rcuL + acerK L + a2eμK L + μru

urK
,

μ ≤ aeμλK + uλ2K + cerλK

cer
.

which in turn reduce to

uk(r − aL)λ ≥ rcuL + acerK L + a2eμK L + μru, (12)

which is satisfied for

λ ≥ λ∗, λ∗ = rcuL + acerK L + a2eμK L + μru

uk(r − aL)
, (13)

where λ∗ is the root of the equality associated to (12) when (8) holds, while in the opposite
case no solution exists and P [p_ehp]

7 in unfeasible, and

�(λ) = uλ2K + e(aKμ + crK )λ − cerμ ≥ 0

for which, denoting by λ± the roots of �(λ), the quadratic inequality is satisfied for

0 ≤ λ ≤ λ±. (14)

For stability, the diagonal entries in the generic Jacobian (6) simplify to

J [p_ehp]
11 = − r

K
X [p_ehp]
7 , J [p_ehp]

22 = 0, J [p_ehp]
33 = − u

L
Z [p_ehp]
7 .

Evaluating all the principal minors of the opposite of the Jacobian at coexistence,
−J (P [p_ehp]

7 ), we find that it is positive definite. Thus, whenever feasible, P [p_ehp]
7 is stable:

r

K
X [p_ehp]
7 > 0, λ2U [p_ehp]

7 X [p_ehp]
7 > 0,

(
c2er

K
+ uλ2

L

)
X [p_ehp]
7 U [p_ehp]

7 Z [p_ehp]
7 > 0.

In Table 1, we summarize the behaviour of the equilibrium points of model (1).

Table 1 Behaviour and
feasibility and stability conditions
of the equilibria of model (1)

Equilibria Feasibility Stability

P[p_ehp]
1 Always Unstable

P[p_ehp]
2 Always Unstable

P[p_ehp]
3 μ ≤ λK Unstable if feasible

P[p_ehp]
4 Unfeasible

P[p_ehp]
5 Always r < aL

P[p_ehp]
6 r ≥ aL (9)

P[p_ehp]
7 (12), (13), (14) Stable if feasible
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2.3 Global stability for the equilibria of model (1)

Table 1 shows that of the seven equilibria in model (1), only three may be stable. In this
section, we prove that their local stability, as proved through the analysis of the eigenvalues,
also implies their global stability aswell. To accomplish this task, suitableLyapunov functions
are constructed.

We now prove that feasibility of P [p_ehp]
7 implies its global asymptotic stability. Consider

the following function:

V [p_ehp]
7 (X(t),U (t), Z(t)) = α2

(
X − X [p_ehp]

7 − X [p_ehp]
7 ln

X

X [p_ehp]
7

)

+α1

(
U −U [p_ehp]

7 −U [p_ehp]
7 ln

U

U [p_ehp]
7

)

+α0

(
Z − Z [p_ehp]

7 − Z [p_ehp]
7 ln

Z

Z [p_ehp]
7

)
,

where α2, α1 and α0 are arbitrary positive constants. Differentiating along the solution tra-
jectories of (1), we find

dV [p_ehp]
7

dt
= −α2

r

K

(
X − X [p_ehp]

7

)2 − α0
u

L

(
Z − Z [p_ehp]

7

)2

+ λ(α1 − α2)
(
X − X [p_ehp]

7

) (
U −U [p_ehp]

7

)

+ a(α0e − α2)
(
X − X [p_ehp]

7

) (
Z − Z [p_ehp]

7

)

+ c(α0e − α1)
(
U −U [p_ehp]

7

) (
Z − Z [p_ehp]

7

)
.

If we choose α2 = α1 = α0e, then the above derivative is negative definite except at the
equilibrium point P [p_ehp]

7 , so it is a Lyapunov function. Hence, P [p_ehp]
7 is a globally stable

equilibrium point whenever it is feasible.
Analogous results can be shown for the remaining two equilibria, P [p_ehp]

6 and P [p_ehp]
7 .

For P [p_ehp]
5 , we need to choose

V [p_ehp]
5 (X(t),U (t), Z(t)) = β2X + β1U + β0

(
Z − Z [p_ehp]

5 − Z [p_ehp]
5 ln

Z

Z [p_ehp]
5

)
,

with β2, β1 and β0 positive constants to be determined. Differentiation along the system
trajectories leads to

dV [p_ehp]
5

dt
= −β2

r

K
X2 − β0

u

L

(
Z − Z [p_ehp]

5

)2 + a(β0e − β2)X Z

+ λ(β1 − β2)XU + c(β2e − β1)UZ + (β2r − β0eaL)X

+ (−β1μ − β0ecL)U

so that choosing β2 = β1 = β0e and using the local stability condition (7), the above
derivative of V [p_ehp]

5 is negative definite and the equilibrium point P [p_ehp]
5 is globally

asymptotically stable.
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Similarly, for equilibrium point P [p_ehp]
6 consider the following candidate Lyapunov func-

tion:

V [p_ehp]
6 (X(t),U (t), Z(t)) = γ2

(
X − X [p_ehp]

6 − X [p_ehp]
6 ln

X

X [p_ehp]
6

)

+ γ1U + γ0

(
Z − Z [p_ehp]

6 − Z [p_ehp]
6 ln

Z

Z [p_ehp]
6

)
,

where γ2, γ1 and γ0 are positive constants to be determined. Once more, differentiating
V [p_ehp]
6 along the trajectories of (1) we find, after some algebraic manipulations,

dV [p_ehp]
6

dt
= −γ2

r

K

(
X − X [p_ehp]

6

)2 − γ0
u

L

(
Z − Z [p_ehp]

6

)2

+ a(γ0e − γ2)
(
X − X [p_ehp]

6

) (
Z − Z [p_ehp]

6

)
+ λ(γ1 − γ2)XU

+ c(γ0e − γ1)UZ +
(
γ2λX

[p_ehp]
6 − γ0ecZ

[p_ehp]
6 − γ1μ

)
U .

Choosing γ1 = γ2 = γ0e and using the local stability condition (9), we find that the derivative
of V [p_ehp]

6 is negative definite except at P [p_ehp]
6 . Thus, the equilibrium point P [p_ehp]

6 is
globally asymptotically stable.

Remark 1 These results indicate that if feasible, the equilibria P [p_ehp]
5 , P [p_ehp]

6 and P [p_ehp]
7

of the system (1) are globally asymptotically stable. Indeed these three equilibria aremutually
exclusive. This statement for P [p_ehp]

5 and P [p_ehp]
6 follows by comparing their respective

feasibility and stability conditions in Table 1. Further, for r < aL , P [p_ehp]
5 is stable and

P [p_ehp]
7 is unfeasible, because (12) does not hold. Conversely, for r ≥ aL , P [p_ehp]

6 is

feasible but then (9) and (12), (13) contradict each other, so that P [p_ehp]
6 and P [p_ehp]

7 are
also excluding each other. These remarks suggest the existence of transcritical bifurcations
linking these equilibria, a question that will be investigated analytically in the next section.

2.4 Transcritical bifurcations

To study the local bifurcations of the equilibrium points of model (1), we use Sotomayor’s
theorem Perko (2001). The general second-order term of the Taylor expansion of f in (2) is
given by

D2 f (P, ψ)(V , V )

=

⎛
⎜⎜⎜⎝

∂2 f1
∂X2 ξ21 + ∂2 f1

∂U2 ξ22 + ∂2 f1
∂Z2 ξ23 + 2 ∂2 f1

∂X∂U ξ1ξ2 + 2 ∂2 f1
∂X∂Z ξ1ξ3 + 2 ∂2 f1

∂U∂Z ξ2ξ3

∂2 f2
∂X2 ξ21 + ∂2 f2

∂U2 ξ22 + ∂2 f2
∂Z2 ξ23 + 2 ∂2 f2

∂X∂U ξ1ξ2 + 2 ∂2 f2
∂X∂Z ξ1ξ3 + 2 ∂2 f2

∂U∂Z ξ2ξ3

∂2 f3
∂X2 ξ21 + ∂2 f3

∂U2 ξ22 + ∂2 f3
∂Z2 ξ23 + 2 ∂2 f3

∂X∂U ξ1ξ2 + 2 ∂2 f3
∂X∂Z ξ1ξ3 + 2 ∂2 f3

∂U∂Z ξ2ξ3

⎞
⎟⎟⎟⎠ , (15)

where ψ represents the parametric threshold and ξ1, ξ2, ξ3 are the components of the eigen-
vector V = (ξ1, ξ2, ξ3)

T of the variations in X ,U and Z .

123



Comparison of hidden and explicit… Page 9 of 25 36

2.4.1 Bifurcation of the equilibrium point P[p_ehp]6

The axial equilibriumpoint P [p_ehp]
6 coincideswith the equilibrium P [p_ehp]

5 at the parametric

threshold r† and with equilibrium P [p_eep]
7 at the parametric threshold λ†, where

r† = aL, λ† = aeK L(cr + aμ) + ur(μ + cL)

uK (r − aL)
(16)

whenwe compare the feasibility condition (8) of P [p_ehp]
6 togetherwith the stability condition

(7) of P [p_ehp]
5 aswell as, respectively, the stability condition (9) of P [p_ehp]

6 and the feasibility

condition (12) of the equilibrium P [p_ehp]
7 .

The Jacobian matrix of the system (1) evaluated at P [p_ehp]
6 and at r† is

J [p_ehp]
P6

(r†) =
⎛
⎝ 0 0 0

0 −cL − μ 0
aeL ceL −u

⎞
⎠ .

Its right and left eigenvectors, corresponding to the zero eigenvalue, are given by V1 =
ϕ1(1, 0, aeL/u)T and Q1 = ω1(1, 0, 0)T , where ϕ1 and ω1 are any nonzero real numbers.
Differentiating partially the right-hand sides of the Eq. (1) with respect to r and calculating
its Jacobian matrix, we find, respectively

fr =
⎛
⎜⎝

X [p_ehp]
6 (1 − X [p_ehp]

6 /K )

0
0

⎞
⎟⎠ , Dfr =

⎛
⎜⎝
1 − 1

K X [p_ehp]
6 0 0

0 0 0
0 0 0

⎞
⎟⎠ .

After calculating D2 f in (15) evaluated at P [p_ehp]
6 , the parametric threshold r† and the

eigenvector V1, we can verify the following three conditions:

Q1
T fr (P

[p_ehp]
6 , aL) = 0,

Q1
T [Dfr (P

[p_ehp]
6 , aL)V1] = ϕ1ω1 �= 0,

QT
1 [D2 fr (P

[p_ehp]
6 , aL)(V1, V1)] = −ω1ϕ1

2
(
aL

K
+ 2a2eL

u

)
�= 0.

When P [p_ehp]
6 coincides with the equilibrium P [p_ehp]

7 at the threshold λ†, the Jacobian
matrix of the system (1) is

J [p_ehp]
P6

(λ†)=

⎛
⎜⎜⎝

− ru(r−aL)

ur+a2eK L
− L(acerK+a2eμK+cru)+ruμ

ur+a2eK L
a2uK L−aruK
ur+a2eK L

0 0 0

L(a2e2r K+aeru)

ur+a2eK L
L(ace2r K+ceru)

ur+a2eK L
− aeruK+ru2

ur+a2eK L

⎞
⎟⎟⎠ . (17)

For the zero eigenvalue in (17), the corresponding eigenvector is V2 = ϕ2(1, v1, v2)T ,
where ϕ2 is any nonzero real number and v1 and v2 are

v1 = −a3eK L2 − L(aru − a2erK ) + r2u)

a2ceK L2 + L(−2acerK − a2eμK − cru) − μru

and

v2 = L2(a2ce2r K + a3e2μK + 2aceru) + uL(aeμr − cer2)

a2ceuK L2 + L(−2aceruK − a2eμuK − cru2) − μru2
. (18)
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Fig. 1 a Transcritical bifurcation between P[p_ehp]
6 and P[p_ehp]

5 for the parameter values: μ = 0.01,
K = L = a = u = 1, e = c = 0.3 and λ = 1.01. Initial conditions X0 = U0 = Z0 = 0.01. The

equilibrium P[p_ehp]
5 is stable for λ ∈ [0.1, 1.01] and P[p_ehp]

6 is stable past λ = 1.01. The vertical line

shows the transcritical bifurcation threshold. b Transcritical bifurcation between P[p_ehp]
6 and P[p_ehp]

7 for
the parameter values: μ = 0.01, K = L = a = u = 1, e = c = 0.3 and r = 1.6 and the same initial

conditions. The equilibrium P[p_ehp]
6 is stable for λ ∈ [0.1, 1.072] and P[p_ehp]

7 is stable past λ = 1.072.
The vertical line has the same meaning as in (a)

Besides that, Q2 = ω2(0, 1, 0)T represents the eigenvector corresponding to the zero
eigenvalue of (J [p_ehp]

P6
(r†))T , where ω2 is any nonzero real number. Differentiating par-

tially the right hand sides of (1) with respect to λ and calculating its Jacobian matrix, we
respectively find

fλ =
⎛
⎜⎝

−X [p_ehp]
6 U [p_ehp]

6

X [p_ehp]
6 U [p_ehp]

6
0

⎞
⎟⎠ , Dfλ =

⎛
⎜⎝
0 −X6

[p_ehp] 0

0 X6
[p_ehp] 0

0 0 0

⎞
⎟⎠ .

After calculating D2 f in (15) evaluated at P [p_ehp]
6 , the parametric threshold λ† and the

eigenvector V2 we can verify the following three conditions, the latter being satisfied in view
of (18) and (16):

Q2
T fλ(P

[p_ehp]
6 , λ†) = 0, Q2

T [Dfλ(P
[p_ehp]
6 , λ†)V2] = ϕ2ω2v1X6

[p_ehp] �= 0,

QT
2 [D2 fλ(P

[p_ehp]
6 , λ†)(V2, V2)] = 2v1ω2ϕ2

2 (
λ† − cv2

) �= 0.

Thus, all the conditions for transcritical bifurcation are satisfied. Figure 1 illustrates the sim-
ulation explicitly showing the transcritical bifurcation between P [p_ehp]

6 and P [p_ehp]
5 for the

chosen parameter values (see the caption of Fig. 1a) when the parameter r crosses a critical
value r† = aL = 1 given by (16) and the transcritical bifurcation between P [p_ehp]

6 and

P [p_ehp]
7 for the chosen parameters values (see the caption of Fig. 1b) when the parameter λ

crosses a critical value λ† ≈ 1.072 given by (16).

3 Themathematical model with explicit resources

Now, we render the hidden resource for the predator explicit, naming it Y . The model is
denoted with the superscript [p_eep], where the first “p” refers to predators and the last one
to prey, the first “e” stands for “epidemics” (in the prey) and the second one stands for explicit
resource for the predator. The model, in which all the parameters are nonnegative, reads
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dX

dt
= r X

(
1 − X

K

)
− aZ X − λXU ,

dU

dt
= λXU − cZU − μU ,

dY

dt
= sY

(
1 − Y

H

)
− bY Z ,

dZ

dt
= −mZ2 + e(aX Z + bY Z + cU Z). (19)

The first and second equations of model (19), respectively representing the healthy and
infected prey, have the samemeaning as described formodel (1). The third equation describes
the alternative prey population dynamics. The first term on the right-hand side expresses
logistic growth with s being the per capita net reproduction rate and H the environment
carrying capacity. The second term models hunting of Y by the predator at rate b. The fourth
equation describes the predator population dynamics and is essentially the same as described
for (1), with an additional gain due to the hunting of the alternative prey.

3.1 Boundedness

The proof for system (19) follows a similar pattern as in Sect. 2.1 and is, therefore, omitted.
Setting ψ(t) = X(t) +U (t) + Y (t) + Z(t), for an arbitrary 0 < η < μ, we find an estimate
similar to the one in Eq. (5), where only the definition of M slightly changes, again ensuring
boundedness of all the ecosystem populations.

3.2 Local stability analysis of themodel (19)

The Jacobian matrix of system (19) is given by

J [p_eep] =

⎛
⎜⎜⎜⎜⎜⎝

J [p_eep]
11 −λX 0 −aX

λU −cZ + λX − μ 0 −cU

0 0 s − 2s
H Y − bZ −bY

aeZ ceZ beZ J [p_eep]
44

⎞
⎟⎟⎟⎟⎟⎠

(20)

with

J [p_eep]
11 = r − 2r

K
X − aZ − λU , J [p_eep]

44 = eaX + ebY + ecU − 2mZ .

There are 13 possible equilibria for model (19). The four always unstable points are the
origin P [p_eep]

1 = (0, 0, 0, 0), with eigenvalues r , μ, s, 0, P [p_eep]
2 = (K , 0, 0, 0), with

eigenvalues−r ,−μ, s, eaK , P [p_eep]
3 = (0, 0, H , 0), with eigenvalues r ,−μ,−s, ebH and

P [p_eep]
4 = (K , 0, H , 0), with eigenvalues −r ,−s,−μ + λK , aeK + ebH .

Further, the point P [p_eep]
5 = (X [p_eep]

5 ,U [p_eep]
5 , 0, 0), where X [p_eep]

5 = μλ−1 and

U [p_eep]
5 = rλ−1 − rμλ−2K−1, which is feasible if μ ≤ λK is unconditionally unstable

because the Jacobian (20) evaluated at the P [p_eep]
5 has two explicit eigenvalues, eaμλ−1 +

ecrλ−1 − ecrμλ−2K−1 and s > 0. Similarly, the equilibrium P [p_eep]
8 = (μλ−1,−rλ−1 +

rμλ−2K−1, H , 0) is feasible if
μ ≥ λK , (21)

123



36 Page 12 of 25 L. M. E. de Assis et al.

but unconditionally unstable when feasible, since one of the two explicit eigenvalues of the
Jacobian at P [p_eep]

8 is positive in view of (21):

−s < 0, ebH + eaμ

λ
− ecr

λ

(
1 − μ

λK

)
> 0.

There are also two unconditionally unfeasible points:

P [p_eep]
6 =

(
0,−mμ

ec2
, 0,−μ

c

)
, P [p_eep]

7 = (0,U [p_eep]
7 , Y [p_eep]

7 , Z [p_eep]
7 ),

with

U [p_eep]
7 = ecsbH − eμb2H − msμ

c2es
, Y [p_eep]

7 = μbH + csH

cs
, Z [p_eep]

7 = −μ

c
.

The equilibrium P [p_eep]
9 = (X [p_eep]

9 , 0, 0, Z [p_eep]
9 ), where

X [p_eep]
9 = mrK

a2eK + mr
, Z [p_eep]

9 = aerK

a2eK + mr

is always feasible and conditionally stable, because two explicit eigenvalues of the Jacobian
at P [p_eep]

9 give the stability conditions

s <
aberK

a2eK + mr
, λ <

aeK (aμ + cr) + mrμ

mrK
. (22)

while the Routh–Hurwitz conditions for the remaining minor J
[p_eep]
P9 hold

−tr(J
[p_eep]
P9 ) = r

K
X [p_eep]
9 + mZ [p_eep]

9 > 0,

det(J
[p_eep]
P9 ) = mr

K
X [p_eep]
9 Z [p_eep]

9 + a2eX [p_eep]
9 Z [p_eep]

9 > 0.

The point P [p_eep]
10 = (0, 0, Y [p_eep]

10 , Z [p_eep]
10 ), with

Y [p_eep]
10 = msH

b2eH + ms
, Z [p_eep]

10 = ebsH

b2eH + ms

is similarly always feasible and conditionally stable. From the Jacobian at P10[p_eep], one
explicit eigenvalue is −cZ [p_eep]

10 − μ < 0 while another explicit eigenvalue provides the
stability condition

Z [p_eep]
10 = abesH

b2eH + ms
>

r

a
. (23)

The Routh–Hurwitz criterion on the remaining minor J
[p_eep]
P10 holds

−tr(J
[p_eep]
P10 ) = s

H
Y [p_eep]
10 + mZ [p_eep]

10 > 0,

det(J
[p_eep]
P10 ) = ms

H
Y [p_eep]
10 Z [p_eep]

10 + b2eY [p_eep]
10 Z [p_eep]

10 > 0.

The equilibrium P [p_eep]
11 = (X [p_eep]

11 , 0, Y [p_eep]
11 , Z [p_eep]

11 ), with

X [p_eep]
11 = K − aK

r
Z [p_eep]
11 , Y [p_eep]

11 = H − bH

s
Z [p_eep]
11 ,

Z [p_eep]
11 = rs(beH + aeK )

a2esK + b2er H + mrs
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is feasible if

r ≥ aZ [p_eep]
11 = abesH

b2eH + ms
, s ≥ bZ [p_eep]

11 = aberK

a2eK + mr
. (24)

The second condition can be rewritten giving either an upper bound on r or no bound at all,
respectively, if abeK > ms holds or not. In the former case, the condition is

r ≤ a2eKs

abeK − ms
, abeK > ms. (25)

Its Jacobian has one explicit eigenvalue, providing the stability condition

λX [p_eep]
11 < μ + cZ [p_eep]

11 , (26)

which explicitly becomes

r [ces(aK + bH) + (μ − λK )(b2eH + ms)] > −aesK (bHλ + aμ), (27)

so that if ces(aK + bH) + (μ − λK )(b2eH + ms) > 0 no constraint on r arises, while
conversely we must have

r <
aesK (bHλ + aμ)

(λK − μ)(b2eH + ms) − ces(aK + bH)
, (28)

ces(aK + bH) + μ(b2eH + ms) < λK (b2eH + ms).

Besides that, the remaining submatrix of the Jacobian, −J
[p_eep]
P11 , is positive definite, since

its principal minors are all positive, so no further stability conditions arise

r

K
X [p_eep]
11 > 0,

rs

HK
X [p_eep]
11 Y [p_eep]

11 > 0,
(
mrs

HK
+ a2es

H
+ b2er

K

)
X [p_eep]
11 Y [p_eep]

11 Z [p_eep]
11 > 0,

The equilibrium P [p_eep]
12 = (X [p_eep]

12 ,U [p_eep]
12 , 0, Z [p_eep]

12 ), with

X [p_eep]
12 = c2erK + aceμK + mμλK

c2er + mλ2K
, Z [p_eep]

12 = −μ

c
+ λ

c
X [p_eep]
12 ,

U [p_eep]
12 = aμ

cλ
+ r

λ
− r

λK
X [p_eep]
12 − a

c
X [p_eep]
12

is feasible if

λ ≥ a2eμK + mrμ + acerK

mrK
(29)

and μ ≤ λK (rc + aμ)(rc)−1. The latter can be rewritten as

μ ≤ crλK

cr − aλK
, cr > aλK , (30)

while in the case for which the second inequality in (30) does not hold, no solution exists for
μ and the equilibrium P [p_eep]

12 is, therefore, unfeasible.
Again, one eigenvalue is explicit, to give the stability condition

λ >
cer(cs + bμ) + msλ2K

beK (cr + aμ)
. (31)
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The explicit condition (31) in terms of λ hinges on the roots λ± of the quadratic

(λ) = msKλ2 − beK (cr + aμ)λ + cer(cs + bμ) < 0. (32)

If the discriminant of (λ) is negative, no solution of (32) exists, while in the opposite case
we find that the stability conditions become

λ− ≤ λ ≤ λ+, b2eK (cr + aμ)2 ≥ 4cmrs(cs + bμ). (33)

Also, no further stability conditions arise, as the submatrix

J
[p_eep]
P12 =

⎛
⎜⎜⎝

− r
K X [sp_ep]

12 −λX [sp_ep]
12 −aX [sp_ep]

12

λU [sp_ep]
12 0 −cU [sp_ep]

12

aeZ [sp_ep]
12 ceZ [sp_ep]

12 −mZ [sp_ep]
12

⎞
⎟⎟⎠

is positive definite:

r

K
X [p_eep]
12 > 0, λ2X [p_eep]

12 U [p_eep]
12 > 0,

(
mλ2 + c2er

K

)
X [p_eep]
12 U [p_eep]

12 Z [p_eep]
12 > 0.

The coexistence equilibrium P [p_eep]
13 = (X [p_eep]

13 ,U [p_eep]
13 , Y [p_eep]

13 , Z [p_esp]
13 ) can also be

explicitly evaluated

X [p_eep]
13 = λK (bcesH + b2eμH + msμ) + c2ersK + acesμK

λ2K (b2eH + ms) + ersc2
,

U [p_eep]
13 = [

λ2K (b2eH + ms) + ersc2
]−1 [λK (b2er H + mrs − abesH)

−aesK (rc + aμ) − ber H(sc + bμ) − mrsμ],
Y [p_eep]
13 = λHK (−bcer − abeμ) + c2ersH + bcerμH + msλ2HK

λ2K (b2eH + ms) + ersc2
,

Z [p_eep]
13 = aesμλK + cersλK + besλ2HK − cersμ

λ2K (b2eH + ms) + ersc2
.

The feasibility requirements are

r ≥ aesK (bHλ + aμ)

(λK − μ)(b2eH + ms) − ces(aK + bH)
,

ces(aK + bH) + μ(b2eH + ms) < λK (b2eH + ms); (34)

λ ≤ cer(cs + bμ) + msλ2K

beK (cr + aμ)
; (35)

μ ≤ λK (bλH + cr + aμ)

rc
. (36)

These conditions can be made explicit in terms of λ by considering 1(λ) ≥ 0

1(λ) = [r K (b2eH + ms) − aesKbH ]λ − a2esKμ − r [μ(b2eH + ms) + ces(aK + bH)]
whose root λ0 is positive if

r(b2eH + ms) ≥ aesbH (37)
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in which case the inequality is satisfied for λ > λ0, while in the opposite case, for which (37)
does not hold, no solution exists, and we have to consider the following inequalities:

2(λ) = mKsλ2 − λbeK (cr + aμ) + cer(cs + bμ) ≥ 0,

3(λ) = bK Hλ2 + λK (cr + aμ) − crμ ≥ 0.

If the respective roots of the associated equalities are denoted by λ
(k)
± , k = 2, 3, feasibility is

ensured for λ ≥ λ0, λ
(2)
− ≥ λ ≥ 0 or λ ≥ λ

(2)
+ , 0 ≤ λ ≤ λ

(3)
+ , i.e. in the interval

min
{
λ

(3)
+ , λ

(2)
−

}
≥ λ ≥ max

{
λ0, λ

(2)
+

}
. (38)

The diagonal of the Jacobian at P [p_eep]
13 simplifies using the equilibrium equations:

J11 = − r

K
X [p_eep]
13 , J33 = − s

H
Y [p_eep]
13 , J44 = −mZ [p_eep]

13 .

Now, −J [p_eep]
P13

is positive definite because its principal minors are

r

K
X [p_eep]
13 > 0, λ2U [p_eep]

13 X [p_eep]
13 > 0,

λ2s

H
X [p_eep]
13 U [p_eep]

13 Y [p_eep]
13 > 0,

(
s

H

(
λ2m + rec2

K

)
+ b2mλ2

)
X [p_eep]
13 U [p_eep]

13 Y [p_eep]
13 Z [p_eep]

13 > 0.

Thus, whenever feasible, coexistence is unconditionally stable. In Table 2, we summarize
the behaviour of the equilibrium points of model (19).

Table 2 Behaviour and
feasibility and stability conditions
of the equilibria of model (19)

Equilibria Feasibility Stability

P[p_eep]
1 Always Unstable

P[p_eep]
2 Always Unstable

P[p_eep]
3 Always Unstable

P[p_eep]
4 Always Unstable

P[p_eep]
5 μ ≥ λK Unstable

P[p_eep]
6 Unfeasible

P[p_eep]
7 Unfeasible

P[p_eep]
8 μ ≤ λK Unstable if feasible

P[p_eep]
9 Always s < aberK

a2eK+mr
,

λ <
aeK (cr+aμ)+mrμ

mrK

P[p_eep]
10 Always r < abesH

b2eH+ms

P[p_eep]
11 r ≥ abesH

b2eH+ms
, (27), (28)

s ≥ aberK
a2eK+mr

P[p_eep]
12 (29), (30) (33)

P[p_eep]
13 (34), (37), (38) Stable if feasible
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3.3 Global stability for the equilibria of model (19)

We prove the global stability for the equilibria of (19) following the pattern of Sect. 2.3. For
this reason, we just summarize the results.

For each equilibrium, se select the following Lyapunov functions candidates, using always
the same positive coefficients δ3, δ2, δ1 and δ0, whose specific choicewill possibly be different
for each equilibrium, though:

W [p_eep]
13 (X(t),U (t), Y (t), Z(t)) = δ3

(
X − X [p_eep]

13 − X [p_eep]
13 ln

X

X [p_eep]
13

)

+ δ2

(
U −U [p_eep]

13 −U [p_eep]
13 ln

U

U [p_eep]
13

)

+ δ1

(
Y − Y [p_eep]

13 − Y [p_eep]
13 ln

Y

Y [p_eep]
13

)

+ δ0

(
Z − Z [p_eep]

13 − Z [p_eep]
13 ln

Z

Z [p_eep]
13

)
,

Differentiating along the trajectories we find

dW [p_eep]
13

dt
= −δ3

r

K

(
X − X [p_eep]

13

)2 − δ1
s

H

(
Y − Y [p_eep]

13

)2

−mδ0

(
Z − Z [p_eep]

13

)2 + λ(δ2 − δ3)
(
X − X [p_eep]

13

) (
U −U [p_eep]

13

)

+ a(δ0e − δ3)
(
X − X [p_eep]

13

) (
Z − Z [p_eep]

13

)

+ b(δ0e − δ1)
(
Y − Y [p_eep]

13

) (
Z − Z [p_eep]

13

)

+ c(δ0e − δ2)
(
U −U [p_eep]

13

) (
Z − Z [p_eep]

13

)
.

which is negative definite, giving global stability, if we choose

δ3 = δ2 = δ1 = δ0e. (39)

The Lyapunov function candidates for the remaining equilibria are

W [p_eep]
9 (X(t),U (t), Y (t), Z(t))

= δ3

(
X − X [p_eep]

9 − X [p_eep]
9 ln

X

X [p_eep]
9

)

+ δ2U + δ1Y + δ0

(
Z − Z [p_eep]

9 − Z [p_eep]
9 ln

Z

Z [p_eep]
9

)
,

W [p_eep]
10 (X(t),U (t), Y (t), Z(t))

= δ1

(
Y − Y [p_eep]

10 − Y [p_eep]
10 ln

Y

Y [p_eep]
10

)

+ δ3X + δ2U + δ0

(
Z − Z [p_eep]

10 − Z [p_eep]
10 ln

Z

Z [p_eep]
10

)
,
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W [p_eep]
11 (X(t),U (t), Y (t), Z(t))

= δ3

(
X − X [p_eep]

11 − X [p_eep]
11 ln

X

X [p_eep]
11

)
+ δ2U

+ δ1

(
Y − Y [p_eep]

11 − Y [p_eep]
11 ln

Y

Y [p_eep]
11

)

+ δ0

(
Z − Z [p_eep]

11 − Z [p_eep]
11 ln

Z

Z [p_eep]
11

)
,

W [p_eep]
12 (X(t),U (t), Y (t), Z(t))

= δ3

(
X − X [p_eep]

12 − X [p_eep]
12 ln

X

X [p_eep]
12

)
+ δ1Y

+ δ2

(
U −U [p_eep]

12 −U [p_eep]
12 ln

U

U [p_eep]
12

)

+ δ0

(
Z − Z [p_eep]

12 − Z [p_eep]
12 ln

Z

Z [p_eep]
12

)

and upon differentiation, they are all seen to produce negative definite derivatives using
always the choice (39).

Remark 2 These results indicate that there is no possibility of Hopf bifurcations at all the
equilibria also of the system (19).

3.4 Transcritical bifurcations

Similar to what was done in Sect. 2.4, we also verify the transversality conditions required
for the transcritical bifurcations involving the equilibria of model (19).

3.4.1 The pairs P[p_eep]11 − P[p_eep]9 and P[p_eep]11 − P[p_eep]10

The equilibrium point P [p_eep]
11 coincides with the equilibrium P [p_eep]

9 and with equilibrium

P [p_eep]
10 , respectively, at the parametric thresholds

s∗ = aberK

a2eK + mr
, r∗ = abesH

b2eH + ms
, (40)

when we compare the second feasibility condition (24) and the first stability condition (22)
and, similarly, the second feasibility condition (24) and the stability condition (23).

The Jacobian of (19) evaluated at P [p_eep]
11 with s = s∗ is

J [p_eep]
P11

(s∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− mr2

mr+a2eK
− mrλK

mr+a2eK
0 − amrK

mr+a2eK

0 mrλK+mrμ−acerK−a2eμK
mr+a2eK

0 0

0 0 0 0

a2e2r K
mr+a2eK

ace2r K
mr+a2eK

abe2r K
mr+a2eK

− aemrK
mr+a2eK

⎞
⎟⎟⎟⎟⎟⎟⎠
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and its right and left eigenvectors, corresponding to zero eigenvalue, are given by V3 =
ϕ3(1, 0,−(mr + a2eK )/abeK ,−r/aK )T and Q3 = ω3(0, 0, 1, 0)T , where ϕ3 and ω3 are
any nonzero real number.Differentiating partially the right-hand sides of the systemequations
(19) with respect to s and calculating its Jacobian matrix we find

fs =

⎛
⎜⎜⎜⎝

0
0

Y [p_eep]
11 (1 − Y [p_eep]

11 /H)

0

⎞
⎟⎟⎟⎠ , Dfs =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 − 2

H Y [p_eep]
11 0

0 0 0 0

⎞
⎟⎟⎠ .

Denoting by P = (X ,U , Y , Z)T the population vector and by f = ( f1, f2, f3, f4)T

the right-hand side of (19), by ψ a generic threshold parameter and by ξ1, ξ2, ξ3, ξ4 the
components of the eigenvector V = (ξ1, ξ2, ξ3, ξ4)

T of variations in X ,U , Y and Z , let us
define D2 f (P, ψ)(V , V ) by

D2 f (P, ψ)(V , V ) =

⎛
⎜⎜⎜⎜⎝

D2
11

D2
21

D2
31

D2
41

⎞
⎟⎟⎟⎟⎠ , (41)

where

D2
11 = ∂2 f1

∂X2 ξ21 + ∂2 f1
∂U 2 ξ22 + ∂2 f1

∂Y 2 ξ23 + ∂2 f1
∂Z2 ξ24 + 2

∂2 f1
∂X∂U

ξ1ξ2 + 2
∂2 f1
∂X∂Y

ξ1ξ3

+ 2
∂2 f1
∂X∂Z

ξ1ξ4 + 2
∂2 f1
∂U∂Y

ξ2ξ3 + 2
∂2 f1

∂U∂Z
ξ2ξ4 + 2

∂2 f1
∂Y ∂Z

ξ3ξ4,

D2
21 = ∂2 f2

∂X2 ξ21 + ∂2 f2
∂U 2 ξ22 + ∂2 f2

∂Y 2 ξ23 + ∂2 f2
∂Z2 ξ24 + 2

∂2 f2
∂X∂U

ξ1ξ2 + 2
∂2 f2
∂X∂Y

ξ1ξ3

+ 2
∂2 f2
∂X∂Z

ξ1ξ4 + 2
∂2 f2
∂U∂Y

ξ2ξ3 + 2
∂2 f2

∂U∂Z
ξ2ξ4 + 2

∂2 f2
∂Y ∂Z

ξ3ξ4,

D2
31 = ∂2 f3

∂X2 ξ21 + ∂2 f3
∂U 2 ξ22 + ∂2 f3

∂Y 2 ξ23 + ∂2 f3
∂Z2 ξ24 + 2

∂2 f3
∂X∂U

ξ1ξ2 + 2
∂2 f3
∂X∂Y

ξ1ξ3

+ 2
∂2 f3
∂X∂Z

ξ1ξ4 + 2
∂2 f3
∂U∂Y

ξ2ξ3 + 2
∂2 f3

∂U∂Z
ξ2ξ4 + 2

∂2 f3
∂Y ∂Z

ξ3ξ4,

D2
41 = ∂2 f4

∂X2 ξ21 + ∂2 f4
∂U 2 ξ22 + ∂2 f4

∂Y 2 ξ23 + ∂2 f4
∂Z2 ξ24 + 2

∂2 f4
∂X∂U

ξ1ξ2 + 2
∂2 f4
∂X∂Y

ξ1ξ3

+ 2
∂2 f4
∂X∂Z

ξ1ξ4 + 2
∂2 f4
∂U∂Y

ξ2ξ3 + 2
∂2 f4

∂U∂Z
ξ2ξ4 + 2

∂2 f4
∂Y ∂Z

ξ3ξ4.

After calculating D2 f from (41) evaluated at P [p_eep]
11 , at the threshold s∗ and using the

eigenvector V3 we can verify the following three conditions:

Q3
T fs(P

[p_eep]
11 , s∗) = 0, Q3

T [Dfs(P
[p_eep]
11 , s∗)V3] = −ϕ3ω3

(
mr + a2eK

abeK

)
�= 0

QT
3 [D2 fs(P

[p_eep]
11 , s∗)(V3, V3)] = −2ω3ϕ3

2
(

bmr2

a2beK 2 + r

K
+ mr2

abeHK
+ ar

bH

)
�= 0.
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Fig. 2 a Transcritical bifurcation between P[p_eep]
11 and P[p_eep]

9 for the parameters values r = K = a =
c = μ = H = b = m = e = 1.1, λ = 0.5. The equilibrium P[p_eep]

9 is stable for s ∈ [0.1, 0.602] while
P[p_eep]
11 is stable for s > 0.602. The vertical line indicates the threshold. b Transcritical bifurcation between

P[p_eep]
11 and P[p_eep]

10 for s = K = a = c = μ = H = b = m = e = 1.1, λ = 0.5. The equilibrium

P[p_eep]
10 is stable forr ∈ [0.1, 0.603], P[p_eep]

11 is stable for r > 0.603; the vertical line indicates the threshold

Now, a similar calculation when P [p_eep]
11 coincides with P [p_eep]

10 for r = r∗, using the
Jacobian

J [p_eep]
P11

(r∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 −bcesH−b2eμH+msμ
b2eH+ms

0 0

0 0 − ms2

b2eH+ms
− bmsH

b2eH+ms

abe2sH
b2eH+ms

abce2HK
(a2beH+amr)K+bmrH

b2e2sH
b2eH+ms

− bems
b2eH+ms

⎞
⎟⎟⎟⎟⎟⎟⎠

,

the right and left eigenvectors of the zero eigenvalue V4 = ϕ4(1, 0,−abeH/(b2eH +
ms), aes/(b2eH + ms))T and Q4 = ω4(1, 0, 0, 0)T produces

fr =

⎛
⎜⎜⎜⎝

X [p_eep]
11 (1 − X [p_eep]

11 /K )

0
0
0

⎞
⎟⎟⎟⎠ , Dfr =

⎛
⎜⎜⎜⎝
1 − 2

K X [p_eep]
11 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

so that evaluating D2 f from (41) the following three conditions are satisfied:

Q4
T fr (P

[p_eep]
11 , r∗) = 0, Q4

T [Dfr (P
[p_eep]
11 , r∗)V4] = ϕ4ω4 �= 0,

QT
4 [D2 fr (P

[p_eep]
11 , r∗)(V4, V4)] = 2ω4ϕ4

2
(

abesH

msK + b2eHK

)
�= 0.

These transcritical bifurcations are illustrated, respectively, in Fig. 2 which occur for
s∗ ≈ 0.6, r∗ ≈ 0.6, (40).

3.4.2 The pairs P[p_eep]13 − P[p_eep]11 and P[p_eep]13 − P[p_eep]12

P [p_eep]
13 coincides with P [p_eep]

11 at the threshold λ∗ and with P [p_eep]
12 at the threshold b∗,

comparing (34) and the stability condition (27) of P [p_eep]
11 , as well as (34) with the stability

condition (31) of P [p_eep]
12 , respectively.
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Fig. 3 a Transcritical bifurcation between P[p_eep]
13 and P[p_eep]

11 for s = K = b = e = r = 0.5, a = 0.6,

c = μ = 0.4, H = m = 0.9. The point P[p_eep]
11 is stable for λ ∈ [0.1, 1.572] and P[p_eep]

13 is stable

for λ > 1.572. The vertical line indicates the threshold. b Transcritical bifurcation between P[p_eep]
13 and

P[p_eep]
12 for r = K = a = H = m = e = s = 0.5, μ = 0.2, c = 0.3 and λ = 0.9. P[p_eep]

13 is stable for

b ∈ [0.1, 2.7], P[p_eep]
12 is stable for b > 2.7; the vertical line indicates the threshold

Table 3 Trancritical bifurcations of the models (1) and (19)

Model Threshold Equilibria

(1) r† = aL P[p_ehp]
6 = P[p_ehp]

5

(1) λ† = aeK L(cr+aμ)+ur(μ+eL)
uK (r−aL)

P[p_ehp]
6 = P[p_ehp]

7

(19) s∗ = aberK
a2eK+mr

P[p_eep]
11 = P[p_eep]

9

(19) r∗ = abesH
b2eH+ms

P[p_eep]
11 = P[p_eep]

10

(19) λ∗ = aecrsK+a2esμK+becrsH+b2erμH+mrsμ
b2er HK−abesHK+mrsK

P[p_eep]
13 = P[p_eep]

11

(19) b∗ = c2ers+msλ2K
cer(λK−μ)+aeμλK P[p_eep]

13 = P[p_eep]
12

The threshold b∗ arises after modifications in (31) and (35) and the threshold λ∗ arises from modifications in
(27) and (34)

The transcritical bifurcations proofs at P [p_eep]
13 are analogous to those presented earlier

in this section and therefore omitted.
Figure 3 illustrates the simulation explicitly showing the transcritical bifurcation between

P [p_eep]
13 with, respectively, P [p_eep]

11 and P [p_eep]
12 for the parameters values given in the

caption of Fig. 3, respectively, for λ∗ ≈ 1.57, b∗ ≈ 2.7 (40).
In Table 3, we summarize the transcritical bifurcations of the models (1) and (19).

4 Comparison between themodels with hidden and explicit resources

In this section, we investigate the behaviour of the models (1) and (19) from the comparison
of their equilibrium points.

In Table 4, we present all the possibilities of comparison between equilibria.
The populations in both ecosystems cannot completely disappear, as the origin in both

systems is unstable. Note that the equilibria with the presence only of infected prey and
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Table 4 Comparison between similar equilibria of systems (1) and (19) which have the same biological
behaviour and u unstable, s stable, cs conditionally stable, i unfeasible, uf unstable if feasible, sf stable if
feasible

Equation of (1) Equation of (19) Interpretation

P[p_ehp]
1 = (0, 0, 0) (u) P[p_eep]

1 = (0, 0, 0, 0) (uu ) Ecosystem collapse

P[p_eep]
3 = (0, 0, •, 0) (u)

P[p_ehp]
2 = (•, 0, 0) (u) P[p_eep]

2 = (•, 0, 0, 0) (uu)

P[p_eep]
3 = (0, 0, •, 0) (u) Healthy prey-only

P[p_eep]
4 = (•, 0, •, 0) (u)

P[p_ehp]
3 = (•, •, 0) (u) P[p_eep]

5 = (•, •, 0, 0) (u) Predator-free

P[p_eep]
8 = (•, •, •, 0) (uf)

P[p_ehp]
4 = (0, •, •) (i) P[p_eep]

6 = (0, •, 0, •) (i) Healthy prey-free

P[p_eep]
7 = (0, •, •, •) (i)

P[p_ehp]
5 = (0, 0, •) (s) P[p_eep]

10 = (0, 0, •, •)(cs) Predator-only

P[p_ehp]
6 = (•, 0, •) (cs) P[p_eep]

11 = (•, 0, •, •) (cs) Disease-free

P[p_ehp]
7 = (•, •, •) (sf) P[p_eep]

12 = (•, •, 0, •) (cs) Coexistence

P[p_eep]
13 = (•, •, •, •) (sf)

The • corresponds to a nonvanishing population. Note that P[p_eep]
9 = (•, 0, 0, •) of (19) is absent since it

does not really correspond to any equilibrium of the hidden resource model (1)

predators, while the healthy prey population is absent, are impossible in both models. This
is illustrated in Table 4 by the comparison of points P [p_ehp]

4 with P [p_eep]
6 and P [p_eep]

7 .
The predator-free environment, with endemic disease in the prey, is feasible but unstable

in both models, comparing equilibria P [p_ehp]
3 with P [p_eep]

5 and P [p_eep]
8 .

Observe that the healthy-prey-only equibrium P [p_ehp]
2 in (1) has several counterparts

in the system with alternative resources, namely P [p_eep]
2 , healthy-prey-only environment,

P [p_eep]
3 , alternative resource-only point, and P [p_eep]

4 healthy-prey and alternative resource
equilibrium. All these states are, however, unachievable, since they all are unconditionally
unstable.

The predator-only state arises at P [p_ehp]
5 in the simpler model, and has its counterpart in

the point P [p_eep]
10 . Both are always feasible. The stability conditions (7) and (23) express the

same idea that the prey reduced growth rate, i.e. the ratio between the reproduction rate of
the healthy prey and the rate at which they are captured by the predators is bounded above
by the predators’ population size at equilibrium.

The disease-free equilibrium in (1) is P [p_ehp]
6 . Two points could be related to it, namely

P [p_eep]
9 and P [p_eep]

11 . The former, however, does not contain the alternative resource, so it
is not really comparable. This would be possible only if in the model with alternative food
supply we let L → 0, but in such case P [p_ehp]

6 reduces to P [p_ehp]
2 .

For feasibility of P [p_ehp]
6 and P [p_eep]

11 in both cases, the opposite conditions that ensure

stability for P [p_ehp]
5 and P [p_eep]

10 are required, thereby indicating transcritical bifurcations
among the pairs of points belonging to the same model.
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Table 5 Transcritical bifurcations
among the pairs of equilibria
belonging to the same model

Comparable points of models Comparable points of models

P[p_ehp]
6 ≡ P[p_eep]

11 P[p_ehp]
5 ≡ P[p_eep]

10

P[p_ehp]
6 ≡ P[p_eep]

11 P[p_ehp]
7 ≡ P[p_eep]

13

Analogously, we can compare the equilibria P [p_ehp]
6 and P [p_eep]

11 with the pair P [p_ehp]
7

and P [p_eep]
13 . The stability conditions of P [p_ehp]

6 and P [p_eep]
11 are the opposite conditions

that ensure stability for the coexistence equilibria P [p_ehp]
7 and P [p_eep]

13 , thereby indicat-
ing transcritical bifurcations among the pairs of points belonging to the same model (see
Table 5).

The coexistence equilibrium P [p_ehp]
7 of the hidden resource system has two counterparts

in the explicit resource model, P [p_eep]
12 and P [p_eep]

13 , the difference being that in the former
the alternative resource is absent, so in reality is not really a “coexistence” equilibrium of the
explicit resource model. But in all three equilibria, the first prey with endemic disease and
the predators persist.

5 Results and conclusions

In this paper, we have compared the dynamics between two predator–prey models where
the predator is generalist in the first model and specialist on two prey species in the second
one; further, a transmissible disease spreads among the primary population resource. The
alternative prey for the predator is implicit in the first model, but in the second one we have
made it explicit.

In the first model, the infection rate λ on the healthy prey population and the mortality
rate of infected prey μ determine the stable coexistence of healthy prey, infected prey and
predator when the predator has an alternative resource, see condition (12). However, in the
second model, when we consider the explicit resource for the predator species, in addition to
the infection rate λ and the mortality rate μ, also an extra condition involving the growth rate
r of the healthy prey X plays an essential role for the stable coexistence; compare conditions
(34), (35) and (36). In these cases, the ranges of possible values for the contact rate are,
respectively, provided in (14) and (38).

Due to the presence of the alternative food resource for the generalist predator in model
(1), we cannot observe any predator’s extinction scenario because the equilibria P [p_ehp]

2 and

P [p_ehp]
3 are unstable. The same scenario exists in model (19) because the equilibria with no

predators, namely P [p_eep]
2 , P [p_eep]

3 , P [p_eep]
4 , P [p_eep]

5 and P [p_eep]
8 , are all always unstable.

The main features in the behaviour of the systems (1) and (19) include switching of
stability, extinction and persistence for the various populations. The bifurcation analysis
and the comparison of the results of these models, summarized in Table 3, indicate that the
most important parameters in these systems are the reproduction rate of the main prey r , the
infection rate of the main prey λ, the mortality rate of infected prey and the reproduction rate
of the alternative prey s. Note, however, that the last two, in particular, appear only in system
(19). This remark shows that the more comprehensive formulation allows a finer tuning for
the ecosystem behaviour. Indeed this has already been observed earlier, see Table 4, when
we found that the equilibrium P [p_eep]

9 of (19) with neither disease nor alternative prey does
not have any counterpart in the hidden resource model (1).
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Table 6 Systems dynamics considering an environment with and without a transmissible disease among
individuals of the main prey X

Biological interpretation Environment with disease Environment without disease
Transmission in prey X Transmission in prey X , de Assis et al. (2018)

Ecosystem collapse Not possible Not possible

Healthy-prey-only Not possible Not possible

Predator-free Not possible Not possible

Healthy-prey-free Not possible Possible

Predator-only Possible Possible

Disease-free Possible Possible

Coexistence Possible Possible

The column representing the biological interpretation in the table refers to the equilibrium points obtained in
both models (1) and (19) that are biologically equivalent

If the reproduction rate r of the prey X is low, it will cause the simultaneous extinction
of the healthy prey X and the infected prey U in both systems (1) and (19). This situation is
represented by equilibria P [p_ehp]

5 and P [p_eep]
10 for which the stability conditions are, respec-

tively, given by (7) and (23). However, if the main prey growth rate r is high, the primary prey
invade the system and the models will display the infected-prey-only extinction (equilibria
P [p_ehp]
6 and P [p_eep]

11 ); compare their feasibility conditions (8) and the first condition in (24),
respectively.

In addition, when the growth rate s of the alternative preyY is low inmodel (19), extinction
of U and Y occurs (see the first condition of (22)). However, if this rate is high, only the
infected prey disappears (see the second condition of (24)).

A further consideration concerns the infection rate among prey λ. If it is low, extinction of
the infected preyU occurs in both ecosystems (equilibria P [p_ehp]

6 and P [p_eep]
11 ), see (9) and

(26), but otherwise both ecosystems will exhibit a coexistence scenario with all the species
present, equilibria P [p_ehp]

7 and P [p_eep]
13 . For both situations, see Figs. 1b and 3a. In models

(1) and (19), feasibility and local asymptotic stability of the equilibria imply also their global
asymptotic stability. Thus, if disease eradication is the goal, a low transmission rate λ is
desirable.

Another result that we can highlight is associated with the purely demographic system
presented in de Assis et al. (2018), where the same dynamical systems are investigated, but
excluding the possibility of an epidemic in the main prey X . As in our present situation, the
models proposed in de Assis et al. (2018) present a logistic growth for both the X and Y
prey populations and a quadratic mortality for the Z predator population when the alternative
resource is explicit.When it is hidden, to take it into account, also the predators exhibit logistic
growth. Table 6 illustrates the comparison between models with hidden and explicit prey for
the predator, considering an environment with and without the possibility of a transmissible
disease among individuals of prey population X . There is no possibility of a scenario in
which in the ecoepidemic models, i.e. with a transmissible disease affecting the first prey,
the infected prey thrive without the presence of the susceptible prey. This occurs both in the
case of the hidden prey as well as of the explicit prey. This situation is represented by the
healthy-prey-free equilibria. Note that this remark of course hinges on the assumption that
the infected prey do not reproduce.

The scenario in which the predator Z survives is possible in both scenarios, i.e. with
and without the infected population U . In both cases, clearly this result is guaranteed in the
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models (1) and (19). Finally, the existence of a transmissible disease among individuals X
does not compromise the coexistence of prey and predator species. In addition, the disease-
free equilibrium points represented by P [p_ehp]

6 and P [p_eep]
11 , when represented in the same

dynamic but without a transmissible disease among individuals X , clearly reduce to the
equilibria representing coexistence.

This study ultimately indicates that the simpler formulation with the hidden resource
already captures the salient features of the ecosystem. Therefore, modeling explicitly the
substitute prey is not necessary unless a particular emphasis is placed on the behaviour and
the possible consequences that involve the alternative resource. In such case, the extended
model is preferable, but this of course as expected complicates the model formulation and
entails a rather more complicated analysis. The bottom line of these remarks is, therefore,
that the model to be used should be guided by the questions that prompt its formulation and
the answers that are sought.
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