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Abstract
In this article, we consider the heat equation coupledwithDarcy’s law by a nonlinear viscosity
depending on the temperature. We recall two numerical schemes and introduce a new non-
stabilized one, we show the existence and uniqueness of the solutions and we establish an
a priori error estimates using the Brezzi–Rappaz–Raviart theorem. Numerical investigations
are preformed and showed.
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1 Introduction

Let � ⊂ Rd , d = 2, 3, be a bounded simply connected open domain, with a Lipschitz-
continuous boundary �. This work treats the temperature distribution of a fluid in a porous
mediummodelled by a convection–diffusion equation coupled with Darcy’s law. The system
of equations is the following:
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(P)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν(T (x))u(x) + ∇ p(x) = f(x) in �,

(div u)(x) = 0 in �,

−α�T (x) + (u · ∇ T )(x) = g(x) in �,

(u · n)(x) = 0 on �,

T (x) = 0 on �,

where n is the unit outward normal vector on�. The unknowns are the velocity u, the pressure
p and the temperature T of the fluid. The function f represents an external density force and g
an external heat source. The viscosity ν depends on the temperature (Hooman and Gurgenci
2007 or Rashad 2014) while the parameter α is a positive constant that corresponds to the
diffusion coefficient.

The heat equation coupled with the Navier–Stokes system has been treated by many
works (see for instance Bernardi et al. 1995; Deteix et al. 2014, or Gaultier and Lezaun
1989). The coupling of Darcy’s system with the heat equation where the viscosity is con-
stant but the exterior force depends on the temperature has been analyzed by Bernardi
et al. (2016) or Boussinesq (1903) and discretized with a spectral method. For the time-
dependent convection–diffusion-reaction equation coupled with Darcy’s law, we can refer to
Feng (1995), Chen and Ewing (1999), Beatrice et al. (2011) and Jizhou et al. (2015).

In Bernardi et al. (2018), we study theoretically and numerically the system (P) which
corresponds to the heat equation coupledwithDarcy’s law by a nonlinear viscosity depending
on the temperature.Wepropose and analyze two numerical schemes (called (Vh,1) and (Vh,2))
based on finite element methods. The discrete formulation (Vh,2) is stabilised by the term
∈ 1

2 (divuh Th, Sh). For each discrete formulation, existence of a solution is derived without
restriction on the data byGalerkin’smethod andBrouwer’s Fixed Point and global uniqueness
is established when the solution is slightly smoother and the data are suitably restricted. We
also derive an optimal a priori error estimate for each numerical scheme under the smallness
condition of the data, study the convergence of the successive approximation algorithm and
finally show numerical investigations for d = 2.

In this work, we study the same coupled problem, we consider the scheme (Vh,1) and we
introduce a new numerical scheme called (Va,h), which is similar to (Vh,2), but without the
stabilized term 1

2 (divuh Th, Sh). We apply Brezzi–Rappaz–Raviart theorem to conclude the
existence, the uniqueness and the a priori error estimates for all the discrete schemes. In fact,
we show the details of the proofs for (Va,h) and for (Vh,1), it is a simple consequence with
slight modifications. The main differences between this work and Bernardi et al. (2018) are
that we show in this paper the existence and uniqueness of the solution, and the a priori error
estimate without the smallness condition on the exact and numerical solutions, but when the
mesh step h is smaller then a given positive real number h0, which means that the numerical
solution (uh, ph, Th) is in a neighbourhood of the exact solution (u, p, T ). Another advantage
is about the numerical computation of the stabilized term, in (Vh,2), which is skipped in (Va,h).
Finally, we show in this paper numerical investigations corresponding to an iterative scheme
associated with (Va,h) and we compare with those introduced in Bernardi et al. (2018).
In a future work, we will study the properties (existence and uniqueness of the solution,
convergence, etc.) of the successive algorithm (Vhi) introduced in the last section of this
paper. In fact, the difficulties of this studies are related to the omitted term of stabilisation.

This article is organized as follows:

• Section 2 is devoted to the analysis of the corresponding variational formulation.
• In Sect. 3, we introduce the discrete problems.
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• In Sect. 4, we show the existence and the uniqueness of the discrete solutions. Hence, an
a priori error estimate was also proved.

• Section 5 is devoted to numerical investigations.

2 Analysis of themodel

2.1 Notation

Let α = (α1, α2, . . . αd) be a d-uple of non negative integers, set |α| = ∑d
i=1 αi , and define

the partial derivative ∂α by

∂α = ∂ |α|

∂xα1
1 ∂xα2

2 . . . ∂xαd
d

.

Then, for any positive integer m and number p ≥ 1, we recall the classical Sobolev space
(Adams 1975 or Necas 1967)

Wm,p(�) = {v ∈ L p(�); ∀ |α| ≤ m, ∂αv ∈ L p(�)},
equipped with the seminorm

|v|Wm,p(�) =
⎧
⎨

⎩

∑

|α|=m

∫

�

|∂αv|p dx
⎫
⎬

⎭

1
p

and the norm

‖v‖Wm,p(�) =
⎧
⎨

⎩

∑

0≤k≤m

|v|p
Wk,p(�)

⎫
⎬

⎭

1
p

.

When p = 2, this space is the Hilbert space Hm(�). The definitions of these spaces are
extended straightforwardly to vectors, with the same notation, but with the following modi-
fication for the norms in the non-Hilbert case. Let v be a vector valued function; we set

‖v‖L p(�)d =
(∫

�

|v|p dx
) 1

p

,

where | · | denotes the Euclidean vector norm.
For vanishing boundary values, we define

H1
0 (�) = {v ∈ H1(�); v|� = 0}

and, for any integer q ≥ 2,

W 1,q
0 (�) = {v ∈ W 1,q(�); v|� = 0}.

We shall often use the following Sobolev imbeddings: for any real number p ≥ 1 when
d = 2, or 1 ≤ p ≤ 2 d

d−2 when d ≥ 3, there exist constants Sp and S0p such that

∀ v ∈ H1(�), ‖v‖L p(�) ≤ Sp‖v‖H1(�)

and

∀ v ∈ H1
0 (�), ‖v‖L p(�) ≤ S0p|v|H1(�). (2.1)
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When p = 2, (2.1) reduces to Poincaré’s inequality.
Recall the standard spaces for Darcy’s equations

L2
m(�) =

{

v ∈ L2(�);
∫

�

v dx = 0

}

.

Finally,we recall the inf-sup condition between H1(�)∩L2
m(�) and L2(�)d (see for instance

Proposition 1.19, Chap XIII in Bernardi et al. 2004),

inf
q∈H1(�)∩L2

m (�)
sup

v∈L2(�)d

∫

�
v · ∇ q dx

‖v‖L2(�)d |q|H1(�)

≥ 1. (2.2)

2.2 Variational formulation

We suppose that ν ∈ W 1,∞(�); then the function ν is Lipschitz-continuous with Lipschitz
constant λ, i.e.,

∀s, t ∈ R, |ν(s) − ν(t)| ≤ λ|s − t |. (2.3)

In addition, before introducing the variational formulation of (P), we precise the following
assumption on the function ν:

Assumption 2.1 ν is bounded and there exist two positive constants ν1 and ν2 such that for
any s ∈ R

ν1 ≤ ν(s) ≤ ν2. (2.4)

We recall the following variational formulation introduced in Bernardi et al. (2018) equiv-
alent to (P):

(Va)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p, T ) ∈ L2(�)d × (H1(�) ∩ L2
m(�)) × H1

0 (�) such that

∀ v ∈ L2(�)d ,

∫

�

ν(T )u · v dx +
∫

�

∇ p · v dx =
∫

�

f · v dx ,

∀ q ∈ H1(�) ∩ L2
m(�),

∫

�

∇ q · u dx = 0,

∀ S ∈ H1
0 (�) ∩ L∞(�), α

∫

�

∇ T · ∇ S dx +
∫

�

(u · ∇ T ) S dx =
∫

�

g S dx.

We refer to Bernardi et al. (2018) for the equivalence between the variational formulation
(Va) and the problem (P), and for the existence and uniqueness of the solution of (Va).

Remark 2.2 In Bernardi et al. (2018), we have introduced the following variational formula-
tion:

(V )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p, T ) ∈ H0(div,�)d × L2
m(�) × H1

0 (�) such that

∀ v ∈ H0(div,�)d ,

∫

�

ν(T )u · v dx −
∫

�

p(div(v)) dx =
∫

�

f · v dx ,

∀ q ∈ L2
m(�),

∫

�

q(div u) dx = 0,

∀ S ∈ H1
0 (�) ∩ L∞(�), α

∫

�

∇ T · ∇ S dx +
∫

�

(u · ∇ T ) S dx =
∫

�

g S dx,

where

H(div,�) = {v ∈ L2(�)d ; div v ∈ L2(�)}, (2.5)

H0(div,�) = {v ∈ H(div,�); (v · n)|� = 0}, (2.6)
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equipped with the norm

‖v‖2H(div,�) = ‖v‖2L2(�)d
+ ‖div v‖2L2(�)

. (2.7)

We refer to Bernardi et al. (2018) for the properties and the studies of (V ).

2.3 Regularity of the solution

We are looking to establish a certain regularity for the solution of Problem (P).

Definition 2.3 The domain � is called of class Dq , 2 < q < ∞, if the equation

�u = div f

admits a unique solution u in W 1,q
0 (�), for all f ∈ Lq(�), such that

‖u‖q ≤ Kq‖f‖q ,
where Kq is a constant independent of f .

Theorem 2.4 We assume that � is of class Dq and of class C1,1 or polygonal or polyhe-
dral convex and that f ∈ L∞(�)d . So the solution of Problem (P) satisfies the following
regularity:

(u, p, T ) ∈ (Lr (�)d ,W 1,r (�), H1
0 (�) ∩ W 2,s(�)), where r > 2, s = 2 r

r + 2
> 1.

Proof We first start by writing the first equation of Problem (P) as follows:

u + ∇ p

ν(T )
= f

ν(T )
.

As div u = 0, we get the equation

div

( ∇ p

ν(T )

)

= div

(
f

ν(T )

)

,

where 1
ν2

≤ 1
ν(T )

≤ 1
ν1

(Assumption 2.1). We denote by g = f
ν(T )

, so g ∈ L∞(�)d as we

have f ∈ L∞(�)d . According to Meyers (1963), there exist a number r > 2 depending
on ν2, on the norm of 1

ν(T )
in L∞(�) and on the domain � and its dimension, such that

p ∈ W 1,r (�) and u ∈ Lr (�)d .
Since u ∈ Lr (�)d and ∇T ∈ L2(�), we get u · ∇T ∈ Ls(�) where s = 2 r

r+2 > 1. We
deduce by using the heat equation of System (P) that T ∈ W 2,s(�), as � is of class C1,1 or
polygonal or polyhedral convex (see for instance Amrouche and Rodríguez-Bellido 2018).

��

3 Discretization

Thus, we assume that � is a polygon when d = 2 or polyhedron when d = 3. So it can be
completely meshed. Now, we describe the discretization in space. We consider a regular (see
Ciarlet 1991) family of triangulations (Th)h of � which is a set of closed non degenerate
triangles for d = 2 or tetrahedra for d = 3, called elements, satisfying,
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• for each h, �̄ is the union of all elements of Th ;
• the intersection of two distinct elements of Th is either empty, a common vertex, or an

entire common edge (or face when d = 3);
• the ratio of the diameter of an element K in Th to the diameter of its inscribed circle

when d = 2 or ball when d = 3 is bounded by a constant independent of h.

As usual, h denotes the maximal diameter of all elements of Th . For each K in Th , we denote
by P1(K ) the space of restrictions to K of polynomials in d variables and total degree at
most one and by hK the diameter of K . In what follows, c, c′,C,C ′, c1, . . . stand for generic
constants which may vary from line to line but are always independent of h.

We also use the following Inverse inequality: for any real number p ≥ 2, there exists
constant CI such that for any polynomial function vh on K

‖vh‖L p(K )d ≤ CI h
d
p − d

2
K ‖vh‖L2(K )d . (3.1)

To reach the Inverse inequality globally, we assume that there exists a positive constant b
independent of h such that:

b h < hK < h.

For a given triangulation Th , we define the following finite-dimensional spaces:

Zh = {Sh ∈ C0(�̄); ∀ K ∈ Th, Sh |K ∈ P1(K )} and Xh = Zh ∩ H1
0 (�).

There exists an approximation operator (when d = 2, see Bernardi and Girault 1998 or
Clément 1975; when d = 2 or d = 3, see Scott and Zhang 1990) Rh in L(W 1,p(�); Zh) and
in L(W 1,p(�) ∩ H1

0 (�); Xh) such that for all K in Th , m = 0, 1, l = 0, 1, and all p ≥ 2,

∀ S ∈ Wl+1,p(�), |S − Rh(S)|Wm,p(K ) ≤ C(p,m, l) hl+1−m
K |S|Wl+1,p(�K ), (3.2)

where �K is the macro element containing the values of S used in defining Rh(S). Let K be
an element of Th with vertices ai , 1 ≤ i ≤ d + 1, and corresponding barycentric coordinates
λi . We denote by bK ∈ Pd+1(K ) the basic bubble function

bK (x) = λ1(x) . . . λd+1(x).

We observe that bK (x) = 0 on ∂K and that bK (x) > 0 in the interior of K .
Let (Wh, Mh) be a pair of discrete spaces approximating L2(�)d × (H1(�) ∩ L2

m(�))

defined by

Wh = {vh ∈ (C0(�̄))d ; ∀ K ∈ Th, vh |K ∈ P(K )d},

M̃h = {qh ∈ C0(�̄); ∀ K ∈ Th, qh |K ∈ P1(K )} and Mh = M̃h ∩ L2
m(�),

where

P(K ) = P1(K ) ⊕ Vect{bK }.
Let Vh be the kernel of the divergence in Wh ,

Vh =
{

vh ∈ Wh; ∀qh ∈ Mh,

∫

�

∇qh · vh dx = 0

}

.
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With the discrete spaces, we have (see for instance Bernardi et al. 2018) the following discrete
inf-sup condition:

∀ qh ∈ Mh, sup
vh∈Wh

∫

�
∇ qh · vh dx

‖vh‖L2(�)d
≥ β2 |qh |H1(�), (3.3)

with a constant β2 > 0 independent of h.
Since Wh contains the polynomials of degree one in each K , we can construct a variant

πh of Rh (cf. Girault and Lions 2001 or Scott and Zhang 1990) in L(L2(�)d ; Zh) that is
quasi-locally stable in L2(�), i.e., for all K in Th

∀v ∈ L2(�)d , ‖πh(v)‖L2(K )d ≤ C‖v‖L2(�K )d ,

and has the same quasi-local approximation properties as Rh for all K in Th , for m = 0, 1
and 1 ≤ l ≤ 2,

∀ v ∈ Hl(�)d , |v − πh(v)|Hm (K )d ≤ C hl−m |v|Hl (�K )d . (3.4)

Regarding the pressure, since Zh coincides with M̃h , an easy modification of Rh yields an
operator rh inL(H1(�); M̃h) and inL(H1(�)∩L2

m(�); Mh) (see for instance Abboud et al.
2009), satisfying (3.2). We approximate problem (Va) by the following discrete scheme:

(Va,h)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (uh, ph, Th) ∈ Wh × Mh × Xh such as

∀ vh ∈ Wh,

∫

�

ν(Th)uh · vh dx +
∫

�

∇ ph · vh dx =
∫

�

f · vh dx ,

∀ qh ∈ Mh,

∫

�

∇ qh · uh dx = 0,

∀ Sh ∈ Xh, α

∫

�

∇ Th · ∇ Sh dx +
∫

�

(uh · ∇ Th)Sh dx =
∫

�

g Sh dx .

Remark 3.1 In Bernardi et al. (2018), we have introduced two other discrete variational
formulations:

(1) The first one (called (Vh,1) in Bernardi et al. 2018) is the following:

(Vh,1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find (uh, ph, Th) ∈ Wh,1 × Mh,1 × Xh such as

∀ vh ∈ Wh,1,

∫

�

ν(Th)uh · vh dx −
∫

�

ph(div vh) dx =
∫

�

f · vh dx ,

∀ qh ∈ Mh,1,

∫

�

qh(div uh) dx = 0,

∀ Sh ∈ Xh, α

∫

�

∇ Th · ∇ Sh dx +
∫

�

(uh · ∇ Th)Sh dx =
∫

�

g Sh dx ,

where Wh,1 and Mh,1 are the discrete spaces corresponding to H0(div,�) and L2
m(�)

by using RT0 elements, namely the Raviart-Thomas finite elements for the velocity and
the P0 finite elements for the pressure. We refer to Bernardi et al. (2018) for the details.

(2) The second one (called (Vh,2) in Bernardi et al. 2018) is similar to (Va,h) with exactly
the same finite elements, but the third equation is completed with a stabilised term
1
2 (divuh Th, Sh).

4 Existence and uniqueness of the solution

For each one of the schemes (Vh,1) and (Vh,2), and as we mentioned in the introduction,
we prove in Bernardi et al. (2018) the existence of a solution by Galerkin’s method and
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1 Page 8 of 16 D. Dib et al.

Brouwer’s Fixed Point. Furthermore, the global uniqueness is established when the solution
is slightly smoother and the data are suitably restricted.

In this section, we will show the existence and the uniqueness of the numerical solution
of (Va,h), and the corresponding a priori error estimate by using the Brezzi–Rappaz–Raviart
theorem. The same steps are valid to show same results for (Vh,1). We mentioned in the
introduction the advantages and disadvantages of this study with respect to that performed
in Bernardi et al. (2018).

We introduce the Darcy operator Q, which associates with any datum f ∈ L2(�)d the
solution (w, q) of the generalized Darcy’s problem:

⎧
⎨

⎩

ν1w(x) + ∇q(x) = f(x) in�,

divw(x) = 0 in�,

(w.n)(x) = 0 on�.

For the existence and uniqueness of the solution (w, q), we can refer for instance to Theorem
1.9 Chapter XIII Bernardi et al. (2004).

We introduce the inverse L of the Laplace operator which associates with any datum
g ∈ L2(�), the solution L in H1

0 (�) of the following problem:
{−α�L(x) = g(x) dans�,

L(x) = 0 sur�.

In fact, Lax–Milgram theorem implies existence and uniqueness of the solution L .

Remark 4.1 Concerning the operator L:
• L remains applicable for all g ∈ H−1(�).
• If f ∈ L∞(�)d , then according toTheorem2.4,L remains applicable for g̃ = g−u·∇T ∈

L p(�), p > 1. Subsequently, we can define Lg̃.

If f ∈ L∞(�)d , it is readily checked that, when setting U = (u, p, T ), the problem (P) can
be equivalently written as

F(U ) = U − JG(U ) = 0,

where G(U ) = (f − ν(T )u + ν1u, g − u · ∇T ) and J =
(
Q 0
0 L

)

.

Similarly, let Qh denote the discrete Darcy operator, i.e, the operator which associates
with any datum f ∈ L2(�)d , the solution (wh, qh) ∈ Wh × Mh of the Darcy problem

⎧
⎪⎨

⎪⎩

∀ vh ∈ Wh,

∫

�

ν1wh · vh dx +
∫

�

∇ qh · vh dx =
∫

�

f · vh dx ,

∀ th ∈ Mh,

∫

�

∇ th · wh dx = 0.

Finally, let Lh denote the operator which associates with any datum g ∈ L2(�), the function
Lh ∈ Xh which satisfies

∀ Sh ∈ Xh, α

∫

�

∇Lh · ∇Sh dx =
∫

�

g Sh dx .

We set Uh = (uh, ph, Th). Problem (Va,h) can be equivalently written as follows:

Fh(Uh) = Uh − JhG(Uh) = 0,

where Jh =
(
Qh 0
0 Lh

)

.
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Assumption 4.2 We suppose that Qf ∈ H1(�)d × H2(�) and Lg ∈ H2(�).

Assumption 4.3 The solution U = (u, p, T ) of Problem (Va)

• belongs to H1(�)d × H2(�) × H2(�);
• is such that DF(u, p, T ) is an isomorphism of L2(�)d × (H1(�) ∩ L2

m(�)) × H1
0 (�).

From now on, we denote by

V1 = L2(�)d × (H1(�) ∩ L2
m(�)) × H1

0 (�) and W1 = L2(�)d × L2(�).

We are thus in a position to prove the preliminary results which we need for applying the
theorem of Brezzi et al. (1980). This requires to introduce the linear and continuous operator
Ph from V1 to Wh × Mh × Xh which satisfies

lim
h→0

‖U − PhU‖V1 = 0, (4.1)

with PhU = (πhu, rh p, RhT ) where πh , rh and Rh are the operators defined in Sect. 3, and
(u, p, T ) ∈ H1(�)d × H2(�) × H2(�). To simplify, they are stated in three dimensions,
but the two-dimensional analogue is easily derived.

In order to apply Brezzi–Rappaz–Raviart theorem which allows us to show the existence
and the uniqueness of the solution, we present the following three theorems:

Theorem 4.4 Assume that ν ∈ W 2,∞(�) and Assumptions 4.2 and 4.3 hold. There exists a
positive real h0 > 0, such that for all h ≤ h0, the operator DFh(PhU ) is an isomorphism of
Wh × Mh × Xh with the norm of its inverse bounded independently of h.

Proof First we write the expansion

DFh(PhU ) = DF(U ) − (Jh − J )DG(U ) − Jh(DG(PhU ) − DG(U )). (4.2)

Due to the Assumption 4.3, it suffices to check that the last two terms in the right-hand side
of (4.2) tend to 0 when h tends to 0.

We begin by proving the zero convergence of the first term. We have

‖(Jh − J )DG(U )‖L(V1) ≤ ‖Jh − J‖L(W1,V1)‖DG(U )‖L(V1,W1).

Since Qf ∈ H1(�)d × H2(�) and Lg ∈ H2(�), we get

lim
h→0

‖Jh − J‖L(W1,V1) = 0.

In fact, we start by considering the relation

‖Jh − J‖L(W1,V1) = sup
(f,g)∈W1

‖(Jh − J )(f, g)‖V1
‖(f, g)‖W1

,

where

‖(Jh − J )(f, g)‖V = (‖w − wh‖2L2(�)3
+ |q − qh |2H1(�)

+ +|L − Lh |2H1(�)

)1/2
,

and (w, q) and (wh, qh) verify the following equations:

∀ vh ∈ Wh,

∫

�

ν1wh · vh dx +
∫

�

∇ qh .vh dx =
∫

�

f · vh dx
and

∀ v ∈ L2(�)3,

∫

�

ν1w · v dx +
∫

�

∇ q · v dx =
∫

�

f · v dx. (4.3)

123



1 Page 10 of 16 D. Dib et al.

We choose v = vh ∈ Vh , insert πhw and rhq in Eq. (4.3), and remark that
∫

�
(∇qh − rhq) ·

vhdx = 0 to get
∫

�

(πhw − wh) · vh dx =
∫

�

(πhw − w) · vh dx + 1

ν1

∫

�

∇(rhq − q) · vh dx .

Then, we take vh = πhw − wh to have

‖wh − πhw‖L2(�)3 ≤ C h (|w|H1(�)3 + |q|H2(�)). (4.4)

The inf-sup condition (3.3) allows us to get

|qh − rhq|H1(�) ≤ C h (|w|H1(�)3 + |q|H2(�)). (4.5)

Furthermore, L and Lh satisfy the following equations:

∀ Sh ∈ Xh, α

∫

�

∇Lh · ∇Sh dx =
∫

�

g Sh dx

and

∀ S ∈ H1
0 (�), α

∫

�

∇L · ∇S dx =
∫

�

g S dx . (4.6)

We choose S = Sh and insert RhL in (4.6) to get
∫

�

∇(RhL − Lh) · ∇Sh dx =
∫

�

∇(RhL − L) · ∇Sh dx .

We take Sh = RhL − Lh to obtain

|RhL − Lh |H1(�) ≤ C h|L|H2(�). (4.7)

Then, relations (4.4), (4.5) and (4.7) and properties of operators Rh , rh and πh allow us to
obtain the following limit:

lim
h→0

‖(Jh − J )DG(U )‖L(V1) = 0.

Let us now treat the last term of (4.2). We have, for all Wh = (wh, qh, Lh) ∈ (Wh × Mh ×
Xh)\{0},

(DG(U ) − DG(PhU )) · Wh

=
(

(ν(RhT ) − ν(T ))wh + (ν′(RhT )πhu − ν′(T )u)Lh

wh · ∇(RhT − T ) + (πhu − u) · ∇Lh

)

. (4.8)

As ν belongs to W 2,∞(�), its derivative ν′ is bounded by a given real positive number ν′
2

and is also Lipschitz-continuous with a given real positive Lipschitz constant λ′. Then, by
using the inverse inequality (3.1) we obtain:

‖Jh(DG(PhU ) − DG(U ))‖L(V1) ≤ C h− d
6 ‖U − PhU‖V1 . (4.9)

In fact, we consider the relation

‖Jh(DG(U ) − DG(PhU ))‖L(V1)

= sup
(wh ,qh ,Lh)∈(Wh×Mh×Xh)\{0}

‖Jh(DG(U ) − DG(PhU ))(wh, qh, Lh)‖V1
‖(wh, qh, Lh)‖V1

,
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where

‖Jh(DG(U ) − DG(PhU ))(wh, qh, Lh)‖V1 = ‖(w̃h, q̃h, L̃h)‖V1 , (4.10)

and (w̃h, q̃h) satisfies the equation
∫

�

ν1w̃h · vh dx +
∫

�

∇ q̃h · vh dx =
∫

�

(ν(RhT ) − ν(T ))wh · vh dx

+
∫

�

ν′(RhT ) Lh(πhu − u) · vh dx

+
∫

�

(ν′(RhT ) − ν′(T )) Lhu · vh dx
(4.11)

and L̃h satisfies

α

∫

�

∇ L̃h · ∇Sh dx =
∫

�

(πhu − u) · ∇Lh Sh dx +
∫

�

wh · ∇(RhT − T )Sh dx.

(4.12)

Then, by taking vh = w̃h in (4.11), we get the bound

ν1‖w̃h‖L2(�)3 ≤ C1 h
− d

6
(
λ|T − RhT |H1(�)‖wh‖L2(�)3 + ν′

2‖u − πhu‖L2(�)3 |Lh |H1(�)

+λ′ S06‖u‖L3(�)3 |T − RhT |H1(�)|Lh |H1(�)

)
. (4.13)

The discrete inf-sup condition (3.3) allows us to bound |q̃h |H1(�) with a similar right-hand
side of (4.13).

Next, we choose Sh = L̃h in (4.12) to get

α|L̃h |H1(�) ≤ C2 h
− d

6
(‖u − πhu‖L2(�)3 |Lh |H1(�) + |T − RhT |H1(�)‖wh‖L2(�)3

)
.

Equation (4.1), the properties of the operators Rh , rh and πh , and Assumption 4.3 allow us
to obtain

lim
h→0

‖Jh(DG(PhU ) − DG(U ))‖L(V1) = 0.

Then, all the above results allow us to deduce that there exists a positive constant h0 > 0 that
for all h ≤ h0, DFh(PhU ) is an isomorphism.

To close the proof of the theorem, we have to show that the inverse of DFh(PhU ) is
bounded independently of h. In fact, for all (vh, th, Sh) ∈ Wh × Mh × Xh , we have

DFh(PhU )(vh, th, Sh) = DF(U )(vh, th, Sh) − (Jh − J )DG(U )(vh, th, Sh)

−Jh(DG(PhU ) − DG(U ))(vh, th, Sh).

(DF(U ))−1 is an isomorphism in a discrete space, then (DF(U ))−1 is continuous.
We denote by γ = ‖(DF(U ))−1‖L(V1) and use the relation

‖(vh, th, Sh)‖V1 ≤ ‖(DF(U ))−1‖L(V1) ‖DF(U )(vh, th, Sh)‖V1
and the formula −|ab| ≥ −|a||b| to obtain:

‖DFh(PhU )(vh, th, Sh)‖V1 ≥ (
γ −1 − ‖Jh − J‖L(W1,V1)‖DG(U )‖L(V1,W1)

−‖Jh(DG(PhU ) − DG(U ))‖L(V1)
)‖(vh, th, Sh)‖V1 .
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Therefore,

‖DFh(PhU )(vh, th, Sh)‖V1 ≥ (γ −1 − ε(h))‖(vh, th, Sh)‖V1 ,
where limh→0 ε(h) = 0. Hence the result. ��
Theorem 4.5 Assume that ν ∈ W 2,∞(�) and Assumptions 4.3 hold, there exists a neighbor-
hood of PhU in Wh × Xh and a constant C > 0 such that the operator DFh satisfies the
following Lipschitz property, for all U∗

h in this neighbourhood:

‖DFh(U
∗
h ) − DFh(PhU )‖L(V1) ≤ C h− d

6 ‖U∗
h − PhU‖V1 ,

where C is a pocitive constant independent of h.

Proof By setting U∗
h = (u∗

h, p
∗
h, T

∗
h ), we have

DFh(U
∗
h ) = DF(U ) − (Jh − J )DG(U ) − Jh(DG(U∗

h ) − DG(U )).

and

DFh(PhU ) = DF(U ) − (Jh − J )DG(U ) − Jh(DG(PhU ) − DG(U )).

By using the bound (4.9) we deduce the following inequality:

‖Jh(DG(PhU ) − DG(U∗
h ))‖L(V1) ≤ C h− d

6 ‖U∗
h − PhU‖V1 .

Hence the result. ��
Theorem 4.6 Assume that u ∈ H1(�)3, p ∈ H2(�), T ∈ W 2,6(�), ∇T ∈ L∞(�) and
Assumption 4.3 holds. Then the following estimate is satisfied:

‖Fh(PhU )‖V ≤ C h
(|u|H1(�)3 + |T |H2(�) + |p|H2(�) + |u|H1(�)3‖∇T ‖L∞(�)

+‖u‖H1(�)3 |T |W 2,6(�)

)
,

where C is a positive constant independent of h.

Proof We consider the relation Fh(PhU ) = PhU − JhG(PhU ) and recall that F(U ) =
U − JG(U ) = 0. Then we get

Fh(PhU ) = (PhU −U ) − JhG(PhU ) + JG(U ). (4.14)

We insert JhG(U ) in the right-hand side of Eq. (4.14) and we obtain:

Fh(PhU ) = (PhU −U ) + (J − Jh)G(U ) + Jh(G(U ) − G(PhU ))).

We deduce the following inequality:

‖Fh(PhU )‖V1 ≤ ‖U − PhU‖V1 + ‖(J − Jh)G(U )‖V1 + ‖Jh(G(U ) − G(PhU )))‖V1 .
Owing to the relations (3.2) and (3.4) , we get

‖U − PhU‖V1 ≤ C h
(|u|H1(�)3 + |p|H2(�) + |T |H2(�)

)
.

As ν is Lipschitz-continuous inR and according to Relation (2.4), we get:

‖(J − Jh)G(U )‖V1 ≤ C1 h
(|u|H1(�)3 + |p|H2(�)

)
.

We still have to treat the last term ‖Jh(G(U ) − G(PhU )))‖V1 .
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We have

G(U ) − G(PhU ) = (ν1(u − πhu) + ν(RhT )πhu − ν(T )u, πhu · ∇RhT − u · ∇T ,

then we get:

‖Jh(G(U ) − G(PhU )))‖V1 ≤ ‖Qh(ν1(u − πhu) + ν(RhT )πhu − ν(T )u)‖L2(�)3

+‖Lh(πhu · ∇RhT − u · ∇T . (4.15)

We treat every term of the right-hand side of the last relation.
For the first one, we use the properties of ν to get

‖Q(ν1(u − πhu) + ν(RhT )πhu − ν(T )u)‖L2(�)3

≤ 1

ν1
‖ν1(u − πhu) + ν(RhT )πhu − ν(T )u‖L2(�)3

≤ 1

ν1
‖ν1(u − πhu) + ν(RhT )(πhu − u) + (ν(RhT ) − ν(T ))u

≤ C h
[|u|H1(�)3 + ‖u‖L3(�)3 |T |H2(�)

]
. (4.16)

Next, for the second term of the right-hand side (4.15), we insert the terms u · ∇RhT and
πhu · ∇T to obtain:

πhu · ∇RhT − u · ∇T = (πhu − u) · ∇(RhT − T ) + u · ∇(RhT − T ) + (πhu − u) · ∇T .

We denote by

L̃h = Lh(πhu · ∇RhT − u · ∇T )

which verifies, by using the integration by parts, the relation

α

∫

�

∇ L̃h · ∇Sh =
∫

�

(πhu − u) · ∇(RhT − T ) Sh

+
∫

ω

u · ∇(RhT − T ) Sh +
∫

�

(πhu − u) · ∇T Sh .

By taking Sh = L̃h and using the properties of the operators πh and Rh , and the inverse
inequality (3.1), we have:

‖Lh(πhu · ∇RhT − u · ∇T ≤ C2 h
(‖u‖H1(�)3 |T |W 2,6(�) + |u|H1(�)3‖∇T ‖L∞(�)

)
.

All the above results allow us to deduce the required result. ��
The previous three theorems allow us to apply the Brezzi–Rappaz–Raviart theorem and

to obtain the following theorem:

Theorem 4.7 Let (u, p, T ) be a solution of problem (Va)which satisfies Assumptions 4.2 and
4.3, u ∈ H1(�)3, p ∈ H2(�), T ∈ W 2,6(�) and ∇T ∈ L∞(�). We moreover assume that
ν belongs to W 2,∞(�). Then, there exists a positive number h0 > 0 and a neighborhood O
of U in V , such that for all h ≤ h0, the variational formulation (Va,h) has a unique solution
(uh, ph, Th) with Uh ∈ O. Furthermore, we have the a priori error estimate:

|u − uh | ≤ Ch|u|2,�,

where C is a positive constant independent of h.
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Proof Combining Assumptions 4.2–4.3 and Theorems 4.4–4.6 with the Brezzi et al. (1980)
yields for h small enough, the local existence and uniqueness of the solution (uh, Th).
Moreover, thanks to the discrete inf-sup condition (2.2), we deduce the existence and unique-
ness of ph . ��
Remark 4.8 For the scheme (Vh,1), we can apply the same above steps to show the corre-
sponding results. We use the approximation operator ξ1h instead of πh for the velocity and ρh
instead of rh for the pressure (see Bernardi et al. 2018 for the definition of ξh and rh).

5 Numerical results

Tovalidate the theoretical results,we perform several numerical simulations usingFreefem++
(seeHecht 2012).We consider a square domain� =]0, 3[2. Each edge is divided into N equal
segments so that � is divided into 2N 2 triangles. We choose same exact solution considered
in Bernardi et al. (2018), (u, p, T ) = (curlψ, p, T ) where ψ , p and T are defined by

ψ(x, y) = e−β((x−1)2+(y−1)2), (5.1)

p(x, y) = cos
(π

3
x
)
cos

(π

3
y
)

, (5.2)

and

T (x, y) = x2(x − 3)2y2(y − 3)2. (5.3)

We introduce the following iterative fixed point scheme corresponding to (Va,h):

(Vhi)

⎧
⎪⎪⎨

⎪⎪⎩

(ν(T i
h )ui+1

h , vh)2 + (∇ pi+1
h , vh)2 = (f, vh)2,

(∇qh,u
i+1
h )2 = 0,

α(∇T i+1
h ,∇Sh)2 +

∫

�

(ui+1
h · ∇T i+1

h )(x)Sh(x) dx = (g, Sh)2.

For the numerical computations, we consider α = 3, β = 5 and N = 100.
The first two lines of the last iterative algorithm give for each uih the solution (ui+1

h , pi+1
h ).

Then, having ui+1
h , we compute T i+1

h by using the third line of the same algorithm. The
absence of the stabilised term 1

2

∫

�
div ui+1

h (x)T i+1
h (x)Sh(x) dx in the third line of the pre-

vious algorithm makes the studies difficult (convergence, existence of the solution, etc.). It
will be established in a future work.

We will compare (Vhi) with the following similar stabilized iterative algorithm corre-
sponding to (Vh,2), which is introduced and studied in Bernardi et al. (2018):

(Whi)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ν(T i
h )ui+1

h , vh)2 + (∇ pi+1
h , vh)2 = (f, vh)2,

(∇qh,u
i+1
h )2 = 0,

α(∇T i+1
h ,∇Sh)2 +

∫

�

(ui+1
h · ∇T i+1

h )(x)Sh(x) dx

+1

2

∫

�

div ui+1
h (x)T i+1

h (x)Sh(x) dx = (g, Sh)2.

The essential difference between (Vhi) and (Whi) is the stabilised term in the third linewhich
constitutes a supplementary term to compute (supplementary time of computation) in (Whi)
butwhich does not affect the numerical solutions aswewill see later.We refer toBernardi et al.
(2018) for the numerical comparison between (Whi) and the iterative scheme corresponding
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Fig. 1 Error curve for different ν(T ) and for (Vhi)

to (Vh,1), and we will show in the following the numerical comparisons between (Vhi) and
(Whi).

Figure 1 plots the global error curves versus h in logarithmic scales, global in the sense
that they depict the sum of the velocity, pressure and temperature errors for the variational
formulation. The algorithm is tested when the number N of segments increase from 30 to
120. The slope of the error’s curve for (Vhi) is equal to 1.0122 for ν(T ) = T + 1, 0.9995
for ν(T ) = e−T + 1

10 and finally 1.0091 for ν(T ) = sin(T ) + 2. Practically, these slops are
identical to those obtained in Bernardi et al. (2018) for (Whi).

Remark 5.1 Note that the error curves are consistent with the theoretical results of Sect. 3. ��

6 Conclusion

In this work, we introduced The Darcy’s Problem coupled with the heat equation. Then, we
introduce a discrete non-stabilized problem and then we show the existence, uniqueness and
a priori error estimate by using Brezzi–Rappaz–Raviart theorem. Finally, we show several
numerical investigations.
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