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Abstract
This paper is concerned with asymptotical stability of a class of semi-linear impulsive ordi-
nary differential equations. First of all, sufficient conditions for asymptotical stability of
the exact solutions of semi-linear impulsive differential equations are provided. Under the
sufficient conditions, some explicit exponential Runge–Kutta methods can preserve asymp-
totically stability without additional restriction on stepsizes. Moreover, it is proved that some
explicit Runge–Kutta methods can preserve asymptotical stability without additional restric-
tion on stepsizes under stronger conditions.

Keywords Impulsive differential equations · Runge–Kutta method · Exponential
Runge–Kutta method · Asymptotically stable

Mathematics Subject Classification 65L05 · 65L06 · 65L07 · 65L20

1 Introduction

The impulsive differential equations (IDEs) are widely applied in numerous fields of sci-
ence and technology. Recently, the theory of IDEs has been an object of active research.
Especially, the exact solutions of semi-linear IDEs have been widely studied (see Abada
et al. 2009; Benchohra et al. 2006; Cardinali and Rubbioni 2008; Fan 2010; Friedli 1978;
Fan and Li 2010; Liang et al. 2009). However, many IDEs cannot be solved analyti-
cally or their solving is more complicated. Hence, taking numerical methods is a good
choice.

In recent years, the stability of numerical methods for IDEs has attracted more and more
attention (see Liu et al. 2007, 2014; Liang et al. 2011; Ran et al. 2008; Wen and Yu 2011;
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Zhang and Liang 2014 etc). Stability of Runge–Kutta (RK) methods with the constant step-
size for scalar linear IDEs has been studied by Ran et al. (2008). RK methods with variable
stepsizes for multidimensional linear IDEs have been investigated in Liu et al. (2007). Col-
location methods for linear nonautonomous IDEs has been considered in Zhang and Liang
(2014). An improved linear multistep method for linear IDEs has been investigated in Liu
et al. (2012). Stability of the exact and numerical solutions of nonlinear IDEs has been stud-
ied by the Lyapunov method in Liang et al. (2011). Stability of RK methods for a special
kind of nonlinear IDEs has been investigated by the properties of the differential equations
without impulsive perturbations in Liu et al. (2014). Asymptotic stability of implicit Euler
method for stiff IDEs in Banach space has been studied in Wen and Yu (2011). There are
a lot of meaningful work on the numerical solution of impulsive differential equations, for
example Ding et al. (2006, 2010), Liang et al. (2014), Liu and Zeng (2018), Wu et al.
(2010), Wu and Ding (2012a, b) and Wu et al. (2019a, b). But, up to our knowledge, the
numerical methods for impulsive semi-linear ordinary differential equations are still a blank
field.

Exponential RKmethods are widely applied to semi-linear ordinary differential equations
without impulsive perturbations have been widely studied (see Calvo et al. 2000; Lawson
1967; Maset and Zennaro 2009; Ostermann and Daele 2007; Ostermann et al. 2006). Now
the exponential RK methods are applied to the following equation:

⎧
⎪⎨

⎪⎩

x ′(t) = Lx(t) + f (t, x(t)), t > t0, t �= τk, k ∈ Z
+,

x(τ+
k ) = Ik(x(τk)), k ∈ Z

+,

x(0+) = x0,

(1.1)

where L ∈ R
d×d , f : (t0,+∞) × R

d → R
d , Ik : Rd → R

d , Z+ = {1, 2, . . .} and τk is a
positive real constant and τk < τk+1 for arbitrary k ∈ Z

+.
Outline of the rest of the paper is provided as follows. In Sect. 2, sufficient conditions for

asymptotical stability of the exact solution of (1.1) are provided.
In Sect. 3, explicit Euler method, implicit Euler method and explicit exponential Euler are

applied for two semi-linear IDEs to explore the stability of numerical methods. From the two
numerical examples, the following two key questions which will be worked out in this article
are presented. Are there some exponential RK methods which can preserve asymptotical
stability of (1.1) without additional restrictions on stepsizes under the sufficient conditions
which are provided in Sect. 2? Are there some RK methods which can preserve asymptot-
ical stability of (1.1) without additional restrictions on stepsizes under stronger sufficient
conditions?

In Sect. 4, it is proved that a class of explicit exponential RK methods can preserve
asymptotical stability semi-linear IDEs without restriction on the stepsizes except that
hk = τk+1−τk

m , k ∈ N, m ∈ Z
+, under the sufficient conditions which are provided in

Sect. 2.
In Sect. 5, stronger sufficient conditions for asymptotical stability of the exact solution of

(1.1) are provided first. Under these stronger sufficient conditions, asymptotical stability of
RK methods for (1.1) is studied.

In Sect. 6, some conclusions are drafted.
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2 Stability of IDEs

Assume that y(t) is the solution of the following equation:
⎧
⎪⎨

⎪⎩

y′(t) = Ly(t) + f (t, y(t)), t �= τk, k ∈ Z
+,

y(τ+
k ) = Ik(y(τk)), k ∈ Z

+,

y(0+) = y0,

(2.1)

and the functions f and Ik satisfy the following properties, respectively:

‖ f (t, x) − f (t, y)‖ ≤ λ‖x − y‖, ∀t ∈ R
+,∀x, y ∈ R

d , (2.2)

‖Ik(x) − Ik(y)‖ ≤ γk‖x − y‖, ∀x, y ∈ R
d . (2.3)

Definition 2.1 (Bainov and Simeonov 1989; Samoilenko et al. 1995) The exact solution x(t)
of (1.1) is said to be

1. Stable if, for an arbitrary ε > 0, there exists a positive number δ = δ(ε) such that, for
the solution y(t) of (2.1), ‖x0 − y0‖ < δ implies

‖x(t) − y(t)‖ < ε, ∀ t > t0;
2. Asymptotically stable, if it is stable and lim

t→∞ ‖x(t) − y(t)‖ = 0.

Theorem 2.2 Assume that there exists a positive constant Ĉ such that τk−τk−1 ≤ Ĉ, k ∈ Z
+.

The exact solution of (1.1) is asymptotically stable if there is a positive constant C such that

γke
(μ(L)+λ)(τk−τk−1) ≤ C < 1, (2.4)

for arbitrary k ∈ Z
+.

Proof Define δ(t) = ‖x(t) − y(t)‖2. Obviously, we have
δ′(t) = 2 < x ′(t) − y′(t), x(t) − y(t) >

= 2 < Lx(t) + f (t, x(t)) − Ly(t) − f (t, y(t)), x(t) − y(t) >

≤ 2μ(L)δ(t) + 2‖ f (t, x(t)) − f (t, y(t))‖‖x(t) − y(t)‖
≤ 2μ(L)δ(t) + 2λ‖x(t) − y(t)‖‖x(t) − y(t)‖

Since x(t) and y(t) are left continuous, we get

δ(t) ≤ e2(μ(L)+λ)(t−τk )δ(τ+
k ), t ∈ (τk, τk+1],

that is

‖x(t) − y(t)‖ ≤ e(μ(L)+λ)(t−τk )‖x(τ+
k ) − y(τ+

k )‖, t ∈ (τk, τk+1],
which implies

‖x(τ+
k+1) − y(τ+

k+1)‖ = ‖Ik+1(x(τk+1)) − Ik+1(y(τk+1))‖
≤ γk+1‖x(τk+1) − y(τk+1)‖
≤ ‖x(τ+

k ) − y(τ+
k )‖γk+1e

(μ(L)+λ)(τk+1−τk ).

According to mathematical induction, we can get that, for ∀ t ∈ (τk, τk+1],
‖x(t) − y(t)‖ ≤ ‖x0 − y0‖(γ1e(μ(L)+λ)(τ1−τ0))
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(γ2e
(μ(L)+λ)(τ2−τ1))(γke

(μ(L)+λ)(τk−τk−1))e(μ(L)+λ)(t−τk )

≤ Ck‖x0 − y0‖e(μ(L)+λ)(t−τk )

≤ Ck‖x0 − y0‖Ĉ1,

where Ĉ1 = max{1, e(μ(L)+λ)Ĉ }. Hence, for an arbitrary ε > 0, there exists δ = ε

Ĉ1
such

that ‖x0 − y0‖ < δ implies

‖x(t) − y(t)‖ ≤ Ck‖x0 − y0‖Ĉ1 ≤ ‖x0 − y0‖Ĉ1 < ε

for arbitrary t ∈ (τk, τk+1], k = 0, 1, 2, . . .. And at the moments of impulsive effect t =
τk+1, k = 0, 1, 2, . . ., we can also obtain that

‖x(τk+1) − y(τk+1)‖ ≤ Ck‖x0 − y0‖Ĉ1 < ε,

and

‖x(τ+
k+1) − y(τ+

k+1)‖ ≤ Ck+1‖x0 − y0‖ < ε.

Therefore, the exact solution of (1.1) is stable. Obviously, for arbitrary t ∈ (τk, τk+1],
k = 0, 1, 2, . . .,

‖x(t) − y(t)‖ ≤ Ck‖x0 − y0‖Ĉ1 → 0, k → ∞.

At the moments of impulsive effect t = τk+1, k = 0, 1, 2, . . ., we can also obtain that

‖x(τk+1) − y(τk+1)‖ ≤ Ck‖x0 − y0‖Ĉ1 → 0, k → ∞,

and

‖x(τ+
k+1) − y(τ+

k+1)‖ ≤ Ck+1‖x0 − y0‖ → 0, k → ∞.

Consequently, the exact solutions of (1.1) is asymptotically stable under the condition (2.4).

�

3 Two numerical examples

In this section, explicit Euler method, implicit Euler method and explicit exponential Euler
are applied to semi-linear IDEs to explore the stability of numerical methods.

Example 3.1 Consider one-dimension semi-linear IDE:
⎧
⎪⎨

⎪⎩

x ′(t) = −5x(t) + sin(x(t)), t > 0, t �= k, k ∈ Z
+,

x(k+) = 18x(k), k ∈ Z
+,

x(0+) = x0,

(3.1)

and the same equation with another initial value
⎧
⎪⎨

⎪⎩

y′(t) = −5y(t) + sin(y(t)), t > 0, t �= k, k ∈ Z
+,

y(k+) = 18y(k), k ∈ Z
+,

y(0+) = y0,

(3.2)

where x0 and y0 are real constants and x0 �= y0. By Theorem 2.2, we can obtain that the
exact solution of (3.1) is asymptotically stable.
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Fig. 1 Explicit Euler method for (3.1) and (3.2)
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Fig. 2 Implicit Euler method for (3.1) and (3.2)

Figures 1, 2 and 3 are the numerical solutions and the absolute value of these errors
between two different numerical solutions, which are obtained from explicit Euler method,
implicit Euler method and explicit exponential Euler, respectively, when x0 = 1, y0 = 2,
hk = h = 1

2 , k ∈ N.
First of all, we claim that the absolute value of these errors between two different numerical

solutions obtained from explicit Euler method for (3.1) and (3.2) tend to infinite when the
stepsize h = 1

2 (see Fig. 1).
To prove this, let us consider the explicit Euler method for (3.1):

⎧
⎨

⎩

xk,l+1 = xk,l + h(−5xk,l + sin(xk,l)), k ∈ N, l = 0, 1, . . . ,m − 1,
xk+1,0 = 18xk,m, k ∈ N,

x0,0 = x0,
(3.3)

and explicit Euler method for (3.2):

⎧
⎨

⎩

yk,l+1 = yk,l + h(−5yk,l + sin(yk,l)), k ∈ N, l = 0, 1, . . . ,m − 1,
yk+1,0 = 18yk,m, k ∈ N,

y0,0 = y0,
(3.4)
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Fig. 3 Explicit exponential Euler method for (3.1) and (3.2)

where h = 1
m , m ∈ Z

+, xk,l is an approximation to the exact solution x(k + lh) and xk,m is
an approximation to x(k + 1−), k ∈ N, l = 0, 1, . . . ,m − 1.

Obviously, when h = 1
2 , we can obtain that, for l = 0, 1,

|xk,l+1 − yk,l+1| = |(1 − 5h)(xk,l − yk,l) + h(sin(xk,l) − sin(yk,l))|
≥ |(1 − 5h)(xk,l − yk,l)| − h|(sin(xk,l) − sin(yk,l))|
≥ |(1 − 5h)(xk,l − yk,l)| − h|xk,l − yk,l |
= 3

2
· |xk,l − yk,l | − 1

2
· |xk,l − yk,l |

= |xk,l − yk,l |,

which implies that, for any l = 0, 1, 2,

|xk,l − yk,l | ≥ 18|xk−1,l − yk−1,l |
≥ 18k |x0,l − y0,l |
≥ 18k |x0 − y0| → ∞, k → ∞.

Second, we claim that the absolute value of these errors between two different numerical
solutions, which are obtained from implicit Euler method for (3.1) and (3.2), tend to infinite
when h = 1

2 (see Fig. 1).
To prove this, let us consider implicit Euler method for (3.1)

⎧
⎨

⎩

xk,l+1 = xk,l + h(−5xk,l+1 + sin(xk,l+1)), k ∈ N, l = 0, 1, . . . ,m − 1,
xk+1,0 = 18xk,m, k ∈ N,

x0,0 = x0.
(3.5)

and implicit Euler method for (3.2)

⎧
⎨

⎩

yk,l+1 = yk,l + h(−5yk,l+1 + sin(yk,l+1)), k ∈ N, l = 0, 1, . . . ,m − 1,
yk+1,0 = 18yk,m, k ∈ N,

y0,0 = y0.
(3.6)
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Obviously, when h = 1
2 , we can obtain that

|xk,l+1 − yk,l+1| = |xk,l − yk,l − 5h(xk,l+1 − yk,l+1) + h(sin(xk,l+1) − sin(yk,l+1))|
≥ |xk,l − yk,l | − 5h|xk,l+1 − yk,l+1| − h|(sin(xk,l+1) − sin(yk,l+1))|
≥ |xk,l − yk,l | − 6h|xk,l+1 − yk,l+1|
= |xk,l − yk,l | − 3|xk,l+1 − yk,l+1|

which implies that

|xk,l+1 − yk,l+1| ≥ 1

4
· |xk,l − yk,l |.

Hence, for any l = 0, 1, 2,

|xk,l − yk,l | ≥18

42
· |xk−1,l − yk−1,l |

≥
(
9

8

)k

· |x0,l − y0,l |

≥
(
9

8

)k

· 1

42
· |x0 − y0| → ∞, k → ∞.

It is different from the above two cases, we can easily prove that exponential explicit Euler
method (see Fig. 3) for (3.1) is asymptotically stable for arbitrary h = 1

m , ∀m ∈ Z
+. By

Corollary 4.4 of this paper, we also can obtain this point.

Example 3.2 Consider one-dimension semi-linear IDE:
⎧
⎪⎪⎨

⎪⎪⎩

x ′(t) = 4x(t) +
√

x2(t)+1
10 , t > 0, t �= k, k ∈ Z

+,

x(k+) = x(k)
80 , k ∈ Z

+,

x(0+) = x0,

(3.7)

and the same equation with another initial value
⎧
⎪⎪⎨

⎪⎪⎩

y′(t) = 4y(t) +
√

y2(t)+1
10 , t > 0, t �= k, k ∈ Z

+,

y(k+) = y(k)
80 , k ∈ Z

+,

y(0+) = y0,

(3.8)

where x0 and y0 are real constants and x0 �= y0 . By Theorem 2.2, we can obtain that the
exact solution of (3.7) is asymptotically stable.

Figures 4, 5 and 6 are the numerical solutions and the absolute value of these errors
between two different numerical solutions, which are obtained from explicit Euler method,
implicit Euler method and explicit exponential Euler, respectively, when x0 = 1, y0 = 2,
h = 1

5 .
We claim that the absolute value of these errors between two different numerical solutions

obtained from implicit Euler method for (3.7) and (3.8) tend to infinite when h = 1
5 .

To prove this, let us consider implicit Euler method for (3.7)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk,l+1 = xk,l + h

(

4xk,l+1 +
√
x2k,l+1+1

10

)

, k ∈ N, l = 0, 1, . . . ,m − 1,

xk+1,0 = xk,m
80 , k ∈ N,

x0,0 = x0.

(3.9)
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and implicit Euler method for (3.8)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yk,l+1 = yk,l + h

(

4yk,l+1 +
√
y2k,l+1+1

10

)

, k ∈ N, l = 0, 1, . . . ,m − 1,

yk+1,0 = yk,m
80 , k ∈ N,

y0,0 = y0.

(3.10)

Obviously, when h = 1
5 , we can obtain that

(1 − 4h)|xk,l+1 − yk,l+1| = |(xk,l − yk,l) +
h(

√
x2k,l+1 + 1 −

√
y2k,l+1 + 1)

10
|

≥ |xk,l − yk,l | − h|xk,l+1 − yk,l+1|
10

which implies that

|xk,l+1 − yk,l+1| ≥ 50

11
· |xk,l − yk,l |.

Hence, for any l = 0, 1, 2,

|xk,l − yk,l | ≥
(
50

11

)5

· 1

80
· |xk−1,l − yk−1,l |

≥
(
50

11

)5k

· 1

80k
· |x0,l − y0,l |

≥
(
50

11

)5k

· 1

80k
· |x0 − y0| → ∞, k → ∞.

On the other hand, it is easy to prove that both explicit Euler method (see Fig. 4) and
exponential explicit Euler method (see Fig. 6) for (3.7) are asymptotically stable for arbitrary
h = 1

m , ∀m ∈ Z
+. This point can also be obtained by Corollary 4.4 and Theorem 5.2 of this

paper.

FromExamples 3.1 and 3.2,we can see that explicit exponential Eulermethod can preserve
asymptotically stability of the exact solutions of (3.1) and (3.7) for arbitrary h = 1

m , m ∈
Z

+, but Runge–Kutta methods sometimes cannot preserve asymptotically stability without
additional restriction on stepsizes. Naturally, the following two questions arise. Are there
some exponential RK methods which can preserve asymptotical stability of (1.1) under
the conditions of Theorem 2.2 without restrictions on stepsizes except that hk = τk+1−τk

m ,
m ∈ Z

+, k ∈ N ? Are there some RK methods which can preserve asymptotical stability
of (1.1) without restrictions on stepsizes except that hk = τk+1−τk

m , m ∈ Z
+, k ∈ N, under

stronger conditions?
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4 Stability of exponential RKmethods

In this section, exponential RK methods for (1.1) can be constructed as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xi
k,l = eci hk L xk,l + hk

v∑

i=1
ai j (hk L) f (t jk,l , X

j
k,l), k ∈ N, i = 1, 2, . . . , v,

xk,l+1 = ehk L xk,l + hk
v∑

i=1
bi (hk L) f (t ik,l , X

i
k,l), l = 0, 1, 2, . . . ,m − 1,

xk+1,0 = Ik+1(xk,m),

x0,0 = x0,

(4.1)

where hk = τk+1−τk
m , tk,l = τk + lhk , t ik,l = tk,l + ci hk , xk,l is an approximation to the

exact solution x(tk,l), xk,m is an approximation to x(τ−
k+1) and Xi

k,l is an approximation to

the exact solution x(t ik,l), k ∈ N = {0, 1, 2, . . .}, l = 0, 1, . . . ,m − 1, i = 1, 2, . . . , v, v is
referred to as the number of stages. The weights bi , the abscissae ci = ∑v

j=1 ai j and the
matrix A = [ai j ]si, j=1 are denoted by (A, b, c). Now we introduce, for constant α (may be
nonnegative), the 1 × v-vector b(α) of components

bi (α) := sup
M∈Rd×d ,μ(M)≤α

‖bi (M)‖, i = 1, 2, . . . , v

and the v × v-vector A(α) whose elements are

ai j (α) := sup
M∈Rd×d ,μ(M)≤α

‖ai j (M)‖, i, j = 1, 2, . . . , v

And the exponential RK methods for (2.1):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y i
k,l = eci hk L yk,l + hk

v∑

i=1
ai j (hk L) f (t jk,l , Y

j
k,l), k ∈ N, i = 1, 2, . . . , v,

yk,l+1 = ehk L yk,l + hk
v∑

i=1
bi (hk L) f (t ik,l , Y

i
k,l), l = 0, 1, 2, . . . ,m − 1,

yk+1,0 = Ik+1(yk,m),

y0,0 = y0.

(4.2)

Definition 4.1 The exponential RKmethods (4.1) (or RKmethods ) for impulsive differential
equation (1.1) is said to be

1. stable, if ∃M > 0, m ≥ M , hk = τk+1−τk
m , k ∈ N,

(i) I − zA is invertible for all z = αhk ,
(ii) for an arbitrary ε > 0, there exists such a positive number δ = δ(ε) that, for the

numerical solutions of (4.2), ‖x0 − y0‖ < δ implies

max
1≤l≤m

‖xk,l − yk,l‖ < ε, ∀ k ∈ N,

2. asymptotically stable, if it is stable and if there exists such a positive number δ0 that
‖x0 − y0‖ < δ1 implies

lim
k→∞ max

1≤l≤m
‖xk,l − yk,l‖ = 0.
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Theorem 4.2 (Asymptotically stable) If the explicit exponential RK method (4.1) satisfies
S(α, β) ≤ eα+β , where

S(α, β) = eα +
v−1∑

k=0

βk+1b(α)A(α)kecαe, α ∈ R, β ≥ 0,

then the explicit exponential RK method (4.1) for (1.1) is asymptotically stable, for hk =
τk+1−τk

m , k ∈ N, m ∈ Z
+.

Proof Define

δk,l := xk,l − yk,l , k = 0, 1, 2, . . . , l = 0, 1, . . . ,m,

	i
k,l := Xi

k,l − Y i
k,l , k = 0, 1, 2, . . . , l = 0, 1, . . . ,m, i = 1, 2, . . . , v.

Hence, we have

δk,l = ehk Lδk,l−1 + hk

v∑

i=1

bi (hk L)( f (t ik,l , X
i
k,l) − f (t ik,l , Y

i
k,l)),

	i
k,l = eci hk Lδk,l−1 + hk

i−1∑

j=1

ai j (hk L)( f (t ik,l , X
j
k,l) − f (t ik,l , Y

j
k,l)),

δk+1,0 = Ik+1(xk,m) − Ik+1(yk,m),

which imply that

‖δk,l‖ ≤ eμ(hk L)‖δk,l−1‖ + hkλ
v∑

i=1

‖bi (hk L)‖‖	i
k,l‖,

‖	i
k,l‖ ≤ eciμ(hk L)‖δk,l−1‖ + hkλ

i−1∑

j=1

‖ai j (hk L)‖‖	 j
k,l‖,

‖δk+1,0‖ = ‖Ik+1(xk,m) − Ik+1(yk,m)‖ ≤ γk+1‖δk,m‖,
where λ and γk are the Lipschitz constants of f and Ik , respectively, 	k,l is the v × 1-vector
of components ‖	i

k,l‖, i = 1, 2, . . . , v. Since the function bi and ai j , i, j = 1, 2, . . . v, are
nondecreasing, we can obtain that

‖δk,l+1‖ ≤ S(hkμ(L), hkλ)‖δk,l‖ ≤ e(μ(L)+λ)hk‖δk,l‖,
where S(α, β) = eα + ∑v−1

k=0 βk+1bT(α)A(α)kecαe, α ∈ R, β ≥ 0.
Hence, for arbitrary k = 0, 1, 2, . . . and l = 0, 1, . . . ,m, we have

‖δk,l‖ ≤ ‖δk,0‖e(‖L‖+λ)lhk .

Therefore, by the method of introduction and the condition (5.1), we can obtain that

‖δk,l‖
≤ ‖x0 − y0‖(γ1e(‖L‖+λ)(τ1−τ0))(γ2e

(‖L‖+λ)(τ2−τ1)) · · · (γke(‖L‖+λ)(τk−τk−1))e(‖L‖+λ)Ĉ

≤ ‖x0 − y0‖Cke(‖L‖+λ)Ĉ

which implies that the exponential RK method for (1.1) is asymptotically stable for hk =
τk+1−τk

m , k ∈ N, m ∈ Z
+ and m ≥ M . 
�
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Along with the function S, we consider also the function

S(α, β) = eα +
v−1∑

k=0

βk+1bT(α)A(α)kecαe, α ∈ R, β ≥ 0.

Therefore, by Theorem 4.2, we immediately get the following corollary.

Corollary 4.3 If the explicit exponential RK method (4.1) satisfies

S(α, β) ≤ eα+β (4.3)

and

b(α) = b(α), and A(α) = A(α), (4.4)

then the explicit exponential RK method (4.1) for (1.1) is asymptotically stable for hk =
τk+1−τk

m , k ∈ N, m ∈ Z
+.

For an IF method with an explicit underlying RK method (A, b, c), we have

S(α, β) = eα

(

1 +
v−1∑

k=0

βk+1bTAke

)

, α, β ∈ R.

Condition (4.3) holds if

bTAke ≤ 1

(k + 1)! , k ≥ k,

where k = min{k : k ∈ N, bTAke �= 1
(k+1)! }. On the other hand, the condition (4.4) holds if

0 = c1 ≤ c2 ≤ · · · ≤ cv ≤ 1 (4.5)

and

bi ≥ 0 and ai j ≥ 0, i = 1, . . . , i − 1. (4.6)

Hence, by Corollary 4.3, we can obtain the following corollary.

Corollary 4.4 If the explicit exponential RK method (4.1) is IF method satisfies (4.5), (4.6)
and

bTAke ≤ 1

(k + 1)! , k ≥ k,

where k = min{k ∈ {0, 1, 2, . . .}| bTAke �= 1
(k+1)! }, then the explicit exponential RKmethod

(4.1) for (1.1) is asymptotically stable for hk = τk+1−τk
m , k ∈ N, m ∈ Z

+.

5 Stability of RKmethods

In this section, stronger sufficient conditions for asymptotical stability of the exact solution
of (1.1) are provided. Moreover, asymptotical stability of RK methods for (1.1) is studied
under these conditions.

Since μ(L) ≤ ‖L‖, by Theorem 2.2, we can obtain the following corollary.
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Corollary 5.1 Assume that there exists a positive constant Ĉ such that τk−τk−1 ≤ Ĉ, k ∈ Z
+.

The exact solution of (1.1) is asymptotically stable if there is a positive constant C such that

γke
(‖L‖+λ)(τk+1−τk ) ≤ C < 1, (5.1)

for arbitrary k ∈ Z
+.

5.1 Explicit RKmethod

Consider the explicit Euler method for (1.1):
⎧
⎪⎨

⎪⎩

xk,l+1 = xk,l + hk Lxk,l + hk f (tk,l , xk,l), k ∈ N, l = 1, 2, . . . ,m − 1,

xk+1,0 = xk,m + Ik+1(xk,m),

x0,0 = x0.

(5.2)

Theorem 5.2 Under the conditions of Corollary 5.1, the explicit Euler method (5.2) for (1.1)
is asymptotically stable for hk = τk+1−τk

m , k ∈ N, ∀m ∈ Z
+.

Proof For arbitrary k = 0, 1, 2, . . . and l = 0, 1, . . . ,m − 1, we can obtain

‖δk,l+1‖ = ‖xk,l − yk,l + hk L(xk,l − yk,l) + hk f (tk,l , xk,l) − hk f (tk,l , yk,l)‖
≤ (1 + hk‖L‖)‖δk,l‖ + hk‖ f (tk,l , xk,l) − f (tk,l , yk,l)‖
≤ (1 + ‖L‖hk + λhk)‖δk,l‖
≤ e(‖L‖+λ)hk‖δk,l‖.

Hence, for arbitrary k = 0, 1, 2, . . . and l = 0, 1, . . . ,m, we have

‖δk,l‖ ≤ ‖δk,0‖ · e(‖L‖+λ)lhk .

Consequently, by the method of introduction and the condition (5.1), we can obtain that

‖δk,l‖ ≤ ‖x0 − y0‖ · (γ1e
(‖L‖+λ)(τ1−τ0)) · · · (γke(‖L‖+λ)(τk−τk−1))e(‖L‖+λ)lhk

≤ ‖x0 − y0‖Cke(‖L‖+λ)Ĉ

which implies that the explicit Euler method (5.2) for (1.1) is asymptotically stable for
hk = τk+1−τk

m , k ∈ N, ∀m ∈ Z
+. 
�

The two-stage explicit Runge–Kutta methods have a Butcher tableau

0 0 0
c2 a21 0

b1 b2

For brevity, the proofs of the following two theorems are omitted.

Theorem 5.3 Assume that all the coefficients of two-stage explicit Runge–Kutta methods are
nonnegative, that is a21 ≥ 0, b1 ≥ 0 and b2 ≥ 0, and

b1 + b2 = 1, b2c2 = 1

2
.

Then the 2-stage explicit Runge–Kutta method for (1.1) is asymptotically stable for hk =
τk+1−τk

m , k ∈ N, ∀m ∈ Z
+, under the conditions of Corollary 5.1.

123



17 Page 14 of 21 G.-L. Zhang

The following two-stage second-order explicit Runge–Kutta methods all satisfy the con-
ditions of Theorem 5.3.

0 0 0
1
2

1
2 0
0 1

0 0 0
1 1 0

1
2

1
2

0 0 0
3
4

3
4 0
1
3

2
3

Modified Euler Method Heun′s Method, order 2 Ralston′s Method

The three-stage explicit Runge–Kutta methods have a Butcher tableau

0 0 0 0
c2 a21 0 0
c3 a31 a32 0

b1 b2 b3

Theorem 5.4 Under the conditions of Corollary 5.1 and all the coefficients of explicit Runge–
Kuttamethods are nonnegative (ai j ≥ 0 andbi ≥ 0,1 ≤ i, j ≤ 3), the three-stage third-order
explicit Runge–Kutta methods for (1.1) are asymptotically stable for hk = τk+1−τk

m , k ∈ N,
∀m ∈ Z

+.

The following three-stage third-order explicit Runge–Kutta methods all satisfy the con-
ditions of Theorem 5.4.

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

0 0 0 0
2
3

2
3 0 0

2
3

1
3

1
3 0

1
4 0 3

4
Heun′s Method, order 3 Runge − −Kutta Method, order 3

Consider the explicit four-stage RK methods for (1.1):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1
k,l = xk,l , k ∈ N, l = 1, 2, . . . ,m − 1,

X2
k,l = xk,l + hka21(LX1

k,l + f (t1k,l , X
1
k,l)),

X3
k,l = xk,l + hk

2∑

j=1
a3 j (LX

j
k,l + f (t1k,l , X

j
k,l)),

X4
k,l = xk,l + hk

3∑

j=1
a4 j (LX

j
k,l + f (t jk,l , X

j
k,l)),

xk,l+1 = xk,l + hk
4∑

i=1
bi (LXi

k,l + f (t ik,l , X
i
k,l)),

xk+1,0 = xk,m + Ik+1(xk,m),

x0,0 = x0.

(5.3)

Theorem 5.5 Assume that all the coefficients of explicit Runge–Kutta method (5.3) are non-
negative (ai j ≥ 0 and bi ≥ 0, 1 ≤ i, j ≤ 4) and

∑

i

bi = b1 + b2 + b3 + b4 = 1, (5.4)

∑

i

bi ci = b2c2 + b3c3 + b4c4 = 1

2
, (5.5)

∑

i, j

bi ai j c j = b3a32c2 + b4a42c2 + b4a43c3 = 1

6
, (5.6)
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∑

i, j,k

bi ai j a jkck = b4a43a32c2 = 1

24
. (5.7)

Then, under the conditions Corollary 5.1, the four-stage explicit Runge–Kutta method (5.3)
for (1.1) is asymptotically stable for hk = τk+1−τk

m , k ∈ N, ∀m ∈ Z
+.

Proof Obviously, for arbitrary k = 0, 1, 2, . . . and l = 0, 1, . . . ,m − 1,

‖	1
k,l‖ = ‖δk,l‖. (5.8)

Due to the condition (5.1), a21 ≥ 0 and c2 = a21, we have

‖	2
k,l‖ = ‖xk,l − yk,l + hka21(LX

1
k,l − LY 1

k,l + f (t1k,l , X
1
k,l) − f (t1k,l , Y

1
k,l)‖

≤ (1 + ‖L‖hka21 + λhka21)‖δk,l‖
= (1 + ‖L‖hkc2 + λhkc2)‖δk,l‖.

Similarly, we can obtain that

‖	3
k,l‖ = ‖xk,l − yk,l + hk

2∑

j=1

a3 j (LX
j
k,l − LY j

k,l + f (t jk,l , X
j
k,l) − f (t jk,l , Y

j
k,l))‖

≤ ‖δk,l‖ + (‖L‖ + λ)hka31‖	1
k,l‖ + (‖L‖ + λ)hka32‖	2

k,l‖
≤ (1 + (‖L‖ + λ)hk(a31 + a32) + (‖L‖ + λ)2h2ka32c2)‖δk,l‖
= (1 + (‖L‖ + λ)hkc3 + (‖L‖ + λ)2h2ka32c2)‖δk,l‖

and

‖	4
k,l‖ = ‖xk,l − yk,l + hk

3∑

j=1

a4 j (LX
j
k,l − LY j

k,l + f (t jk,l , X
j
k,l) − f (t jk,l , Y

j
k,l))‖

≤ ‖δk,l‖ + hk(‖L‖ + λ)

3∑

j=1

a4 j‖	 j
k,l‖

≤ (1 + (‖L‖ + λ)hkc4 + (‖L‖ + λ)2h2k(a42c2 + a43c3)

+ (‖L‖ + λ)3h3ka43a32c2)‖δk,l‖.
By the conditions (5.4)–(5.7), the equality (5.8) and the above three inequalities, we can
obtain

‖δk,l+1‖ = ‖xk,l − yk,l + hk

4∑

i=1

bi (LX
i
k,l − LY i

k,l + f (t ik,l , X
i
k,l) − f (t ik,l , Y

i
k,l))‖

≤ ‖δk,l‖ + hk(‖L‖ + λ)

4∑

i=1

bi‖	i
k,l‖

≤ (1 + hk(‖L‖ + λ)(b1 + b2 + b3 + b4) + h2k(‖L‖ + λ))2(b2c2 + b3c3 + b4c4)

+ h3k(‖L‖ + λ)3(b3a32c2 + b4a42c2 + b4a43c3) + h4k(‖L‖ + λ)4a43a32c2) · ‖δk,l‖

= (1 + (‖L‖ + λ)hk + (‖L‖ + λ)2h2k
2

+ (‖L‖ + λ)3h3k
3! + (‖L‖ + λ)4h4k

4! ) · ‖δk,l‖
≤ e(‖L‖+λ)hk‖δk,l‖.
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Consequently, the four-stage explicit Runge–Kutta method (5.3) for (1.1) is asymptotically
stable for hk = τk+1−τk

m , k ∈ N, ∀m ∈ Z
+. 
�

Obviously, all the four-stage fourth-order explicit Runge–Kuttamethods satisfy conditions
(5.4)–(5.7) (see (Butcher 2003, p. 90) or (Hairer et al. 1993b, pp. 135–136)). Consequently,
by Theorem 5.5, we immediately obtain the following corollary.

Corollary 5.6 Assume that all the coefficients of explicit Runge–Kutta method (5.3) are non-
negative (ai j ≥ 0 and bi ≥ 0, 1 ≤ i, j ≤ 4). Then, under the conditions Corollary
5.1, the four-stage fourth-order explicit Runge–Kutta method (5.3) for (1.1) is stable for
hk = τk+1−τk

m , k ∈ N, ∀m ∈ Z
+.

The four-stage explicit Runge–Kutta methods have a Butcher tableau

0 0 0 0 0
c2 a21 0 0 0
c3 a31 a32 0 0
c4 a41 a42 a43 0

b1 b2 b3 b4

The following classical four-stage fourth-order explicit Runge–Kutta method satisfies the
conditions of Theorem 5.5 and Corollary 5.6.

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Remark 5.7 In fact, there are many four-stage explicit Runge–Kutta methods which are not
of order 4 , but they satisfy conditions (5.4)–(5.7). The followingmethod is an example which
is not of order 4, however, it satisfies not only conditions (5.4)–(5.7), but also the conditions
of Theorem 5.5.

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 1

3
1
3

1
3 0

1
2 0 0 1

2

Unfortunately, we can not obtain the p-stage explicit Runge–Kutta methods of order p
for p ≥ 5, because of the Butcher Barriers as follows.

Theorem 5.8 (See Butcher 2003, Theorem 370, pp. 258–259) or (Hairer et al. 1993b, The-
orem 5.1 p. 173) For p ≥ 5, no explicit Runge–Kutta methods exist of order p with s = p
stages.
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5.2 RKmethods

Consider the following RK methods for (1.1):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk,l+1 = xk,l + h
v∑

i=1
bi (LY i

k,l + f (t ik,l , X
i
k,l+1)), k ∈ N, l = 0, 1, . . . ,m − 1,

Xi
k,l+1 = xk,l + h

v∑

j=1
ai j (LX

j
k,l + f (t jk,l , X

j
k,l+1)), k ∈ N, l = 0, 1, . . . ,m − 1,

xk+1,0 = Ik+1(xk,m), k ∈ N,

x0,0 = x0.

(5.9)

Lemma 5.9 (Butcher 1987;Dekker andVerwer 1984;Hairer et al. 1993b;Wanner et al. 1978)
The (j, k)-Padé approximation to ez is given by

R(z) = Pj(z)

Qk(z)
, (5.10)

where

Pj(z) = 1 + j
j + k

· z + j(j − 1)

(j + k)(j + k − 1)
· z

2

2! + · · · + j!k!
(j + k)! · z

j

j! ,

Qk(z) = 1 − k
j + k

· z + k(k − 1)

(j + k)(j + k − 1)
· z

2

2! + · · · + (−1)k · k!j!
(j + k)! · z

k

k! ,

with error

ez − R(z) = (−1)k · j!k!
(j + k)!(j + k + 1)! · zj+k+1 + O(z j+k+2).

It is the unique rational approximation to ez of order j+k, such that the degrees of numerator
and denominator are j and k, respectively.

Lemma 5.10 (Song et al. 2005; Yang et al. 2005; Wang and Qiu 2014) Assume that R(z) is
the (j, k)-Padé approximation to ez . Then R(z) < ez for all z > 0 if and only if k is even,
when z > 0.

Theorem 5.11 Assume that R(z) is the stability function of Runge–Kutta method (5.9) i.e.

R(z) = 1 + zbT(I − zA)−1e = Pj(z)

Qk(z)
.

Under the conditions of Corollary 5.1, Runge–Kutta method (4.1) with nonnegative coef-
ficients (ai j ≥ 0 and bi ≥ 0, 1 ≤ i ≤ v, 1 ≤ j ≤ v) for (1.1) is asymptotically stable
for hk = τk+1−τk

m , k ∈ N, m ∈ Z
+ and m ≥ M, if k is even, where M = inf{m :

I − zA is invertible and (I − zk A)−1e ≥ 0, zk = (‖L‖ + λ)hk, k ∈ N,m ∈ Z
+}.

Proof Since ai j ≥ 0 and bi ≥ 0,1 ≤ i ≤ s, 1 ≤ j ≤ v, we can obtain that

‖	i
k,l‖ = ‖xk,l − yk,l + hk

v∑

j=1

ai j (LX
j
k,l − LY j

k,l + f (t jk,l , X
j
k,l) − f (t jk,l , Y

j
k,l))‖

≤ ‖δk,l‖ + hk

v∑

j=1

ai j (‖L	
j
k,l‖ + ‖ f (t jk,l , X

j
k,l) − f (t jk,l , Y

j
k,l)‖)
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≤ ‖δk,l‖ + (‖L‖ + λ)hk

v∑

j=1

ai j‖	 j
k,l‖.

And when m ≥ M , (I − zk A)−1e ≥ 0, zk = (‖L‖ + λ)hk, k ∈ Z
+, so

[‖	i
k,l‖] ≤ (I − zk A)−1e‖δk,l‖

where [‖	i
k,l‖] = (‖	1

k,l‖, ‖	2
k,l‖, . . . , ‖	v

k,l‖)T. By Lemmas 5.9 and 5.10, we can obtain

‖δk,l+1‖ = ‖xk,l − yk,l + hk

v∑

j=1

bi (LX
i
k,l − LY i

k,l + f (t ik,l , X
i
k,l) − f (t ik,l , Y

i
k,l))‖

≤ ‖δk,l‖ + hk

v∑

j=1

bi (‖LXi
k,l − LY i

k,l‖ + ‖ f (t ik,l , X
i
k,l) − f (t ik,l , Y

i
k,l)‖)

≤ ‖δk,l‖ + (‖L‖ + λ)hk

v∑

j=1

bi‖	i
k,l‖

= ‖δk,l‖ + zkb
T[‖	i

k,l‖]
≤ (1 + zkb

T(I − zk A)−1e)‖δk,l‖
= R((‖L‖ + λ)hk)‖δk,l‖
≤ e(‖L‖+λ)hk‖δk,l‖.

Therefore, RK method (5.9) for (1.1) is asymptotically stable for hk = τk+1−τk
m , k ∈ N,

m ∈ Z
+ and m ≥ M . 
�

5.3 �-methods

Consider θ -methods for (1.1):
⎧
⎪⎪⎨

⎪⎪⎩

xk,l+1 = xk,l + hk(1 − θ)(Lxk,l + f (tk,l , xk,l))
+ hkθ(Lxk,l+1 + f (tk,l+1, xk,l+1))

xk+1,0 = Ik+1(xk,m),

x0,0 = x0,

(5.11)

where hk = τk+1−τk
m , m ≥ 1, m is an integer, k = 0, 1, 2, . . ..

Lemma 5.12 (See Song et al. 2005) For m > ‖L‖ + λ and zk = hk(‖L‖ + λ), h =
τk−τk−1

m , m ∈ Z
+,k ∈ N, then

(

1 + zk
1 − zkθ

)m

≤ ehk (‖L‖+λ)

if and only if 0 ≤ θ ≤ ϕ(1), where ϕ(x) = 1
x − 1

ex−1 .

Theorem 5.13 Under the conditions of Corollary 5.1, if 0 ≤ θ ≤ ϕ(1), there is a positive M
such that θ method for (1.1) is asymptotically stable for hk = τk+1−τk

m , k ∈ N, m ∈ Z
+ and

m ≥ M .
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Proof Obviously, we can obtain

‖δk,l+1‖ = ‖δk,l + (1 − θ)hk(Lxk,l − Lyk,l + f (tk,l , xk,l) − f (tk,l , yk,l)‖
+ θhk(Lxk,l+1 − Lyk,l+1 + f (tk,l+1, xk,l+1) − f (tk,l+1, yk,l+1))‖

≤ (1 + (1 − θ)(‖L‖ + λ)hk)‖δk,l‖ + θhk‖L‖‖δk,l+1‖
+ hkθ‖ f (tk,l+1, xk,l+1) − f (tk,l+1, yk,l+1)‖

≤ (1 + (1 − θ)(‖L‖ + λ)hk)‖δk,l‖ + θ(‖L‖ + λ)hk‖δk,l+1‖
which implies

‖δk,l+1‖ ≤ 1 + (1 − θ)(‖L‖ + λ)hk
1 − θ(‖L‖ + λ)hk

· ‖δk,l‖

Therefore, by Lemma 5.12 and the method of introduction , we can obtain that

‖δk,l+1‖ ≤ e(‖L‖+λ)hk‖δk,l‖
Hence, θ -method for (1.1) is asymptotically stable for hk = τk+1−τk

m , k ∈ N, m ∈ Z
+ and

m > θ(‖L‖ + λ)(τk+1 − τk), k ∈ N, if 0 ≤ θ ≤ ϕ(1). 
�

6 Conclusions

There are three advantages of a class of explicit exponential RK methods (which satisfy
the conditions Theorem 4.2 or Corollary 4.4) for semi-linear IDEs. First, they can preserve
asymptotical stability of semi-linear IDEs under the conditions of Theorem 2.2 which are
weaker than the conditions of Corollary 5.1. Second, they can preserve asymptotical stability
semi-linear IDEs without restriction on the stepsizes except that hk = τk+1−τk

m , k ∈ N,
m ∈ Z

+. Third, they are suitable for stiff problems.
On the other hand, classical four-order explicit RKmethod preserves asymptotical stability

of semi-linear IDEs without restriction on the stepsizes except that hk = τk+1−τk
m , k ∈ N,

m ∈ Z
+, under the conditions of Corollary 5.1. And it does not need to compute ehk L and

eci hk L , i = 1, 2, . . . , v, k ∈ N.
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