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Abstract
Based on a truncated Fourier series technique to compute stable derivatives in a Sobolev
space setting, we propose a method for numerical differentiation of periodic functions from
a finite amount of noisy data. In our method, we construct stable approximations to high
order derivatives by filtering high frequency components of spectral derivatives obtained
through the Fourier differentiation matrix. We derive convergence rates for the approximate
derivatives with essentially the same accuracy as those obtained by the truncated Fourier
series technique. Our method is illustrated with numerical examples, focusing in particular,
on the estimation of the heat flux distribution in coiled tubes from experimental temperature
data.

Keywords Numerical differentiation · Fourier truncation method · Discrepancy principle ·
Inverse conduction problems · Coiled tubes

Mathematics Subject Classification 65D25 · 65T40 · 65F22 · 65R32

1 Introduction

Numerical differentiation from noisy data is an important issue in a wide range of areas
of science and technology. Applications areas include image processing (Wang et al. 2002),
inverse heat conductionproblems (Bozzoli et al. 2015, 2017), parameter identification (Hanke
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and Scherzer 1999), viscoelastic mechanics (Sovari and Malinen 2007) and blood glucose
predictions (Mhaskar et al. 2013). The main difficulty found in practical applications is
that numerical differentiation is an ill-posed problem; hence, small input data errors can
produce large errors in the computed derivative. Several numerical schemes for numerical
differentiation have been proposed in the past years. These can be roughly organized into
two groups: methods based on finite discrete data and methods that work with continuous
noise data. Schemes of the first group include difference methods, interpolation methods and
discrete mollification methods (Groetsch 1991; Qu 1996; Rivlin 1975; Murio et al. 1998).
Methods in the secondgroup includeFourier truncationmethods in frequency space (Bernston
1999; Fu 2004; Hào 1994; Qian et al. 2006) and methods based on regularization of linear
operator equations (Fu 2004; Lu and Pereverzev 2006; Lu et al. 2013; Zhao et al. 2009). It is
worth noting that irrespective of the chosen method some regularization is required to avoid
domination of the final result by noise.

This work is closely related with methods that rewrite the differentiation problem of
smooth functions as a Volterra integral equation. In fact, for smooth g on [0,1], it is clear that
finding g′ is equivalent to solving the ill-posed problem

K1 f (s) =
∫ s

0
f (t)dt = g(s) − g(0), s ∈ [0, 1], (1)

where K1 : L2(0, 1) → L2(0, 1). In this regard, an approach that describes the solution
f = g′ in terms of singular functions of the operator K1, a cosine series of f on [0,1], along
with error estimates, can be found in Zhao et al. (2009). In a different framework, based on
the concept of Hilbert scales and on the one generated by singular functions of K1 (Louis
1989, page 25),

ek(s) = eIk (s) = √
2 sin

(
k + 1

2

)
πs, k = 1, 2, . . . ,

ek(s) = e−I
k (s) = √

2 cos
(
k + 1

2

)
πs, k = 1, 2, . . . ,

(2)

for deterministic noisy data gδ such that ‖g − gδ‖L2 ≤ δ, it is reported in Lu et al. (2013)
that the error in approximating g′ by the derivative of the n-th partial sum,

g′(s) ≈ d

ds

(
n∑

k=1

eIk (s) < eIk , gδ >

)
, (3)

can be bounded as
∥∥∥∥∥g′(s) ≈ d

ds

(
n∑

k=1

eIk (s) < eIk , gδ >

)∥∥∥∥∥
L2

≤ c‖g‖δ r−1
r , (4)

where r denotes the regularity index of the Hilbert scale and the truncation parameter n is

chosen such that n = δ− 2
2r+1 .Other approaches based on the operator Eq. (1) can be found in

Lu and Pereverzev (2006) and references therein. However, despite the existence of numerous
approaches to the problem, very little is reported about methods for numerical differentiation
of periodic functions; two of few existing works on the subject are Dolgopolova (1970), Zhao
and Meng (2010). The present paper is motivated by an approach of Zhao and Meng (2010),
where the numerical differentiation problem is transformed into a first kind Volterra-type
integral equation

K f = g, (5)
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with K being defined on appropriate spaces and given as

(K f )(s) =
∫ s

0
f (t)dt −

∫ 1

0

∫ s

0
f (τ )dτds. (6)

Then, as before, determining the derivative g′ amounts to solving (5) with g as input
data. In such a reformulation K is a compact invertible operator whose singular system
{σ j , u j , v j }∞j=1 is determined in closed form. Hence, for g lying in R(K ), the space image
of K , the solution of (5) can be determined in terms of the singular system, and only the
Fourier coefficients of g with respect to the left singular functions u j need to be calculated.
However, as pointed out by Zhao andMeng, periodic g does not necessarily belongs to R(K ),
therefore, Eq. (5) has to be solved with a right hand side g(s) given by

g(s) = g(s) −
∫ 1

0
g(t)dt, (7)

and a similar observation applies to the case where instead of g we are given perturbed data
gδ(s). Indeed,with noisy data, the differentiation problem is addressed by solvingEq. (5)with
a right hand side gδ obtained as in (7). The advantage of formulating the problem of numerical
differentiation in this way is that error estimates and convergence rates for the numerical
approximation of g′ can be readily obtained using regularization theory. Proceeding in this
way, Zhao and Meng derived error estimates based on a truncated singular value expansion
(TSVE) technique under Hölder-type source conditions, where the truncation parameter is
chosen by the discrepancy principle.We note in passing that these estimates can be viewed as
particular cases of general results reported in Nair et al. (2005) in Hilbert scale settings under
general smoothing conditions. Note also that since gδ is supplied instead of ḡδ , bad results
can be obtained when the error in ḡδ is not estimated accurately; this hinders the application
of the method. Therefore, methods that work with the available data gδ are desirable.

In this paper, we propose amethod for numerical differentiation of periodic functions from
a finite amount (probably small) of noisy data, as occurs in practical applications, therefore
contrary to the approach in Zhao andMeng (2010) which deals with continuous data and with
ḡδ instead of gδ . For noise-free data, themethod is supported by the observation that the series
solution of (5) given in terms of the singular system of K , coincides with the Fourier series
of g′ (Zhao and Meng 2010), the latter being formally obtained by differentiating the Fourier
series of g term-by-term. This last observation not only indicates that the Fourier series
of g′ involves Fourier coefficients of g not of g′, but also that the differentiation problem
can be treated using only Fourier analysis in appropriate function spaces and without the
need for regularization methods for ill-posed problems as done in Zhao and Meng (2010)
and in several other works. The noisy data case is more difficult to deal with since gδ

needs not be differentiable, so that we cannot compute a derivative. Moreover, even if gδ is
differentiable the error in the derivative can be arbitrarily large. Therefore, to construct stable
approximations to g′ from noisy data, we consider a Fourier series constructed similarly
as that of g′, but with gδ instead of g, and then truncate the series to a finite number of
terms to filter out as much as possible the contribution of noise to the result. The number
of terms determines how sensitive the truncated series is to the error in g and how close
the truncated series is to g′. A similar procedure is followed in high-order differentiation
cases. Our numerical differentiation method is based on discrete data and follows the same
ideas above, with the sole difference that rather than truncating an infinite Fourier series,
we truncate discrete spectral derivatives constructed by the spectral Fourier differentiation
matrix.

As main contributions of the present work we quote:
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1. An error estimate analogous to that given in (4) obtained via Fourier analysis in a Sobolev
space setting. The error bound under consideration can also be derived as a particular case
of general results reported in Nair et al. (2005) in Hilbert scale settings. The contribution
here lies in the fact that our proof is simpler and less demanding in terms of required
assumptions.

2. Amethod for numerical differentiation of periodic function based on discrete data simple
to implement and computationally inexpensive. Themethod requires a few standard inner
products in RN and a matrix–vector product of a low rank matrix and the vector of noisy
data.

3. An error estimate for the case of discrete data that is essentially the same as thatmentioned
in item 1.

The paper is organized as follows. In Sect. 2, after some preliminary results, we describe
the truncated Fourier series method for numerical differentiation, as well as error estimates
associated to the approximations obtained with the discrepancy principle as parameter trun-
cation rule. Our filtering matrix differentiation method for numerical differentiation based
on discrete noisy data is discussed in Sect. 3, which includes numerical examples. In order to
illustrate the effectiveness of our method on a practical application, in Sect. 4, we consider an
inverse heat transfer problem based on experimental data. Concluding remarks are described
in Sect. 5.

2 Truncated Fourier series method for numerical differentiation

For the sake of simplicity, we will address the numerical differentiation problem of peri-
odic functions within the framework of periodic Sobolev spaces Hm

p (0, 2π), for positive
integer m, consisting of functions whose first m − 1 derivatives are periodic in [0, 2π].
Periodic Sobolev spaces are appropriate in our context since, for any g ∈ Hm

p (0, 2π), we
can differentiate term-wise the Fourier series of g m times, and ensure convergence in the
square mean. In order to formulate the numerical differentiation problem in the Sobolev
space setting, we will introduce some notation and a few preliminary results. Let L2(0, 2π)

be the space of real valued Lebesgue square-integrable functions on (0, 2π), with stan-
dard inner product and induced norm denoted by 〈·, ·〉 and ‖.‖L2 , respectively. It is well
known that {u0, u1, u2, . . . , v1, v2, . . .} with u0 = 1/

√
2π , u j (θ) = cos( jθ)/

√
π and

v j (θ) = sin( jθ)/
√

π , is an orthonormal basis for L2(0, 2π), referred from here on as
to “the Fourier basis”. As a result, for each f ∈ L2(0, 2π) we have

f = 〈 f , u0〉 +
+∞∑
j=1

[〈 f , u j 〉u j + 〈 f , v j 〉v j
]
, (8)

and

‖ f ‖2L2
= 〈 f , u0〉2 +

+∞∑
j=1

[〈 f , u j 〉2 + 〈 f , v j 〉2] < ∞, (9)

with the observation that the convergence in (8) is in the square mean (or in the L2-norm
sense). Then, Hm

p (0, 2π) consists of functions f with derivatives of order up to m − 1 being
2π-periodic, such that

+∞∑
j=1

j2m(〈 f , u j 〉2 + 〈 f , v j 〉2) < ∞. (10)
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Hm
p (0, 2π) is a Hilbert space (Kirsch 2011, p. 262) with inner product 〈〈·, ·〉〉 and induced

norm ‖ · ‖Hs
p
given by

〈〈 f , h〉〉 = 〈 f , u0〉〈h, u0〉 +
+∞∑
j=1

(1 + j2)m(〈 f , u j 〉〈h, u j 〉 + 〈 f , v j 〉〈h, v j 〉)

and

‖ f ‖2Hm
p

= 〈 f , u0〉2 +
+∞∑
j=1

(1 + j2)m(〈 f , u j 〉2 + 〈 f , v j 〉2),

respectively. Thus, for f ∈ Hm
p (0, 2π) and 1 ≤ � ≤ m − 1, we can differentiate the Fourier

series (8) term-by-term to obtain

f (�) =
{∑∞

j=1(−1)
�−1
2 j�[〈 f , v j 〉u j − 〈 f , u j 〉v j ], � odd,∑∞

j=1(−1)
�
2 j�[〈 f , u j 〉u j + 〈 f , v j 〉v j ], � even,

(11)

with convergence in the L2-norm sense. This suggests that, for noise-free data, we can
construct approximations of f (�) by truncating the Fourier series to a finite number of terms.
Indeed, proceeding in this way, the quality of the approximations is known to depend on how
fast the Fourier coefficients of f (�) decay to zero, which in turn depend on the regularity
properties of f , since from (11) we have

〈 f (�), u j 〉 =
{

(−1)
�−1
2 j�〈 f , v j 〉, � odd

(−1)
�
2 j�〈 f , u j 〉, � even,

(12)

〈 f (�), v j 〉 =
{

−(−1)
�−1
2 j�〈 f , u j 〉, � odd

(−1)
�
2 j�〈 f , v j 〉, � even.

(13)

We are now in a position to address the numerical differentiation problem.We shall beginwith
the first-order problem by introducing the linear operator T : H1

p (0, 2π) ⊂ L2(0, 2π) →
L2(0, 2π) defined by T (u) = u′, and for the moment, assume that the data are noise-free.
Then, it is clear that for given g ∈ H1

p (0, 2π) the goal is to find ξ ∈ L2(0, 2π) such that

Tg = g′ = ξ. (14)

It is well known that T is a (unbounded) densely defined linear operator with adjoint T ∗ :
H1
p (0, 2π) ⊂ L2(0, 2π) → L2(0, 2π) such that T ∗ = −T (Groetsch 2007, p 31) . Yet we

can readily see that associated to the eigenvalue problem T ∗T (v) = λv there is a periodic
Sturm–Liouville problem defined by

v′′ + λv = 0 in (0, 2π) (15)

v(0) = v(2π) (16)

v′(0) = v′(2π), (17)

with eigenvalues and corresponding eigenfunctions described in closed form. Indeed, the
Sturm–Liouville problem has a simple eigenvalue λ0 = 0 with corresponding eigenfunction
u0 introduced in the previous section, and eigenvalues λ j = j, j ∈ N, with multiplicity two
and corresponding eigenfunctions given by u j and v j (introduced in the previous section
too). Consequently, in view of (11) with � = 1, we get the eigenfunction expansion
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Tg = ξ =
∞∑
j=1

[λ j 〈g, v j 〉u j − λ j 〈g, u j 〉v j ]. (18)

Remark 2.1 It is a routine to check that R(T ), the image of T , is a closed subspace of
L2(0, 2π), therefore L2(0, 2π) = R(T ) ⊕ R(T )⊥. Moreover, from the completeness of
H1
p (0, 2π) with respect to the graph norm ‖ f ‖T := ‖ f ‖L2 + ‖T f ‖L2 = ‖ f ‖L2 + ‖ f ′‖L2 ,

T is a closed operator (Berezansky et al. 1996, p 5). As a result, T has a Moore–Penrose
generalized inverse (Groetsch 2007, pp 41–42)

T † : L2(0, 2π) → N (T )⊥ ∩ H1
p (0, 2π) ⊂ L2(0, 2π), (19)

where N (T ) ⊂ H1
p (0, 2π), the null subspace of T , is generated by the constant function

f = 1. Moreover, since T †Tg = (I − P)g for all g ∈ H1
p (0, 2π) where P denotes the

orthogonal projector of H1
p (0, 2π) ontoN (T ) (Groetsch 2007, Theorem. 2.12), we conclude

that

T †(g′) = ĝ := g − 1

2π

∫ 2π

0
g(s)ds. (20)

Then, in terms of the Fourier basis, due to (8), (12) and (13) we have

T †(g′) = ĝ =
∞∑
j=1

[〈g, u j 〉u j + 〈g, v j 〉v j ],

=
∞∑
j=1

[− j−1〈g′, v j 〉u j + j−1〈g′, u j 〉v j ],
(21)

since 〈ĝ, u0〉 = 0, 〈ĝ, v j 〉 = 〈g, v j 〉 and 〈ĝ, u j 〉 = 〈g, u j 〉. In addition, classical results
(see, e.g., Schatten 1960, p 18, Theorem 7) and (21) ensure that T † is compact, with singular
values η j = λ−1

j = j−1 having double multiplicity and associated singular functions given
by (v j ,−u j 〉 and (u j , v j 〉. Furthermore, notice that (18) can be viewed as a singular value
expansion, i.e.,

ξ = Tg =
∞∑
j=1

[η−1
j 〈g, v j 〉u j − η−1

j 〈g, u j 〉v j ]. (22)

Turning to the first-order numerical differentiation problem from noisy data, assume that
we are given perturbed data gδ ∈ L2(0, 2π) such that

‖g − gδ‖L2 ≤ δg. (23)

Since in general gδ /∈ H1
p (0, 2π), we face the difficulty that neither (21) nor (22) can be used

for purpose of computing derivatives with gδ as input data. To overcome this let ξδ be the
Fourier series defined by

ξδ ∼
∞∑
j=1

[η−1
j 〈gδ, v j 〉u j − η−1

j 〈gδ, u j 〉v j ]. (24)

Wewill construct stable approximations to g′ by truncating the Fourier series (24) to N terms,
regardless of whether this series converges or diverges, giving rise to regularized derivatives
given by

ξ N
δ =

N∑
j=1

[η−1
j 〈gδ, v j 〉u j − η−1

j 〈gδ, u j 〉v j ]. (25)
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At this point, it is important to remark that a similar approach for first-order differentiation
of functions g on [−1, 1] has been reported in Lu et al. (2013), Mhaskar et al. (2013),
where Legendre polynomials are used instead of the Fourier basis and where the derivative
of partial sums of Fourier–Legendre series of g is taken as approximation to the desired
derivative g′. For noisy data, a conclusion of the authors in Mhaskar et al. (2013) is that the
noise propagation error ‖ξ N − ξ N

δ ‖L2 spreads with an intensity O(N 2δg); error estimates
are also given. A differential feature of our method is that since orthogonality is not lost by
differentiating the Fourier basis, the noise propagation error is O(Nδg), as is easy to verify
and seen below in the proof of Theorem. 2.1. Recall that number N determines how sensitive
ξ N
δ is to the error in g and how close ξ N

δ is to g′. Thus, the determination of a suitable
truncation level is thus a crucial part of the solution process. As in Zhao and Meng (2010),
we choose N ∈ N based on the discrepancy principle (see Engl et al. 1996), i.e., for fixed
τ > 1, we choose N ∈ N such that

N = inf{k ∈ N; ‖T †ξ kδ − ĝδ‖L2 ≤ τδg}, (26)

where ĝδ := gδ − 1
2π

∫ 2π
0 gδ(s)ds. In other words, the truncation parameter N is the smallest

integer such that the residual norm ‖T †ξ kδ − ĝδ‖L2 is of the same order as the norm of the
error in the data. This residual norm can be readily computed by observing that

〈ξ kδ , u j 〉 =
{

η−1
j 〈gδ, v j 〉, j ∈ {1, 2, . . . , k}

0, j ∈ {k + 1, k + 2, . . .}
and

〈ξ kδ , v j 〉 =
{−η−1

j 〈gδ, u j 〉, j ∈ {1, 2, . . . , k}
0, j ∈ {k + 1, k + 2, . . .} ,

so that (21) and (25) yield

T †ξ kδ =
k∑
j=1

[〈gδ, u j 〉u j + 〈gδ, v j 〉v j ].

The above result together with (8) imply

‖T †ξ kδ − ĝδ‖2L2
=

+∞∑
j=k+1

[〈gδ, u j 〉2 + 〈gδ, v j 〉2]. (27)

Thus, taking into account the definition of N given in (26) and (27) it follows that

+∞∑
j=N+1

[〈gδ, u j 〉2 + 〈gδ, v j 〉2] ≤ τ 2δ2g ≤
+∞∑
j=N

[〈gδ, u j 〉2 + 〈gδ, v j 〉2]. (28)

The error in the approximation to g′ obtained by the truncated Fourier series technique
can be stated as follows.

Theorem 2.1 Assume that g ∈ Hm
p (0, 2π) for m > 1 and let gδ ∈ L2(0, 2π) such that (23)

holds. Then, being ξ N
δ given by (25), τ > 1 and N ∈ N satisfying (26), we have the estimate

‖ξ − ξ N
δ ‖L2 ≤ Cτ‖g(m)‖

1
m
L2

δ
m−1
m

g , (29)

where ξ = g′ and Cτ = (τ + 1)
m−1
m + (τ − 1)

−1
m .
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Proof In order to estimate the error ξ − ξ N
δ we use the triangular inequality to obtain

‖ξ − ξ N
δ ‖L2 ≤ ‖ξ − ξ N‖L2 + ‖ξ N − ξ N

δ ‖L2 , (30)

where

ξ N =
N∑
j=1

[η−1
j 〈g, v j 〉u j − η−1

j 〈g, u j 〉v j ]. (31)

It is clear that, from (18) and (31), that

‖ξ − ξ N‖2L2
=

+∞∑
j=N+1

j2[〈g, v j 〉2 + 〈g, u j 〉2]. (32)

Writing

j2[〈g, v j 〉2 + 〈g, u j 〉2] =
(
j2〈g, v j 〉 2

m

) (
〈g, v j 〉 2(m−1)

m

)
+
(
j2〈g, u j 〉 2

m

) (
〈g, v j 〉 2(m−1)

m

)
,

Hölder’s inequality and (32) yield

‖ξ − ξ N‖2L2
≤
⎛
⎝ +∞∑

j=N+1

j2m〈g, v j 〉2
⎞
⎠

1
m
⎛
⎝ +∞∑

j=N+1

〈g, v j 〉2
⎞
⎠

m−1
m

+
⎛
⎝ +∞∑

j=N+1

j2m〈g, u j 〉2
⎞
⎠

1
m
⎛
⎝ +∞∑

j=N+1

〈g, u j 〉2
⎞
⎠

m−1
m

.

(33)

Using Hölder’s inequality once more, the sum above can be bounded to give

‖ξ − ξ N‖2L2
=
⎛
⎝ +∞∑

j=N+1

j2m[〈g, v j 〉2 + 〈g, u j 〉2]
⎞
⎠

1
m
⎛
⎝ +∞∑

j=N+1

[〈g, v j 〉2 + 〈g, u j 〉2]
⎞
⎠

m−1
m

≤ ‖g(m)‖L2

⎛
⎝ +∞∑

j=N+1

[〈g, v j 〉2 + 〈g, u j 〉2]
⎞
⎠

m−1
m

.

(34)
Let the projector orthogonal of L2(0, 2π) onto the subspace span{vN+1, uN+1, vN+2, uN+2,

· · · } be denoted by PN . Then it is clear that

+∞∑
j=N+1

〈g, v j 〉2 + 〈g, u j 〉2 = ‖PN g‖2L2
≤ [‖PN (g − gδ)‖L2 + ‖PN gδ‖L2 |

]2 ≤ (1+ τ)2δ2g.

(35)
Thus, due to (34) and (35), we get

‖ξ − ξ N‖L2 ≤ ‖g(m)‖
1
m
L2

(1 + τ)
m−1
m δ

m−1
m

g . (36)

On the other hand, since

‖ξ N − ξ N
δ ‖2L2

=
N∑
j=1

[ j2〈g − gδ, v j 〉2 + j2〈g − gδ, u j 〉2] ≤ N 2‖g − gδ‖2L2
≤ N 2δ2g,

(37)
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arguing as in (35) and using (28), we conclude that

τ 2δ2g ≤
+∞∑
j=N

[〈gδ, v j 〉2 + 〈gδ, u j 〉2] ≤

⎧⎪⎨
⎪⎩

⎡
⎣+∞∑

j=N

〈gδ − g, v j 〉2 + 〈gδ − g, u j 〉2
⎤
⎦
1/2

+
⎡
⎣+∞∑

j=N

〈g, v j 〉2 + 〈g, u j 〉2
⎤
⎦
1/2
⎫⎪⎬
⎪⎭

2

.

Thus +∞∑
j=N

〈g, v j 〉2 + 〈g, u j 〉2 ≥ (τ − 1)2δ2g. (38)

As a consequence,

(τ − 1)2δ2 ≤ 1

N 2m

+∞∑
j=N

j2m[〈g, v j 〉2 + 〈g, u j 〉2] ≤ 1

N 2m ‖g(m)‖2L2

and hence

N 2 ≤ ‖g(m)‖
2
m
L2

(τ − 1)
−2
m δ

−2
m
g . (39)

Due to (39) and (37), we get

‖ξ N − ξ N
δ ‖L2 ≤ ‖g(m)‖

1
m
L2

(τ − 1)
−1
m δ

m−1
m

g . (40)

Finally, (30), (36) and (40) yield (29). ��

Error estimate (29) is essentially the same as that described by Zhao and Meng (2010),
Theorem 3.1 and Corollary 3.2) obtained by applying classical regularization results to the
first kind linear equation (5) with ḡδ(s), a perturbed version of the transformed right hand
side ḡ(s) defined in (7). The advantage of our method over the approach of Zhao and Meng
lies in the fact that, neither the derivation of our estimate depends on such transformation,
nor the construction of the regularized derivative depends on ḡδ(s). In addition, note that,
as already mentioned in the introduction, although this estimate can be seen as a particular
case of general results reported in Nair et al. (2005) obtained from a general regularization
method in Hilbert scales, it is important to emphasize that in our context the proof of such
an estimate is simpler.

We proceed by observing that higher order differentiation can be approached similarly. Let
Tm : Hm

p (0, 2π) ⊂ L2(0, 2π) → L2(0, 2π) be the linear operator such that Tm(g) = g(m).
Then, as before, given g ∈ Hm

p (0, 2π), the goal is to find ξ ∈ L2(0, 2π) such that

g(m) = ξ. (41)

Straightforward calculations show that Tm† has singular values with double multiplicity,

ηmj = j−m , and associated singular functions given by {v j , (−1)
m+1
2 u j }, {u j , (−1)

m−1
2 v j }

for odd m and {(−1)
m
2 u j , u j }, {(−1)

m
2 v j , v j } for even m. The implication of this is that a

singular value expansion for ξ exists and that
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ξ = Tmg =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
j=1

(−1)
m−1
2 η−m

j [〈g, v j 〉u j − 〈g, u j 〉v j ], m odd,

∞∑
j=1

(−1)
m
2 η−m

j [〈g, u j 〉u j + 〈g, v j 〉v j ], m even.

(42)

Analogously,

Tm†
(g(m)) =ĝ =

∞∑
j=1

[〈g, u j 〉u j + 〈g, v j 〉v j ],

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
j=1

(−1)
m−1
2 j−m[−〈g(m), v j 〉u j + 〈g(m), u j 〉v j ], m odd,

∞∑
j=1

(−1)
m
2 j−m[〈g(m), u j 〉u j + 〈g(m), v j 〉v j ], m even.

(43)

For perturbed data gδ ∈ L2(0, 2π), the regularized approximate solution of (41) is given by

ξ N
δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N∑
j=1

(−1)
m−1
2 η−m

j [〈gδ, v j 〉u j − 〈gδ, u j 〉v j ], m odd,

N∑
j=1

(−1)
m
2 η−m

j [〈gδ, u j 〉u j + 〈gδ, v j 〉v j ], m even,

(44)

where N ∈ N. As in (26), being τ > 1 arbitrary, we choose N ∈ N such that

N = inf{k ∈ N; ‖Tm†
ξ kδ − ĝδ‖L2 ≤ τδg}. (45)

Arguing as in the proof of Theorem 2.1, the error in the approximation to g(m) obtained by
the truncated Fourier series technique can be bounded as follows.

Theorem 2.2 Assume that g ∈ Hm
p (0, 2π) for m > 1 and let gδ ∈ L2(0, 2π) such that (23)

holds. Then, being ξ N
δ given by (44), τ > 1 and N ∈ N satisfying (45), we have the estimate

‖ξ − ξ N
δ ‖L2 ≤ Cτ‖g(m)‖

�
m
L2

δ
m−�
m

g , (46)

where ξ = g(�) and Cτ = (τ + 1)
m−�
m + (τ − 1)

−�
m , for � = 1, . . . ,m.

Estimate (46) suggests that high-order derivatives are more sensitive to noise than first-order
derivatives.

3 Filtered spectral differentiationmatrix method

In general, becauseweonly havediscrete data rather than continuous functions, inner products
〈gδ, v j 〉, 〈gδ, u j 〉, can not be calculated exactly, so the expected performance of the truncation
method may not be achieved. The simplest way to overcome this inconvenient is to consider
the truncation method in a finite dimensional setting in which inner products are readily
computed using the available data. To see how this is done, from here on we assume that
the data are of the form g̃ j = g j + ε j , j = 0, 1, . . . , N , where ε j stands for random errors,
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g j = g(x j ), g is a 2π-periodic real valued function and x j are uniformly spaced grid points
on [0, 2π] defined by

x j = 2π j/N , j = 0, 1, . . . , N . (47)

Assume for the moment that the data are noise free. The main idea behind the truncation
method in a finite setting is that accurate approximations to derivative values g(m)(x j ) can
be constructed by means of matrix–vector products involving the so-called spectral differen-
tiation matrix and the vector of data values. To generate such a matrix, first a trigonometric
polynomial that interpolates the data is constructed and then the derivatives of the interpolant
at the grid points are taken as approximations to g(m)(x j ); the differentiation matrix then
arises as this is a linear operation. For completeness, and mainly for purposes of motivation,
to know more about the differentiation matrix we will show how it is generated. For this
purpose, we follow (Trefethen 2000, Chapter 3) and assume that N = 2n for some positive
integer n. Then the trigonometric interpolant can be expressed as

q(x) = 1

2π

[
n−1∑

k=−n+1

ĝke
ikx + 1

2
ĝn(e

inx + e−inx )

]
, (48)

where ĝk are discrete Fourier coefficients of g j , j = 1, . . . N , with ĝ0 and ĝn real and ĝ−k ,
ĝk (k = 1, . . . , n − 1) complex conjugate as the g j s are real. With the interpolant at hand,
since einx j = e−inx j as the derivative of

(
einx + e−inx

)
vanishes at the grid points, it follows

from (48) that

q(�)(x j ) = 1

2π

[
n−1∑

k=−n+1

ĝk(ik)�eikx j + ĝn(in)�
[
1+(−1)�

2

]
einx j

]
,

= 1

2π

[
[−i(n − 1)]�e−i(n−1)x j , . . . , (−i)�e−ix j , (i0)�ei0x j , (i)�ex j , . . . , (in)p

[
1+(−1)�

2

]
einx j

]

×

⎡
⎢⎢⎣
ĝ−n+1

.

.

.

ĝn

⎤
⎥⎥⎦ .

In matrix form, the �th derivative of the interpolant at the grid points can be written as

⎡
⎢⎢⎢⎣

q(�)(x1)
q(�)(x2)

...

q(�)(xN )

⎤
⎥⎥⎥⎦ = F∗Ω(�)F

⎡
⎢⎢⎢⎣

g1
g2
...

gN

⎤
⎥⎥⎥⎦ , (49)

whereF denotes the N ×N Fourier matrix, ∗ denotes complex conjugate transpose andΩ(�)

is a diagonal matrix defined by

Ω(�) = diag

(
[−i(n − 1)]�, . . . , (−i)�, 0, (i)�, (i2)�, . . . , [i(n − 1)]�, (in)�

1 + (−1)�

2

)
.

(50)
The �th-order differentiationmatrix is defined as D(�) = F∗Ω(�)F . The important conclusion
here is that if g is smooth enough, then the interpolant q(x) is a very accurate approximation
of g, and a similar conclusion applies to the derivatives q(�)(x j ) compared to g(�)(x j ), see,
e.g., (Gustafsson et al. 1995, Chapter 1).

Based on the factorization above, the following properties hold.
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Theorem 3.1 For positive integer N = 2n, the spectrum of the �-order differentiation matrix
D(�) enjoy the following properties:

1. If � is odd, D(�) is skew-symmetric with eigenvalues 0, [(±i)k]� for k = 1, . . . n − 1, 0
being an eigenvalue with double multiplicity and with eigenvectors formed by grid values
of the functions 1 and cos nx . Eigenvectors associated to the remaining eigenvalues are
columns vectors of matrix F∗.

2. If � is even, D(�) is symmetric with eigenvalues (−1)�/2×[0, 1�, 2�, . . . , n�], the extreme
eigenvalues being simple and the remaining having double multiplicity. Eigenvectors, on
the other hand, are formed by grid values of the functions 1, cos x, sin x, . . . , cos(n−1)x,
sin(n − 1)x, cos nx.

Part of the results of Theorem. 3.1 is stated without proof in an unpublished textbook by
Trefethen (Trefethen 1996, Theorem 7.2). The skew-symmetric property of D(1)) and its
spectral properties are also quoted in (Gustafsson et al. 1995, Chapter 1). Here a complete
description of spectral properties of D(�) is provided together with its singular value decom-
position (SVD). Indeed, since D(�) is normal, if p is even, it follows from item i i) that D(�)

has singular values σi , sorted in non-decreasing order, σ1 = 0, σ2 = σ3 = 1�, . . . , σN−2 =
σN−1 = (n − 1)p, σN = n�, and right singular vectors formed by grid values of functions
1, cos x, sin x, cos(n − 1)x, sin(n − 1)x, . . . , cos(nx). A similar conclusion follows from
item i) for odd �. With the assumption that singular values are ordered as before, let D(�)

have a SVD
D(�) = UΣVT, (51)

where U = [u1, . . . , uN ] and V = [v1, . . . , vN ] are orthogonal N × N matrices, and Σ =
diag(σ1, . . . , σN ) is a diagonal matrix of singular values of D(�). Then, if the noise-free data
are arranged in a vector g ∈ R

N , the vector of �th spectral derivatives of g at the grid points
x j , which we denote here by q�, can be expressed as

q� .= D(�)g =
N∑
i=1

σi

(
vTi g

)
ui . (52)

In particular, for even �, pointwise spectral derivative values at x j become

q(�)(x j ) =
n−1∑
i=1

i�
[
(vT2ig)ai cos(i x j ) + (vT2i+1g)bi sin(i x j )

]+ inan cos(nx j ), (53)

where ai and bi are suitable scaling factors. A similar expression can be written for odd �.
A remark to be made here is that, for noise-free data, point spectral derivatives described in
(53) are essentially point values ξ N (s j )where ξ N is as in (25) with g instead of gδ and where
each term of ξ N involves point derivative values of the Fourier basis. A similar procedure
that computes point derivative values from discrete noisy data by evaluating the derivative
of partial sums of Fourier–Legendre Expansions can be found in Mhaskar et al. (2013). The
difference of these approaches is that the derivative of Legendre polynomials is not as easy
to calculate as the derivative of trigonometric polynomials.

Yet with respect to Eq. (53), note that, except for the Fourier coefficients 〈g, v j 〉, 〈g, u j 〉 in
(42), which are replaced here by discrete coefficients, the most important features of the first
N terms of the singular value expansion of g(m) in (42), namely, the “continuous” singular
values ηi

m and corresponding singular functions, {cos(i x), sin(i x)}, are preserved in the
finite setting. This explains, to some extent, why spectral derivatives are highly accurate.
Note also that small singular values correspond to low-frequency eigenmodes whereas larger

123



Filtered spectral differentiation method... Page 13 of 23 165

0 2 4 6
−4

−2

0

2

4
Exact
k=2

0 2 4 6
−4

−2

0

2

4
Exact
k=7

0 2 4 6
−4

−2

0

2

4
Exact
k=12

Fig. 1 Truncated second-order derivatives using noisy data such that g̃ = g + 0.01‖g‖2. Exact data are
generated by sampling the periodic function g(x) = esin(x)

singular values correspond to high-frequency eigenmodes. Based on this observation, the
main difficulty in numerical differentiation from noisy data becomes clear when computing
spectral derivatives using the SVD ofD(�). Indeed, if the available data are arranged in vector
form as g̃ = g + ε ∈ R

N , and the vector of pointwise �th derivatives of g is denoted by g�,
i.e., g� = [g(�)(x1), . . . , g(�)(xN )]T , then in general D(�)g̃ will be very different from g�. Of
course, since

D(�)g̃ =
N∑
i=1

σi
(
vTi g̃
)
ui =

N∑
i=1

σi
(
vTi g
)
ui +

N∑
i=1

σi
(
vTi ε
)
ui , (54)

it is clear that the second sum on the right equality (contribution of noise) will dominate
the final result when the condition σi |vTi ε| >> 1 holds for some i , in which case the �th
spectral derivativeD(�)g̃will not be a good approximation to the desired derivativeg�. Indeed,
because the magnitude of the coefficients vTi ε is approximately constant when the noise is
random, and because singular values σ2i grow as i�, high-frequency components should start
dominating the result very soon. Hence, to mitigate the contribution of these components,
the sum should be truncated accordingly.

Our proposal is to filter out high-frequency components of D(�)g̃ by truncating the sum
(54) to k ≤ N terms (or equivalently by computing a matrix–vector product involving a low
rank approximation of D(�) and the vector of data values g̃), giving rise to kth truncated �th
spectral derivatives defined by

g�,k
δ =

k∑
i=1

σi
(
vTi g̃
)
ui . (55)

A particularly attractive feature of the proposedmethod (henceforth referred to as FDMA), is
that its implementation does not require any effective computation of the SVD of the Fourier
differentiation matrix. Indeed, since the truncated spectral derivatives involve quantities that
dependon singular vectorsui , vi , suchSVDis not required as the entries of the singular vector
are point values of the Fourier basis. Three kth truncated second-order spectral derivatives
displayed in Fig. 1 show that while small values of k oversmooth the computed derivative,
larger ones yield the opposite effect, therefore the challenge is how to choose a proper
truncation parameter.

123



165 Page 14 of 23 F. S. V. Bazán, L. Bedin

3.1 Error estimate

Our next step is to derive an error estimate to assess how accurate the kth truncated �th
spectral derivative is when the truncation parameter is chosen by the discrepancy principle
(DP). Proceeding similarly as in the Sobolev space setting, we notice that if (54) is regarded

as the inverse solution of the problem Bs = g̃ com B = D(�)† (see (20) and (27)), then the
residual and solution norms associated to g�,k

δ are given by

‖Rk‖22 =
N∑

i=k+1

(
vTi g̃
)2

, and ‖gl,kδ ‖22 =
k∑

i=1

σ 2
i

(
vTi g̃
)2

. (56)

Thus, similar to (45), for chosen τ > 1, the truncation parameter chosen by the discrepancy
principle is defined by

k̂ = inf{k; ‖Rk‖2 ≤ τδ, k = 1, . . . , N }, (57)

where the data g̃ satisfy
‖̃g − g‖2 ≤ δ. (58)

Our error estimate is stated as follows.

Theorem 3.2 Let g�,̂k
δ be the k̂th truncated �th spectral derivative introduced in (55) with

the truncation parameter k̂ being chosen by the discrepancy principle (57). Assume that
g ∈ Hm

p (0, 2π). Then, there exist positive constants C and Cτ such that

‖g� − g�,̂k
δ ‖2 ≤ CNl+ 1

2−m‖g(m)‖L2 + Cτ‖qm‖
�
m
2 δ

m−�
m , � = 1, 2, . . . ,m. (59)

Proof Using the triangular inequality the actual error, ‖g� − g�,̂k
δ ‖2, can be bounded as the

sum of the interpolation error, IE, plus the error due to the truncation method, RE,

‖g� − g�,̂k
δ ‖2 ≤ ‖g� − q�‖2 + ‖q� − g�,̂k

δ ‖2. (60)

These two errors can be readily estimated based on existing theory and previous results.
Indeed, to bound the first term on the right we can use an estimate for the interpolation
error (Canuto et al. 1988, p 80) which relates the discrete error 2-norm ‖g� − q�‖2 to the
error L2-norm ‖g(m) − q(�)‖L2 so that

‖g� − q�‖2 ≤ CNl+ 1
2−m‖g(m)‖L2 , (61)

whereC is a positive constantwhich does not depend on N . As for the second termon the right
of (60), we can proceed as in the proof of Theorem 2.1 to deduce that, for g ∈ Hm

p (0, 2π),
m ∈ N, there holds

‖q� − g�,̂k
δ ‖2 ≤ Cτ‖qm‖

�
m
2 δ

m−�
m , � = 1, 2, . . . ,m, (62)

where Cτ = (τ + 1)
m−�
m + (τ − 1)− �

m , and the proof follows. ��
Remark 3.1 A particularly important consequence of the above error analysis is that if the
error estimate (59) is alternatively written as

‖g� − g�,̂k
δ ‖2 = O(hm−l− 1

2 ) + O
(
δ
m−�
m

)
, (63)
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Fig. 2 Periodic cubic spline s(x) that interpolates g(x) = ecos(x), 0 ≤ x ≤ 2π , and derivatives

where h = 2π/N , and if g is sufficiently smooth and N not so small, then the interpolation
error is negligible and the actual error is dominated by the error due to the truncation method;

that is, in these conditions, the actual error becomes O(δ
m−�
m ), which coincides with the error

estimate obtained by means of the truncated Fourier series technique in the Sobolev space
setting. Numerical results which illustrate this observation are found in the next section.
Pointwise error estimates can also be derived from a more general approach based on the so-
called summability methods. For an example where the summability method involves partial
sums of Fourier–Legendre series and where the truncation parameter is chosen adaptively,
see (Mhaskar et al. 2013).

3.2 Numerical examples

In this section, we describe numerical results obtained by applying FDMA to two test prob-
lems taken from Zhao and Meng (2010). The purpose here is to compare the accuracy of our
results with that obtained by the truncated Fourier series technique, as described by Zhao
and Meng (2010). In both cases we consider N = 256 data values,

g̃(x j ) = g(x j ) + ε j , |ε j | < δ1, (64)

where x j are uniformly spaced grid points in [0, 2π ] and ε j are uniformly distributed random
numbers defined in Matlab as (2rand(N , 1)−1)δ1. In both examples the error norm δ is used
as input data and the discrepancy principle is implemented with τ = 1.01.

We will report average relative errors, ‖g� − g�,̂k
δ ‖2/‖g�‖2, of 20 realizations for 4 noise

levels, as well as the maximum truncation parameter of all realizations which we denote here
by km .

Example 1 We consider two closely related functions, namely a periodic cubic spline s(x)
that interpolates g(x) = ecos x , 0 ≤ x ≤ 2π , i.e, the cubic spline satisfying

s(0) = s(2π), s′(0) = s′(2π), s′′(0) = s′′(2π),

and the function g itself. The cubic spline used in this experiment has 13 uniformly spaced
interpolation knots x̄ j = j h̄, j = 0, . . . , 12, with h̄ = 2π/12, as seen in Fig. 2 (left).

We consider the numerical differentiation problem for s and g separately in order to
illustrate the impact of the periodicity property of these functions on the quality of the results.
Notice that s(x) has periodic derivatives up to second order, which means s ∈ H3

p(0, 2π),
while g has periodic derivatives of all orders. Hence, the L2-norm interpolation error for first
-order differentiation becomes O(h2) = O(4π2/2562) ≈ 6 × 10−4 for s(x) and negligible
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Fig. 3 Interpolation error, error due to the truncation method, and actual error, all associated to the first-
order numerical differentiation problem for s(x) (first row) and g(x) (second row). The results correspond to
δ1 = 0.0001.

for g(x), as seen in Fig. 3 (first column); second and third columns show that the actual
error is dominated by the error due to the truncation method, thus confirming what has been
claimed in Remark 3.1.

Another implication of the regularity properties mentioned above is that for first-
order differentiation, the convergence rates of the Fourier series truncation method are
O(δ2/3) for s(x) and O(δ) for g(x), while for second-order differentiation, the conver-
gence rates of the Fourier series truncation method are O(δ1/3) for s(x) and O(δ) for
g(x). This indicates that the numerical differentiation problem associated to g(x) is less
sensitive to noise than the numerical differentiation problem associated to s(x); numer-
ical results regarding approximations to first and second-order derivatives which verify
this observation are displayed in columns 3, 5, 7 and 9 of Table 1. Indeed, except
for the higher noise levels for which the results are very similar, the quality of the
results associated to g(x) are significantly better than those associated to s(x). Numer-
ical results regarding approximations to third-order derivative for g(x) are displayed
in columns 10 and 11. Results associated to the highest noise level are displayed in
Fig. 4.

The numerical results for function g(x) shown in Table 1, as well as in Tables 1 and 3
of Zhao and Meng (2010), show that the accuracy obtained by the discrete differentiation
method is essentially the same as that obtained by the method of Zhao andMeng in a Sobolev
space setting.

Example 2 We consider the periodic extension of the function

g(x) = e4−
4π2

x(2π−x) , 0 ≤ x ≤ 2π,

to all R. The derivatives of g satisfy g(k)(0) = g(k)(2π) = 0, k = 0, 1, . . . , therefore the
function g has all regularity we need to ensure that the actual error of the Fourier series
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Table 1 Average relative errors of numerical derivatives of functions s(x) and g(x)

Errors in approximations to first, second, and third derivatives

δ1 km
‖s1−s1,kδ ‖2

‖s1‖2
km

‖g1−g1,kδ ‖2
‖g1‖2

km
‖s2−s2,kδ ‖2

‖s2‖2
km

‖g2−g2,kδ ‖2
‖g2‖2

km
‖g3−g3,kδ ‖2

‖g3‖2
0.1 6 0.0274 6 0.0259 6 0.0852 6 0.0714 5 0.1440

0.01 8 0.0044 8 0.0042 8 0.0267 8 0.0120 8 0.0326

0.001 24 0.0022 9 0.0005 25 0.0246 10 0.0016 9 0.0056

0.0001 37 0.0005 12 0.0001 38 0.0095 12 0.0002 11 0.0009
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Fig. 4 First- and second-order derivatives of periodic cubic spline s(x) and g(x) = ecos(x), 0 ≤ x ≤ 2π , as
well as the associated truncated first- and second-order derivatives. The results correspond to the first run for
δ1 = 0.1

Table 2 Average relative errors in numerical derivatives for function g(x) of Example 2

Errors in approximations to first, second, and third derivatives

δ1 km
‖g1 − g1,kδ ‖2

‖g1‖2
km

‖g2 − g2,kδ ‖2
‖g2‖2

km
‖g3 − g3,kδ ‖2

‖g3‖2
0.1 6 0.0749 6 0.2170 5 0.4317

0.01 12 0.0177 12 0.0806 11 0.2560

0.001 14 0.0027 15 0.0187 14 0.0961

0.0001 23 0.0005 23 0.0042 22 0.0319

truncation method is O(δ). Numerical results corresponding to first-, second-, and third-
order differentiation are shown in Table 2 and Fig. 5. Numbers in column 3 and those of
Table 4 in Zhao and Meng (2010) show that the results obtained by both methods are very
similar.
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Fig. 5 First-, second- and third-order derivatives of function g as well as the corresponding truncated deriva-
tives. The data correspond to the first run for δ1 = 0.1
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4 Heat flux estimation in coiled tubes

We consider an inverse heat conduction problem (IHCP) defined in a selected cross-section
of a coiled tube, shown schematically in Fig. 6, under the laminar flow regime as done
by Bozzoli et al. (2014), and the assumption that the temperature T satisfies the 2D heat
conduction problem in polar coordinates (r, θ) described by

λw

1

r
∂

∂r

(
r
∂T

∂r

)
+ λw

1

r2
∂2T

∂θ2
+ qg = 0, 0 < r I < r < r E , 0 ≤ θ ≤ 2π, (65)

λw

∂T

∂r
(r E , θ) = α(Tenv − T (r E , θ)), 0 ≤ θ ≤ 2π, (66)

−λw

∂T

∂r
(r I , θ) = Q(θ), 0 ≤ θ ≤ 2π. (67)

Physically, qg denotes the uniform heat generated by the Joule effect in the wall, r I , r E denote
the internal and external radius of the cross section of the tube, respectively, λw denotes the
wall thermal conductivity, α denotes the reciprocal of the overall heat transfer resistance
between the tube wall and the surrounding environment with temperature Tenv, and Q(θ)

denotes the heat-flux distribution at the fluid–internal wall interface.
The inverse problem consists in estimating the heat-flux distribution Q(θ) frommeasured

temperature values as input data: T̃ j = T (r E , θ j )+ε j , j = 1, . . . , M , where T is assumed to
match (65)–(67) and ε j denotes random noise. Given that the solution to the forward problem
(65)–(67) depends on Q, a widely used approach consists in estimating a vector of parameters
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Q by requiring that the difference between the temperatures Tj (Q) and temperatures exper-
imentally measured T̃ j on the outer wall of the tube is minimized in some sense (Bozzoli
et al. 2014). Formally, letting Q∗ = [Q∗

1, . . . , Q
∗
M ]t , Q∗

j
.= Q(θ j ), the approach consists in

determining an estimate Q̃ for Q∗ by solving the least squares problem

Q̃ = argmin
Q∈RM

= 1

2
‖T(Q) − T̃‖22 = argmin

Q∈RM

1

2

M∑
j=1

(Tj (Q) − T̃ j )
2, (68)

where Q is the vector of unknowns and T(Q) = [T1(Q), . . . , TM (Q)]t is the vector of
computed temperatures values satisfying (65)–(67) at r = r E . Proceeding in this way, it can
be readily seen that the estimate Q̃ solves a linear least squares problemwith coefficientmatrix
J and right hand sideT(0)−T̃ (Bozzoli et al. 2014), where J is the so-called sensitivitymatrix
and T(0) is the solution to (65)–(67) constrained to Q = 0. Although the cost of computing
the matrix J can become expensive, as we need to solve M forward problems, the approach
has been shown to be effective in a number of practical applications (Bozzoli et al. 2015;
Sovari and Malinen 2007).

The purpose of this section is to show that the optimization approach described above can
be circumvented as far as the thickness tube wall is small and the numerical differentiation
problem is solved in a stable way. Indeed, when a thin wall pipe configuration is assumed to
hold, which means r I ≈ r E , the heat-flux distribution can be estimated by differentiating the
temperature distribution at the external tube wall as it can be explained shortly. Integrating
(65) in [r I , r E ] gives

λw

(
r E

∂T

∂r
(r E , θ) − r I

∂T

∂r
(r I , θ)

)
= −λw

∫ r E

r I

1

r
∂2T

∂θ2
dr −

[
qgr2

2

]r=r E

r=r I

. (69)

Since 1/r does not change sign in the interval [r I , r E ], the weighted mean value theorem for
integrals ensures that there exists r̂ in [r I , r E ] such that∫ r E

r I

1

r
∂2T

∂θ2
dr = ∂2T

∂θ2
(r̂ , θ)

∫ r E

r I

1

r
dr.

Inserting this result into (69), the boundary conditions (66)–(67) can be used to yield

r Eα(Tenv − T (r E , θ)) + r IQ(θ) = −λw ln(r E/r I)
∂2T

∂θ2
(r̂ , θ) − qg(r2E − r2

I
)

2
. (70)

Thus

Q(θ) = − 1

r I

[
λw ln(r E/r I)

∂2T

∂θ2
(r̂ , θ) + qg(r2E − r2

I
)

2
+ r Eα(Tenv − T (r E , θ))

]
. (71)

When r I ≈ r E it can be assumed that T (r I , θ) ≈ T (r E , θ) and
∂2T

∂θ2
(r̂ , θ) ≈ ∂2T

∂θ2
(r E , θ),

in which case the heat-flux distribution can be estimated as

Q(θ) ≈ − 1

r I

[
λw ln(r E/r I)

∂2T

∂θ2
(r E , θ) + qg(r2E − r2

I
)

2
+ r Eα

(
Tenv − T (r E , θ)

)]
. (72)

We note in passing that estimate (72) has been derived differently by Bozzoli et al. Bozzoli
et al. 2015, in which second-order derivatives are calculated after the data are preprocessed
in order to filter out high-frequency signal components through a Gaussian filter.

Our estimation procedure can be summarized as follows:
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Table 3 Physical parameters
λw α qg Tenv r I r E

15 5 4.8 × 106 294.2 0.012 0.015

1. From the available data T̃ j , use FDMA with DP as truncation parameter choice rule to

estimate the second-order derivative
∂2T

∂θ2
(r E , θ j ).

2. With the chosen regularization parameter k̂, compute filtered data by setting
⎡
⎢⎣

T (rE , θ1)
...

T (rE , θM )

⎤
⎥⎦ ≈

k̂∑
k=1

(vTk T̃)vk . (73)

3. Based on the estimates determined at step 1 and step 2 compute Q(θ j ) according to (72).

4.1 Heat flux estimation from synthetic data

To illustrate the three-steps procedure described above, we consider as solution of (65)–67)
a temperature distribution of the form

T (r, θ) = −qg(r2 − r2
E
)

4λw

+ A ln(
r
r E

) − 78 cos(θ)

(
r + D

r

)
+ 360, (74)

with

A = qgr2E
2λw

+ r E

λw

α(Tenv − 360), D = r2
E
(λw + αr E)

λw − αr E

, (75)

and model parameters as described in Table 3. This solution is chosen because it behaves
similarly as experimental data reported in Bozzoli et al. (2014).

For the numerical simulation we take N = 128 temperature values at the external tube
wall,

T̃ j = T (rE, θ j ) + ε j , j = 1, . . . , 128 (76)

with θ j equally spaced on [0, 2π ] and where ε j are random numbers generated as in (64) and
scaled such that ‖T− T̃‖2/‖T‖2 = 10−2×NL, whereT and T̃ are vectors of clean and noisy
data, respectively, and where NL stands for a prescribed noise level. Our goal is to illustrate
the effectiveness of FDMA in recovering the heat flux distribution for several noise levels,
concentrating on assessing the quality of inverse solutions as the tube thickness varies. For
this, the heat flux distribution Q(θ) will be estimated for three distinct values of r I , keeping
the outer radius unchanged and fixed at r E = 0.015. To assess the effectiveness of FDMA,

average norm-wise relative errors, EQ = ‖Q∗ − Q̃‖2
‖Q∗‖2 , of 20 realizations are computed. In

all cases the noise level δ = 10−2 × NL‖T‖2 is used as input data and the discrepancy
principle is implemented with τ = 1.1. Numerical results reported in Table 4 show that the
reconstruction quality of the heat flux coefficient is remarkably good and rather independent
of the inner radius. This observation is also illustrated with results obtained from the first
realization for the lowest noise level in Fig. 7. Notice also that in all cases, the maximum
truncation parameter in all realizations remains constant and equals km = 3.
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Table 4 Average relative errors
in the reconstructions of heat flux
coefficient from synthetic data for
distinct tube thickness values

rI = 0.012 rI = 0.013 rI = 0.014

NL(%) km EQ EQ EQ

0.2 3 0.0010 0.0014 0.0012

0.4 3 0.0024 0.0026 0.0016

0.6 3 0.0043 0.0035 0.0026

0.8 3 0.0046 0.0050 0.0045

1.0 3 0.0084 0.0133 0.0080
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−1.55

−1.5
x 10

4 rI = 0.012
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Fig. 7 Recovered heat flux distribution for three distinct tube thickness values

Fig. 8 Experimental data
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4.2 Heat flux estimation from experimental data

Wenowconsider the heat flux estimationproblem fromexperimental data acquiredbyBozzoli
et al. (2014). The data consist of 276 pointwise equality spaced temperature values acquired
by a infrared camera on the exterior wall surface of a coiled tube. In this experimental
investigation a stainless steel coiled tubewas tested under the prescribed condition of uniform
heating generated by Joule effect in the wall. The pipe under test consists of a helical profile
composed by eight coils, the diameter and the pitch of the helix being approximately 310mm
and 200 mm, respectively, and the tube external diameter measuring 9 mmwith a 1-mm wall
thickness. The surface temperature distribution was acquired experimentally by means of a
FLIR SC7000 infrared camera, with a 640 × 512 pixel detector array. Moving the infrared
camera around the tube, different images of the test section were acquired: then, thanks to
a position reference fixed on the tube wall, the different infrared images were conveniently
cropped, processed by perspective algorithms and merged together in Matlab environment.
With this data processing procedure, a temperature distribution on the tube wall versus the
circumferential angular coordinate was obtained. Experimental data acquired by the infrared
camera are displayed in Fig. 8.
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Fig. 9 Filtered temperature data (left) and estimated heat flux distribution (right) both obtained by FDMA and
Tikhonov regularization from experimental measurements

The experimental investigation was carried out in laminar regime by using ethylene glycol
as aworkingfluid. For further details about the experimental procedure the reader is referred to
Bozzoli et al. (2014). Except for the inner and outer radii, the remaining systemparameters are
the same as in Table 3. Turning to the estimation procedure, as we know, for the discrepancy
principle to work, the noise level δ = ‖T − T̃‖2 has to be estimated. In this experimental
investigation, such estimation was made by measuring the surface temperature distribution
while maintaining the coil wall under isothermal conditions (Bozzoli et al. 2014), yielding
δ ≈ 0.34. As seen in Fig. 9 (right), the results agree well with those obtained in Bozzoli
et al. (2014) through Tikhonov regularization supported by the fixed-point method of Bazán
(2008), Bazán and Francisco (2009) as parameter choice rule, which are also displayed for
comparison.

Filtered temperature data computed as Tfiltered = T(0) + JQ(·), where Q(·) stands for
the heat flux distribution obtained by Tikhonov regularization, as well as filtered temperature
data computed as described in (73) through FDMA, are compared to the experimental data
in Fig. 9 (left). The results show that both reconstructed temperature distributions fit well the
experimental data.

5 Conclusions

A numerical method for numerical differentiation of periodic functions from noisy sampled
data has been proposed and illustrated by solving test problems taken from Zhao and Meng
(2010), as well as a heat flux estimation problem based on experimental data. The method
constructs stable pointwise approximations to high-order derivatives by filtering the high-
frequency content of spectral derivatives. Formally, this is achieved by means of a matrix–
vector product of a low rank approximation of the spectral Fourier differentiation matrix
and the vector of data values, where the rank is determined by the discrepancy principle.
Theoretical results show that the accuracy obtained with the proposed method coupled with
discrepancy principle is essentially the same as that obtained by the truncated Fourier series
approach in a Sobolev space framework.
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