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Abstract
In this paper, we propose a new extragradient method consisting of the hybrid steepest
descent method, a single projection method and an Armijo line searching the technique
for approximating a solution of variational inequality problem and finding the fixed point of
demicontractive mapping in a real Hilbert space. The essence of this algorithm is that a single
projection is required in each iteration and the step size for the next iterate is determined in
such away that there is no need for a prior estimate of the Lipschitz constant of the underlying
operator. We state and prove a strong convergence theorem for approximating common
solutions of variational inequality and fixed points problem under some mild conditions on
the control sequences. By casting the problem into an equivalent problem in a suitable product
space, we are able to present a simultaneous algorithm for solving the split equality problem
without prior knowledge of the operator norm. Finally, we give some numerical examples to
show the efficiency of our algorithm over some other algorithms in the literature.
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1 Introduction

Throughout this paper, let C be a nonempty closed convex subset of a real Hilbert space H
with norm || · || and inner product 〈·, ·〉. The variational inequality problem (VIP) is defined
as:

Find x ∈ C such that 〈Ax, y − x〉 ≥ 0, ∀ y ∈ C, (1.1)

where A : C → H is a nonlinear operator. We denote the set of solutions of VIP (1.1) by
V I (C, A). TheVIP is an important tool in economics, decisionmaking, engineeringmechan-
ics, mathematical programming, transportation, operation research, etc. (see, for example
Aubin 1998; Glowinski et al. 1981; Khobotov 1987; Kinderlehrer and Stampachia 2000;
Marcotte 1991).

It is well known that x† solves theVIP (1.1) if and only if x† solves the fixed point equation

x† = PC (x† − λAx†), λ > 0, (1.2)

or equivalently, x† solves the residual equation

rλ(x
†) = 0, where rλ(x

†) := x† − PC (x† − λAx†), (1.3)

for an arbitrary positive constant λ; see Glowinski et al. (1981) for details. Obviously, (1.3)
is obtained from (1.2).

Several iterative methods have been introduced for solving the VIP and its related opti-
mization problems; see (Jolaoso et al. 2019; Taiwo et al. 2019a, b, c). One of the earliest
methods for solving VIP is the extragradient method introduced by Korpelevich (1976). The
extragradient method was stated as follows:

⎧
⎪⎨

⎪⎩

x1 ∈ C,

yk = PC (xk − λAxk),

xk+1 = PC (xk − λAyk), k ≥ 1,

(1.4)

where λ ∈ (
0, 1

L

)
, A : C → R

n is monotone and Lipschitz continuous with Lipschitz
constant L . This extragradient method has further been extended to infinite-dimensional
spaces by many authors; see for example (Apostol et al. 2012; Ceng et al. 2010; Censor et al.
2012; Denisov et al. 2015).

As an improvement of the extragradient algorithm, (1.4), Censor et al. (2011b) introduced
the following subgradient extragradient algorithm for solving the VIP in a real Hilbert space
H : ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x1 ∈ C,

yk = PC (xk − λAxk),

Dk = {w ∈ H : 〈xk − λAxk − yk, w − yk〉 ≤ 0},
xk+1 = PDk (xk − λAyk).

(1.5)

In (1.5), the second projection PC of the extragradient algorithm (1.4) was replaced with a
projection onto a half-space Dk which is easier to evaluate. Under some mild assumptions,
Censor et al. (2011b) obtained a weak convergence result for solving VIP using (1.5).

The second problemwhichwe involve in this paper is finding the fixed point of an operator
T : H → H .Apoint x ∈ H is called a fixed point of T if x = T x .The set of fixed points of T
is denoted by F(T ). Motivated by the result of Yamada et al. (2001), Tian (2010) considered
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the following general viscosity type iterative method for approximating the fixed points of a
nonexpansive mapping:

xk+1 = αnγ f (xk) + (1 − μλk B)T xk, ∀ k ≥ 1, (1.6)

where f : H → H is a ρ-Lipschitz mapping with ρ > 0 and B : H → H is a κ-Lipschitz
and η-strongly monotone mapping with κ > 0 and η > 0. Under some certain conditions,
Tian (2010) proved that the sequence {xn} generated by (1.6) converges strongly to a fixed
point of T which also solves the variational inequality

〈(γ B − μ f )x∗, x − x∗〉 ≥ 0, ∀ x ∈ F(T ).

In Nadezhkina and Takahashi (2006), Nadezhkina and Takahashi proposed the following
algorithm for finding a common solution of VIP (1.1) and F(T ), where T is nonexpansive
and A is monotone and L-Lipschitz continuous:

{
yk = PC (xk − λk Axk),

xk+1 = αk xk + (1 − αk)T PC (xk − λk Ayk), k ≥ 1,
(1.7)

where {λk} ⊂ [a, b] for some a, b ∈ (
0, 1

L

)
and {αk} ⊂ (0, 1). The sequence {xk} generated

by (1.7) converges weakly to a solution x ∈ � := V I (C, A)
⋂

F(T ).

Also, Censor et al. (2011b) studied the approximation of common solution of the VIP and
fixed point problem for a nonexpansive mapping T in a real Hilbert space. They proposed the
following subgradient extragradient algorithm and proved its weak convergence to a solution
u∗ ∈ F(T ) ∩ V I (C, A):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 ∈ H ,

yk = PC (xk − λAxk) ,

Dk = {w ∈ H : 〈xk − λAxk − yk, w − yk〉 ≤ 0},
xk+1 = αk xk + (1 − αk)T PDk (xk − λAyk).

(1.8)

To obtain strong convergence, Censor et al. (2011a) combined the subgradient extragra-
dient method and the hybrid method to obtain the following effective scheme for solving the
VIP (1.1) and finding the fixed point of a nonexpansive mapping T .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = PC (xk − λAxk),

Dk = {w ∈ H : 〈xk − λAxk − yk, w − yk〉 ≤ 0},
zk = PDk (xk − λAyk),

tk = αk xk + (1 − αk)[βk zk + (1 − βk)T zk],
Ck = {z ∈ H : ||tk − z|| ≤ ||xk − z||},
Qk = {z ∈ H : 〈xk − z, xk − x0〉 ≤ 0},
xk+1 = PCk∩Qk (x0).

(1.9)

As an improvement on (1.9), Maingé (2008) proposed the following hybrid extragradient
viscosity method which does not involve computing the projection onto the intersection
Ck ∩ Qk : ⎧

⎪⎨

⎪⎩

yk = PC (xk − λk Axk),

zk = PC (xk − λk Ayk),

xk+1 = [(1 − w)I + wT ]tk, tk = zk − αk Bzk,

(1.10)
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38 Page 4 of 28 L. O. Jolaoso et al.

where λk > 0, αk > 0 and w ∈ [0, 1] are suitable parameters, T : H → H is β-
demicontractive mapping, A : C → H is a monotone and L-Lipschitz continuous mapping
and B : H → H is η-strongly monotone and κ-Lipschitz continuous mapping. Maingé
(2008) proved that the sequence {xk} generated by (1.10) converges strongly to the unique
solution x∗ ∈ V I (C, A) ∩ F(T ).

Recently,Hieu et al. (2018)modified algorithm (1.10) and proposed the following two-step
extragradient viscosity method for solving similar problem in a Hilbert space:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yk = PC (xk − λk Axk),

zk = PC (yk − ρk Ayk),

tk = PC (xk − ρk Azk),

xk+1 = (1 − βk)vk + βkT vk, vk = tk − αk Btk,

(1.11)

where ρk > 0, 0 ≤ λk ≤ ρk, βk ∈ [0, 1], A, T and B are as defined for (1.10). We observe
that, although algorithm (1.11) does not contain (1.4), the algorithm (1.11) requires more
computation of projections onto the feasible set. This can be costly if the feasible set has a
complex structure which may affect the usage of the algorithm.

Motivated by the above results, in this paper, we present a unified algorithmwhich consists
of the combination of hybrid steepest descent method (also called general viscosity method
Tian 2010) and a projection method with an Armijo line searching rule for finding a common
solution of VIP (1.1) and fixed point of β-demicontractive mapping in a Hilbert space. Our
contributions in this paper can be highlighted as follows:

• Our proposed algorithm requires only one projection onto the feasible set and no other
projection along each iteration process. This is in contrast to the above-mentioned meth-
ods and many other recent results (such as Dong et al. 2016; Kanzow and Shehu 2018;
Thong and Hieu 2018a, b; Vuong 2018) which require more than one projection onto the
feasible set in each iteration process.

• The underlying operator A of the VIP considered in our result is pseudo-monotone. This
extends the above results where the operator is assumed to be monotone. Note that every
monotone operator is pseudo-monotone, but the converse is not always true (as seen in
Example 2.2).

• In our result, the step size λk is determined via an Armijo line search rule. This is very
important because it helps us to avoid finding a prior estimate of the Lipschitz constant
L of the operator A used in the above-mentioned results. In practice, it is very difficult
to approximate this Lipschitz constant.

• The strong convergence guaranteed by our algorithm makes it a good candidate method
for approximating a common solution of VIP (1.1) and fixed point problem.

Finally, we present an application of our result for solving the split equality problem inHilbert
spaces.

2 Preliminaries

In this section, we present some basic notions and results that are needed in the sequel. We
denote the strong and weak convergence of a sequence {xn} ⊆ H to a point p ∈ H by
xn → p and xn⇀p, respectively.

Definition 2.1 A mapping A : C → H is called
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(a) η-strongly monotone on C if there exists a constant η > 0 such that 〈Ax − Ay, x − y〉 ≥
η||x − y||2, for all x, y ∈ C;

(b) α-inverse strongly monotone on C if there exists a constant α > 0 such that 〈Ax −
Ay, x − y〉 ≥ α||Ax − Ay||2 for all x, y ∈ C;

(c) monotone on C if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ C;
(d) pseudo-monotone on C if for all x, y ∈ C , 〈Ax, y − x〉 ≥ 0 ⇒ 〈Ay, y − x〉 ≥ 0;
(e) L-Lipschitz continuous on C if there exists a constant L > 0 such that ||Ax − Ay|| ≤

L||x − y|| for all x, y ∈ C .

If A is η-strongly monotone and L-Lipschitz continuous, then, A is η

L2 -inverse strongly
monotone. Also, we note that everymonotone operator is pseudo-monotone, but the converse
is not true (see the Example 2.2 below).

Example 2.2 Khanh and Vuong (2014) Let E = �2, the real Hilbert space whose elements
are the square summable sequences of real scalars, i.e.,

E = {x = (x1, x2, . . . , xk, . . .)

∣
∣
∣
∣

∞∑

k=1

|xk |2 < +∞}.

The inner product and norm on E are given by

〈x, y〉 =
∞∑

k=1

xk yk and ||x || = √〈x, x〉,

where x = (x1, x2, . . . , xk, . . .), and y = (y1, y2, . . . , yk, . . .).
Let α, β ∈ R such that β > α >

β
2 > 0 and

C = {x ∈ E : ||x || ≤ α} and Ax = (β − ||x ||)x .
It is easy to verify that V I (C, A) = {0}. Now, let x, y ∈ C such that 〈Ax, y − x〉 ≥ 0, i.e.,

(β − ||x ||)〈x, y − x〉 ≥ 0.

Since β > α >
β
2 > 0, the last inequality implies that 〈x, y − x〉 ≥ 0. Hence,

〈Ay, y − x〉 = (β − ||y||)〈y, y − x〉
≥ (β − ||y||)〈y, y − x〉 − (β − ||y||)〈x, y − x〉
= (β − ||y||)||y − x ||2 ≥ 0.

This means that A is pseudo-monotone on C . To show that A is not monotone on C , let us

consider x =
(β

2
, 0, . . . , 0, . . .

)
, y = (α, 0, . . . , 0, . . .) ∈ C . Then, we have

〈Ax − Ay, x − y〉 =
(

β

2
− α

)3

< 0.

Definition 2.3 Amapping PC : H → C is called a metric projection if for any pointw ∈ H ,

there exists a unique point PCw ∈ C such that

||w − PCw|| ≤ ||w − y||, ∀ y ∈ C .

We know that PC is a nonexpansive mapping and satisfies the following characterization.

(i) 〈x − y, PCx − PC y〉 ≥ ||PCx − PC y||2, for every x, y ∈ H ;
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38 Page 6 of 28 L. O. Jolaoso et al.

(ii) for x ∈ H and z ∈ C , z = PCx ⇔
〈x − z, z − y〉 ≥ 0, ∀y ∈ C; (2.1)

(iii) for x ∈ H and y ∈ C ,

||y − PC (x)||2 + ||x − PC (x)||2 ≤ ||x − y||2. (2.2)

The normal cone of a nonempty closed convex subset C of H at a point x ∈ C , denoted by
NC (x), is defined as

NC (x) = {u ∈ H : 〈u, y − x〉 ≤ 0, ∀y ∈ C}.
Next, we recall some basic concepts of nonexpansive mapping and its generalization.

Definition 2.4 Let T : C → C be a nonlinear operator. Then T is called (see for example,
Maingé 2008)

(i) nonexpansive if

||T x − T y|| ≤ ||x − y||, ∀ x, y ∈ C;
(ii) quasi-nonexpansive mapping if F(T ) �= ∅ and

||T x − p|| ≤ ||x − p||, ∀ x ∈ C, p ∈ F(T );
(iii) k-strictly pseudocontractive if there exists a constant k ∈ [0, 1) such that

||T x − T y||2 ≤ ||x − y||2 + k||(I − T )x − (I − T )y||2 ∀ x, y ∈ C;
(iv) β-demicontractive mapping if there exists β ∈ [0, 1) such that

||T x − p||2 ≤ ||x − p||2 + β||x − T x ||2, ∀ x ∈ C, p ∈ F(T ). (2.3)

The following results will be used in the sequel.

Lemma 2.5 (Marino and Xu 2007; Zegeye and Shahzad 2011) In a real Hilbert space H,
the following inequalities hold:

(i) ||x − y||2 = ||x ||2 − 2〈x, y〉 + ||y||2, ∀x, y ∈ H ;
(ii) ||x + y||2 ≤ ||x ||2 + 2〈y, x + y〉, ∀x, y ∈ H ;
(iii) ||αx + (1 − α)y||2 = α||x ||2 + (1 − α)||y||2 − α(1 − α)||x − y||2, ∀x, y ∈ H and

α ∈ [0, 1].
It is well known that the demicontractive mappings have the following property.

Lemma 2.6 (Maingé 2008, Remark 4.2, pp 1506) Let T be aβ-demicontractive self-mapping
on H with F(T ) �= ∅ and set Tw := (1 − w)I + wT for w ∈ (0, 1]. Then
(i) Tw is a quasi-nonexpansive mapping if w ∈ [0, 1 − β];
(ii) F(T ) is closed and convex.

Definition 2.7 (See Lin et al. 2005; Mashreghi and Nasri 2010) The Minty Variational
Inequality Problem (MVIP) is defined as finding a point x̄ ∈ C such that

〈Ay, y − x̄〉 ≥ 0, ∀y ∈ C . (2.4)

We denote by M(C, A) the set of solution of (2.4). Some existence results for theMVIP have
been presented in Lin et al. (2005). Also, the assumption that M(C, A) �= ∅ has already been
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used for solving V I (C, A) in finite dimensional spaces (see e.g., Solodov and Svaiter 1999).
It is not difficult to prove that pseudo-monotonicity implies property M(C, A) �= ∅, but the
converse is not true. Indeed, let A : R → R be defined by A(x) = cos(x) with C = [0, π

2 ].
We have that V I (C, A) = {0, π

2 } and M(C, A) = {0}. But if we take x = 0 and y = π
2 in

Definition 2.1(d), we see that A is not pseudo-monotone.

Lemma 2.8 (See Mashreghi and Nasri 2010) Consider the VIP (1.1). If the mapping h :
[0, 1] → E∗ defined as h(t) = A(t x + (1 − t)y) is continuous for all x, y ∈ C (i.e., h
is hemicontinuous), then M(C, A) ⊂ V I (C, A). Moreover, if A is pseudo-monotone, then
V I (C, A) is closed, convex and V I (C, A) = M(C, A).

The following lemma was proved in R
n in Fang and Chen (2015) and can easily be

extended to a real Hilbert space.

Lemma 2.9 Let H be a real Hilbert space and C be a nonempty closed and convex subset of
H. For any x ∈ H and λ > 0, we denote

rλ(x) := x − PC (x − λAx), (2.5)

then

min{1, λ}||r1(x)|| ≤ ||rλ(x)|| ≤ max{1, λ}||r1(x)||.

Lemma 2.10 (Lemma 2.2 ofWitthayarat et al. 2012)Let B be a k-Lipschitzian and η-strongly
monotone operator on a Hilbert space H with k > 0, η > 0, 0 < μ <

2η
k2

and 0 < α < 1.
Then S := (I − αμB) : H → H is a contraction with a contractive coefficient 1 − ατ and
τ = 1

2μ(2η − μk2).

Lemma 2.11 (Xu 2002) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 1,

where

(i) {αn} ⊂ [0, 1], ∑∞
n=1 αn = ∞,

(ii) lim supn→∞ σn ≤ 0,
(iii) γn ≥ 0, (n ≥ 1) and

∑∞
n=1 γn < ∞.

Then, an → 0 as n → ∞.

Lemma 2.12 (Maingé 2008) Let {an} be a sequence of real numbers such that there exists a
subsequence {ni } of {n} with ani < ani+1 for all i ∈ N. Consider the integer {mk} defined
by

mk = max{ j ≤ k : a j < a j+1}.
Then {mk} is a nondecreasing sequence verifying limn→∞ mn = ∞, and for all k ∈ N, the
following estimates hold:

amk ≤ amk+1 and ak ≤ amk+1.
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3 Main results

In this section,wegive a precise statement of our algorithmanddiscuss its strong convergence.
LetC be a nonempty closed and convex subset of a real Hilbert space H . Let A : H → H

be a pseudo-monotone and L-Lipschitz continuous operator and T : H → H be a β-
demicontractive mapping with constant β ∈ [0, 1) and demiclosed at zero. Suppose Sol
:= V I (C, A)

⋂
F(T ) �= ∅, let B : H → H be a k-Lipschitzian and η-strongly monotone

mapping with k > 0 and η > 0 and f : H → H be a ρ-Lipschitz mapping with ρ > 0. Let
0 < μ <

2η
k2

and 0 < ξρ < τ, where τ = 1
2μ(2η − μk2). Let {αk} and {vk} be sequences in

(0, 1) and {xk} be generated by the following algorithm:

Algorithm 3.1

Step 0: Choose the initial data x1 ∈ H and parameters θ, γ ∈ (0, 1), σ ∈ (0, 2). Set k = 1.

Step 1: Compute

yk = PC (xk − λk Axk), (3.1)

where λk = γ lk , and lk is the smallest nonnegative integer satisfying

λk ||A(xk) − A(yk)|| ≤ θ ||xk − yk ||. (3.2)

Step 2: Compute

d(xk, yk) = xk − yk − λk(Axk − Ayk), (3.3)

wk = xk − σδkd(xk, yk), (3.4)

where

δk =
⎧
⎨

⎩

〈xk − yk, d(xk, yk)〉
||d(xk, yk)||2 , i f d(xk, yk) �= 0,

0, i f d(xk, yk) = 0.
(3.5)

Step 3: Compute

xk+1 = αkξ f (xk) + (I − αkμB)(vkTwk + (1 − vk)wk). (3.6)

Set k := k + 1 and go to Step 1.

To establish the convergence of Algorithm 3.1, we make the following assumption:

(C1) limk→∞ αk = 0 and
∞∑
k=0

αk = ∞;
(C2) lim infk→∞ λk > 0;
(C3) lim infk→∞(vk − β)vk > 0.

Remark 3.2 Observe that if xk = yk and xk − T xk = 0, then we are at a common solution
of the variational inequality (1.1) and fixed point of the demicontractive mapping T . In our
convergence analysis, we will implicitly assume that this does not occur after finitely many
iterations so that our Algorithm 3.1 generates infinite sequences. We will see in the following
result that the Algorithm 3.1 is well defined. To do this, it suffices to show that the Armijo
line searching rule defined by (3.2) is well defined and δk �= 0.
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Lemma 3.3 There exists a nonnegative integer lk satisfying (3.2). In addition,

δk ≥ 1 − θ

(1 + θ)2
. (3.7)

Proof Let rλk (xk) = xk − PC (xk − λk Axk) and suppose rγ k0 (xk) = 0 for some k0 ≥ 1.
Take lk = k0 which satisfies (3.2). Suppose rγ k1 (xk) �= 0 for some k1 ≥ 1 and assume the
contrary, that is,

γ l ||Axk − A(PC (xk − γ l Axk))|| > θ ||rγ l (xk)||.
Then it follows from Lemma 2.9 and the fact that γ ∈ (0, 1) that

||Axk − A(PC (xk − γ l Axk))|| >
θ

γ l
||rγ l (xk)||

≥ θ

γ l
min{1, γ l}||r1(xk)||

= θ ||r1(xk)||. (3.8)

Since PC is continuous, we have that

PC (xk − γ l Axk) → PC (xk), l → ∞.

We now consider two cases, namely when xk ∈ C and xk /∈ C .

(i) If xk ∈ C, then xk = PCxk . Now since rγ k1 (xk) �= 0 and γ k1 ≤ 1, it follows from
Lemma 2.9 that

0 < ||rγ k1 (xk)|| ≤ max{1, γ k1}||r1(xk)||
= ||r1(xk)||.

Letting l → ∞ in (3.8), we have that

0 = ||Axk − Axk || ≥ θ ||r1(xk)|| > 0.

This is a contradiction and so (3.2) is valid.
(ii) xk /∈ C, then

γ l ||Axk − Ayk || → 0, l → ∞, (3.9)

while

lim
l→∞ θ ||rγ l (xk)|| = lim

l→∞ θ ||xk − PC (xk − γ l Axk)|| = θ ||xk − PCxk || > 0.

This is a contradiction. Therefore, the Armijo line searching rule in (3.2) is well defined.

On the other hand, since A is Lipschitz continuous, then, we have from (3.2) and (3.3):

〈xk − yk, d(xk, yk)〉 = 〈xk − yk, xk − yk − λk(Axk − Ayk)〉
= ||xk − yk ||2 − λk〈xk − yk, Axk − Ayk〉
≥ ||xk − yk ||2 − λk ||xk − yk ||||Axk − Ayk ||
≥ ||xk − yk ||2 − θ ||xk − yk ||2
= (1 − θ)||xk − yk ||2. (3.10)
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Also,

||d(xk, yk)|| = ||xk − yk − λk(Axk − Ayk)||
≤ ||xk − yk || + λk ||Axk − Ayk ||
≤ (1 + θ)||xk − yk ||. (3.11)

Therefore from (3.5), (3.10) and (3.11), we get

δk = 〈xk − yk, d(xk, yk)〉
||d(xk, yk)||2

≥ (1 − θ)

(1 + θ)2
.

��
Now, we prove that the sequences {xk}, {yk} and {wk} generated by Algorithm 3.1 are

bounded.

Lemma 3.4 The sequence {xk} generated by Algorithm 3.1 is bounded. In addition, the fol-
lowing inequality is satisfied:

||wk − x∗||2 ≤ ||xk − x∗||2 − (2 − σ)

σ
||wk − xk ||2, (3.12)

where x∗ ∈ Sol.

Proof Let x∗ ∈ Sol, then by Lemma 2.5 (i), we obtain

||wk − x∗||2 = ||xk − x∗ − σδkd(xk, yk)||2
= ||xk − x∗||2 − 2σδk〈xk − x∗, d(xk, yk)〉 + σ 2δ2k ||d(xk, yk)||2.

(3.13)

Observe that

〈xk − x∗, d(xk, yk)〉 = 〈xk − yk, d(xk, yk)〉 + 〈yk − x∗, d(xk, yk)〉. (3.14)

Since yk = PC (xk − λk Axk) and x∗ ∈ Sol, then by the variational characterization of PC ,
we have

〈xk − λk Axk − yk, yk − x∗〉 ≥ 0, (3.15)

and from the pseudo-monotonicity of A, we have

〈Ayk, yk − x∗〉 ≥ 0. (3.16)

Hence, combining (3.15) and (3.16), with the fact that λk > 0, we get

〈d(xk, yk), yk − x∗〉 ≥ 0. (3.17)

Thus from (3.17) and (3.14) , we get

〈xk − x∗, d(xk, yk)〉 ≥ 〈xk − yk, d(xk, yk)〉. (3.18)

Therefore, (3.13) yields

||wk − x∗||2 ≤ ||xk − x∗||2 − 2σδk〈xk − yk, d(xk, yk)〉 + σ 2δ2k ||d(xk, yk)||2
= ||xk − x∗||2 − 2σδk〈xk − yk, d(xk, yk)〉 + σ 2δk〈xk − yk, d(xk, yk)〉
= ||xk − x∗||2 − σ(2 − σ)δk〈xk − yk, d(xk, yk)〉. (3.19)
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From the definition of δk and wk , we have

δk〈xk − yk, d(xk, yk)〉 = ||δkd(xk, yk)||2

= 1

σ 2 ||wk − xk ||2. (3.20)

Substituting (3.20) into (3.19), we have

||wk − x∗||2 ≤ ||xk − x∗||2 − (2 − σ)

σ
||wk − xk ||2.

Hence,

||wk − x∗||2 ≤ ||xk − x∗||2. (3.21)

Now, let Tv = vT + (1 − v)I , then by Lemma 2.6, Tv is quasi-nonexpansive. Using
Lemma 2.10, we have

||xk+1 − x∗|| = ||αkξ f (xk) + (1 − αkμB)Tvkwk − x∗||
= ||αk(ξ f (xk) − μBx∗) + (I − αkμB)Tvkwk − (I − αkμB)x∗||
= ||(I − αkμB)(Tvkwk − x∗) + αk(ξ f (xk) − μBx∗ + ξ f (x∗) − ξ f (x∗))||
≤ ||(I−αkμB)(Tvkwk−x∗)||+αkξ || f (xk)− f (x∗)||+αk ||ξ f (x∗)−μBx∗||
≤ (1 − αkτ)||Tvkwk − x∗|| + αkξρ||xk − x∗|| + αk ||ξ f (x∗) − μBx∗||
≤ (1 − αkτ)||wk − x∗|| + αkρ||xk − x∗|| + αk ||ξ f (x∗) − μBx∗||
≤ (1 − αkτ)||xk − x∗|| + αkξρ||xk − x∗|| + αk ||ξ f (x∗) − μBx∗||
= (1 − αk(τ − ξρ))||xk − x∗|| + αk(τ − ξρ)

||ξ f (x∗) − μB(x∗)||
τ − ξρ

≤ max

{

||xk − x∗||, ||ξ f (x∗) − μB(x∗)||
τ − ξρ

}

...

≤ max

{

||x1 − x∗||, ||ξ f (x∗) − μB(x∗)||
τ − ξρ

}

. (3.22)

This implies that {||xk − x∗||} is bounded and so {xk} is bounded in H . Consequently, from
(3.21), {wk} is bounded and since A is continuous, then {Axk} is bounded and therefore {yk}
is bounded too. ��

Lemma 3.5 The sequence {xn} generated by Algorithm 3.1 satisfies the following estimates:

(i) sk+1 ≤ (1 − ak)sk + akbk,
(ii) −1 ≤ lim supk→∞ bk < +∞,

where sk = ||xk − x∗||2, ak = 2αk (τ−ξρ)
1−αkξρ

, bk = αkτ
2M1

2(τ−ξρ)
+ 1

τ−ξρ
〈ξ f (x∗)−μB(x∗), xk+1 −

x∗〉, for some M1 > 0, x∗ ∈ Sol.
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Proof Let x∗ ∈ Sol, then from Lemma 2.5 (ii) and (3.6), we have

||xk+1 − x∗||2 = ||αkξ f (xk) + (1 − αkμB)Tvkwk − x∗||2
= ||αk(ξ f (xk) − μB(x∗)) + (1 − αkμB)Tvkwk − (1 − αkμB)x∗||2
≤ ||(1−αkμB)Tvkwk−(1−αkμB)x∗||2+2αk〈ξ f (xk)−μB(x∗), xk+1−x∗〉
≤ (1 − αkτ)2||wk − x∗||2 + 2αkξ 〈 f (xk) − f (x∗), xk+1 − x∗〉

+ 2αk〈ξ f (x∗) − μB(x∗), xk+1 − x∗〉
≤ (1 − αkτ)2||xk − x∗||2 + 2αkξρ||xk − x∗||||xk+1 − x∗||

+ 2αk〈ξ f (x∗) − μB(x∗), xk+1 − x∗〉
≤ (1 − αkτ)2||xk − x∗||2 + αkξρ(||xk − x∗||2 + ||xk+1 − x∗||2)

+ 2αk〈ξ f (x∗) − μB(x∗), xk+1 − x∗〉.
This implies that

||xk+1−x∗||2 ≤ (1−αkτ)2+αkξρ

1−αkξρ
||xk−x∗||2+ 2αk

1−αkξρ
〈ξ f (x∗)−μB(x∗), xk+1−x∗〉

=
(

1 − 2αk(τ − ξρ)

1 − αkξρ

)

||xk − x∗||2 + α2
k τ

2

1 − αkξρ
||xk − x∗||2

+ 2αk

1 − αkξρ
〈ξ f (x∗) − μB(x∗), xk+1 − x∗〉

≤
(

1 − 2αk(τ − ξρ)

1 − αkξρ

)

||xk − x∗||2

+2αk(τ − ξρ)

1 − αkξρ

{
αkτ

2M1

2(τ − ξρ)
+ 1

τ − ξρ
〈ξ f (x∗) − μB(x∗), xk+1 − x∗〉

}

= (1 − ak)sk + akbk,

where the exisence of M1 follows from the boundedness of {xk}. This established (i).
Next, we prove (ii). Since {xk} is bounded and αk ∈ (0, 1), we have that

sup
k≥0

bk ≤ sup
k≥0

1

2(τ − ξρ)

(
τ 2M1 + 2||ξ f (x∗) − μB(x∗)||||xk+1 − x∗||

)
< ∞.

We next show that lim supk→∞ bk ≥ −1. Assume the contrary that lim supk→∞ bk < −1,
which implies that there exists k0 ∈ N such that bk ≤ −1 for all k ≥ k0. Hence, it follows
from (i) that

sk+1 ≤ (1 − ak)sk + akbk

< (1 − ak)sk − ak

= sk − ak(sk + 1)

≤ sk − 2(τ − ξρ)αk .

By induction, we get that

sk+1 ≤ sk0 − 2(τ − ξρ)

k∑

i=k0

αi for all k ≥ k0.
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Taking lim sup of both sides in the last inequality, we have that

lim sup
k→∞

sk ≤ sk0 − lim
k→∞ 2(τ − ξρ)

k∑

i=k0

αi = −∞.

This contradicts the fact that {sk} is a nonnegative real sequence. Therefore, lim supk→∞ bk ≥
−1. ��
Lemma 3.6 Let {xk j } be a subsequence of the sequence {xk} generated by Algorithm 3.1 such
that xk j ⇀p ∈ C . Suppose ||xk − yk || → 0 as k → ∞ and lim inf j→∞ λk j > 0. Then,

(i) 0 ≤ lim inf j→∞〈Axk j , x − xk j 〉, for all x ∈ C;
(ii) p ∈ V I (C, A).

Proof (i) Since yk j = PC (xk j −λk j Axk j ), from the variational characterization of PC (i.e.,
(2.1)), we have

〈xk j − λk j Axk j − yk j , x − yk j 〉 ≤ 0, ∀ x ∈ C .

Hence,

〈xk j − yk j , x − yk j 〉 ≤ λk j 〈Axk j , x − ykk 〉
= λk j 〈Axk j , xk j − yk j 〉 + λk j 〈Axk j , x − xkk 〉.

This implies that

〈xk j − yk j , x − yk j 〉 + λk j 〈Axk j , yk j − xk j 〉 ≤ λk j 〈Axk j , x − xkk 〉. (3.23)

Fix x ∈ C and let j → ∞ in (3.23), since ||xk j − yk j || → 0 and by condition (C2),
lim inf j→∞ λk j > 0, we have

0 ≤ lim inf
j→∞ 〈Axk j , x − xk j 〉, ∀ x ∈ C . (3.24)

(ii) Let {ε j } be a sequence of decreasing non-negative numbers such that ε j → 0 as j → ∞.

For each ε j , we denote by N the smallest positive integer such that

〈Axk j , x − xk j 〉 + ε j ≥ 0, ∀ j ≥ N ,

where the existence of N follows from (i). This implies that

〈Axk j , x + ε j tk j − xk j 〉 ≥ 0, ∀ j ≥ N ,

for some tk j ∈ H satisfying 1 = 〈Axk j , tk j 〉 (since Axk j �= 0). Since A is pseudo-
monotone, then we have from (i) that

〈A(x + ε j tk j ), x + ε j tk j − xk j 〉 ≥ 0, ∀ j ≥ N ,

which implies that

〈Ax, x − xk j 〉 ≥ 〈Ax − A(x + ε j tk j ), x + ε j tk j − xk j 〉 − ε j 〈Ax, tk j 〉 ∀ j ≥ N .(3.25)

Since ε j → 0 and A is continuous, the right hand side of (3.25) tends to zero. Thus, we
obtain that

lim inf
j→∞ 〈Ax, x − xk j 〉 ≥ 0, ∀ x ∈ C .
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Hence,

〈Ax, x − p〉 = lim
j→∞〈Ax, x − xk j 〉 ≥ 0, ∀ x ∈ C .

Therefore from Lemma 2.8, we obtain that p ∈ V I (C, A).

��

We are now in a position to prove the convergence of our Algorithm.

Theorem 3.7 Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
A : H → H be a pseudo-monotone and L-Lipschitz continuous operator and T : H → H
be a β-demicontractive mapping with constant β ∈ [0, 1) and demiclosed at zero. Suppose
Sol := V I (C, A)

⋂
F(T ), let B : H → H be a k-Lipschitz and η-strongly monotone

mapping with k > 0 and η > 0 and f : H → H be a ρ-Lipschitz mapping with ρ > 0. Let
0 < μ <

2η
k2

and 0 < ξρ < τ, where τ = 1
2μ(2η − μk2). Let {αk} and {vk} be sequences in

(0, 1), {xk} such that Assumptions (C1)–(C3) are satisfied. Then, sequence {xk} generated
by Algorithm 3.1 converges strongly to a point x†, where x† = PSol(I − μB + ξ f )(x†) is a
unique solution of the variational inequality

〈(μB − ξ f )x†, x† − x〉 ≤ 0, ∀ x ∈ Sol. (3.26)

Proof Let x∗ ∈ Sol and put �k := ||xk − x∗||2. We divide the proof into two cases.

Case I: Suppose that there exists k0 ∈ N such that {�k} is monotonically non-increasing for
k ≥ k0. Since {�k} is bounded (from Lemma 3.4), then {�k} converges and therefore

�k − �k+1 → 0, n → ∞. (3.27)

Let zk = (1 − vk)wk + vkTwk, then using Lemma 2.5 (iii), we have

||zk − x∗||2 = ||(1 − vk)(wk − x∗) + vk(Twk − x∗)||2
= (1 − vk)||wk − x∗||2 + vk ||Twk − x∗||2 − vk(1 − vk)||wk − Twk ||2
≤ (1 − vk)||wk − x∗||2 + vk(||wk − x∗||2

+β||wk − Twk ||2) − vk(1 − vk)||wk − Twk ||2
= ||wk − x∗||2 − vk(1 − vk − β)||wk − Twk ||2. (3.28)

Then, from Lemma ( 2.5) (ii) and (3.12), we have

||xk+1 − x∗||2 = ||αkξ f (xk) + (1 − αkμB)zk − x∗||2
= ||αk(ξ f (xk) − μB(x∗)) + (1 − αkμB)(zk − x∗)||2
≤ ||(1 − αkμB)(zk − x∗)||2 + 2αk〈ξ f (xk) − μBx∗, xk+1 − x∗〉
≤ (1 − αkτ)2(||wk − x∗||2 − vk(1 − vk − β)||wk − Twk ||2)

+2αk〈ξ f (xk) − μBx∗, xk+1 − x∗〉
≤ (1 − αkτ)2

(

||xk − x∗||2 − 2 − σ

σ
||wk − xk ||2

)

− (1 − αkτ)vk(1 − vk − β)||wk − Twk ||2
+2αk〈ξ f (xk) − μBx∗, xk+1 − x∗〉. (3.29)
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Hence,

(1 − αkτ)2
(
2−σ

σ

)

||wk−xk ||2 ≤ (1−αkτ)2||xk−x∗||2−||xk+1−x∗||2

+ 2αk〈ξ f (xk) − μBx∗, xk+1 − x∗〉
≤ �k − �k+1−αkM+2αk〈ξ f (xk)−μBx∗, xk+1 − x∗〉,

for some M > 0. Since αk → 0 and from (3.273.27), we have
(
2 − σ

σ

)

||wk − xk ||2 → 0, n → ∞.

Therefore,

lim
k→∞ ||wk − xk || = 0. (3.30)

From (3.20), we have

〈xk − yk, d(xk, yk)〉 ≤ (1 + θ)2

(1 − θ)σ 2 ||wk − xk ||2. (3.31)

Using (3.10), we have

||xk − yk ||2 ≤ (1 + θ)2

(1 − θ)2σ 2 ||wk − xk ||2. (3.32)

From (3.30) and (3.32), we have

||xk − yk || → 0, n → ∞. (3.33)

Therefore,
||wk − yk || ≤ ||wk − xk || + ||xk − yk || → 0, n → ∞. (3.34)

Also from (3.29), we have

(1 − αkτ)2vk(1 − vk − β)||wk − Twk ||2 ≤ (1 − αkτ)2||xk − x∗||2 − ||xk+1 − x∗||2
+ 2αk〈ξ f (xk) − μBx∗, xk+1 − x∗〉

≤ �k − �k+1 − αkM + 2αk〈ξ f (xk)

−μBx∗, xk+1 − x∗〉,
for some M > 0. Since αk → 0 and from (3.27), we have

vk(1 − vk − β)||wk − Twk ||2 → 0, n → ∞.

Therefore from condition (C3), we have

lim
k→∞ ||wk − Twk || = 0. (3.35)

Furthermore, from (3.35),

||zk − wk || = ||(1 − vk)wk + vkTwk − wk ||
= vk ||wk − Twk || → 0, n → ∞, (3.36)

and

||xk+1 − zk || = ||αkξ f (xk) + (1 − αkμB)zk − zk ||
= αk ||ξ f (xk) − μB(zk)|| → 0, n → ∞. (3.37)
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Therefore from (3.30), (3.36) and (3.37), we have

||xk+1 − xk || ≤ ||xk+1 − zk || + ||zk − wk || + ||wk − xk || → 0, n → ∞. (3.38)

Since {xk} is bounded, there exists {xkl } of {xk} such that xkl⇀p as l → ∞. From (3.35)
and the demiclosedness of I −T at zero, we have that p ∈ F(T ).Also, since ||xk − yk || → 0,
we have from Lemma 3.6 that p ∈ V I (C, A). Therefore, p ∈ Sol := V I (C, A) ∩ F(T ).

Next we show that lim supk→∞〈(μB−ξ f )x∗, x∗ − xk〉 ≤ 0,where x∗ = PSol(I −μB+
ξ f )x∗ is the unique solution of the variational inequality

〈(μB − ξ f )x∗, x − x∗〉 ≥ 0, ∀ x ∈ Sol.

We obtain from (2.1) and (3.38) that

lim sup
k→∞

〈(μB − ξ f )x∗, x∗ − xk+1〉 = lim sup
l→∞

〈(μB − ξ f )x∗, x∗ − xkl+1〉
= lim

l→∞〈(μB − ξ f )x∗, x∗ − p〉
≤ 0. (3.39)

Finally, we show that {xk} converges strongly to x∗. By Lemma 3.5 (i) we obtain

�k+1 ≤ (1 − ak)�k + akbk, (3.40)

where ak = 2αk (τ−ξρ)
1−αkξρ

, bk = αkτ
2M1

2(τ−ξρ)
+ 1

τ−ξρ
〈ξ f (x∗) − μB(x∗), xk+1 − x∗〉, for some

M1 > 0. It is easy to see that ak → 0 and
∑∞

k=1 ak = ∞.Also by (3.39), lim supk→∞ bk ≤ 0.
Therefore, using Lemma 2.11 in (3.40), we obtain

lim
k→∞ ||xk − x∗|| = 0,

and hence {xk} converges strongly to x∗ as k → ∞.

Case II: Assume that {�k} is not monotonically decreasing. Let τ : N → N be a mapping
for all k ≥ k0 (for some k0 large enough) defined by

τ(k) := max{ j ∈ N : j ≤ k, � j ≤ � j+1}.
Clearly, τ is a non-decreasing sequence, τ(k) → 0 as k → ∞ and

0 ≤ �τ(k) ≤ �τ(k)+1, ∀ k ≥ k0.

Following similar process as in Case I, we have

||wτ(k) − Twτ(k)|| → 0, k → ∞,

||xτ(k)+1 − xτ(k)|| → 0, k → ∞,

and
lim sup
k→∞

〈(μB − ξ f )x∗, x∗ − xτ(k)+1〉. (3.41)

Since {xτ(k)} is bounded, there exists a subsequence of {xτ(k)} still denoted by {xτ(k)} which
converges weakly to z ∈ C . By similar argument as in Case I, we conclude that z ∈ Sol :=
V I (C, A) ∩ F(T ). From Lemma 3.5 (i), we have

�τ(k)+1 ≤ (1 − aτ(k))�τ(k) + aτ(k)bτ(k). (3.42)

Also, aτ(k) → 0 as k → ∞ and lim supk→∞ bτ(k) ≤ 0.
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Since �τ(k) ≤ �τ(k)+1 and aτ(k) > 0, we have

||xτ(k) − x∗|| ≤ bτ(k).

This implies that
lim sup
k→∞

||xτ(k) − x∗||2 = 0,

and thus
lim
k→∞ ||xτ(k) − x∗|| = 0.

Also from (3.42), we obtain

lim sup
k→∞

||xτ(k)+1 − x∗||2 ≤ lim sup
k→∞

||xτ(k) − x∗||2.

Therefore,
lim
k→∞ ||xτ(k)+1 − x∗|| = 0.

Furthermore, for k ≥ k0, it is easy to see that �τ(k) ≤ �τ(k)+1 if k ≥ τ(k) (that is τ(k) < k),
because � j ≥ � j+1 for τ(k) + 1 ≤ j ≤ k. As a consequence, we obtain that for all k ≥ k0,

0 ≤ �k ≤ max{�τ(k), �τ(k)+1} = �τ(k)+1.

Hence, �k → 0 as k → ∞. That is, {xk} converges strongly to x∗. This completes the proof.
��

4 Application to split equality problem

Let H1, H2 and H3 be real Hilbert spaces, let C ⊂ H1 and Q ⊂ H2 be nonempty closed
convex sets, let A : H1 → H3 and B : H2 → H3 be bounded linear operators. The Split
Equality Problem (shortly, SEP) is to find (see Moudafi 2013, 2014)

x ∈ C, y ∈ Q such that Ax = By. (4.1)

The SEP allows asymmetric and partial relations between the variables x and y. If H2 = H3

and B = I (the identity mapping), then the SEP reduces to the Split Feasibility Problem
(SFP) which was introduced by Censor and Elfving (1994) and defined as

find x ∈ C such that Ax ∈ Q. (4.2)

The SEP (4.1) covers many situations, such as for instance in domain decomposition for
PDE’s, game theory and intensity-modulated radiation therapy (IMRT) (Attouch et al. 2008;
Censor et al. 2006; Moudafi 2014). A great numbers of articles have been published on iter-
ative methods (most of which are projection methods) for solving the SEP (4.1) in literature;
see, for instance (Jolaoso et al. 2018; Ogbuisi andMewomo 2016, 2018; Okeke andMewomo
2017).

In this section, we adapt our Algorithm 3.1 to solve the SEP (4.1). Before that, let us first
prove some lemmas which will be of help.

Lemma 4.1 (Dong and Jiang 2018) Let S = C × Q ⊂ H := H1 × H2. Define K :=
[A,−B] : H1 × H2 → H1 × H2 and let K ∗ be the adjoint operator of K , then the SEP (4.1)
can be modified as

Find z = (x, y) ∈ S such that Kw = 0, (4.3)

123



38 Page 18 of 28 L. O. Jolaoso et al.

where w =
[
x
y

]

is the vector associated with z.

Lemma 4.2 Let H = H1×H2, define M : H → H by M(w) = M(u, v) := (φ1(u), φ2(v)),

w = (u, v) ∈ H, where φi : H → H are ki -Lipschitz and ηi -strongly monotone mapping
with ki > 0 and ηi > 0, i = 1, 2. Then, M is k-Lipschitz and η-strongly monotone where
k = max{k1, k2} and η = min{η1, η2}.
Proof Let x = (x1, y1), y = (x2, y2) ∈ H , then we have

〈Mx − My, x − y〉 = 〈(φ1(x1), φ2(y1)) − (φ1(x2), φ2(y2)), (x1 − x2, y1 − y2)〉
= 〈(φ1(x1) − φ1(x2), φ2(y1) − φ2(y2)), (x1 − x2, y1 − y2)〉
= 〈φ1(x1) − φ1(x2), x1 − x2〉 + 〈φ2(y1) − φ2(y2), y1 − y2〉
≥ η1||x1 − x2||2 + η2||y1 − y2||2
≥ min{η1, η2}(||x1 − x2||2 + ||y1 − y2||2)
= η||x − y||2.

Hence, M is η-strongly monotone , where η = min{η1, η2}. Also,
||Mx − My||2 = ||(φ1(x1), φ2(y1)) − (φ1(x2), φ2(y2))||2

= ||(φ1(x1) − φ1(x2), φ2(y1) − φ2(y2))||2
= ||φ1(x1) − φ1(x2)||2 + ||φ2(y1) − φ2(y2)||2
≤ k21 ||x1 − x2||2 + k22 ||y1 − y2||2
≤ max{k21, k22}(||x1 − x2||2 + ||y1 − y2||2)
= k2||x − y||2.

Hence M is k-Lipschitz with k = max{k1, k2}. ��
In a similar process as in Lemma 4.2, we can prove the following results.

Lemma 4.3 Let H := H1 × H2, let f : H → H be defined by f (u, v) = ( f1(u), f2(v)),

w = (u, v) ∈ H, fi : Hi → Hi is ρi -Lipschitz mapping with ρi > 0, i = 1, 2. Then f is
ρ-Lipschitz mapping with ρ = √

max{ρ1, ρ2}.
Lemma 4.4 Let H := H1 × H2, let T : H → H be defined by T (u, v) = (T1(u), T2(v)),

w = (u, v) ∈ H, Ti : Hi → Hi is βi -demicontractive mapping with βi ∈ [0, 1), i = 1, 2.
Then T is β-demicontractive mapping with β = max{β1, β2}.

We now adapt our algorithm to solve the SEP.
Let H , S, and K be as defined in Lemma 4.1. Let T be as defined in Lemma 4.4 such that

� := {(x, y) ∈ F(T1) × F(T2) : Ax = By} �= ∅.

Let M and f be as defined in Lemmas 4.2 and 4.3, respectively, such that 0 < μ <
2η
k2

and 0 < ξρ < τ , where τ = 1
2μ(2η − μk2). Let {αk} and {vk} be sequences in (0, 1) and

{zk} = {(xk, yk)} be generated by the following Algorithm.

Algorithm 4.5

Step 0: Choose initial data z1 = (x1, y1) ∈ H and parameters θ, γ ∈ (0, 1), σ ∈ (0, 2).
Set k = 1.
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Step 1: Compute

yk = PS(zk − λk K
∗K (zk)), (4.4)

where λk = γ lk , and lk is the smallest non-negative integer satisfying

λk ||K ∗K (zk) − K ∗K (yk)|| ≤ θ ||zk − yk ||. (4.5)

Step 2: Compute

d(zk, yk) = zk − yk − λk(K
∗K (zk) − K ∗K (yk)), (4.6)

wk = zk − σδkd(zk, yk), (4.7)

where

δk =
⎧
⎨

⎩

〈zk − yk, d(zk, yk)〉
||d(zk, yk)||2 if d(zk, yk) �= 0,

0, if d(zk, yk) = 0.

Step 3: Compute

zk+1 = αkξ f (zk) + (1 − αkμM)(vkTwk + (1 − vk)wk). (4.8)

Set k ← k + 1 and go to Step 1.

Remark 4.6 Let z = (x, y), we know that

PS(z) = (
PC (x), PQ(y)

)
.

Also, since

K = [A,−B], and K ∗ =
[
A∗
−B∗

]

,

then

K ∗Kw =
[
A∗A −A∗B
−B∗A B∗B

] [
x
y

]

=
[
A∗(Ax − By)
B∗(Ax − By)

]

. (4.9)

Define the function F : H1 × H2 → H1 by

F(x, y) = A∗(Ax − By),

and G : H1 × H2 → H2 by

G(x, y) = B∗(By − Ax).

Now, by setting zk = (xk, yk), yk = (uk, vk) and wk = (sk, tk) in Algorithm 4.5, Algo-
rithm 4.5 can be rewritten in the following simultaneous form:

Algorithm 4.7

Step 0: Choose initial data (x1, y1) ∈ H1 × H2 and parameters θ, γ ∈ (0, 1), σ ∈ (0, 2).
Set k = 1.
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Step 1: Compute
{
uk = PC (xk − λk F(xk, yk)),

vk = PQ(yk − λkG(xk, yk)),
(4.10)

where λk = γ lk , and lk is the smallest non-negative number satisfying

λ2k(||F(xk, yk) − F(uk, vk)||2 + ||G(xk, yk) − G(uk, vk)||2) (4.11)

≤ θ2(||xk − uk ||2 + ||yk − vk ||2).
Step 2: Compute

{
ck = (xk − uk) − λk(F(xk, yk) − F(uk, vk))

dk = (yk − vk) − λk(G(xk, yk) − G(uk, vk)),

and
{
sk = xk − σδkck,

tk = yk − σδkdk,
(4.12)

where

δk = 〈xk − uk, ck〉 + 〈yk − vk, dk〉
||ck ||2 + ||dk ||2 . (4.13)

Step 3: Compute
{
xk+1 = αkξ f1(xk) + (1 − αkμφ1)(vkT1sk + (1 − vk)sk),

yk+1 = αkξ f2(yk) + (1 − αkμφ2)(vkT2tk + (1 − vk)tk).
(4.14)

Set k ← k + 1 and go to Step 1.

We now prove the convergence of Algorithm 4.7 using Algorithm 3.1.
Observe that

||sk − x∗||2 + ||tk − y∗||2 = ||xk − x∗ − σδkck ||2 + ||yk − y∗ − σδkdk ||2
≤ ||xk − x∗||2 + ||yk − y∗||2

−2σδk(〈xk − x∗, ck〉 + 〈yk − y∗, dk〉)
+σ 2δ2k (||ck ||2 + ||dk ||2). (4.15)

But,

〈xk − x∗, ck〉 + 〈yk − y∗, dk〉 = 〈xk − uk, ck〉 + 〈uk − x∗, ck〉
〈yk − vk, dk〉 + 〈vk − y∗, dk〉,

and
〈uk − x∗, ck〉 + 〈vk − y∗, dk〉 ≥ 0.

Hence,

〈xk − x∗, ck〉 + 〈yk − y∗, dk〉 ≥ 〈xk − uk, ck〉 + 〈yk − vk, dk〉. (4.16)
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Therefore from (4.15) and (4.16), we have

||sk − x∗||2 + ||tk − y∗||2 ≤ ||xk − x∗||2 + ||yk − y∗||2 − 2σδk(〈xk − uk, ck〉
+〈yk − vk, dK 〉) + σ 2δ2k (||ck ||2 + ||dk ||2). (4.17)

From the definition of δk and (4.12), we have

δk(〈xk − uk, ck〉 + 〈yk − vk, dk〉) = δ2k (||ck ||2 + ||dk ||2)
= 1

σ 2 (||sk − xk ||2 + ||tk − yk ||2). (4.18)

Hence from (4.17) and (4.18), we get

||sk − x∗||2 + ||tk − y∗||2 ≤ ||xk − x∗||2 + ||yk − y∗||2

−
(
2 − σ

σ

)

(||sk − xk ||2 + ||tk − yk ||2).
≤ ||xk − x∗||2 + ||yk − y∗||2. (4.19)

Following similar approach as in (3.22), we get

||xk+1 − x∗|| + ||yk+1 − x∗|| ≤ max

{

||x1 − x∗|| + ||y1 − y∗||,
||ξ1 f1(x∗) − μ1φ1(x∗)||

τ1 − ξρ1

+||ξ2 f2(y∗) − μ2φ2(y∗)||
τ2 − ξ2ρ2

}

. (4.20)

Hence {||xk+1−x∗||+||yk+1− y∗||} is bounded and, consequently, {||xk−x∗||}, {||yk− y∗||}
are bounded. Thus, {xk} and {yk} are bounded.
Lemma 4.8 Suppose � := {(x, y) ∈ C × Q : Ax = By} �= ∅. Let λn be a sequence in
(0, 2

||A||2+||B||2 ), such that (4.11)holds and suppose lim infn→∞ λn(2−λn(||A||2+||B||2)) >

0, ||xk − uk || → 0, ||yk − vk || → 0 as k → ∞. Then, there exist (x̄, ȳ) ∈ � such that
xk j ⇀x̄ and yk j ⇀ȳ, where {xk j } and {yk j } are subsequences of {xk} and {yk} generated by
Algorithm 4.7.

Proof Let (x∗, y∗) ∈ �, then from (4.10), we have

||uk − x∗||2 = ||PC (xk − λk F(xk, yk)) − x∗||2
≤ ||xk − λk(A

∗(Axk − Byk)) − x∗||2
≤ ||xk − x∗||2 − 2λk〈Axk − Ax∗, Axk − Byk〉

+ λ2k ||A||2||Axk − Byk ||2. (4.21)

Similarly, we have

||vk − y∗||2 ≤ ||yk − y∗||2 + 2λk〈Byk − By∗, Axk − Byk〉
+ λ2k ||B||2||Axk − Byk ||2. (4.22)

Adding (4.21 and (4.22) while noting that Ax∗ = By∗, we have

||uk − x∗||2 + ||vk − y∗||2 ≤ ||xk − x∗||2 + ||yk − y∗||2
− λk(2 − λk(||A||2 + ||B||2))||Axk − Byk ||2. (4.23)

123



38 Page 22 of 28 L. O. Jolaoso et al.

Also, note that

||uk − x∗||2 + ||vk − y∗||2 = ||uk − xk ||2 + 2〈uk − xk, xk − xk − x∗〉 + ||xk − x∗||2
+ ||vk − yk ||2 + 2〈vk − yk, yk − y∗〉 + ||yk − y∗||2.

(4.24)

Then from (4.23) and (4.24), we have

lim
k→∞ ||Axk − Byk || = 0. (4.25)

Without loss of generality, we may assume that xk j ⇀x̄ and yk j ⇀ȳ for some x̄ ∈ H1 and
ȳ ∈ H2. Since {xk} is a sequence in C , we know that x̄ ∈ C . Similarly, ȳ ∈ Q. Since xk j ⇀x̄
and yk j ⇀ȳ, it follows that Axk j ⇀Ax̄ and Byk j ⇀B ȳ. Hence, Axk j − Byk j ⇀Ax̄ − B ȳ. By
the lower semicontinuity of the squared norm, we have

||Ax̄ − B ȳ||2 ≤ lim inf
k→∞ ||Axk j − Byk j ||2 = lim

k→∞ ||Axk − Byk ||2 = 0.

Hence, Ax̄ = B ȳ. Therefore, (x̄, ȳ) ∈ �. ��
Now using Lemma 4.8 and following the line of argument in Theorem 3.7, we can prove

the following result.

Theorem 4.9 Let H , S, and K be as defined in Lemma 4.1. Let T be as defined in Lemma 4.4
such that � := {(x, y) ∈ F(T1) × F(T2) : Ax = By} �= ∅. Let M and f be as defined
in Lemmas 4.2 and 4.3, respectively, such that 0 < μ <

2μ
k2

and 0 < ξρ < τ , where

τ = 1
2μ(2η−μk2).Let {αk}and {vk}be sequences in (0, 1) satisfying condition (C1) and (C3)

and let λn be a sequence in (0, 2
||A||2+||B||2 ), such that (4.11) holds and lim infn→∞ λn(2 −

λn(||A||2+||B||2)) > 0. Then the sequence {(xk, yk)} generated by Algorithm 4.7 converges
strongly to a solution (u, v) ∈ �.

5 Numerical examples

In this section, we present three numerical examples which demonstrate the performance of
our Algorithm 3.1. Let T : H → H be defined by

T x =
{

− 9
2 x, if x ≤ 0,

−2x, if x > 0.
(5.1)

It easy to see that T is demicontractive mapping with β = 77
121 , and F(T ) = {0}. We let

f = I , B = 1
2 I , then ρ = 1 and η = 1 = k. Hence 0 < μ <

2η
k2

= 2. Let us choose

μ = 1 so that τ = 1
2μ(2η − μk2) = 1. As 0 < ξρ < τ, we have ξ ∈ (0, 2). Without loss of

generality, we choose ξ = 1.
In each example, we fix the stopping criterion as ||xk+1 − xk || = ε < 10−5, σ = 0.7,

γ = 0.54, λk = 0.15 and let αk = 1
k+1 and vk = 2k+3

4k+12 . The projection onto the feasible
set C is carried out by using the MATLAB solver ‘fmincon’ and the projection onto an
hyperplane Q = {x ∈ H : 〈a, x〉 = 0} is defined by

PQ(x) = x − 〈a, x〉
||a||2 a.
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Table 1 Numerical results for Example 5.1

Algorithm 3.1 Algorithm 1.11 Algorithm 1.8

m = 10

CPU time (s) 0.5748 4.1761 1.6468

No. of Iter. 8 20 24

m = 50

CPU time (s) 0.8212 5.8721 0.7041

No. of Iter. 8 21 31

m = 00

CPU time (s) 0.9892 8.0226 1.3260

No. of Iter. 8 22 34

Example 5.1 First, we consider the Hp-Hard problem. Let A : Rm → R
m define by Ax =

Mx + q where

M = NNT + S + D,

N is an m × m matrix, S is an m × m skew-symmetric matrix, D is an m × m diagonal
matrix, whose diagonal entries are nonnegative so that M is positive definite and q is a vector
in R

m . The feasible set C ⊂ R
m is the closed and convex polyhedron which is defined

as C = {x = (x1, x2, . . . , xm) ∈ R
m : Qx ≤ b}, where Q is a l × m matrix and b

is a nonnegative vector. It is clear that A is monotone (hence, pseudo-monotone) and L-
Lipschitz continuous with L = ||M ||. For experimental purpose, all the entries of N , S, D
and b are generated randomly as well as the starting point x1 ∈ [0, 1]m and q is equal to the
zero vector. In this case, the solution to the corresponding variational inequality is {0} and
also, Sol := V I (C, A) ∩ F(T ) = {0}. We take m = 10, 50, 100 and compare the output of
Algorithm 3.1with Algorithm (1.11) andAlgorithm (1.8). The numerical results are reported
in Table 1 and Fig. 1.

Example 5.2 Let H = L2([0, 2π ]) with norm ||x || = (
∫ 2π
0 |x(t)|2dt) 1

2 and inner product

〈x, y〉 = ∫ 2π
0 x(t)y(t)dt, x, y ∈ H . The operator A : H → H is defined by Ax(t) =

1
2 max{0, x(t)}, t ∈ [0, 2π ] for all x ∈ H . It can easily be verified that A is Lipschitz

continuous and monotone. The feasible set C = {x ∈ H : ∫ 2π
0 (t2 + 1)x(t)dt ≤ 1}.

Observe that Sol = {0}. We choose the following starting points and compare the result of
Algorithm 3.1 with Algorithms (1.11) and (1.9).

(i) x1 = 1

3
t2 exp(−3t), (ii) x1 = 1

20
sin(3π t) cos(2π t), (iii) x1 = 1

50
cos(3t) exp(2t).

The numerical results are shown in Table 2 and Fig. 2.

Example 5.3 Finally, we consider the Kojima–Shindo nonlinear complementarity problem
(NCP) which was considered in Malitsky (2015), where n = 4 and the mapping A is defined
by

A(x1, x2, x3, x4) =

⎡

⎢
⎢
⎢
⎣

3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6

2x21 + x1 + x22 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9

x21 + 3x22 + 2x3 + 3x4 − 3

⎤

⎥
⎥
⎥
⎦

. (5.2)
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Fig. 1 Example 5.1, top left: m = 50; top right: m = 100; bottom: m = 200

Table 2 Numerical results for Example 5.2

x1 = Algorithm 3.1 Algorithm 1.11 Algorithm 1.9

1
3 t

2 exp(−3t) CPU time (s) 0.4660 1.5648 1.9736

No. of Iter. 5 10 24
1
20 sin(3π t) cos(2π t) CPU time (s) 0.6551 1.0781 1.2600

No. of Iter. 5 9 21
1
50 cos(3t) exp(2t) CPU time (s) 2.4487 7.0994 9.8463

No. of Iter. 6 12 30

The feasible set C = {x ∈ R
4+ : x1 + x2 + x3 + x4 = 4}. We choose the following starting

points and test our Algorithm 3.1 with Algorithm (1.11).

(i) x1 = (2, 0, 0, 2)′, (ii) x1 = (1, 1, 1, 1)′, (iii) x1 = (1, 2, 0, 1)′.

The results are summarized in Table 3 and Fig. 3.

Remark 5.4 In conclusion, one can see from the above examples that

• there is no significant difference in terms of number of iterations between Algorithms 3.1
and (1.11), for Example 5.1. However, Algorithm 3.1 performs better than Algorithm
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Fig. 2 Example 5.2, Left: x1 = 1
3 t

2 exp(−3t); Middle: x1 = 1
200 sin(3π t) cos(2π t); Right: x1 =

1
50 cos(3t) exp(2t)

Table 3 Numerical results for
Example 5.3

x1 = Algorithm 3.1 Algorithm 1.11

(2, 0, 0, 2)′ CPU time (s) 0.6848 2.4522

No. of Iter. 10 18

(1, 1, 1, 1)′ CPU time (s) 0.6653 2.3866

No. of Iter. 10 18

(1, 2, 0, 1)′ CPU time (s) 1.1210 3.0558

No. of Iter. 10 19

(1.11) in terms of time of execution. This can be due to the greater number of projections
in Algorithm 1.11 .

• Algorithm 3.1 converges faster than Algorithms (1.8) and (1.9) in terms of number of
iteration and cpu time taken for execution.

• In addition, when the feasible set is complex, Algorithm 3.1 is more preferable than
Algorithm (1.9) or (1.11).
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Fig. 3 Example 5.3, left: x1 = (2, 0, 0, 2)′; middle: x1 = (1, 1, 1, 1)′; right: x1 = (1, 2, 0, 1)′
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