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Abstract

In this paper, the DMP and CMP inverses of tensors via Einstein product are defined. Some
characterizations, representations, and properties for these generalized inverses are investi-
gated. The perturbation bounds related to the DMP and CMP inverses are also developed.
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1 Introduction

Baksalary and Trenkler (2010) introduced a new pseudoinverse of a matrix named as the
core inverse. Malik and Thome (2014) extended this definition and defined a new generalized
inverse of a square matrix of an arbitrary index. They used the Drazin inverse (D) and the
Moore—Penrose (MP) inverse, and therefore, this new generalized inverse is called the DMP
inverse. The DMP inverse is analyzed from both algebraic as well as geometrical approaches
establishing the equivalence between them. DMP inverse extends the notion of core inverse.
Recently, Mehdipour and Salemi (2018) introduced another new inverse of a square matrix
A, named after CMP inverse. The Drazin inverse, Moore—Penrose inverse, the weighted
Moore—Penrose inverse, core and core-EP inverse, and outer inverse via Einstein product can
be found in Behera and Mishra (2017), Behera et al. (2019), Ji and Wei (2017), Ji and Wei
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(2018), Jin et al. (2017), Liang and Zheng (2019), Liang et al. (2019), Ma (2018), Ma et al.
(2019), Sahoo et al. (2019), Stanimirovié et al. (2018), and Sun et al. (2016). DMP inverse
and CMP inverse via Einstein product of tensors provide a new class of generalized inverses
of tensors. Recently, Miao et al. (2019a,b) investigated the tensor functions via the tensor
singular value decomposition and tensor Jordan canonical form based on the T-product for the
tensor Moore—Penrose inverse and the tensor Drazin inverse, respectively. The monographs
on the theory and computation of tensors and generalized inverses can be found in Ding and
Wei (2016), Wei et al. (2018).

For a positive integer N, let I, ..., Iy be positive integers. An order N tensor A =
(Ail,i2,...,i1v)l§i_/slj’ (j =1,..., N)isamultidimensional array withJ = I} I, - - - Iy entries,
wherel, ..., Iy are positive integers. Let C11 > <I¥ (resp. RI1 ¥ XIN) be the set of the order
N tensors of dimension I} x - - x Iy over complex numbers C (resp. real numbers R).

Foratensor A = (A, iy.i1,...ix) € CloxxIy xIixxIn if there exists a tensor X, such
that Axy X = X %y A = Z, then tensor A is invertible. In this case, X is called the inverse
of A and denoted by A~!. For a tensor A = (Aiying i jn) € ClixxIy xJixxJn the
tensor AT = (Aiy,oing jtsenjn € CIxexInxdixxly g the transpose of .A. The conjugate
transpose of a tensor A is denoted by .A* and elementwise defined as (A¥) ;... jx.it,.in
(i oivgsjiojn € CIrexIvxTixxIy where the overline means the conjugate operator.

The Einstein product of tensors is defined in Einstein (2007) by the operation *y via:

(A kN B)il...ile..AjM = Z Ail...iNkl...kNBkl...kle...,jM7 (11)
ki..ky

where A € CUx-xIvxKixexKy =3 o CRocoxByxixexIu and A xy B €
CI]X--~><IN><J1><-~-><JM.

The associative law of this tensor product holds. In the above formula, when B €
CKixxKy thep

(A *N B)ilizu.iN = Z Ail...iNkl...kNBkl.“kNv

where A xy B € Clr<xIy

Definition 1.1 (Sun et al. 2016) Let A € Chx~xIvxKix-xKy = The tensor X €
CKoxxKyxIxxIn ywhich satisfies:

(1) Axy X sy A=A, 2) Xxy Axy X =X,
B) Ay ) =AxyX; (@) Xaxy A =Xxy A

is called the Moore—Penrose inverse of A, abbreviated by MP inverse, denoted by A If the
equation (i) of the above Egs. (1)-(4) holds, X is called an (i)—inverse of A, denoted by
AD,

Definition 1.2 (Ji and Wei 2017) For A € Clx*IvxKix-xKy ‘the range R(A) and the
null space NV (A) of A are defined by:

R(A) = (¥ e Cloxv s Y = Asy &, & e CRiexKay
NA) = {x e CR>Ky - Ayy x =0},

where O is an appropriate zero tensor.
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Definition 1.3 (Ji and Wei 2018, Lemma 2.1) Let X € CN1**Nx The spectral norm || X ||
is defined as:

X2 = v Amax (X* xy X)),

where Amax (X *y X) denotes the largest eigenvalue of X* xy X.

Lemma 1.1 (Ma et al. 2019) Let £ € ClxIvxlixxIx - qynnose that |E|l < 1. Then,
7T + & is nonsingular and

1
T+ e < —ar.
1— €l

Lemma 1.2 (Maet al. 2019) Let £ € ClxIxxTixxIk Jr€|5 < 1, then
o0
T-67'=) ¢, (1.2)
=0

and

€112

IZ-&7"' —Zlh < ———.
1— €2

(1.3)
Definition 1.4 (Behera et al. 2019; Ji and Wei 2018) Assume that A4 € CTixxIvxIx--xIy
Define
A" =T and AP = APV sy A, for p=2.
It is easy to see that
{0} S - SR CRMUP) C - € R(A?) € R(A) S R(Z) = ClIv
and
{0} =N(@) SNA) SNU) S SNA) SNUAPTH .o ey,

The smallest non-negative integer p, such that R(AP1) = R(AP) (or N (AP = N (AP)),
denoted by Ind(A), is called the index of .A.

Definition 1.5 (Beheraetal. 2019; Ji and Wei 2018) Let A € ClixxIvxIix-xIy The tensor
X e ChoxxIyxIix-xIy which satisfies:

2) Xxy Axy X =X, B) Asxy X =X xy A; (lk) Aty x = AF

is called the Drazin inverse of A, denoted by A“. Especially, if Ind(A) = 1, X is called the
group inverse of A, denoted by Ay.

For a tensor A € ClxIvxIixxIv “the singular value decomposition (SVD) Brazell
et al. (2013), Sun et al. (2016) of A has the form:

A=UxNDxy V*, (1.4)

where Y € ClxxInxTixxIn and ) g CKix-xKyxKix-xKy are ynitary tensors, and the
tensor D € Cl<xIvxKixxKy jg 5 diagonal tensor satisfying:
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. 0, (1, in) # (ks oo kN,
i,..., in.kiy..., ky = . .
Wiyoins 1,y in) = ki, .o ky),
where @;, i, are the singular values of A.
The diagonal tensor D can be written as: D = (E,) g ,where & € CRi> xRy xRjx--xRy

is a diagonal tensor of singular values of .A. Then, the singular value decomposition of .A can
be written as follows (Brazell et al. 2013):

A=UxpN <?) g) xy VE. (1.5)

Multiplying (1.5) by U xy U* (= Z) on the right-hand side, and assuming that unitary V*xy U
is partitioned according to:
* (K L
VisyU = <M N

where K € (CR1><---><RN><R1><~-><RN.
Hartwig and Spindelbock decomposition (Hartwig and Spindelbock 1983) of tensor
arrived at the following result.

Lemma1.3 Let A € Clrx>xInxlixxIy Thop there exist unitarylUd € Ch>-xIvxIix-xIy
such that

A=t (T EES e, 16

where ¥ € CRUCXRyxROCXRY o g diggonal tensor of singular values of A, and the
tensors K: c (CR]XH'XRNXRIXWXRN’ ﬁ c CR]><'-~><RN><(II7R1)><~~~><(IN7RN) Satisfy:
Kxy K*+Lxy L5 =1T. (1.7)

From (1.6), the Drazin inverse and the Moore—Penrose inverse of A are presented as
follows:

d dy2
44— U wy <(>: *gIC) (T #n K) Z*N PRV E) oy U
K*sy 27l O
AT =U xy (c* *x S o) wy U (1.8)

Theorem 1.1 (Behera et al. 2019) Ler A € Clrx<>*InxTixxIy Then A can be written as
the sum of two tensors Cq and N 4, i.e., A = C4 + N4, where Ind(C4) < 1, N4 is nilpotent
and Co xN No=NgxyCa = 0.

The tensors C 4 and N4 called the core and nilpotent parts of the tensor A, respectively.
We know that if Ind(4) < 1, then A = C4. Also, it is valid that C4 = A xn A¢ x5 A.

Theorem 1.2 (Schur decomposition) (Liang et al. 2019) Let A € Clx<xIvxTix-xIx pe g
tensor of index k. Then, it can be factorized as the Schur form of A:

A=Uxy <{‘9‘ %) *y U, (1.9)

where U € Cl < XInxlixxIN jo ynitary, Ty is a nonsingular upper triangular tensor, and
Ty is a nilpotent tensor with index k.
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2 Preliminary results

In this section, we define the DMP and CMP inverses of tensor via Einstein product. Fur-
thermore, we collect a few properties of DMP and CMP inverses.
Let A € ClxIvxInc-xIy haye index k and consider the system of equations:

Xay Asy X =X, Xy A=A sy A, A sy x = A sy AT 2.1
Theorem 2.1 If system (2.1) has a solution, then it is unique.

Proof Assume that X} and X; satisfy (2.1). Then, using that A Ad = Ad 5y A, we get
Xl = X sy Asy X = A xy Asy X
= (AT sy DF sy 2 = (AD 5y A sy 1)
= (AN sy Ay AT = (AD sy A 5y X,
= (A% sy AF sy X = A% 5y Ay 2
=X xny Axy Xo = XA

]
Theorem 2.2 The systemof (2.1) is consistent and has a unique solution: X = A%sy Axy AT

Proof Tt is easy to see that A4 sy Axy AT satisfies the three equations in system (2.1). Now,
Theorem 2.1 gives the uniqueness. O

Thus, for a given tensor A € Clx>IvxlixxIv ‘the tensor A% sy Ay A is the unique
tensor satisfying system of (2.1).

Definition 2.1 Let A € Cli<Invxlix-xIv pe 3 tensor of index k. The DMP inverse of A,
denoted by A4T s defined to be the tensor:

AT = Ay Axy AT 2.2)
DMP inverse has the following several important properties (Malik and Thome 2014).
From (1.8), the DMP inverse of A is given by:
.Ad’T = .Ad *N .A*N .AT

U (E*NIC)d((Z*NIC)d)Z*NZ*NE* Tay K T #y L
YN o o N o o

K*xy =71 O . (2.3)
- (z* e (9) U

>y K)4 O
:U*N<( (1’\; ) O)*NU*.

Theorem 2.3 Let A € Cl<>xIvxTixxIv po of the form (1.6). Then:

, d
ALT = U wy ((2 *g ) 8) oy U*. 2.4)

Lemma2.1 Let A € Clo<xIvxlixxIN po g tensor of index k has the form (1.6). Then,
Ind(S #y K) =k — 1.
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Proof Since

o o Yy Z

x *JI)V L ZZV E) is nonsingular, we have
N(AF) = N((Z #x K)*1). And then, V(A1) = V(T *y K)F). Since Ind(A) = k,
we can obtain that k — 1 is the smallest non-negative integer satisfying N ((X *y K1y =
N((ZT xy K)¥), that is Ind(T #x K) =k — 1. O

k—1
A = Uy ((E*NIC) 0) . (2 xy K ):*N.c> o U

with ), Z of adequate sizes, such that the tensor <

Theorem 2.4 The DMP inverse X = A% of a tensor A € Cl > *xIvxlixxIn satisfios the
equations:

(1) Asxy X sy A=Cqand 2) Axy X =4TC 5y AT,

where ©7C 4 = Axy AT xy A denotes the DMP core part of A.

Proof (1) Using the Hartwig—Spindelbock decomposition of tensor A (Lemma 1.3), from
Ca=Axy AT sy Aand 47C4 = A sy AT %y A, we have:

d
Ca=U sy (ng\,;c Txy Kxy (2 *gIC) *N X kN L) oy U

and

45, = U xy (CEE:)N’C Ty Ky (2 *(,; ) sy 2 xy L) o U

Thus,C4 = 7C4. The core part of Ais its DMP core part. A% T is asolution of Ay Xy A =
Cq.
(2) From ©7C 4 x5 AT, we have

Lo ay AT = Asy AT sy Axy AT = Ay AT
The proof is completed. O

Theorem 2.5 If A € Clrx<->xInxTixxIN has index k, then the following statements hold:

(1) Asxy A%T is a projector onto R(*TC4) along N (A4 sy AT);
(2) AT sy A= A4 xy Ais a projector onto R(A) along N (A¥).

Proof (1) From (2.1), Axy A% isa projection. It is obvious that

R(Axy ATT) = Axy A 5y R(Axy AN = Axy A 5y R(A)
= R(A*y Al sy A) = R(*TCa)

and
N(Axy ATy = N(Axy AT sy Asy A7) = N(A? sy Asy A7) = N(AD 5y AT).
(2) Since A%T %y A= A% xy Aand A? %y Aisa projection of A, we have:
RAY sy A) = RAL sy Ay A sy A) = -+ € R(AF) = RAF sy A7)
= R(A? sy AT € R(AT 5y A)
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and
NAL xy A) = N (A,

[m}

Theorem 2.6 If A € Clvx<>IvxlixxIv pag index k, then A% is the unique tensor X that
satisfies:

AX = Prc ) N( Ay A1 RAX) S R(AY). 2.5)

Proof We know that A %y A% is idempotent from Theorem 2.5. Moreover:
RATT) = R(Axy Axy AT S R(Axy A) = R(AY).

Assume that Xy, X, satisfy (2.5). Then, A sy X1 = A sy X2 = Prc 4) N (Adsy AT
R(X1) € R(A) and R(X3) € R(AX). Since A(X; —X5) = 0, we get R(X] —X2) € N(A).
From R(X;) € R(AF) and R(X2) € R(AY), we get R(X] — X2) € R(AY); that is
R(X] — X)) € N(AX) N R(A¥) = {0}, since A has index k. Thus, there is only one X
satisfying conditions. O

Proposition 2.1 Ler A € Clv*InxlixxIy pe g tensor of index k. Then:

(a) AYT = A% sy Asy AT

(b) A% is an outer inverse of A.

o sy [ IO
Asy (A sy AN | ifnisodd.

@ (AN = (Axy Axy ADT.

@ ((ATHHd = AdT,

) A4T =0 if and only if A is nilpotent or A = O.

Proof (a) and (b) We can obtain (a) and (b) from definition and properties of the Moore—
Penrose and Drazin inverses.

(c) We calculate (A4 T)! = A5y Asy AT = Asy A5y AT and (A91)? = A%y Axy
AT kN .Ad kN .A*N .AJr = .Ad kN (.A*N .AJ'. kN .A) XN .Ad kN .AT = .Ad kN A*N .Ad XN .AT =
A4 %y A'. Then, we can obtain the formula.

(d) and (e) We can proof them through (2.4).

(f) Suppose that A # O and A% T = ©. We can obtain two cases if A has the form (1.6)
and A% T has the form (2.4).

(1) X %y K # O. In this case, according to AT = O, we obtain (T xy K)4 = O.
Therefore, X *y K is nilpotent. Hence, .4 must be nilpotent.

. . by .

(i) X xx§ K = O. In this case, the tensor A = U xn g ZV £ sy U* is clearly
nilpotent. The converse is evident because in both A = O and A nilpotent cases its Drazin
inverse is the null tensor. ]

ByCa = Ay A4 %y A, we obtain the following:

.AC’T = .AT *N-A*N .Ad *N-A*N .AT

E d
:u*N (’C *NIC*N(E*N/C) O)*NU*.

L sy Ky (T sy K4 O (2.6)
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Theorem 2.7 Let A € Clx< - *InxKix-xKy 1pe topsor X e CRI>xKyxTixxIy g e
unique tensor that satisfies the following system of equations:

Xay Asy X =X, Asy X sy A=Cy, Axy X =Cyxy A,
Xxy A= A" sy Cy. 2.7

Proof Easy computation shows that the tensor At = AT sy C A KN AT is a solution of this
system.
Let X7 and &> be two tensors satisfying (2.7). Then:

Capsy X = Axy X xy Axy X =.A>I<NX2*NCA*N.AT
=Axy Xy ky Axy Xp =C g xy X2
Thus:
X = X sy Axy X :AT*NCA*NX] :AT*NCA*NXZ:Xz*N.A*NXz:Xz.

The result holds. o
CMP inverse has several important properties (Mehdipour and Salemi 2018).

Proposition 2.2 Let A € Clx<>IvxXixxIv yith core-nilpotent decomposition A = C4 +
N4. Then, the following holds:

(1) AT = Qaxn Ad sy Pa, where Py = Ay A" and Q4 = AT xy A are orthogonal
projections onto R(A) and R(A*), respectively;

(2) AT sy Ca sy AT = AT and Cq xy AT 5y CA =Ca;

(3) Ca xny AST = Ay AT and AT sy Cq = AT sy A

Proof (1) This part follows from A% = AT sy Casn AT = AT sy Asey A4 sy Asy AT =
QN ALy Py.
(2) The proof follows from the representations give in (1) and C4 = A *n Al iy A:

AT sy Ca sy AT = Qakny A% sy Pa sy Axy A xy Axy Oa xy AL %y Pa.
Since
Asxy QA =Pasn A=A, A sy Axy A9 = A9,
we obtain
AT sy Caeny AT = Qa sy AT sy Py = AT,

Also, the same method as above shows that C4 sy A sy C4 = C4. Hence, the statement
is proved.
(3) This part can also be demonstrated by combining C4 = A %y A¢ %y A and A>T =
Qu xn Al sy Pa.
CA*N.AC’T =.A>!<N.Ad*N.A>I<N QA*N.Ad *N Pa

= Axy Al *N Pa

= Axy QA*N.Ad *N Pa

=A kN AC’T.
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Similarly:
AT sy Ca = O sy A 5y Pa sy Axy A xy A
= QO xy Al sy A
:QA*NAd*NPA*NA
= AT %y A
O
Theorem 2.8 Suppose that A € Cl<>InxDixxIn jg g tensor with Ind(A) = k. Then
(1) A sy AST = ARFL sy AT
(2) AT sy AF = AT 5y A
Proof (1) Since A™ %y Q4 = A™ for every positive integer m. By Proposition 2.2:
AL sy AT = AL wy O sw AT sy Pa
= A sy A sy Asy AT
= A wy Asxy AT
= Ay AT
(2) As P4 xny A™ = A™ for every positive integer m. By Proposition 2.2:
AT sy AK = Qg wy AT sy Py oy A
= O *N AL xy AX
— A+ *N Ak-H %N Ad
= A" xy Ak,
]
Theorem 2.9 Suppose that A € CU<>IxToxxIv Tpep AT = AT if and only if

Ind(A4) < 1.

Proof 1f AT = AT. By (1.8) and (2.6), we get K* sy T7! = K* sy K #x (T #x K)¢ and
L5y 27 = L% %y K #y (2 xy )¢, Multiplying both of these equalities by K and £ on
the left-hand side, respectively, and using (1.7), we obtain /C xp (X *y IC)d = > ~1. Hence,
¥ %y K is nonsingular. Moreover, by (1.6):

A= Uy <Z*NICO)*N (E*NICE*NE>*NU*

o o0 @ @
_ xy KO Yxy K Xy L "
—Z/l*N< O I)*[v( O O )*NU.
E*N’CO

Obviously, U *x ( 0 I) sy U* is invertible. Therefore, N (A) = N (A2), and hence,

Ind(A) < 1. Conversely, let A = C4 + N_4 be the core-nilpotent decomposition of AIE
Ind(A) < 1, then A = Cy4, and hence, AT = AT sy Cq 5y AT = CL sy CA *N CJ'4 =

CL = A'. This completes the proof. O

Theorem 2.10 Let A € ClVxXInxlixxIn “Tpep the following conditions are equivalent:
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(1) A*N .AC’T = A*N AT;
Q) AT sy A= AT 5y A;
(3) AT = O ifand only if A is nilpotent.
Proof (1) We know that A% sy Asy AT = AT If Axy AST = Axy AT, pre-multiplying
by A", we get A>T = AT. Conversely, if A>T = AT, we multiplying A>T = A" by A on
the left-hand side, we obtain that A sy A%T = A sy AT

(2) Also, by the same method as in (1), the result is obvious.

B) If AT = O, that is K* sy K sy (T sy K) = O and L* sy Ky (T sy K)4 = O
by (2.6). Multiplying both of these equalities by IC and £ on the left-hand side, respectively,
and using:

Kxy K*+Lxy L* =T,

we obtain sy (Zxy K)? = O.Then (T#y )4 sy Ty Ky (Sky ) = (Txp )4 = O.
Moreover, (T sy )X = (T sy KM sy (T xx K)? = O. Therefore, Ty K is nilpotent,
and hence, A is nilpotent.

Conversely, if A is nilpotent, let Ind(A) = k, then A? = (Al ¢ *N Al = O, where
| >k, and hence AT = AT sy Axy A 5y Axy AT = O. O

3 Main results

In this section, we investigate the perturbations for DMP and CMP inverses. First, we extend
the recent results on the DMP inverse from the linear operator (Yu and Deng 2016) to the
tensor.

Theorem 3.1 Ler A € ClVXInxlixxXIN po 4 tensor of index k. There is a Schur form (1.9)
of A. Then, the Moore—Penrose inverse can be expressed by:

Tii+n A . —Ti #w Ay Tio vy T
(T — Ty #n Toa) %y Ty #n A Ty — (T = Ty v o) #n Ty v A sy Ti sy T

*nU*, (3.1
where A = [Ti1 #n Tji + Tia sy (T — T %y Taz) oy T3]
Proof Since A has the Schur form (1.9) and

C Tixnv A , —Tj1#n A xn Tz *n 7 .
(T =Ty #n T2) #8 Ty #n A Toy — (T — Toy 3 To2) %8 T Ak Tio %y Ty

A+ZU*N(

XZZ/{*N<

*NU,
we have
Axy X
=U *y (Tél %) xN U kN Uky
( Tji #n A ~Tjy sn Aky Ti sy T )
(T = Ty oy Tn) #n Ty oy A Ty — (L = Ty +n Toa) sy Ty #n Ay Tig sy Ty

*N Z/{*

U (I o ) u*
= *N 4 *N .
O Ty Ty
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In view of Definition 1.1, it is easy to compute the first equation that

T @ Tule) %
Asxy X sy A=U * * v U
N N N<OT22*NT;2> N<O Ty ) N

_ T T2 *
—Z/I*N<O 7_22)*1\/?/[

=A.
Furthermore, the second equation follows from:
Xxy Asxy X

— Uy Tii*v A . ~Tj5 *n Axy Tio oy T .
(I*T;z*NTD)*NTfE*NATQIQ*(I*TJQ*NTH)*NT{E*NA*NTIZ*NTzz

I 0 -
% . *
Yo muwwt)) ™

:u*N< . T A . —TT{E*NA*Nle*N%E +>
(Z —Tp #n T22) %N T #n A Ty — (T — Ty #n T22) #n T xn A sy T2 %8 T
oy U™

=X.

The third equation is verified as:

(A * X)*—(L{* 7 © * Z/{*>*
N = N 07_22*1\[7_;2 N

N O (Tp #n Tp)* N

=U=x* z © xy U*
o m vy Y

= A kN X N
and the fourth equation can be verified by:

(X sy A)F

= (uny Tji*v A . T *y Axn Tio oy T .
T — T #n T2) #n Ty %3 A Ty — (T — Ty vy Too) #n Ty #v A sy Tio sy Toh

— Uy ( . T *n A*1\1*711 T #N A sy T2 %N (I—TJZ *N 7&2))
(T — Ty, N To2) xn T)5 *n Axy 11y H
*y U™
=X xyN A,

where H = TQIQ xy Too + (I — 7'212 xn T22) kn T)h kN A sy Tio n (T — 7'2‘2 *N 122).
The tensor X satisfies four equations. Let X' and ) satisfy four equations. To prove the
uniqueness:
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X=Xsy (Asy X)* = X sy X" sy A*
=Xy (Axy X) sy (Axy D)) =X sy Axy Y
=X sy A sy Vry A sy V=A% 5y YV 5y A
=Vav AT xv Y =),

‘We know that the conclusion hold. O

Let A € Clo<xInxIixxIy pe 3 tensor of index k. Let us denote the following condition
by (W):

B=A+E& with Ind(A) =k, E=Axy A sy E=E sy Axy AL, and | A sy E|l < 1.
Theorem 3.2 (Ji and Wei (2018)) Suppose that condition (W) holds and Ind(B) = k. Then
R(BY) = R(AY), N(BY) =N(AY,

and
A*NAd =B*NBd.
Moreover
Bl = @+ Ay &)Ly AT = Ay (T4 €5y ADTL

From (1.9) and (3.1), we have:

T O
T *
Axy A _U*N(OIZ—ZZ*N'Z-Z-}.Z)*NU. (3.2)

Now, we develop the perturbation bounds for the DMP inverse of the tensor.
Theorem 3.3 Ler A € Cl< - xIvxlixXIN po ofthe form (1.9) and of index k, B = A+E. If

the perturbation £ satisfies ATy Axy E=Exy AT sy A= E and ||Ad’4r *y El2 < 1,
then

B = @+ AT wy )7 iy AT = AT sy (T4 €5y AT (.3)
and
By BYT = Asy AYT, BT xy B= AT xy A (3.4
Furthermore:
1A% 12 1A 112
< 18472 < (3.5)

1+ | ATy Elln ~ 1— [ A4T xy Ell2

&n én

Proof Assume that the perturbation £ =
P <521 En

) satisfies:

AT sy Asy E=Exy AT 5y A= €,

then we have:

E=U XN (8(,1)1 5(})2) XN u*.
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Since B = A + &, we can obtain:

B=Uxy <7'11 (—;811 7'127-2#2512> sy U*

From A%T sy A = A% sy Axy AT sy A = A% 5y A = A xy A9, we verify the
conditions:

AT wny Ay E=Exy AT sy A=€
if and only if
Asy A5y E=Exy Axy AT =€
and
AL sy Ella= AT xy Asy AT 5y Ell =AY 5y Asy A 5y Ell2= AT %y E <1.
Therefore, the (V) condition holds. Then
A xyn A? = Bxy B?
and
B'= T+ A sy &)V ay A = AT sy (T+ € sy ADH 7L

Since || A% T sy E|l2 < 1, from Lemma 1.1, we have Z + A% T s £ is invertible. And T2,
is nilpotent tensor with index k. From Theorem 3.1, we can obtain:

B =Usxy
(T +E)* #n A —(Ti + E)* #v A sy (Tia + En) #n T
(T - T #n Too) 5 (Ti2 + En)* #y A g
*NU*,

where G = T, — (Z — T} sy Tan) %y (Tia + £12)* sy A sy (Tia + E12) sy Tyy. Through
calculations, we can obtain:

. 7 @
T *
Bxy B'=U x5 (O ) 22>*NU. 3.6)

It is obvious that
Asxy A" =By BT, (3.7)
We can obtain
(T + AT sy )7y AT

=T+ Al sxy Asy AT sy Asy A% 5y )7 ay A sy Asy AT

= (I—i—Ad *N 5)_1 *N A4 sy By B

=B xy Bxy B

=B,
Thus

BT = (T + AT sy )7 ay ALT,
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Similarly, we can prove that:
BYT = AT sy (T + € sy AT T!
and
By BY = Asy AT, BYT wy B= AT 5y A
Moreover, from (3.3), taking norms of both sides, we obtain:

44T 12 A4 12
1+ [|A%T %y €2 1— ALY 5y £

The proof is complete. O

<1B%7) <

Now, we present the perturbation of Moore—Penrose inverse under the two-sided condi-
tions.

Lemma3.1 Let A, & e ClxIvxlixxIv g — A 1 & [f the perturbation £ satisfies
E=Axy At sy € =Exy AT sy Aand | AT xy E|l2 < 1, then
B' =@+ AT sy ay AT = AT sy T+ Exy AN
Proof Since £ = Axy A %y €= E sy AT 1y A,
B=A+&=Asn T+A sy &) = T +Exy ANy A.
Since || AT %5 €|l2 < 1, by using (1.2) of Lemma 1.2, we know that:
T+ At sy ) ay AT = AT sy (T4 € 5y AH7
In view of Definition 1.1, it is easy to compute the first equation that:
By (Z+ AT sy &) ay AT sy B
= Asy T+ A sy E) sy T+ A sy ) iy AT sy Axy T+ A" 5y )
= Axy (T4 A =y &)
= B.
Furthermore, the second equation follows from:
T+ A sy &) Vay AT sy By (T + A" sy &)Ly AT
= T+ AT xn )7 an AT xy Ay T+ ATy €) sy (T+ AT sy €)7oy AT
= T+ A sy &)y AT
The third equation is verified as:
By (T4 A" sy ) Lay AH*
= (Asy T+ A 5y &) xy T+ A wy O iy AT
= (Axy AN
= Axy Af
= Asy T+ A xy &) sy T+ A sy &) Lay AT
= By T+ A sy &)y AT,

@ Springer f bMA



Perturbation bounds for DMP and CMP inverses. .. Page150f17 28

and the fourth equation can be verified by:
AT sy @+ Exy AN 2y B)*
= (AT sy @+ Exy AN iy T+ Exy AT) 1y A
= (A" sy A*
= ATsy A
= A sy T+Exny AN sy T+ Exy AT sy A
= A xy T+ Exn ANy B

Therefore, the result holds.

We estimate the perturbation bounds for the CMP inverse of the tensor.

Theorem 3.4 Let A, £ € CUx-xInxDixxIN Tnq(A) = k and B = A + € be such that

E=Axy AT xy E=E sy AT xy Aand | AT sy E|l2 < 1. Denote

X =T+ AT 5y &) ay AT = AT 5y (T + €5y AT

satisfies
Bsxy X«yB=Cs, X*yBxyX =X, BxyX=Cgx*yB',
X sy B=B"xyCg,

ie, X = BT,

Proof Since & = Axy AT xy &,
B=A+E=Axy (T+ AT xy&).
By Lemma 1.2, 7 + AST %y £ is invertible and

By X = Axy (T + AT sy &) sy (T4 AT 5y )7L ay AT
=A*N.AC’T
=./4>|<1\/.AT>I<N./4>!<1\/.Ad>I<]\/.A>l<1\/./4T
:./4*]\/.»4‘1>k1\/./4>|<1\/.»4Jr
:CA*N.AT.
Since A sy AT *y E=Cq *N At sy € = &, we obtain:
A*NAC’+*N5ZA*NA+*NCA*NA+*N5ZA*NAf*Ngzg.

Moreover:

(3.8)

(3.9)

Asy AT sy E= Asy AT sy Asy A sy Asy AT sy E= Asy A5y E=E.

Similarly:
AC’%*NA:AT >I<N./4>l<1\/.Ad>l<1\1.»4>!<1\/./4T >i<1\/.»4=./4T *N CAs
we obtain

Exny AT sy A=Exy AT sy Casy AT sy A=Exy AT sy A= €,
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and
E*NAC’T*NAZS*N.AT*NA*N.Ad*NA*NA+*NA=5*NAd*NA=5

which are also true.
Since [AY xy Ell2 = ATy Asy AT 5y Ell2 < IIAY 5y Al AT 5y Ell2 < 1, by
Ji and Wei (2018), we know that:

Axy A1 =By B (3.10)
By using the same method, we also get ||AT *y €2 < 1,50

Axy AT = Bxy BT (3.11)
In view of (3.10) and (3.11):

B*NX:CA*NAT:A*NAd*NA*NAT:B*NBd*NB*NBT:CB*NBT.

And
By Xy B=Cpxy B sy B=Bxy B sy Bxy B sy B=Bxy B %y B=Cg.
Using Bxy X = Ay AT of (3.9), we have

Xy By X = T+ AT 5y &) ay AT sy A sy AT
=T+ AT *N 5)_1 *N AT,

Finally, Since £ = £ sy AT %y Axy,
B=A+E=T+Exy AT sy A,
we have:

Xy B=ATsny T+ExNy A ay T+ E*xy AT 5y A
= ATy A
= .AT *N-A*N Ad *N-A*N AT *NA
:AT *N.A*N.Ad *N.A
=B sy Bxy B xy B
= B %y Cx.

Thus, the proof of the theorem is complete. O
Theorem 3.5 Let A, & € ClxxIvxLixxIy ‘Inq(A) = k and B = A + € be such that
E=Axy AT sy & = Exy AT sy A If|AST 5y Ell2 < 1, then

BT = (T4 ATy )7y AT = AT wy (T4 Exy AL
Moreover:

AT ]2

At X
LA™ l2 < 1Bt < — = 2
1 — | AT %y €l

L+ AT sy Ell2 ~
and
BT — AT _ AT 5y E]l2
[ASTll2  — 1= AT sy Ell
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