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Abstract
In this paper, the DMP and CMP inverses of tensors via Einstein product are defined. Some
characterizations, representations, and properties for these generalized inverses are investi-
gated. The perturbation bounds related to the DMP and CMP inverses are also developed.
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1 Introduction

Baksalary and Trenkler (2010) introduced a new pseudoinverse of a matrix named as the
core inverse. Malik and Thome (2014) extended this definition and defined a new generalized
inverse of a square matrix of an arbitrary index. They used the Drazin inverse (D) and the
Moore–Penrose (MP) inverse, and therefore, this new generalized inverse is called the DMP
inverse. The DMP inverse is analyzed from both algebraic as well as geometrical approaches
establishing the equivalence between them. DMP inverse extends the notion of core inverse.
Recently, Mehdipour and Salemi (2018) introduced another new inverse of a square matrix
A, named after CMP inverse. The Drazin inverse, Moore–Penrose inverse, the weighted
Moore–Penrose inverse, core and core-EP inverse, and outer inverse via Einstein product can
be found in Behera and Mishra (2017), Behera et al. (2019), Ji and Wei (2017), Ji and Wei
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(2018), Jin et al. (2017), Liang and Zheng (2019), Liang et al. (2019), Ma (2018), Ma et al.
(2019), Sahoo et al. (2019), Stanimirović et al. (2018), and Sun et al. (2016). DMP inverse
and CMP inverse via Einstein product of tensors provide a new class of generalized inverses
of tensors. Recently, Miao et al. (2019a, b) investigated the tensor functions via the tensor
singular value decomposition and tensor Jordan canonical form based on the T-product for the
tensor Moore–Penrose inverse and the tensor Drazin inverse, respectively. The monographs
on the theory and computation of tensors and generalized inverses can be found in Ding and
Wei (2016), Wei et al. (2018).

For a positive integer N , let I1, . . . , IN be positive integers. An order N tensor A =
(Ai1,i2,...,iN )1≤i j≤I j , ( j = 1, . . . , N ) is amultidimensional arraywithI = I1I2 · · · IN entries,
where I1, . . . , IN are positive integers. LetCI1×···×IN (resp.RI1×···×IN ) be the set of the order
N tensors of dimension I1 × · · · × IN over complex numbers C (resp. real numbers R).

For a tensorA = (Ai1,...,iN ,i1,...,iN ) ∈ C
I1×···×IN×I1×···×IN , if there exists a tensorX , such

that A ∗N X = X ∗N A = I, then tensor A is invertible. In this case, X is called the inverse
of A and denoted by A−1. For a tensor A = (Ai1,...,iM , j1,..., jN ) ∈ C

I1×···×IM×J1×···×JN , the
tensor AT = (A)i1,...,iM , j1,..., jN ∈ C

J1×···×JN×I1×···×IM is the transpose of A. The conjugate
transpose of a tensor A is denoted by A∗ and elementwise defined as (A∗) j1,..., jN ,i1,...,iM =
(A)i1,...,iM , j1,..., jN ∈ C

J1×···×JN×I1×···×IM where the overline means the conjugate operator.
The Einstein product of tensors is defined in Einstein (2007) by the operation ∗N via:

(A ∗N B)i1...iN j1... jM =
∑

k1...kN

Ai1...iN k1...kNBk1...kN j1..., jM , (1.1)

where A ∈ C
I1×···×IN×K1×···×KN , B ∈ C

K1×···×KN×J1×···×JM and A ∗N B ∈
C
I1×···×IN×J1×···×JM .
The associative law of this tensor product holds. In the above formula, when B ∈

C
K1×···×KN , then

(A ∗N B)i1i2...iN =
∑

k1,...,kN

Ai1...iN k1...kNBk1...kN ,

where A ∗N B ∈ C
I1×···×IN .

Definition 1.1 (Sun et al. 2016) Let A ∈ C
I1×···×IN×K1×···×KN . The tensor X ∈

C
K1×···×KN×I1×···×IN which satisfies:

(1) A ∗N X ∗N A = A; (2) X ∗N A ∗N X = X ;
(3) (A ∗N X )∗ = A ∗N X ; (4) (X ∗N A)∗ = X ∗N A

is called the Moore–Penrose inverse of A, abbreviated by MP inverse, denoted by A†. If the
equation (i) of the above Eqs. (1)–(4) holds, X is called an (i)−inverse of A, denoted by
A(i).

Definition 1.2 (Ji and Wei 2017) For A ∈ C
I1×···×IN×K1×···×KN , the range R(A) and the

null space N (A) of A are defined by:

R(A) = {Y ∈ C
I1×···×IN : Y = A ∗N X , X ∈ C

K1×···×KN }
N (A) = {X ∈ C

K1×···×KN : A ∗N X = O},
where O is an appropriate zero tensor.
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Definition 1.3 (Ji and Wei 2018, Lemma 2.1) Let X ∈ C
N1×···×NK . The spectral norm ‖X‖2

is defined as:

‖X‖2 = √
λmax(X ∗ ∗N X ),

where λmax(X ∗ ∗N X ) denotes the largest eigenvalue of X ∗ ∗N X .

Lemma 1.1 (Ma et al. 2019) Let E ∈ C
I1×···×IN×I1×···×IN . Suppose that ‖E‖2 < 1. Then,

I + E is nonsingular and

‖(I + E)−1‖2 ≤ 1

1 − ‖E‖2 .

Lemma 1.2 (Ma et al. 2019) Let E ∈ C
I1×···×IK×I1×···×IK . If ‖E‖2 < 1, then

(I − E)−1 =
∞∑

n=0

En, (1.2)

and

‖(I − E)−1 − I‖2 ≤ ‖E‖2
1 − ‖E‖2 . (1.3)

Definition 1.4 (Behera et al. 2019; Ji and Wei 2018) Assume that A ∈ C
I1×···×IN×I1×···×IN .

Define

A0 = I and Ap = Ap−1 ∗N A, f or p ≥ 2.

It is easy to see that

{0} ⊆ · · · ⊆ R(Ap+1) ⊆ R(Ap) ⊆ · · · ⊆ R(A2) ⊆ R(A) ⊆ R(I) = C
I1×···×IN

and

{0} = N (I) ⊆ N (A) ⊆ N (A2) ⊆ · · · ⊆ N (Ap) ⊆ N (Ap+1) ⊆ · · · ⊆ C
I1×···×IN .

The smallest non-negative integer p, such thatR(Ap+1) = R(Ap) (orN (Ap+1) = N (Ap)),
denoted by Ind(A), is called the index of A.

Definition 1.5 (Behera et al. 2019; Ji andWei 2018) LetA ∈ C
I1×···×IN×I1×···×IN . The tensor

X ∈ C
I1×···×IN×I1×···×IN which satisfies:

(2) X ∗N A ∗N X = X ; (5) A ∗N X = X ∗N A; (1k) Ak+1 ∗N X = Ak

is called the Drazin inverse of A, denoted by Ad . Especially, if Ind(A) = 1, X is called the
group inverse of A, denoted by Ag .

For a tensor A ∈ C
I1×···×IN×I1×···×IN , the singular value decomposition (SVD) Brazell

et al. (2013), Sun et al. (2016) of A has the form:

A = U ∗N D ∗N V∗, (1.4)

where U ∈ C
I1×···×IN×I1×···×IN and V ∈ C

K1×···×KN×K1×···×KN are unitary tensors, and the
tensor D ∈ C

I1×···×IN×K1×···×KN is a diagonal tensor satisfying:
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Di1,...,iN ,k1,...,kN =
{
0, (i1, . . . , iN ) 	= (k1, . . . , kN ),

μi1...iN , (i1, . . . , iN ) = (k1, . . . , kN ),

where μi1...iN are the singular values of A.

The diagonal tensorD can bewritten as:D =
(

� O
O O

)
, where� ∈ C

R1×···×RN×R1×···×RN

is a diagonal tensor of singular values ofA. Then, the singular value decomposition ofA can
be written as follows (Brazell et al. 2013):

A = U ∗N

(
� O
O O

)
∗N V∗. (1.5)

Multiplying (1.5) byU ∗N U∗(= I) on the right-hand side, and assuming that unitary V∗∗N U
is partitioned according to:

V∗ ∗N U =
(
K L
M N

)
,

where K ∈ C
R1×···×RN×R1×···×RN .

Hartwig and Spindelböck decomposition (Hartwig and Spindelböck 1983) of tensor
arrived at the following result.

Lemma 1.3 LetA ∈ C
I1×···×IN×I1×···×IN . Then, there exist unitaryU ∈ C

I1×···×IN×I1×···×IN ,
such that

A = U ∗N

(
� ∗N K � ∗N L

O O

)
∗N U∗, (1.6)

where � ∈ C
R1×···×RN×R1×···×RN is a diagonal tensor of singular values of A, and the

tensors K ∈ C
R1×···×RN×R1×···×RN , L ∈ C

R1×···×RN×(I1−R1)×···×(IN−RN ) satisfy:

K ∗N K∗ + L ∗N L∗ = I. (1.7)

From (1.6), the Drazin inverse and the Moore–Penrose inverse of A are presented as
follows:

Ad = U ∗N

(
(� ∗N K)d ((� ∗N K)d)2 ∗N � ∗N L

O O

)
∗N U∗,

A† = U ∗N

(
K∗ ∗N �−1 O
L∗ ∗N �−1 O

)
∗N U∗. (1.8)

Theorem 1.1 (Behera et al. 2019) Let A ∈ C
I1×···×IN×I1×···×IN . Then, A can be written as

the sum of two tensors CA andNA, i.e.,A = CA +NA, where Ind(CA) ≤ 1,NA is nilpotent
and CA ∗N NA = NA ∗N CA = O.

The tensors CA and NA called the core and nilpotent parts of the tensor A, respectively.
We know that if Ind(A) ≤ 1, then A = CA. Also, it is valid that CA = A ∗N Ad ∗N A.

Theorem 1.2 (Schur decomposition) (Liang et al. 2019) Let A ∈ C
I1×···×IN×I1×···×IN be a

tensor of index k. Then, it can be factorized as the Schur form of A:

A = U ∗N

(
T11 T12
O T22

)
∗N U∗, (1.9)

where U ∈ C
I1×···×IN×I1×···×IN is unitary, T11 is a nonsingular upper triangular tensor, and

T22 is a nilpotent tensor with index k.
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2 Preliminary results

In this section, we define the DMP and CMP inverses of tensor via Einstein product. Fur-
thermore, we collect a few properties of DMP and CMP inverses.

Let A ∈ C
I1×···×IN×I1×···×IN have index k and consider the system of equations:

X ∗N A ∗N X = X , X ∗N A = Ad ∗N A, Ak ∗N X = Ak ∗N A†. (2.1)

Theorem 2.1 If system (2.1) has a solution, then it is unique.

Proof Assume that X1 and X2 satisfy (2.1). Then, using that A ∗N Ad = Ad ∗N A, we get

X1 = X1 ∗N A ∗N X1 = Ad ∗N A ∗N X1

= (Ad ∗N A)k ∗N X1 = (Ad)k ∗N Ak ∗N X1

= (Ad)k ∗N Ak ∗N A† = (Ad)k ∗N Ak ∗N X2

= (Ad ∗N A)k ∗N X2 = Ad ∗N A ∗N X2

= X2 ∗N A ∗N X2 = X2.


�
Theorem 2.2 The systemof (2.1) is consistent and has a unique solution:X = Ad∗NA∗NA†.

Proof It is easy to see thatAd ∗N A∗N A† satisfies the three equations in system (2.1). Now,
Theorem 2.1 gives the uniqueness. 
�

Thus, for a given tensorA ∈ C
I1×···×IN×I1×···×IN , the tensorAd ∗N A∗N A† is the unique

tensor satisfying system of (2.1).

Definition 2.1 Let A ∈ C
I1×···×IN×I1×···×IN be a tensor of index k. The DMP inverse of A,

denoted by Ad,†, is defined to be the tensor:

Ad,† = Ad ∗N A ∗N A†. (2.2)

DMP inverse has the following several important properties (Malik and Thome 2014).
From (1.8), the DMP inverse of A is given by:

Ad,† = Ad ∗N A ∗N A†

= U ∗N

(
(� ∗N K)d ((� ∗N K)d)2 ∗N � ∗N L

O O

)
∗N

(
� ∗N K � ∗N L

O O

)

∗N

(
K∗ ∗N �−1 O
L∗ ∗N �−1 O

)
∗N U∗

= U ∗N

(
(� ∗N K)d O

O O

)
∗N U∗.

(2.3)

Theorem 2.3 Let A ∈ C
I1×···×IN×I1×···×IN be of the form (1.6). Then:

Ad,† = U ∗N

(
(� ∗N K)d O

O O

)
∗N U∗. (2.4)

Lemma 2.1 Let A ∈ C
I1×···×IN×I1×···×IN be a tensor of index k has the form (1.6). Then,

Ind(� ∗N K) = k − 1.
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Proof Since

Ak = U ∗N

(
(� ∗N K)k−1 O

O O

)
∗N

(
� ∗N K � ∗N L

Y Z

)
∗N U∗

with Y ,Z of adequate sizes, such that the tensor

(
� ∗N K � ∗N L

Y Z

)
is nonsingular, we have

N (Ak) = N ((� ∗N K)k−1). And then, N (Ak+1) = N ((� ∗N K)k). Since Ind(A) = k,
we can obtain that k − 1 is the smallest non-negative integer satisfying N ((� ∗N K)k−1) =
N ((� ∗N K)k), that is Ind(� ∗N K) = k − 1. 
�
Theorem 2.4 The DMP inverse X = Ad,† of a tensor A ∈ C

I1×···×IN×I1×···×IN satisfies the
equations:

(1) A ∗N X ∗N A = CA and (2) A ∗N X = d,†CA ∗N A†,

where d,†CA = A ∗N Ad,† ∗N A denotes the DMP core part of A.

Proof (1) Using the Hartwig–Spindelbock decomposition of tensor A (Lemma 1.3), from
CA = A ∗N Ad ∗N A and d,†CA = A ∗N Ad,† ∗N A, we have:

CA = U ∗N

(
C�∗NK � ∗N K ∗N (� ∗N K)d ∗N � ∗N L

O O

)
∗N U∗

and

d,†CA = U ∗N

(
C�∗NK � ∗N K ∗N (� ∗N K)d ∗N � ∗N L

O O

)
∗N U∗.

Thus,CA = d,†CA. The core part ofA is itsDMPcore part.Ad,† is a solutionofA∗NX∗NA =
CA.

(2) From d,†CA ∗N A†, we have

d,†CA ∗N A† = A ∗N Ad,† ∗N A ∗N A† = A ∗N Ad,†.

The proof is completed. 
�
Theorem 2.5 If A ∈ C

I1×···×IN×I1×···×IN has index k, then the following statements hold:

(1) A ∗N Ad,† is a projector onto R(d,†CA) along N (Ad ∗N A†);
(2) Ad,† ∗N A = Ad ∗N A is a projector onto R(Ak) along N (Ak).

Proof (1) From (2.1), A ∗N Ad,† is a projection. It is obvious that

R(A ∗N Ad,†) = A ∗N Ad ∗N R(A ∗N A†) = A ∗N Ad ∗N R(A)

= R(A ∗N Ad ∗N A) = R(d,†CA)

and

N (A ∗N Ad,†) = N (A ∗N Ad ∗N A ∗N A†) = N (Ad ∗N A ∗N A†) = N (Ad ∗N A†).

(2) Since Ad,† ∗N A = Ad ∗N A and Ad ∗N A is a projection of A, we have:

R(Ad ∗N A) = R(Ad ∗N A ∗N Ad ∗N A) = · · · ⊆ R(Ak) = R(Ak+1 ∗N Ad)

= R(Ad ∗N Ak+1) ⊆ R(Ad ∗N A)
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and

N (Ad ∗N A) = N (Ak).


�
Theorem 2.6 If A ∈ C

I1×···×IN×I1×···×IN has index k, then Ad,† is the unique tensor X that
satisfies:

AX = PR(dCA),N (Ad∗NA†), R(X ) ⊆ R(Ak). (2.5)

Proof We know that A ∗N Ad,† is idempotent from Theorem 2.5. Moreover:

R(Ad,†) = R(A ∗N A ∗N A†) ⊆ R(A ∗N A) = R(Ak).

Assume that X1, X2 satisfy (2.5). Then, A ∗N X1 = A ∗N X2 = PR(dCA),N (Ad∗NA†),
R(X1) ⊆ R(Ak) andR(X2) ⊆ R(Ak). SinceA(X1−X2) = 0,we getR(X1−X2) ⊆ N (A).
From R(X1) ⊆ R(Ak) and R(X2) ⊆ R(Ak), we get R(X1 − X2) ⊆ R(Ak); that is
R(X1 − X2) ⊆ N (Ak) ∩ R(Ak) = {0}, since A has index k. Thus, there is only one X
satisfying conditions. 
�
Proposition 2.1 Let A ∈ C

I1×···×IN×I1×···×IN be a tensor of index k. Then:

(a) Ad,† = Ad ∗N A ∗N A†.
(b) Ad,† is an outer inverse of A.

(c) (Ad,†)n =
{

(Ad ∗N A†)
n
2 , i f n is even,

A ∗N (Ad ∗N A†)
n+1
2 , i f n is odd.

(d) (Ad,†)† = ((A ∗N A ∗N A†)†.
(e) ((Ad,†)d)d = Ad,†.
(f) Ad,† = O if and only if A is nilpotent or A = O.

Proof (a) and (b) We can obtain (a) and (b) from definition and properties of the Moore–
Penrose and Drazin inverses.

(c)We calculate (Ad,†)1 = Ad ∗N A∗N A† = A∗N Ad ∗N A† and (Ad,†)2 = Ad ∗N A∗N

A† ∗N Ad ∗N A∗N A† = Ad ∗N (A∗N A† ∗N A)∗N Ad ∗N A† = Ad ∗N A∗N Ad ∗N A† =
Ad ∗N A†. Then, we can obtain the formula.

(d) and (e) We can proof them through (2.4).
(f) Suppose that A 	= O and Ad,† = O. We can obtain two cases if A has the form (1.6)

and Ad,† has the form (2.4).
(i) � ∗N K 	= O. In this case, according to Ad,† = O, we obtain (� ∗N K)d = O.

Therefore, � ∗N K is nilpotent. Hence, A must be nilpotent.

(ii) � ∗N K = O. In this case, the tensor A = U ∗N

(
O � ∗N L
O O

)
∗N U∗ is clearly

nilpotent. The converse is evident because in both A = O and A nilpotent cases its Drazin
inverse is the null tensor. 
�

By CA = A ∗N Ad ∗N A, we obtain the following:

Ac,† = A† ∗N A ∗N Ad ∗N A ∗N A†

= U ∗N

(
K∗ ∗N K ∗N (� ∗N K)d O
L∗ ∗N K ∗N (� ∗N K)d O

)
∗N U∗. (2.6)
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Theorem 2.7 Let A ∈ C
I1×···×IN×K1×···×KN . The tensor X ∈ C

K1×···×KN×I1×···×IN is the
unique tensor that satisfies the following system of equations:

X ∗N A ∗N X = X , A ∗N X ∗N A = CA, A ∗N X = CA ∗N A†,

X ∗N A = A† ∗N CA. (2.7)

Proof Easy computation shows that the tensor Ac,† = A† ∗N CA ∗N A† is a solution of this
system.

Let X1 and X2 be two tensors satisfying (2.7). Then:

CA ∗N X1 = A ∗N X2 ∗N A ∗N X1 = A ∗N X2 ∗N CA ∗N A†

= A ∗N X2 ∗N A ∗N X2 = CA ∗N X2.

Thus:

X1 = X1 ∗N A ∗N X1 = A† ∗N CA ∗N X1 = A† ∗N CA ∗N X2 = X2 ∗N A ∗N X2 = X2.

The result holds. 
�
CMP inverse has several important properties (Mehdipour and Salemi 2018).

Proposition 2.2 LetA ∈ C
I1×···×IN×I1×···×IN with core-nilpotent decompositionA = CA +

NA. Then, the following holds:
(1)Ac,† = QA ∗N Ad ∗N PA, wherePA = A∗N A† andQA = A† ∗N A are orthogonal

projections onto R(A) and R(A∗), respectively;
(2) Ac,† ∗N CA ∗N Ac,† = Ac,† and CA ∗N Ac,† ∗N CA = CA;
(3) CA ∗N Ac,† = A ∗N Ac,† and Ac,† ∗N CA = Ac,† ∗N A.

Proof (1) This part follows fromAc,† = A† ∗N CA ∗N A† = A† ∗N A∗N Ad ∗N A∗N A† =
QA ∗N Ad ∗N PA.

(2) The proof follows from the representations give in (1) and CA = A ∗N Ad ∗N A:

Ac,† ∗N CA ∗N Ac,† = QA ∗N Ad ∗N PA ∗N A ∗N Ad ∗N A ∗N QA ∗N Ad ∗N PA.

Since

A ∗N QA = PA ∗N A = A, Ad ∗N A ∗N Ad = Ad ,

we obtain

Ac,† ∗N CA ∗N Ac,† = QA ∗N Ad ∗N PA = Ac,†.

Also, the same method as above shows that CA ∗N Ac,† ∗N CA = CA. Hence, the statement
is proved.

(3) This part can also be demonstrated by combining CA = A ∗N Ad ∗N A and Ac,† =
QA ∗N Ad ∗N PA.

CA ∗N Ac,† = A ∗N Ad ∗N A ∗N QA ∗N Ad ∗N PA
= A ∗N Ad ∗N PA
= A ∗N QA ∗N Ad ∗N PA
= A ∗N Ac,†.
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Similarly:

Ac,† ∗N CA = QA ∗N Ad ∗N PA ∗N A ∗N Ad ∗N A
= QA ∗N Ad ∗N A
= QA ∗N Ad ∗N PA ∗N A
= Ac,† ∗N A.


�
Theorem 2.8 Suppose that A ∈ C

I1×···×IN×I1×···×IN is a tensor with Ind(A) = k. Then

(1) Ak+1 ∗N Ac,† = Ak+1 ∗N A†;
(2) Ac,† ∗N Ak = A† ∗N Ak .

Proof (1) Since Am ∗N QA = Am for every positive integer m. By Proposition 2.2:

Ak+1 ∗N Ac,† = Ak+1 ∗N QA ∗N Ad ∗N PA
= Ak+1 ∗N Ad ∗N A ∗N A†

= Ak ∗N A ∗N A†

= Ak+1 ∗N A†.

(2) As PA ∗N Am = Am for every positive integer m. By Proposition 2.2:

Ac,† ∗N Ak = QA ∗N Ad ∗N PA ∗N Ak

= QA ∗N Ad ∗N Ak

= A† ∗N Ak+1 ∗N Ad

= A† ∗N Ak .


�
Theorem 2.9 Suppose that A ∈ C

I1×···×IN×I1×···×IN . Then, Ac,† = A† if and only if
Ind(A) ≤ 1.

Proof If Ac,† = A†. By (1.8) and (2.6), we get K∗ ∗N �−1 = K∗ ∗N K ∗N (� ∗N K)d and
L∗ ∗N �−1 = L∗ ∗N K ∗N (� ∗N K)d . Multiplying both of these equalities by K and L on
the left-hand side, respectively, and using (1.7), we obtain K ∗N (� ∗N K)d = �−1. Hence,
� ∗N K is nonsingular. Moreover, by (1.6):

A2 = U ∗N

(
� ∗N K O

O O

)
∗N

(
� ∗N K � ∗N L

O O

)
∗N U∗

= U ∗N

(
� ∗N K O

O I

)
∗N

(
� ∗N K � ∗N L

O O

)
∗N U∗.

Obviously, U ∗N

(
� ∗N K O

O I

)
∗N U∗ is invertible. Therefore,N (A) = N (A2), and hence,

Ind(A) ≤ 1. Conversely, let A = CA + NA be the core-nilpotent decomposition of A. If
Ind(A) ≤ 1, then A = CA, and hence, Ac,† = A† ∗N CA ∗N A† = C†A ∗N CA ∗N C†A =
C†A = A†. This completes the proof. 
�
Theorem 2.10 Let A ∈ C

I1×···×IN×I1×···×IN . Then, the following conditions are equivalent:
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(1) A ∗N Ac,† = A ∗N A†;
(2) Ac,† ∗N A = A† ∗N A;
(3) Ac,† = O if and only if A is nilpotent.

Proof (1)Weknow thatAc,†∗N A∗N Ac,† = Ac,†. IfA∗N Ac,† = A∗N A†, pre-multiplying
by A†, we get Ac,† = A†. Conversely, if Ac,† = A†, we multiplying Ac,† = A† by A on
the left-hand side, we obtain that A ∗N Ac,† = A ∗N A†.

(2) Also, by the same method as in (1), the result is obvious.
(3) If Ac,† = O, that is K∗ ∗N K ∗N (� ∗N K)d = O and L∗ ∗N K ∗N (� ∗N K)d = O

by (2.6). Multiplying both of these equalities by K and L on the left-hand side, respectively,
and using:

K ∗N K∗ + L ∗N L∗ = I,

we obtainK∗N (�∗NK)d = O. Then (�∗NK)d ∗N �∗NK∗N (�∗NK)d = (�∗NK)d = O.
Moreover, (� ∗N K)k = (� ∗N K)k+1 ∗N (� ∗N K)d = O. Therefore, � ∗N K is nilpotent,
and hence, A is nilpotent.

Conversely, if A is nilpotent, let Ind(A) = k, then Ad = (Al+1)g ∗N Al = O, where
l ≥ k, and hence Ac,† = A† ∗N A ∗N Ad ∗N A ∗N A† = O. 
�

3 Main results

In this section, we investigate the perturbations for DMP and CMP inverses. First, we extend
the recent results on the DMP inverse from the linear operator (Yu and Deng 2016) to the
tensor.

Theorem 3.1 LetA ∈ C
I1×···×IN×I1×···×IN be a tensor of index k. There is a Schur form (1.9)

of A. Then, the Moore–Penrose inverse can be expressed by:

A† = U ∗N

(
T ∗
11 ∗N � −T ∗

11 ∗N � ∗N T12 ∗N T †
22

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � T †
22 − (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N T †

22

)

∗NU∗, (3.1)

where � = [T11 ∗N T ∗
11 + T12 ∗N (I − T †

22 ∗N T22) ∗N T ∗
12]−1.

Proof Since A has the Schur form (1.9) and

X = U ∗N

(
T ∗
11 ∗N � −T ∗

11 ∗N � ∗N T12 ∗N T †
22

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � T †
22 − (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N T †

22

)

∗NU∗,

we have

A ∗N X

= U ∗N
(
T11 T12
O T22

)
∗N U∗ ∗N U∗N

(
T ∗
11 ∗N � −T ∗

11 ∗N � ∗N T12 ∗N T †
22

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � T †
22 − (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N T †

22

)

∗N U∗

= U ∗N
(I O
O T22 ∗N T †

22

)
∗N U∗.
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In view of Definition 1.1, it is easy to compute the first equation that

A ∗N X ∗N A = U ∗N

(
I O
O T22 ∗N T †

22

)
∗N

(
T11 T12
O T22

)
∗N U∗

= U ∗N

(
T11 T12
O T22

)
∗N U∗

= A.

Furthermore, the second equation follows from:

X ∗N A ∗N X

= U ∗N
(

T ∗
11 ∗N � −T ∗

11 ∗N � ∗N T12 ∗N T †
22

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � T †
22 − (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N T †

22

)

∗N
(
I O
O T22 ∗N T †

22

)
∗N U∗

= U ∗N
(

T ∗
11 ∗N � −T ∗

11 ∗N � ∗N T12 ∗N T †
22

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � T †
22 − (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N T †

22

)

∗N U∗

= X .

The third equation is verified as:

(A ∗N X )∗ =
(
U ∗N

(
I O
O T22 ∗N T †

22

)
∗N U∗)∗

= U ∗N

(
I∗ O
O (T22 ∗N T †

22)
∗
)

∗N U∗

= U ∗N

(
I O
O T22 ∗N T †

22

)
∗N U∗

= A ∗N X ,

and the fourth equation can be verified by:

(X ∗N A)∗

=
(
U ∗N

(
T ∗
11 ∗N � −T ∗

11 ∗N � ∗N T12 ∗N T †
22

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � T †
22 − (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N T †

22

)

∗N
(
T11 T12
O T22

)
∗N U∗)∗

= U ∗N
(

T ∗
11 ∗N � ∗N T11 T ∗

11 ∗N � ∗N T12 ∗N (I − T †
22 ∗N T22)

(I − T †
22 ∗N T22) ∗N T ∗

12 ∗N � ∗N T11 H

)

∗N U∗

= X ∗N A,

where H = T †
22 ∗N T22 + (I − T †

22 ∗N T22) ∗N T ∗
12 ∗N � ∗N T12 ∗N (I − T †

22 ∗N T22).
The tensor X satisfies four equations. Let X and Y satisfy four equations. To prove the

uniqueness:

123



28 Page 12 of 17 B. Wang et al.

X = X ∗N (A ∗N X )∗ = X ∗N X ∗ ∗N A∗

= X ∗N (A ∗N X )∗ ∗N ((A ∗N Y)∗) = X ∗N A ∗N Y
= (X ∗N A)∗ ∗N (Y ∗N A)∗ ∗N Y = A∗ ∗N Y∗ ∗N A
= (Y ∗N A)∗ ∗N Y = Y.

We know that the conclusion hold. 
�
LetA ∈ C

I1×···×IN×I1×···×IN be a tensor of index k. Let us denote the following condition
by (W):

B=A+E wi th Ind(A)=k, E=A ∗N Ad ∗N E=E ∗N A ∗N Ad , and ‖Ad ∗N E‖2<1.

Theorem 3.2 (Ji and Wei (2018)) Suppose that condition (W) holds and Ind(B) = k. Then

R(Bk) = R(Ak), N (Bk) = N (Ak),

and

A ∗N Ad = B ∗N Bd .

Moreover

Bd = (I + Ad ∗N E)−1 ∗N Ad = Ad ∗N (I + E ∗N Ad)−1.

From (1.9) and (3.1), we have:

A ∗N A† = U ∗N

(
I O
O T22 ∗N T †

22

)
∗N U∗. (3.2)

Now, we develop the perturbation bounds for the DMP inverse of the tensor.

Theorem 3.3 LetA ∈ C
I1×···×IN×I1×···×IN be of the form (1.9) and of index k, B = A+E . If

the perturbation E satisfiesAd,† ∗N A ∗N E = E ∗N Ad,† ∗N A = E and ‖Ad,† ∗N E‖2 < 1,
then

Bd,† = (I + Ad,† ∗N E)−1 ∗N Ad,† = Ad,† ∗N (I + E ∗N Ad,†)−1 (3.3)

and

B ∗N Bd,† = A ∗N Ad,†, Bd,† ∗N B = Ad,† ∗N A. (3.4)

Furthermore:

‖Ad,†‖2
1 + ‖Ad,† ∗N E‖2 ≤ ‖Bd,†‖2 ≤ ‖Ad,†‖2

1 − ‖Ad,† ∗N E‖2 . (3.5)

Proof Assume that the perturbation E =
(
E11 E12
E21 E22

)
satisfies:

Ad,† ∗N A ∗N E = E ∗N Ad,† ∗N A = E,

then we have:

E = U ∗N

(
E11 E12
O O

)
∗N U∗.
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Since B = A + E , we can obtain:

B = U ∗N

(
T11 + E11 T12 + E12

O T22

)
∗N U∗.

From Ad,† ∗N A = Ad ∗N A ∗N A† ∗N A = Ad ∗N A = A ∗N Ad , we verify the
conditions:

Ad,† ∗N A ∗N E = E ∗N Ad,† ∗N A = E

if and only if

A ∗N Ad ∗N E = E ∗N A ∗N Ad = E

and

‖Ad,† ∗N E‖2=‖Ad,† ∗N A ∗N Ad ∗N E‖2=‖Ad ∗N A ∗N Ad ∗N E‖2=‖Ad ∗N E‖2≤1.

Therefore, the (W) condition holds. Then

A ∗N Ad = B ∗N Bd

and

Bd = (I + Ad ∗N E)−1 ∗N Ad = Ad ∗N (I + E ∗N Ad)−1.

Since ‖Ad,† ∗N E‖2 < 1, from Lemma 1.1, we have I +Ad,† ∗N E is invertible. And T22
is nilpotent tensor with index k. From Theorem 3.1, we can obtain:

B† = U∗N
(

(T11 + E11)∗ ∗N � −(T11 + E11)∗ ∗N � ∗N (T12 + E12) ∗N T †
22

(I − T †
22 ∗N T22) ∗N (T12 + E12)∗ ∗N � G

)

∗N U∗,

where G = T †
22 − (I − T †

22 ∗N T22) ∗N (T12 + E12)∗ ∗N � ∗N (T12 + E12) ∗N T †
22. Through

calculations, we can obtain:

B ∗N B† = U ∗N

(
I O
O T22 ∗N T †

22

)
∗N U∗. (3.6)

It is obvious that

A ∗N A† = B ∗N B†. (3.7)

We can obtain

(I + Ad,† ∗N E)−1 ∗N Ad,†

= (I + Ad ∗N A ∗N A† ∗N A ∗N Ad ∗N E)−1 ∗N Ad ∗N A ∗N A†

= (I + Ad ∗N E)−1 ∗N Ad ∗N B ∗N B†

= Bd ∗N B ∗N B†

= Bd,†.

Thus

Bd,† = (I + Ad,† ∗N E)−1 ∗N Ad,†.
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Similarly, we can prove that:

Bd,† = Ad,† ∗N (I + E ∗N Ad,†)−1

and

B ∗N Bd,† = A ∗N Ad,†, Bd,† ∗N B = Ad,† ∗N A.

Moreover, from (3.3), taking norms of both sides, we obtain:

‖Ad,†‖2
1 + ‖Ad,† ∗N E‖2 ≤ ‖Bd,†‖2 ≤ ‖Ad,†‖2

1 − ‖Ad,† ∗N E‖2 .

The proof is complete. 
�
Now, we present the perturbation of Moore–Penrose inverse under the two-sided condi-

tions.

Lemma 3.1 Let A, E ∈ C
I1×···×IN×I1×···×IN , B = A + E . If the perturbation E satisfies

E = A ∗N A† ∗N E = E ∗N A† ∗N A and ‖A† ∗N E‖2 < 1, then

B† = (I + A† ∗N E)−1 ∗N A† = A† ∗N (I + E ∗N A†)−1.

Proof Since E = A ∗N A† ∗N E = E ∗N A† ∗N A,

B = A + E = A ∗N (I + A† ∗N E) = (I + E ∗N A†) ∗N A.

Since ‖A† ∗N E‖2 < 1, by using (1.2) of Lemma 1.2, we know that:

(I + A† ∗N E)−1 ∗N A† = A† ∗N (I + E ∗N A†)−1.

In view of Definition 1.1, it is easy to compute the first equation that:

B ∗N (I + A† ∗N E)−1 ∗N A† ∗N B
= A ∗N (I + A† ∗N E) ∗N (I + A† ∗N E)−1 ∗N A† ∗N A ∗N (I + A† ∗N E)

= A ∗N (I + A† ∗N E)

= B.

Furthermore, the second equation follows from:

(I + A† ∗N E)−1 ∗N A† ∗N B ∗N (I + A† ∗N E)−1 ∗N A†

= (I + A† ∗N E)−1 ∗N A† ∗N A ∗N (I + A† ∗N E) ∗N (I + A† ∗N E)−1 ∗N A†

= (I + A† ∗N E)−1 ∗N A†.

The third equation is verified as:

(B ∗N (I + A† ∗N E)−1 ∗N A†)∗

= (A ∗N (I + A† ∗N E) ∗N (I + A† ∗N E)−1 ∗N A†)∗

= (A ∗N A†)∗

= A ∗N A†

= A ∗N (I + A† ∗N E) ∗N (I + A† ∗N E)−1 ∗N A†

= B ∗N (I + A† ∗N E)−1 ∗N A†,
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and the fourth equation can be verified by:

(A† ∗N (I + E ∗N A†)−1 ∗N B)∗

= (A† ∗N (I + E ∗N A†)−1 ∗N (I + E ∗N A†) ∗N A)∗

= (A† ∗N A)∗

= A† ∗N A
= A† ∗N (I + E ∗N A†)−1 ∗N (I + E ∗N A†) ∗N A
= A† ∗N (I + E ∗N A†)−1 ∗N B.

Therefore, the result holds. 
�
We estimate the perturbation bounds for the CMP inverse of the tensor.

Theorem 3.4 Let A, E ∈ C
I1×···×IN×I1×···×IN , Ind(A) = k and B = A + E be such that

E = A ∗N Ac,† ∗N E = E ∗N Ac,† ∗N A and ‖Ac,† ∗N E‖2 < 1. Denote

X = (I + Ac,† ∗N E)−1 ∗N Ac,† = Ac,† ∗N (I + E ∗N Ac,†)−1

satisfies

B ∗N X ∗N B = CB, X ∗N B ∗N X = X , B ∗N X = CB ∗N B†,

X ∗N B = B† ∗N CB,

i.e., X = Bc,†.

Proof Since E = A ∗N Ac,† ∗N E ,

B = A + E = A ∗N (I + Ac,† ∗N E). (3.8)

By Lemma 1.2, I + Ac,† ∗N E is invertible and

B ∗N X = A ∗N (I + Ac,† ∗N E) ∗N (I + Ac,† ∗N E)−1 ∗N Ac,†

= A ∗N Ac,†

= A ∗N A† ∗N A ∗N Ad ∗N A ∗N A†

= A ∗N Ad ∗N A ∗N A†

= CA ∗N A†. (3.9)

Since A ∗N Ac,† ∗N E = CA ∗N A† ∗N E = E , we obtain:

A ∗N Ac,† ∗N E = A ∗N A† ∗N CA ∗N A† ∗N E = A ∗N A† ∗N E = E .

Moreover:

A ∗N Ac,† ∗N E = A ∗N A† ∗N A ∗N Ad ∗N A ∗N A† ∗N E = A ∗N Ad ∗N E = E .

Similarly:

Ac,† ∗N A = A† ∗N A ∗N Ad ∗N A ∗N A† ∗N A = A† ∗N CA;
we obtain

E ∗N Ac,† ∗N A = E ∗N A† ∗N CA ∗N A† ∗N A = E ∗N A† ∗N A = E,
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and

E ∗N Ac,† ∗N A = E ∗N A† ∗N A ∗N Ad ∗N A ∗N A† ∗N A = E ∗N Ad ∗N A = E

which are also true.
Since ‖Ad ∗N E‖2 = ‖Ad ∗N A ∗N Ac,† ∗N E‖2 ≤ ‖Ad ∗N A‖2‖Ac,† ∗N E‖2 < 1, by

Ji and Wei (2018), we know that:

A ∗N Ad = B ∗N Bd . (3.10)

By using the same method, we also get ‖A† ∗N E‖2 < 1, so

A ∗N A† = B ∗N B†. (3.11)

In view of (3.10) and (3.11):

B ∗N X = CA ∗N A† = A ∗N Ad ∗N A ∗N A† = B ∗N Bd ∗N B ∗N B† = CB ∗N B†.

And

B ∗N X ∗N B = CB ∗N B† ∗N B = B ∗N Bd ∗N B ∗N B† ∗N B = B ∗N Bd ∗N B = CB.

Using B ∗N X = A ∗N Ac,† of (3.9), we have

X ∗N B ∗N X = (I + Ac,† ∗N E)−1 ∗N Ac,† ∗N A ∗N Ac,†

= (I + Ac,† ∗N E)−1 ∗N Ac,†.

Finally, Since E = E ∗N Ac,† ∗N A∗N ,

B = A + E = (I + E ∗N Ac,†) ∗N A,

we have:

X ∗N B = Ac,† ∗N (I + E ∗N Ac,†)−1 ∗N (I + E ∗N Ac,†) ∗N A
= Ac,† ∗N A
= A† ∗N A ∗N Ad ∗N A ∗N A† ∗N A
= A† ∗N A ∗N Ad ∗N A
= B† ∗N B ∗N Bd ∗N B
= B† ∗N CB.

Thus, the proof of the theorem is complete. 
�
Theorem 3.5 Let A, E ∈ C

I1×···×IN×I1×···×IN , Ind(A) = k and B = A + E be such that
E = A ∗N Ac,† ∗N E = E ∗N Ac,† ∗N A. If ‖Ac,† ∗N E‖2 < 1, then

Bc,† = (I + Ac,† ∗N E)−1 ∗N Ac,† = Ac,† ∗N (I + E ∗N Ac,†)−1.

Moreover:

‖Ac,†‖2
1 + ‖Ac,† ∗N E‖2 ≤ ‖Bc,†‖2 ≤ ‖Ac,†‖2

1 − ‖Ac,† ∗N E‖2 .

and

‖Bc,† − Ac,†‖2
‖Ac,†‖2 ≤ ‖Ac,† ∗N E‖2

1 − ‖Ac,† ∗N E‖2 .
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