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Abstract

The Crank—Nicolson orthogonal spline collocation (OSC) methods are considered for
approximate solution of the variable coefficient fractional mobile—immobile equation. The
convection, diffusion, and reaction coefficients can depend on both the spatial and tempo-
ral variables, simultaneously. Combining with Crank—Nicolson scheme and weighted and
shifted Griinwald difference approximation in time, we establish OSC method in space. It is
proved that our proposed fully methods are of optimal order in certain H; (j = 0, 1) norms.
Moreover, we derive L estimates in space. Numerical results are also provided to verify
our proposed algorithm.

Keywords Fractional convection diffusion equation - Collocation method - Variable
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1 Introduction

In this paper, we consider the following fractional-order mobile—-immobile equation with
variable coefficients:
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SD%u+u+ Lu= f(x,y,1),x,y,1) € Qr=2x(0,T], (1.1)
ulx,y,0) =uplx,y), ,y) €, (1.2)
u(x,y, 1) =0, (x,y,1)€dRx(0,T]. (1.3)

where © C R? is bounded convex polygonal domain with boundary 92, and f and uq are
given functions. Lu = Liu + Lou, Liu = —p1(x, y, Duxx + q1(x, y, Duy +r(x, y, Hu,
and Lou = —pa(x, y, Huyy +q2(x, y, t)uy. There exist positive constants pmin, Pmax, Such
that 0 < pmin < p1(x, y,1), p2(x,y,1) < pmax. Herein, we consider operator £ in the non-
divergence forms rather than in the divergence forms, because the non-divergence forms are
more natural for OSC spatial discretization. The Caputo fractional derivative ng‘ is defined
by:

1 CouCys)  d
ED%u( 1) = / uts) &5 o, (1.4)
I —a Jo

s (t —s)*’

The fractional-order mobile—-immobile equations are a type of second order PDEs, which
describe a family of problems including heat diffusion and ocean acoustic propagation in
mathematical systems with the time variable ¢ and behaves like heat diffusing through a
solid. The time drift term u, is added to exhibit the motion time and thus helps to distin-
guish the status of particles conveniently. The model is the limiting equation which control
continuous time random walks with heavy-tailed random waiting times. Hence, it is diffi-
cult or infeasible to find the analytical solution of this equations in most cases, and then to
find its numerical solutions become more necessary. Most of previous works concentrate on
constant coefficient problems Jiang (2015), Wei (2017, 2018), Chen et al. (2016), He and
Pan (2017, 2018), and Liu et al. (2015). For variable coefficient, Cui (2015) studied the time
fractional convection—diffusion reaction equation with variable coefficients by the compact
exponential scheme. Wang et al. (2019) provide a novel high-order approximate scheme for
time-fractional 2D diffusion equations with variable coefficient. Liu et al. (2012) analyzed
novel and efficient numerical methods for a class of fractional advection—dispersion models,
including the mobile/immobile time-fractional advection—dispersion model with a Caputo
fractional derivative. Subsequently, Liu et al. (2014) constructed an RBF meshless method for
a fractal mobile—-immobile transport model. Zhang et al. (2013) described an implicit Euler
approximation for the time-variable fractional-order mobile—immobile advection—dispersion
model. Recently, Liu et al. Liu and Li (2018) introduced the Crank—Nicolson finite-difference
scheme to solve a time-variable fractional-order mobile—immobile advection—dispersion
equation, and proved a priori estimates of discrete L2-norm.

Published articles on numerical methods for fractional mobile—-immobile convection—
subdiffusion equation with variable coefficients are still sparse. This motivates us to consider
high accuracy numerical schemes for solving them. The current work is devoted to deriving
a high-order scheme by combining Crank—Nicolson and weighted and shifted Griinwald
difference approximation for time derivative and OSC scheme for space. There have been
many earlier research papers discussing OSC schemes for steady and/or unsteady convection—
diffusion equations of integer order, e.g., Bialecki (1998), Bialecki and Fernandes (1993),
Fernandes and Fairweather (1993), Yan and Fairweather (1992), Zhang et al. (2019), and
Yang et al. (2019). However, numerical approximation referring OSC method for fractional-
order convection—subdiffusion equations with variable coefficients is still at an early stage
of development. Thus, it is important and necessary to develop efficient numerical methods
to solve them.

The structure of the paper is organized as follows. In Sect. 2, the Crank—Nicolson OSC
method is derived. The heart of our paper is Sect. 3, where we prove the stability and conver-
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gence in certain H; (j = 0, 1) norms for proposed scheme. In Sect. 4, numerical experiments
are given; at last, some conclusions are drawn in Sect. 5.

2 The Crank-Nicolson OSC scheme
2.1 Preliminaries

Let Ny, Ny, and N be some positive integer, the collection of spatial quasi-uniform Percell
and Wheeler (1980) mesh of €2 defined by § = 8y x 8y, : 0 =xp < x; < -+ < xN, =
L, 8y O_y0<y1<~-~<yN =1,1<k=<N,,1<I=<N,.

Denote by M, () = .M(r 5 ) ® M(r, 8y) a space of piecewise polynomials in x and
y, M(r,8x) = {ulu € C'([0,1]), uljx_, x;) € Pr,u(0) = u(1) =0}, and P, denotes the
space of all polynomials of degree less than or equal to r. With M(r, §,) defined similarly.

Let {kk}z;i and {a)k}z;i be the nodes and weights of the (r — 1)-point Gauss quadra-
ture rule on [0, 1]. In domain €2, we define Gauss collocation points set: A, = {£]§ =
(E* 8,8 e A, 8V e AL Ay = {xi —I—)Lkhx}fvfc rl ! ,hy = xp —x,—1. With A, defined
similarly.

At last, the discrete inner product and norm are defined by:

r—1r—1

Ne Ny
=S Y UV E E). ULV € M),

i=1 j=1 k=1i=1
||V||M (V,V), V.eM©).

2.2 Construction of 0SC scheme

In this subsection, we will consider Crank—Nicolson OSC scheme for approximating the
solution of problem (1.1). Let temporal domain [0, 7] be divided by the partition {tk}fzo
with #y = k7, and t = T /K. Next, we introduce some difference quotient notations:

Vn+l _ Vn
Vn(" ) = V(? 'a tl’l)7 8[Vn+1 = —, ‘/}"+ (Vn+1 + Vn)
T

We first consider the weighted and shifted Griinwald-Letnikon approximation Tian et al.
(2015) and Wang and Vong (2014) for ng‘u(-, 1):

n+1

SDM U,y tap) =77 Y AU, y. tyg1-0) + R 2.1)
k=0
where
{Ai""=—§g,§‘”l+2§“g,§‘“, k=123 ; 02
A = L gl k=0. ’
and

o+ 1
g;ﬁ“)_<1_ K )gi@p 8" =1.
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It can be checked directly for 0 < o < 1 that the coefficients { g(a) Yoo and {A,((a) J oo satisfy
the following properties:

gi“)——a<0 e <gW < <. <o
Zg(a) _ ig(“)>0 w1
=k = - (2.3)

@ @
Ay =147 >0, > < 2a 42,
k=0

Moreover, for any real vector (wy, wa, ..., wk)T € R, it holds that:
k—1 n
DD waip | wap 20, k=1.2,.... (2.4)
n=0 \ p=0

For the proof, see Wang and Vong (2014).
The estimate of R;( 41 can be found in Tian et al. (2015), and satisfies:

RS < o skt D @) | 2.5)
L!
where § denotes the Fourier transform symbol, and u € Cc?, (I)”“ Df‘+2u, and its Fourier
transform belong to L'(R).
Therefore, using the approximate formula (2.1), the Crank—Nicolson OSC scheme for Eq.
(1.1) consists in finding {uh} _o C M,-(8), such that, for all £ € A,:

_ n+1 n 1
!&u"“ [ZA(“) ARy k} +.c”+5u2+2] © = 1),
k=0

where L”Jr% and f nt3 denote the operator £(¢) and the function f (), respectively, evaluated
atr =1,,1. For the stability and error analysis, we rewrite the above equation in the equivalent
form:
1 n
<8tun+l ,op) + (ﬁn—}—%uZJr? o) = —1 ¢ Z )\']((a) <u2*k+§ ,vp)
k=0
r_

o) + () v e M@, 0Sn=K -1 (26)

where, for convenience, we have omitted the dependence of u"*!(£) on (&) in the above
equation.

3 Analysis of the Crank-Nicolson OSC scheme

To analyze the convergence of fully discrete scheme (2.6), we begin with the following
Lemma.

Lemma 3.1 Bialecki and Fernandes (1993) If L = L1 + L, and assume p; € CS'O'O(QT),
p2 € CO’S’O(QT), q1,q2,r € C(Qr). Also assume that p;,i = 1,2 satisfy the Lipschitz
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condition with respect to t, that is, for (x,y) € Q, t1, 12 € (0, T, there is a constant C > 0,
such that

Ipi(x,y,11) — pi(x,y, )| <Clty — 12|, i=0,1,
then we can show that:
(LOW,V)=Agt; W, V) + A1(t; W, V), 1t € (0, T], W,V € M, (), 3.D

where Ai(t;-,-), t € (0,T], i = 0,1, are real-valued bilinear forms on M, (§) x M, ()
forallt € (0, T], W,V € M-(8), Pmin, Pmax, and C are positive constants, we have:

(1) Aot W, V) = Ao(t; V, W); (3.2)
(2) Pmin(—AW, W) < Ag(t; W, W) < ppax (=AW, W); (3.3)
(3) [Ao(t; W, W) — Ag(ta; W, W)| < Clt1 — (=AW, W); (34
4) A1(t1; W, V) < Co(—AW, W)%IlVler; (3.5)
where
o = lgillcer + llg2llcr + Irlc@rn + [max <|| ||C(SZT) || ” P ||C(QT)>

For the proof, see Bialecki and Fernandes (1993), Lemma 3.2.

3.1 L? stability analysis

The L? stability of Crank-Nicolson OSC scheme (2.6) is given in the following theorem.

Theorem 3.2 The Crank—Nicolson OSC scheme (2.6) is stable with respect to L? norm.
Specifically, for uj' € M, (8), it holds:

m—1
il <€ (B, +r D) ek ao

n=0

1
Proof Taking v, = u2+2 in (2.6), for0 < n < K — 1, we obtain:

n+} L nt+g  n+3
(8lun+l,uh 2>+<£n+2uh Z’Mh 2)

n 1 1
_ (), n—k+5 nt+sz
=1 "‘Zkk (w, " *u, )

‘L'7 n+2

5 Afﬁgl(uh,uh T AS AR (3.7)
Since
1 1 2
s n+l, s n+1H ’ 38
< U up 2% uy M, (3.8)

it follows from (3.1) of Lemma 3.1 that:

1 n+l n+l IH» n+ n+ }H»l
<E”+2uh Suy, 2>:A0<tn+1, u, *, 2)+A1<n+1, u, >u, >, 39
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from Eq. (3.4) of Fernandes and Fairweather (1993), we have:

2
1 1
< Aun+2, Z+2> > CHW’;*? > 0. (3.10)

Furthermore, using (3.3) and (3.5), we have:
1 1
)

1
n+i s n+d o+l n+4
mein< Auy, ’, uy >_C < Auy, “u uy 2> lluy, 2”/\/1,

n+2 ”

n+3 n+3
> PminllVuy, — CollVay, 2y, % llwa,

1
> P20 Vi "2 - Clu R 3.11)

on substituting (3.8) and (3.11) into (3.7), multiplying the result equation by 27, and then
summing fromn =0ton =m — 1,1 <m < K, we obtain:

m—1
[ 2, + T pmin 3 Vi) 22

n=0

m—1 n i, 1

< [, +Cr2nu"*2n2—2rl‘“ZZW)( N

n=0 n=0 k=0

m—1 m—1 ]
—rl—aZx;"fgl<u2, >+2rz<f”+2 u”+7>. (3.12)

n=0

It follows from (2.4), we obtain:

m—1 n ]
e 3 ) <o
n=0 k=0
dropping the non-positive the third term on the RHS of (3.12), then applying the Cauchy—
Schwarz inequality and Young’s inequality to the last two terms on the RHS of the resulting

n+1

1
expression, and noticing ||uh 2 lm, < 2(||u lmg, + llujllag, ), we have:

i I, +CTZHW"“HZSC(H»¢2HL
m—1

+rl_“2|k( 1|Hu,,HM +rZ||f"+z||M,)+CrZ||uh||2 (3.13)
n=0

Using the discrete Gronwall lemma, (2.3), and (3.13), we complete the proof of Theorem
3.2. O

3.2 H' stability analysis

In the following theorem, we derive the H'! stability of the Crank—Nicolson OSC scheme
(2.6).
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Theorem 3.3 The Crank—Nicolson OSC scheme (2.6) is stable with respect to H' norm.
Specifically, for uj' € M,(8), 1 <m < K, it holds:

m—1
_ 1
IVuj|* < C (nvMZu2 + g, T Y I m,) : (3.14)
n=0

Proof Setting v, = 8,u"+1 in (2.6), for0 < n < K — 1, we obtain:
||5tun+l||/\/( + <£n+2u +2 S n+l>

n
el s

k=0

—%Afﬁg, <uh,3,u”+1> (f"+%, stu,';“). (3.15)

First, we have to handle the first term on RHS of (3.15) as follows:

—OJZ)\'(D‘)< n— k+2 8 n+l>

n—k+1 n—k n+l n
up tu, o, ”h>

(@)
Z)La< 2 ’ T

rlma n
_ Z)“(a) <8, ul k+1 8,u”“> 7az)hl(€£¥)< n—k (S,u”“>. (3.16)
k=0 =

Now, we handle the second term on LHS of (3.15), following (3.1) of Lemma 3.1, we have:

<£n+2un+2 8tun+l>
= Aoty 1 u, + 5,u”+1)+A1(tn+1,uh : LS th, (3.17)
since

nty I
Aoty 11wy . Suy™)

n+1 +1
:EAO(t+1’uh +uh, n MZ)

1
= [Ao(tn e —Ao(tn_%;uz,uz)]
1
~50 [AO(I,H%; Wy, up) — Ao(l”,%; ull, ”71)]
! 1
= 56, (AO(t”+l sultt, uzﬂ)) - E(BtAO)(tn+%; up, up); (3.18)
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substituting (3.16)—(3.18) into (3.15), multiplying the result equation by 27, and then sum-
ming fromn =1ton =m — 1,1 <m < K, we obtain:

1 . . 1
2T Z ||8,u"+ ”Mr + Ao(tm_%, u;’f, uf) = Ao(t%, Uy, up)

n=1

m—1 m—1
T Y G Aty uf ) = 2T Y AL,y " 6tu"+l)
n=1 n=1
m—1 n
2o ZZA‘(Q) n —k+1 8,u"+])
n=1 k=0
m—1 n
1 aZZA(a) —k 5,un+1)
n=1 k=0
!- “ZAH] (uf), Suf ) +21:Z 2, 8u)th). (3.19)

n=1
Taking n = 0 in (3.15), we obtain:
11 _
I8 %y, + (C2uj, Sup) = =t~ u), 8up)
—o
—TAE"‘)(MQ,(S,M},)JF(f%,atu}n, 0O<n<K-—1; (3.20)
following (3.1):

1L 1 1
(L2u}, Sup) = (L2 (u) +ud), up — u)

2T

1
= 7 [Ao(t%; u}l + ug, u}, — u%) + Al(t%; u}l +u2, u}l — ug)]

1 1 1 0 0 1 1 0 1 0
= 37 [Ao(t%; Wp,upy) — Ao(t%; u, uh)] + EAIU%; Wy +up, Uy — up).

(3.21)

Furthermore, substituting (3.21) into (3.20), multiplying the resulting expression by 27, we
have:

2018y 3, + Aoty uj uj)
= Ao(ry: . ) — Av(ty: uj + . ), — uf)
e 0@ 0l sy — OO W0 suly +2r(fT 8ul) (322)

adding (3.22)—(3.19), for 1 <m < K, we have:

1
2t Z 18y ™ I3, + Aot _y: ' ui)

m—1

..,0 0 .
= Aoty uf. up) +7 ) (8 A0) (1, 13 . uf)
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—2T Y Al 15w T st

m—1 n
Z ZA(O‘) Siuy —k+1 (Stu"'H)
n=1 k=0
m—1 n
Z Z)\'(a) —k (Stu}’hLl)
n=0 k=0
m—1 m— 1
oS ) sy 20 Y (1 st (3.23)
n=0 n=0
It follows from (2.4) that:
m—1 n
2o Z Z)\'(Ol) n k+1 ) unJrl) <0: (3.24)
n=1 k=0
using (3.10) and (3.3), we have:
Ao(t,_1su uil) = pminl Vi 112, Aoty ul, up) < pmaxl|Vig’s (3.25)
using Eq. (3.5) of Fernandes and Fairweather (1993), we have:
(=auj, )| < CVu]] (3.26)
also, using (3.26) and (3.4) in Lemma 3.1, we have:
1
A0ty 43 1h ) = — | Aoty ) = Ao,y )
< C(—Aujl.u}) < C1||Vuj |2 (3.27)
Similarly, using (3.5) in Lemma 3.1 and (3.26), we have:
A1ty 13, 2 sty = CIVu | s (3.28)

Thus, on substituting (3.24)—(3.28) into (3.23), dropping the non-positive the fourth term on
the RHS of (3.23), and then applying the Cauchy—Schwarz inequality to the last three terms

on the RHS of the resulting expression, we have:

m—1

2t Z 18 1%, + Prinl| Ve |2

m—1

+
< pmax VU > + CT Y | Vuy |2 +2rCZ||Vuh 21 18wy o,

n=1 n=0
m—1 n
1= ()
T I I o, 18T g,
n=0 k=0

1
o Z A1 N, 182y s,
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m—1

1
20 Y 2 o, 18 I, - (3.29)
n=0

. . +1 _ _
Using (2.3), noticing [|Vu, 2 | < 3 (IV ™ |+ 1V D, g™ llm, < CIVIG ™ L,
applying the Young’s inequality, and simplifying, we have:

m—1
T 18 1, + (Prin — CON Va1
n=0

m—1 m—1
_ 1
<cC (nw;’nz + T upllhy, 2T Y 1T m) +Ct Y IVuil*: (3.30)

n=0 n=1

by choosing t small so that ppi, — Ct > 0, and using the discrete Gronwall lemma, we
have:

m—1
1
VU < € (nwzn2 + T ) 5, +27 Y ||f”+2||2M,) ,l<m<K.
n=0
The proof of Theorem 3.3 is completed. O

3.3 Convergence and a superconvergence result

In this subsection, we will consider the convergence of Crank—Nicolson OSC scheme. To
analyze the convergence, we need to define an elliptic projection W: [0, T] — M, (6), for
tel0,T]

(Lu — LW, vp) =0, Yv, € M, (5). (3.31)

As in Bialecki (1998), for a given function u, Eq. (3.31) has a unique solution W € M, (3).
To finish our analysis, we now introduce two lemmas which provide estimates for u — W
and its time derivatives.

Lemma 3.4 Bialecki (1998) Assume u, du/dt € H™371 j =0, 1, and W satisfies (3.31),
and then, there exists a constant C, independent of h, such that:

Lemma 3.5 Bialecki (1998) Assume u, du/dt € H’+3,f0rt e [0, T), I =1 +1p, we have:

dlu

(u—Ww)
i otl

" < Chr+lfj
t

Hi

, j=0,1, i=0,1. (3.32)

Hr+3—J

8l+i u— W)

d'u
dxhaylori

< Chr+l—l -
ar!

i=0,1,0<l<4. (3.33)

‘Mr Hr+3

Now, we derive an optimal H £ (¢ =0, 1) error estimate.
According to the definition of W in (3.31), for 0 < n < K, we assume:

M==-W'4up, 0" =-W"+u", (3.34)
then

W= =W — (W =" = (3.35)
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It is easy to known that the estimates of 1" are known from Lemmas 3.4 and 3.5. Therefore,
to bound u”" — uz, we need only to bound ¢”.
First, from (1.1) and (3.31) att = tn+% ,(2.6),(3.34), and (3.35), and then for v, € M, (§),

we obtain:

(8,§n+1 >+<Ln+2§n+2 o) Z)‘(a) n—k+1 )
|
—kaﬁ)l(i o)+ (Can . vn), vREM(B), 0<n<K—1, (3.36)
where
0“4”-2 = Ul"+2 +(’2+2 "‘03+2 "‘%Jr2 + ”+2, (3.37)
and
Gl”+2 — !
aé”r% _ ut(tn+%) — Sut
AT = (0 ) <)
UZ’JF% — @ Z)»(a) n—k+d 1 o A(oz)ln ’
k=0
AL Se)

. . . +1 .
In the following lemma, we derive estimates on a;ﬁuz that are required to prove the
convergence estimates for the proposed Crank—Nicolson OSC scheme in H tw=01

norms on each time level.

Lemma3.6 Ifu € C200N %200 003 REpay u, e C ([0, T1, H™+3), KL DI 2w and
its Fourier transform belong to L'(R), forn =0, 1, ..., K — 1, then we have:

f’l+
2
Ou,u

C([O,TJ,H’“))

f Chr+l <||MI||C([O,T],H’+3) + H(?LD;XMH
M,

2
+Crt (||Mttt||C(QT) + llure |l c200nc0.20

+ luwlleqo.ry, mr+3) + “S[(I;LD?+2

Ll) . (3.38)

Proof Since

1 11 [+ 9
aln+2 = - / —n( s)ds
M, T In ot M,
1 In+1 an
= ;/ ( s) ds < Ch™t! ”uf”C([O,T],H"H) . (3.39)
tn M,

Using Taylor’s theorem with integral remainder, we obtain:
n+s n+1
loy “lim, = ||Mt(fn+1) —8u"" m, = ct? luellc@r) - (3.40)

@ Springer f DMAC
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+1 . .
For the term a3n 2, we obtain, on using Taylor’s theorem and the boundedness of the coeffi-
cients:

l’l+l +l +l
oy 2 g, = 12747 (W (1,41) = W) g,

= €T | W,y 1) — W

€2.0.000.2.0

< Ct¥| Wyl c200nc0.2.0- (3.41)
Since
Wil c2.00nc020 < (W —u) il c2.000c02.0 + [lus | c2.000c020, (3.42)

then, using Taylor’s theorem and arguments as in (3.39), together with Lemma 3.5 (I = 2,
Jj = 2),since r > 3, it follows on using (Fernandes and Fairweather 1993, Lemma 3.2) that:

1
f’l+§
oz “llam,

< Crt? ( I(W —u)ill c2.0.00c020 + ||un||C2,0,0ﬂCo,2,o)
< C'L'2 ( ||M" ||C2,0.0ﬂco.2,0 + ”Litt ||C([O,T],Hr+3)) . (343)

By (2.5), we know that:

n+l
e, p -y 2| = o S Dr e
2 M, L
Hence, using Lemma 3.5, we have:
s+t RL 2 4 || RL yat2 2
oy 2| = |fpna,, |+ SE D@
M, 27l Mm, L

2 2
2r+2 (|RL no 4 RL na+2
<Ch HO Dtu’C([O’T]’Hr+3)+r Hs[o D° u](a))HLl. (3.44)
Note that
1 1
‘05”2 - H R <cr? Hg[{fLDf”u](w)’ . (3.45)
M L!

Applying the triangle inequality to (3.37) and using (3.39)—(3.40) and (3.43)—(3.45) yield
(3.38). The proof of the Lemma 3.6 is completed. O

Convergence estimates for the Crank—Nicolson OSC method (2.6) in the H ¢ norms, ¢ =
0, 1, are proved in the following theorem.

Theorem 3.7 If the hypotheses of Lemma 3.6 are satisfied and suppose that u is the solution
of (1.1), and uj} (0 < m < K) is the solution of the problem (2.6) with 142 = WO, then there
exists a positive constant C, independent of h and t, such that

Juttn) =ity < € (W7 +72), j=0.1, 0sm=K.  (346)

Proof We first apply the stability result (3.6) and (3.14)—(3.13) to obtain:

m—1

1
G CETPARED Sl N PR S
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and
m—1
Ive™|*> < ¢ (nvz”u2 + N, T Y lout? ||2M,) : (3.48)
n=0
Since {0 = 0, it follows from Lemma 3.6 that:
le" |y, <C(T +7%), 1<m<K, (3.49)
and
Ivem|<C (it +7%), 1<m<K. (3.50)

Therefore, (3.46) for j = 0 and j = 1 is obtained on using the triangle inequality, (3.49) and
(3.50), respectively, and (3.32) with/ =0, j =0and =0, j = 1, respectively. ]

Remark 3.8 1f we choose u2 as the elliptic projection W of uq defined in (3.31), then ¢° = 0.
Hence, from (3.50), we obtain a superconvergence result for || || z1, 1 < m < K, namely:

g™ g < C (KT +7%), 1<m<K. (3.51)

From Sobolev’s inequality, we obtain, since: " € M,,
1
2™ lg= < Clog (Z) IVe™l,1 <m < K. (3.52)

If the optimal maximum norm estimate for n”* are available, namely:
"l < CR™T 1 <m < K. (3.53)
Then, on using the triangle inequality, we obtain a quasi-optimal L> error estimate:
1
[u(tm) —uf ||, < Clog <Z> (F" 7%, 1<m<K. (3.54)
Remark 3.9 If the hypotheses of Lemma 3.6 are satisfied, then (3.46) also holds for j = 0
and j = 1, and suppose u2 is chosen, so that
|uo —uy|,,; < Ch 0 j=0,1. (3.55)

This is satisfied by the choice u2 = u%, the Hermite interpolant of u defined in Bialecki

(Eq. 2.18, Bialecki 1998).

4 Numerical experiments

In this section, we will present numerical experiments to illustrate our theoretical statements.
We used the space of piecewise Hermite bicubics (r = 3) with the standard value and scaled
slope basis functions Yan and Fairweather (1992) on uniform partitions of [0, 1].

Example 1 We consider the following problem similar to Chen et al. (2016):

U +§ D¥u — (2 — sin(tx))uyy + 1 cos(tx)uy + (2 — cos(tx)u = f(x,1),
u(x,0 =0, xel0,1],
ulx,t)=0, te(0,1],
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2 o]
Table1 L~ and L, errors and o N LZ%error Rate L error Rate
convergence rates in spatial and2
temporal directions with t = h =015 5 1.0557e—03 1.5748¢—03
for Example 1
10 6.3397e—05 4.0576  9.5592¢e—05 4.0421
20  3.9234e—06 4.0142 5.9845¢e—06 3.9976
40 2.4461e—07 4.0035 3.7306e—07  4.0038
a=0.5 5 1.0371e—03 1.5481e—03
10 6.2284e—05 4.0575 9.4104e—05 4.0401
20 3.8545e—06 4.0142 5.8880e—06 3.9984
40 2.4031e—07 4.0036 3.6705e—07  4.0037
a=095 5 1.0103e—03 1.5112e—03
10 6.0667e—05 4.0575 9.1915e—05 4.0393
20  3.7550e—06 4.0143 5.7503e—06 3.9986
40 2.3411e—07 4.0036  3.5846e—07 4.0038
and
rw 5\ sin(2mx)
X, 1) = | ————¢t + 2t + (2 —cos(tx)t” | ———
Fx,1) <r<3—a) ( )
27 cos(2mwx 2sin(2wx
+13 cos(tx) ( ) — ( )
(14 x)? (1+x)3
. sin(2mwx 81 cos(2mx 6sin(2mx
+12(2 — sin(tx)) <4n2 ( 2) ( i ) osind 4)),
(1+x) (I+x) (1+x)
with the exact solution u(x, 1) = ¢2 80279

(I+x)? °

In Table 1, we select T = h2 (K=N 2), since, from our theoretical estimates, the error in
the L2 norm is expected to be O(t2 + h*) when r = 3. Just as we hope, the results in Table 1
demonstrate the expected convergence rates of 4 order in space and 2 in time for different o

(¢ =0.15,0.5,0.95).

We now verify the temporal accuracy and convergence rates for our proposed method, and
select t = h (K = N), so that the error stemming from the spatial approximation is negli-
gible. Table 2 verifies 2 order accuracy in time for all four different o« (¢ = 0.1, 0.5, 0.99),
which are in keeping with the theoretical predictions.

By selecting = 4%/? and different & (¢ = 0.01, 0.4, 0.7, 0.9), Table 3 indicates H'
errors and convergence rates in spatial direction. The convergence rate of 3 order matches

that of the theoretical one.

Example 2 We consider the following problem similar to Chen et al. (2016):

Uy +g D¥u — (2 — sin(tx))uxy + t cos(tx)uy + (2 — cos(tx))u = f(x,1),

ux,0 =0, xeq,
ulx,t) =0, (x,t)eox(0,T],
where Q =[0,1], T = 1:

Fo, ) = (0@ +a)t + (1 +a)t® + (2 — cos(tx)t' ) x(1 — x)e ™™
+13 cos(tx) (2 — sin(tx)) (x% — 5x + 4)e ¥ 111

+1 cos(tx)(x? = 3x + De¢1Te,
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Table2 L2 and L™ errors and
convergence rates in temporal

g‘;zfr‘l‘p"lz ‘l”i‘h T = hfor «=01 10  9.1750e—04 1.6547e—03
20 22990e—04 19967 4.1500e—04  1.9954
40 57374e—05 2.0025 1.0305¢—04  2.0098
80  14337¢—05 20007 2.5776e—05 19992
160  3.5839c—06 2.0001  6.4429e—06  2.0002
320 89593¢—07 20001 1.6107e—06  2.0000
«=05 10  9.0771e—04 1.6358¢—03
20 22815e—04 19922  4.118le—04 19899
40 5.6949e—05 2.0022  1.0228¢—04  2.0095
80  14232¢—05 20005 2.5578¢—05  1.9995
160 3.5577e—06  2.0001  6.3943¢—06  1.9856
320 8.893%—07 20001 1.5984e—06  2.0002
«=099 10  9.0174e—04 1.6228¢—03
20 23027e—04 19694 4.1554e—04  1.9654
40 5.7493¢—05 20019  1.0326e—04  2.0087
80  14368c—05 20005 2.5832e—05  1.9991
160 3.5917e—06  2.0001  6.4509—06  2.0002
320 89787¢—07 20001  1.6142e—06  2.0000

o N L2 error Rate L° error Rate

3
Table3 H! errors and convergence rates with 7 = 42 for Example 1

o N H! error Rate o N H! error Rate
o =0.01 4 8.9442¢—03 a=04 4 8.7744e—03
9 7.5363e—04 3.0506 9 7.3900e—04 3.0512
16 1.3321e—04 3.0120 16 1.3062e—04 3.0120
25 3.4856e—05 3.0041 25 3.4175e—05 3.0043
36 1.1665e—05 3.0019 36 1.1437e—05 3.0020
a=0.7 4 8.6247¢—03 a=09 4 8.5192¢—03
9 7.2610e—04 3.0517 9 7.1701e—04 3.0520
16 1.2832e—04 3.0123 16 1.2671e—04 3.0123
25 3.3575e—05 3.0042 25 3.3152e—05 3.0043
36 1.1236e—05 3.0020 36 1.1095e—05 3.0019

Tables 4, 5, 6 show the errors and convergence rates in three discrete norms for Example 2.

For the fractional order @ = 0.25, 0.5, 0.95, Table 4 shows the L? and L errors and
convergence rates, and verifies that the space convergence rate is 4 and time convergence
rate is 2 for each «. It is obvious that the numerical convergence order matches well with the
theoretical results.

In Table 5, for the fractional order « = 0.01, 0.35, 0.65, 0.99, we present the convergence
order in temporal direction. It is easy to conclude that the method is convergent and the
convergence order in time is 2 corresponding to each «.

We show the errors in H'! norm for « = 0.01, 0.3, 0.6, 0.8 in Table 6. It is clear that the
convergence rate is three, which is the same as theoretically claimed.
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2 00
Iggllz:geﬁcea:::tlesm :;;?;5111:1% o N L2 error Rate L error Rate
;Z‘:]giﬁl gli;e;“o“s witht =h> 055 5 62814e—06 8.9435¢—06
10 3.906le—07 4.0073  5.4825¢—07  4.0279
20 22818e—08  4.0975 3.2192e—08  4.0901
40 1.1431e—09 43191  1.6557e—09 42812
«a=05 5  16796e—05 2.3666e—05
10 1.0516e—06 39975 1.4738e—06  4.0052
20 65130e—08 4.0131  9.1297e—08  4.0128
40 3.9931e—09 40277 5.6118e—09  4.0240
«=095 5  42702e—05 5.9971e—05
10 2.6753¢—06 3.9965 3.7487e—06  3.9998
20 1.6723e—07  3.9998  2.3430e—07  4.0000
40 1.0452¢—08  4.0000 1.4656e—08  3.9988
2, 00 o
Comvenence mos in ool @ N PPemor  Rate  L%emor  Rate
g‘;:r‘l;ol‘; ;Vith © = h for «=001 10  1.5366e—06 2.4599¢—06
20 3.7003e—07 2.0540 4.9885¢—07  2.3019
40 92193e—08 20049  1.2909¢—07  1.9502
80 23003e—08 2.0028 3.2270e—08  2.0001
160 5.7098¢—09 2.0103 8.0153e—09  2.0094
320 14654e—09 19621  2.0292¢—09  1.9818
@=035 10  6.8788e—05 1.0268e—04
20 1.7205¢—05 19993  2.3984e—05  2.0980
40 42862e—06 20051 6.0150e—06 19954
80  1.0651e—06 2.0087 1.4955¢—06  2.0079
160 2.6361e—07 2.0145 3.7045¢—07  2.0133
320 6.4898e—08 2.0222 9.1273e—08  2.0210
@=065 10  1.5480e—04 2.2205¢—04
20 3.8822¢-05 1.9955 5.4358¢—05  2.0303
40 9.7038e—06  2.0003 1.3618e—05  1.9970
80  2.4246e—06 2.0008 3.4034e—06  2.0005
160 6.0565e—07 20012  8.5028¢—07  2.0010
320 1.5131e—07 20010  2.1240e—07  2.0012
@=099 10  2.8168e—04 3.9743e—04
20 7.0636e—05 1.9956  9.9034e—05  2.0047
40 1765905 20000 2.4794e—05 19979
80  4.4148¢—06 2.0000 6.1990e—06  1.9999
160 1.1037e—06  2.0000  1.5500e—06  1.9998
320 2.7597e—07 19998  3.8753¢—07  1.9999

@ Springer f bMA




A spline collocation method for a fractional mobile... Page 17 0f20 34

3
Table6 H! errors and convergence rates with t = 72 for Example 2

o N H! error Rate o N H! error Rate
o =0.01 4 7.7151e—06 a=03 4 7.0090e—05
9 7.3209e—-07 2.9041 9 6.2287e—06 2.9850
16 1.3178e—07 2.9803 16 1.0847e—06 3.0378
25 3.4849¢—08 3.0456 25 2.7059e—-07 3.1111
36 1.1814e—08 2.8867 36 8.3719¢—08 3.2172
a=0.6 4 1.8146e—04 a=0.8 4 2.7372e—04
9 1.6709e—05 2.9412 9 2.5361e—05 2.9335
16 2.9941e—06 2.9882 16 4.5552e—06 2.9841
25 7.8443e—07 3.0013 25 1.1969¢—06 2.9948
36 2.6201e—07 3.0073 36 4.0112e—07 2.9981

Example 3 We consider the following problem Chen et al. (2016):
C Dfu — (2 —sin(tx))uxx + (2 —cos(tx))u = f(x,1),
0

ux,00=0, xel0,1],

u(,t) =u(l,t) =0, e 1],
with

Fo,0) = (0Q+a)t + (2 —cos(tx)t' ™) x(1 — x)e™
+13 cos(tx) (2 — sin(rx)) (x> — 5x + 4)e 11T,

In this example, by choosing the same parameter /2, T and « as in Chen et al. (2016), we
compare the numerical results of our scheme with the method in Chen et al. (2016). To
eliminate the contamination of the spatial error, we choose 7 = 1/125, which is large
enough as the solution is analytic. Tables 7, 8 display L and L errors and the convergence
orders with « = 0.1, 0.5, 0.9, respectively. The last two columns of Tables 7 and 8 present
the numerical results obtained in Chen et al. (2016). From Tables 7 and 8, we can see that
the present method have similar accuracy and convergence order in time as reference Chen
et al. (2016).

In the following Example 4, we mainly test problem based on the Gaussian pulse and the
noise effect to show the efficiency of the developed technique.

Example 4 Let 2 = [0, 1], T = 1, we consider the following problem:
Uy +g Dfu — (2 —sin(tx))uyxy + t cos(tx)uy + (2 — cos(tx))u = f(x,1),
ulx,00=0, xeg,
ulx,t) =0, (x,t)€eox(0,T],

_@-05% )
with the exact solution u(x, 1) = e £ sin(wx), where § is small parameter.

In Fig. 1, we draw the surface figures of the exact solution # and the numerical solution
up withh = 1/40,t = 1/1600, « = 0.5, and B = 0.01, respectively. We can clearly see that
the exact solution u can be simulated well by the approximation solution uj, for our discrete
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Table 7 Comparison of L2 errors and convergence rate for Example 3 with 1/h = 125
o 1/t Present scheme Rate Method in Chen Rate in Chen
et al. (2016) et al. (2016)

a=0.1 10 1.6793e—05 1.7043e—05

20 4.0355e—06 2.0570 4.2473e—06 2.0046

40 9.9656e—07 2.0177 1.0562e—06 2.0077

80 2.4558e—07 2.0208 2.6227e—07 2.0097

160 5.9759e—08 2.0390 6.5079e—08 2.0108

320 1.4171e—08 2.0762 1.6144e—08 2.0111
a=05 10 1.0867e—04 3.2094e—04

20 2.7249e—05 1.9957 8.0434e—05 1.9964

40 6.8041e—06 2.0017 2.0169e—05 1.9957

80 1.6973e—06 2.0032 5.0559e—06 1.9961

160 4.2295¢—07 2.0047 1.2668¢—06 1.9968

320 1.0524e—07 2.0068 3.1723e—07 1.9976
a=09 10 2.4508e—04 9.6360e—04

20 6.1448e—05 1.9958 2.4051e—04 2.0023

40 1.5364e—05 1.9998 6.0069e—05 2.0014

80 3.8409e—06 2.0000 1.5006e—05 2.0011

160 9.6023e—07 2.0000 3.7492e—06 2.0009

320 2.4006e—07 2.0000 9.3680e—07 2.0008

Table 8 Comparison of L>°

errors and convergence rate for Example 3 with 1/h = 125

o 1/t Present scheme Rate Method in Chen Rate in Chen
et al. (2016) et al. (2016)

a=0.1 10 2.6974e—05 1.2417e—05

20 5.5287e—06 2.2866 3.0903e—06 2.0065

40 1.3980e—06 1.9836 7.6774e—07 2.0091

80 3.4505e—07 2.0185 1.9049¢—07 2.0109

160 8.4135e—08 2.0360 4.7238e—08 2.0117

320 2.0035e—08 2.0702 1.1712e—08 2.0120
a=0.5 10 1.5913e—04 2.3983e—04

20 3.8136e—05 2.0610 6.0116e—05 1.9962

40 9.5508e—06 1.9975 1.5075e—05 1.9956

80 2.3829¢—06 2.0029 3.7790e—06 1.9961

160 5.9389e—07 2.0045 9.4683e—07 1.9968

320 1.4781e—07 2.0065 2.3711e—07 1.9976
a=09 10 3.4733e—04 7.2366e—04

20 8.6260e—05 2.0095 1.8070e—04 2.0017

40 2.1574e—05 1.9994 4.5145e—05 2.0010

80 5.3934e—06 2.0000 1.1281e—05 2.0007

160 1.3484e—06 1.9999 2.8192e—06 2.0005

320 3.3709e—07 2.0000 7.0460e—07 2.0004
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The exact solution
2 o o
= o ®»

i
o
The numerical solution

- o

t 0 o Tox

Fig.1 Left: the exact solution. Right: the numerical solution

Fig.2 The absolute error of the
numerical solution at « = 0.5 and
2=pt= 16]W for Example 4

X
2
&S
)

The absolute error

scheme in this case. In Fig. 2, we give the error surface figure for |u — uy|. From the error
figure, we can find that our numerical method can solve well the numerical solution in this
case.

5 Conclusion

In the present work, we have developed an effective Crank—Nicolson OSC scheme for
fractional-order mobile—-immobile equation with variable coefficients. It is proved that our
proposed fully methods are of optimal order in certain H; (j = 0, 1) norms. Also, L™
estimates in space are derived. Some numerical examples have been carried out to verify the
accuracy and efficiency of Crank—Nicolson OSC scheme.
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