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Abstract

The purpose of this research is to introduce a regularized algorithm based on the viscosity
method for solving the proximal split feasibility problem and the fixed point problem in
Hilbert spaces. A strong convergence result of our proposed algorithm for finding a common
solution of the proximal split feasibility problem and the fixed point problem for nonexpansive
mappings is established. We also apply our main result to the split feasibility problem, and
the fixed point problem of nonexpansive semigroups, respectively. Finally, we give numerical
examples for supporting our main result.

Keywords Fixed point problems - Proximal split feasibility problems - Nonexpansive
mappings

Mathematics Subject Classification 47H09 - 47H10

1 Introduction

Throughout this article, let H; and H, be two real Hilbert spaces. Let f : Hf — R U {400}
and g : Hy — R U {400} be two proper and lower semicontinuous convex functions and
A : Hy — H; be a bounded linear operator.
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In this paper, we focus our attention on the following proximal split feasibility problem
(PSFP): find a minimizer x* of f, such that Ax* minimizes g, namely

x* € argmin f such that Ax* € argmin g, (1.1)

where argmin f = {x € H| : f(x) < f(x)forallx € H;} and argming := {y € H; :
g(y) < g(y) forall y € Hp}. We assume that the problem (1.1) has a nonempty solution set
I' := argmin f N A~ ! (argmin g).

Censor and Elfving (1994) introduced the split feasibility problem (in short, SFP). The split
feasibility problem (SFP) has been used for many applications in various fields of science and
technology, such as in signal processing and image reconstruction, and especially applied in
medical fields such as intensity-modulated radiation therapy (IMRT) (for details, see Censor
et al. (2006) and the references therein). Let C and Q be nonempty, closed, and convex
subsets of H| and H», respectively, and then, the SFP is to find a point:

x € Csuch that Ax € Q, (1.2)

where A : Hi — H, is a bounded linear operator. For solving the problem (1.2), Byrne
(2002) introduced a popular algorithm which is called the C Q algorithm as follows:

Xn+1 = PC(xn - ,LL”A*(I - PQ)A.X,,), Vn > 1,

where Pc and Pp denote the metric projection onto the closed convex subsets C and Q,
respectively, and A* is the adjoint operator of A and w, € (0,2/||Al|?). Many research
papers have increasingly investigated split feasibility problem [see, for instance (Lopez et al.
2012; Chang et al. 2014; Qu and Xiu 2005), and the references therein]. If f = ic [defined
asic(x) =0ifx € Candic(x) = +ooif x ¢ C]l and g = iy are indicator functions of
nonempty, closed, and convex sets C and Q of H| and H,, respectively. Then, the proximal
split feasibility problem (1.1) becomes the split feasibility problem (1.2).

Moudafi and Thakur (2014) introduced the split proximal algorithm with a way of selecting
the step-sizes, such that its implementation does not need any prior information about the
operator norm. Given an initial point x; € Hj, assume that x,, has been constructed and
|A*(I — prox; ) Ax, 12+ - Prox; s)Xn 1> # 0, and then compute x,, | by the following
iterative scheme:

Xn1 = Prox;, r(xn — pa A*(I = prox; ) Ax,), Vn > 1, (1.3)
h l

where the stepsize u, := pnw with0 < p, < 4, h(x) = %Il(l —prox,\g)Axllz,
Xn

[(x) := %H(I — prox)\M"f)x||2 and 62(x) = ||A*(I — prox,\g)Axll2 + 1 — proxmnf)xﬂz.
If 6%(x,) = 0, then x, is a solution of (1.1) and the iterative process stops; otherwise, we
set n := n 4 1 and compute x,41 using (1.3). They also proved the weak convergence of
the sequence generated by Algorithm (1.3) to a solution of (1.1) under suitable conditions of
where ¢ < p, < M

h(x) + 1(xp)

Yao et al. (2014) gave the regularized algorithm for solving the proximal split feasibility
problem (1.1) and proposed a strong convergence theorem under suitable conditions:

parameter p, — ¢ for some ¢ > 0.

Xng1 = prox,,, r(onu + (1 —ap)x, — un A1 — prox; )Ax,), Va>1, (L4)

h(xy) +1(x,)

ith 0 4.
20r) wi < pp <

where the stepsize u, := py
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Shehu et al. (2015) introduced a viscosity-type algorithm for solving proximal split fea-
sibility problems as follows:

{ Yn = Xn — pn A*(I = prox; ) Ax,, (1.5)

Xpg1 = (xp) + (1 — an)PTOXAMnf Yu, VYn=>1,

where ¢ : Hy — H; is a contraction mapping. They also proved a strong convergence of
the sequences generated by iterative schemes (1.5) in Hilbert spaces.

Recently, Shehu and Iyiola (2015) introduced the following algorithm for solving split
proximal algorithms and fixed point problems for k-strictly pseudocontractive mappings in
Hilbert spaces:

up = (1 —op)xp,

Yn = Prox,,, ¢(un — ynA*(I — prox, ) Au,), (1.6)

Xnt1 = (I = B)yn + BuTyn, VYn €N,
where the stepsize y, = pp W with 0 < p, < 4. They also showed that,
under certain assumptions imposed on ?he parameters, the sequence {x, } generated by (1.6)
converges strongly to x* € F(S) N I'. Many researchers have proposed some methods to
solve the proximal split feasibility problem [see, for instance (Shehu et al. 2015; Shehu and
Iyiola2017a,b, 2018; Abbas et al. 2018; Witthayarat et al. 2018), and the references therein].

We note that Algorithm (1.6) is the Halpern-type algorithm with # = 0 fixed. However,
a viscosity-type algorithm is more general and desirable than a Halpern-type algorithm,
because a contraction which is used in the viscosity-type algorithm influences the convergence
behavior of the algorithm.

In this paper, inspired and motivated by these studies, we are interested to study the
proximal split feasibility problem and the fixed point problem in Hilbert spaces. In Sect. 3,
we introduce a regularized algorithm based on the viscosity method for finding a common
solution of the proximal split feasibility problem and the fixed point problem of nonexpansive
mappings, and prove a strong convergence theorem under some suitable conditions. In Sects. 4
and 5, we apply our main result to the split feasibility problem, and the fixed point problem of
nonexpansive semigroups, respectively. In the last section, we first give a numerical result in
Euclidean spaces to demonstrate the convergence of our algorithm. We also show the number
of iterations of our algorithm by choosing different contractions . In this case, if we take
¥ = 0 in our algorithm, then we obtain Algorithm (1.6) (Shehu and Iyiola 2015, Algorithm
1). Moreover, we give an example in the infinite-dimensional spaces for supporting our main
theorem.

2 Preliminaries

Throughout this article, let H be a real Hilbert space with inner product (-, -) and norm || - ||.
Let C be a nonempty closed convex subset of H. Let T : C — C be a nonlinear mapping.
A point x € C is called a fixed point of T if Tx = x. The set of fixed points of T is the set
F(T):={xeC:Tx =x}.

Recall that A mapping 7 of C into itself is said to be

(i) nonexpansive if

ITx =Tyl <llx=yll, Vx,yeC.
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(ii) contraction if there exists a constant § € [0, 1), such that
ITx =Tyl <éllx —yll, Vx,yeC.
Recall that the proximal operator prox;, : H — H is defined by:

1 2
= i —lu — . 2.1
prox; , x ar’:genllim {g(u) + o lu — x| } 2.1

Moreover, the proximity operator of f is firmly nonexpansive, namely:
(prox; , (x) — prox; , (), x — y) = || prox; , (x) — prox; ,(")|%: 2.2)
for all x, y € H, which is equivalent to
1 prox; ¢ (x) — prox; ; (M * < llx = yII> = (I — prox; ) (x) — (I — prox;  )()1*.
(2.3)

for all x, y € H. For general information on proximal operator, see Combettes and Pesquet
(2011a).
In a real Hilbert space H, it is well known that:

() llax + A —a)yl? = a x>+ A —a) [y]> —a(l —a) |x — y|?, forallx,y € H
and o € [0, 1];
(i) flx — ylI> = Ix*> = 2(x, ) + [y|? forall x, y € H;
(i) flx + ylI? < x> +2(y,x + y) forall x, y € H.

Recall that the (nearest-point) projection Pc from H onto C assigns to each x € H the
unique point Pcx € C satisfying the property:

lx — Pcx|| = min [lx — y]|.
yeC
Lemma 2.1 (Takahashi 2000) Given x € H and y € C. Then, Pcx =y if and only if there
holds the inequality:
(x—y,y—2)>0, VzeC.
Lemma 2.2 (Xu 2003) Let {s,} be a sequence of nonnegative real numbers satisfying:
Sn+1 = (1 —ap)sy +8,, Yn >0,

where {ay,} is a sequence in (0, 1) and {8,} is a sequence, such that

o
1. Zan = 00y
n=1

8 o0
2. limsup — < 0or Y _ [8,] < oo.
n—oo 0Op =

Then, lim,, s o0 5, = O.

Definition 2.3 Let C be a nonempty closed convex subset of a real Hilbert space H. A
mapping S : C — C is called demi-closed at zero if for any sequence {x, } which converges
weakly to x, and if the sequence {7 x,} converges strongly to O, then 7x = 0.

Lemma 2.4 (Browder 1976) Let C be a nonempty closed convex subset of a real Hilbert
space H. If S : C — C is a nonexpansive mapping, then 1—S is demi-closed at zero.
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Lemma 2.5 (Mainge 2008) Let {I",,} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {I"y;} of {T',} which satisfies T',,; < Iy, 41
foralli € N. Define the sequence {T(n)},>n, of integers as follows:

t(n) =max{k <n: Ty < Tk},
where ng € N, such that {k < ng : T'y < T'rq1} # 0. Then, the following hold:

1) tmo) <t(mo+1) <--- and t(n) — o0;
(i1) Iy, < l_‘r(n)+1 and 'y < Ff(n)+1, Vn > no.

3 Main results

In this section, we introduce an algorithm and prove a strong convergence for solving a

common element of the set of fixed points of a nonexpansive mapping and the set of solutions

of proximal split feasibility problems (1.1). Let H; and H; be two real Hilbert spaces. Let

f:H — RU{+4o00}and g : H — R U {+00} be two proper and lower semicontinuous

convex functions and A : Hy — H» be a bounded linear operator. Let S : H; — Hj be a

nonexpansive mapping and Let  : H; — H; be a contraction mapping with § € (0, 1).
We introduce the modified split proximal algorithm as follows:

Algorithm 3.1 Given an initial point x; € H;. Assume that x,, has been constructed and
|A*(I — Prox; ,) Axy, 124+ 1 - pro;cwc))c,,||2 # 0, then compute x,; by the following
iterative scheme:

Yn = prox,,, ¢(@n ¥ (xn) + (1 — ap)xy — pp A*(I — prox; ,) Ax,) 3.1)
Xnt1 = Buyn + (1 — B)Syn, Vn eN,
1 2 1 2
5| (I — prox, ,)Ax + (5|1(I — prox, ¢)x,
where the stepsize u, = pp (2” PrO%g ul ) (2” PrO%.f ul ) with 0 <

|A* (I — prox; o) Axpl|? + [[(I — prox; ¢)x,||?
on < 4and {a,}, {B,} C (0, 1).

We now prove our main theorem.

Theorem 3.2 Let Hy and H, be two real Hilbert spaces. Let f : HG — R U {400} and
g : Hy — R U {400}be two proper and lower semicontinuous convex functions, and A :
Hy — Hj be a bounded linear operator. Let v : Hi — H\ be a contraction mapping with
8 €[0,1)andlet S : H — Hi be a nonexpansive mapping, such that Q := F(S)NT # 0.
If the control sequences {oy,}, {Bn} and {p,} satisfy the following conditions:

o0
(CD) nli)ngo o, =0 and 2““ = 00;
n=
(C2) 0 < liminf B, <limsupp, < 1;
n—00

n—oo

4(1 — a) (11 — prox; ) Axa %)
(17 = prox, ) Axy 12) + (I — prox; p)xa %)

Then, the sequence {x,} defined by Algorithm 3.1 converges strongly to a point x* € Q which
also solves the variational inequality:

(C3) e<pn =<

— ¢& for some ¢ > 0.

( — Dx*,x —x*) <0, VxeQ.
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Proof Given any A > 0 and x € Hj, we define h(x) := %H(I — proxAg)Axllz, I(x) =

Ha - ;;;oxlf)xlu% 0%(x) = [|A*(I — prox,)Ax|* + [[(I — prox, ;)x||%, and hence,
Uy = pnM where 0 < p, < 4.
62 (xy)

By Banach fixed point theorem, there exists x* € Q such that x* = Pqy (x*). Then,
x* = prox;, x*and Ax* = prox;, Ax*. Since prox;, is firmly nonexpansive, we have
I — prox,, is also firmly nonexpansive. Hence

(A™(I — prox; o) Axy, Xy — x™) = ((I — prox, o) Ax,, Ax, — Ax™)

= ((I — prox; ) Ax, — (I — prox, ) Ax*, Ax, — Ax¥)
> - prOXM,,)Axnll2 = 2h(xp). (3.2)

From the definition of y, and the nonexpansivity of prox, , r, we have:
e —x*II = |l PTOXW”f(Oan(Xn) + (1 = ap)xy — un A*(I — PTOXAg)Axn) — x|

< lan ¥ (xp) + (1 — o)xy — l/LnA*(I - PrOXAg)AXn - X*”
n

< ol (o) ="l + (=) oy = s AT = prox; ) Axy — 27
- n
3.3)
From (3.2), we have:
i 2
n
Xn — mA*(I — prOX)Lg)Axn — x*
2 1y 2
* n *
= [lxp —x7I7 + T —a)? lA™ (1 — prox; o) Axy ||
2 axa A *
- m( (I — prox; ) Axy, xn — Xx7)
2
< o — xF 2+ AT - Axg|? — 4t
<l = X717 4 g AT = proxy ) AP = 4= hx)

2 (h(xa) +1(xa))*
" (1= an)204(xn)

\ \ (h(xn) + [(x))
= |lxa —x*IP+p lA*(1 —proxAg>Axn||2—mmhm)

<y P g 2 PO LG () +1G)) hGw)

= P =202 (= a)02(en) () + 1Gin)

e w2 4h(x)  pa (h(xn)+l<xn>)2>

= |lxn, — x| pn((h(xn)—i—l(xn)) 1—a,,> < 1 oo ) (3.4)

) pa
(hGo) + 1) 1= a

By the condition (C3), we have
and (3.4), we have:

> 0 for all n > 1. From (3.3)

MUn % %
- — A" (I — Ax, —
Xn d—a) ( prox)\g) Xp — X
< allY () = Y )+ @l () = x* [+ (1= ) [, — x|
< apdllxn — X*| + anlly () = x¥|| + (1 —ap) ”xn _X*H

= (1 —an(1 = §))llxn — x*[| + el (™) — 7. (3.5)
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Since S is nonexpansive, by (3.1) and (3.5), we obtain:

Bonst — 5 = 1By + (1 — Bu) Sy — x*|
< Bullyn — xxll + (1 — B)llSyn — x*1
< Bullyn — x¢ll + (1 = B)llyn — x*
= 3 — x5l
< (1= (1 — )y — x*1| + e [ (x*) — x°]
< max{nxn e, W}

By mathematical induction, we have:

¥ () — x|
1-§

’

[0 — x*|| < max HIIM —x*

}, Vn € N.

Hence, {x,} is bounded and so are {y/(x,)}, {Sy.}.
From the definition of y, and (3.4), we have:

lyn = x* 1% = || proxy,,, f(@n ¥ (en) + (1 = o)Xy — pn A*(I — prox; ) Ax,) — x*|?

< lapyr(xn) + (1 — ap)x, — l/vnA*(I - PTOXAg)AXn - x*”zs

2
n

(1 —ap)

<Y () = x* 17 + (1 — o) | xa A*(I — prox; ) Ax, — x*

< anllyr () — x| + (1 — &)

2 4h(xn) Pn (h(xn) +1(xn))*
X\ xn = x7|7 = pn - 3
(h(xp) +1(xp)) I — oy (I — )04 (xp)

= a1V () — x* 12 4+ (1 — ) llx — x*)1?

4h(xy) Pn (h(xn) +1(xn))?
~ _ . . (3.6)
(h(xn) + l(xn)) 1—- Uy 0 (xn)

From the definition of x,, and (3.6), we obtain:

I%n41 = X% = 1Buyn + (1 = Bu)Syn — x*|1*
< Bullyn — x*I1 + (1 = B)IISyn — x*|1?
< llyn — x|
< @l (o) — X117 4 (1= ), — x%12
4h(xy) Pn (h(xn) + 1(x2))>
e ((h(xn> i) 1 a,,> ( 62 (xy) )
<l (o) — X*II7 + llx, — x|

~ ( 4h(x)  pa )((h(xn>+l<xn))2>
Pl o) +10m)  1—ap 02(xn) '

It implies that

( 4hx)  pa )((h(xn)+l(xn))2
P\ hGen) + 1) 1—ay 62(x)

) < allY () — X2 + [1xn

— X% = g1 —xF% (3.7

@ Springer f DMAC



177 Page8of18 W. Khuangsatung et al.

It follows from (3.6) that
Ixn1 = x*11* = 11Buyn + (1 = Bu)Syn — x*|1?

< Bullyn = x*[1* + (1 = B)[1Syn — x* 1> = Bu(L = B lyn — Syall®
< llyn = x50 = Ba(1 = B)lyn — Syull®
<l (an) — X1 4+ (L= o) 1w — X7 = Bu(L = Ba) lyw — Syl
< ol () — X7 + l1xn — x* 17 = Bu(1 = B)llyn — Syull®,

which implies that

Bu(1 = B)llyn — Synll* < atnllr () — x* 1> + [l — x| = [lxag1 —x*[%. (3.8)

Now, we divide our proof into two cases.
Case 1 Suppose that there exists ng € N, such that {||x,, —x*||}72, is nonincreasing. Then,
{llxn — x*[1};2; converges and ||x,, —x*||2 = ||xps1 — x*||2 = Oasn — oo. From (3.7) and

the condition (C1) and (C3), we obtain:
( 4hxa) )((h(m +1(xn))?
"N +1Gxn) 1 —ay 62 (xn)

Hence, we have:

>—>0asn—>oo.

(h(xn) 4 1(xa))*
92()(,,)
By the linearity and boundedness of A and the nonexpansivity of prox,,, we obtain that

{6%(x,)} is bounded.
It follows that

— Qasn — oo. 3.9

lim ((h(xn) +1(x2))?) =0,
n—oo
which implies that
lim A(x,) = lim I(x,) =0.
n—oo n—oo

Next, we show that lim sup,,_, o, (¥ (x*) — x*, x, —x*) < 0, where x* = Poy (x*). Since
{x,} is bounded, there exists a subsequence {x,, i } of {x,} satisfying x, i~ and
lim sup(w(x*) —x*, x, — x*> = lim (1//(x*) —x*, X, — x*). (3.10)
n— 00 J—>00 ’

By the lower semicontinuity of &, we have:

0 < h(w) < liminf h(x,,) = lim h(x,) = 0.
j—00 n—00

Therefore, h(w) = % (I —prox,,)Aw > = 0. Therefore, Aw is a fixed point of the proximal
mapping of g or equivalently, Aw is aminimizer of g. Similarly, from the lower semicontinuity
of /, we obtain:

0 < (@) < liminf/(x,,) = lim I(x,) = 0.
J—> o0 n—oo

Therefore, [(w) = %H([ — proanf)wnz = 0. That is w € F(proanf). Then w is a
minimizer of f. Thus, w € I". We observe that
h(xp) +1(xy)

— 0Oasn — oo,
gz(xn)

0<pu, <4
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and hence, u, — 0asn — oo.
Next, we show that w € F(S). From (3.8) and the condition (C1), (C2), we have:

lyn — Synll = 0asn — oo. (3.11)
Foreachn > 1, letu, := o, ¥ (x,) + (1 — a,)x,. Then

lun — xpll = llotn ¥ (xp) + (1 — )X — x|

= an | (xn) — xnll.

From the condition (C1), we have:
lim |lu, — x| = 0. (3.12)
n—oo

Observe that

llun — ProX; ., r Xnll < llup — xnll + 1 — prox}\unf)xn”-
From lim,,—, o0 [(x,) = lim,— 00 %H(I — PIoXy ,, £)%n 1> = 0 and (3.12), we have:
nli)n;o lun, — prox; , ¢ x| = 0. (3.13)

By the nonexpansiveness of prox, , ,, we have:

”y” - prox)hﬂnf Xn ” = Hprox)‘l/’nf (Mn - M”A* (I - prOX)Lg) Ax") - prox)\llnf Xn ||
< lu, — I/LnA*(I - PI’OX,\g)AXn — Xl
< lltn — xnll + pall A*(I — prox; o) Axy||.
From (3.13) and i, — 0 as n — oo, we have:
nl;n;o lyn — prox;,,, rxall = 0. (3.14)
Since
lyn = unll < llyn — ProX; ., r Xnll + llup — PIoXy,,, r Xnlls
from (3.13) and (3.14), we obtain:
lim |y, —u,l| =0. (3.15)
n—00
From (3.12) and (3.15), we obtain
lim ||y, — xnll = 0. (3.16)
n—0o0
From
1Sy — xnll < 1Syn — Yull + llyn — Xull,
by (3.11), (3.16), we get:
lim ||Sy, — x,| =0. (3.17)
n—00
From the definition of x,,, we have:

Xnt1 = Xnll < Bullyn = Xall + (1 = B 1Sy — Xn -
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177 Page 100f 18 W. Khuangsatung et al.

This implies from (3.16), and (3.17) that
lim || x,4+1 — x| =0. (3.18)
n—0o0

Usingxn/.—\a) € Hj and (3.16), we obtain Yn,—w € H,.Since Yn,—w € Hy, |yn—Synll —
0 asn — oo, by Lemma 2.4, we have w € F(S). Hence, w € F = F(S)NT. Since Xp;—0
as j - oo and w € F, by Lemma 2.1, we have:

lim sup(lp(x*) —x*, xy — x*) = lim (1/f(x*) — X", X — x*)
n—00 j—o0

(¥ — Dx*, 0 — x¥)
<0. (3.19)

Now, by the nonexpansiveness of S and prox, i o and from (3.1) and (3.4), we have:

a1 — X1 < Ballyn — x* 12+ (1= B)NISyn — X1 < llyw — x*I12
< llan ¥ Gen) + (1 = o)y — pun A*(I — prox; ) Ax, — x*||?

17
= (1 — o) [lxn — ﬁA*(l — prox; ) Ax, — x*||* + o7 [y (xa) — x|
- n
+ 20, (1 — ap) (V¥ (xn) — X*a Xn — Hn A*(I — prox,, YAX, — x*
(1 — o) ¢

< (1 =) lxn — X7 + o2 1 () — x|
+ 20, (1 — o) (Y (xn) — x*, X — %)
— 20 (Y () — X*, A*(I — prox; ) Ax,)
= (1 — o) [lxn — x*|* + a9 (x) — x*|I
+ 200, (1 — ) (¥ () — ¥ (x¥), X — x¥)
+ 200, (1 — ) (Y (x*) — x*, x5 — x¥)
+ 20y (¥ = Y (xn), A*(1 — prox; ;) Axy)
< (1= 2a + o) [lxn — x* 1 + el (xa) — x*|?
+ 20, (1 — )81, — x*]?
+ 20, (1 — o) (Y (%) — X%, 2 — x¥)
+ 20 |V (xn) — X [[I|A* (T = prox; ) Ax |
= (1 = 20 + oy + 20 (1 — )8 x5 — x* 1> + erp |9 (xa) — x*||
+ 20, (1 — o) (Y (%) = x*, 2 — x¥)
+ 20 |V (xn) — X*[[I|A* (T = prox; ) Ax |
= (1 — &)llxn — x* 11 + enén, (3.20)
where €, = o, (2 — oy — 2(1 — ;;)8) and

[anwun) = X2 201 — @) (P (x%) — X%, %y — X*) + 2 [| A¥ (I — prox; ) Axy |1V () —x*|]
%‘n = .
2—oy, —2(1 —ay)é

h(xp) + 1(x,)
WHA*(I — prox; ) Ax, . Thus,

unl|A*(I — prox; ) Ax, || — 0 as n — oo. From the condition (C1), (3.19), (3.20) and
Lemma 2.2, we can conclude that the sequence {x, } converges strongly to x*.
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Case 2 Assume that {||x, — x*||} is not monotonically decreasing sequence. Then, there
exists a subsequence n; of n, such that |x,, —x*|| < [|x,+1 — x| for all/ € N. Now, we
define a positive integer sequence t(n) by:

t(n) :=max {k e N: k <n, |lxy, — x*|| < llxp+1 —x*II}.

foralln > ng (for some ng large enough). By Lemma 2.5, we have t whichis anon-decreasing
sequence, such that t(n) — oo as n — oo and

2 2
”-xl’(i‘l) - x*” - ”xr(n)-H - X*H <0, Vn=ny.
By a similar argument as that of case 1, we can show that

p ( 4h(xr(n)) P ) <(h(xt(n)) + l(xr(n)))2
TN B Corn) + 1) 1 — e 02 (Xr(ny)

Then, we have:

>—>0asn—>oo.

(h(xr(n)) + Z(xt(n)))2
62 (Xz(n))

— Oasn — oo. (3.21)

It follows that
. 2
nli)lgo ((h(xzmy) + 1 (xe@)))?) =0,
which implies that
lim h(x,(n)) = lim l(xf(n)) =0.
n—00 n—oo
Moreover, we have

lim sup(llf(x*) —x*, Xen) — x*> <0.
n—00

By the same computation as in Case 1, we have:
e+t =212 < (1= €xg) e = x* 1% + e (3.22)

where € () = r(n) (2 — drn) — 2(1 — 0t¢(y))8) and
Er(n)

_ g () IV (xe ) — X*HZ +2(1 - aT(Il))<W(X*) *x*:xr(n) —x*) + 2147 () lA*( — pl‘OX)\g)Axr(,,)H 1Y ez ny) — x|
27"‘1(/1) -2 *"“r(n))(S '

Since [|x;(n) — X*[|> < Xz(m)+1 — x*||%, then by (3.22), we have:

”xr(n) - X*Hz = Sz(n)'

We note that lim sup,,_, . &z(,) < 0. Thus, it follows from above inequality that

lim [xy) — x| =0.
n—o0
From (3.22), we also have:
lim_[lxegn1 — 2% = 0.
n—oo

It follows from Lemma 2.5 that
0 < [lx, —x*|| < lIxcmy+1 — x| =0

as n — oo. Therefore, {x,} converges strongly to x*. This completes the proof.
O
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Taking ¥ (x) = u in Algorithm 3.1, we have the following Halpern-type algorithm.

Algorithm 3.3 Given an initial point x; € H;. Assume that x,, has been constructed and
|A*(I — Prox; ,) Axy, 12+ 11 — Prox; £)xp 1> # 0, and then compute x,,41 by the following
iterative scheme:
Yn = Prox,, ¢ttt + (1 — o)Xy — un A*(I — prox; o) Axy)
Xp41 = Buyn + (1 — B)Syn, Vn €N,

(3117 = prox, ) Axy||?) + (311 — prox; f)xal?)
IA*(I — prox; ) Ax, |2 + |(I — prox; ;)x, |2

(3.23)

with 0 <

where the stepsize u, = pp

pn < 4and {an}, {Bn} C [0, 1].
The following result is obtained directly by Theorem 3.2.

Corollary 3.4 Let Hy and H> be two real Hilbert spaces. Let f : Hl — R U {400} and
g 1 Hy - R U {4oo}be two proper and lower semicontinuous convex functions and A :
Hy — Hj be a bounded linear operator. Let S : Hy — H| be a nonexpansive mapping, such
that Q := F(S) N T # 0. If the control sequences {«,}, {Bn} and {p,} satisfy the following
conditions:

o0
(C1) nll)ngoan = OandZa,, = 00,

n=1
(C2) 0 < liminf B, <limsupf, < 1;
=00 n— 00

4(1 =) (1 — prox; ) Ax,|?)
(I = prox; ) Ax, [12) + (II(1 — prox; £)x, 1)
Then, the sequence {x,} defined by Algorithm 3.3 converges strongly to z = Pqu.

(C3) e<py <

— ¢ for some ¢ > 0.

4 Convergence theorem for split feasibility problems

In this section, we give an application of Theorem 3.2 to the split feasibility problem.

Algorithm 4.1 Given an initial point x; € H;. Assume that x,, has been constructed and
|A*(1 — Pg)Ax, ||2 +|(I = Pc)x, ||2 # 0, and then compute x,1 by the following iterative
scheme:
Yn = PC(anu/(xn) + (1 — )Xy — MnA*(I - PQ)Axn)
Xn+1 = lgnyn + (1 - ﬂn)Syna Vn € N7

(3111 = Po)Ax,|I?) + (51T = Po)xall?)
IA*(I — Po)Axyll? + (I — Pc)xyl|?

4.1)

where the stepsize u, = p, with0 < p, < 4

and {a,}, {B,} C (0, 1).

We now obtain a strong convergence theorem of Algorithm 4.1 for solving the split
feasibility problem and the fixed point problem of nonexpansive mappings as follows:

Theorem 4.2 Let Hy and Hj be two real Hilbert spaces, and let C and Q be nonempty,
closed and convex subsets of Hy and Hy, respectively. Let A : Hy — H» be a bounded linear
operator. Let W : Hy — Hj be a contraction mapping with § € [0, 1) and let S : Hl — H|
be a nonexpansive mapping. Assume that Q = F(S) N C N A~ (Q) # @. If the control
sequences {a,}, {Bn} and {p,} satisfy the following conditions:
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o0
€D lim o, = OandZot,, = 00,

n=1
(C2) 0 < liminf B, <limsupp, < 1;
n—00 n— 00
4(1 —ay) (I = Po)Axy|?)
(Il = Po)Axu1I12) + (I = Pc)xall?)

Then, the sequence {x,} generated by Algorithm 4.1 converges strongly to z = Pqr(z).

(C3) e<pn =

— ¢ for some ¢ > 0.

Proof Taking f = ic and g = ip in Theorem 3.2 (ic and iy are indicator functions of
C and Q, respectively), we have prox, ; = Pc and prox;, = Pg for all 2. We also have
argmin f = C and argmin g = Q. Therefore, from Theorem 3.2, we obtain the desired
result. O

5 Convergence theorem for nonexpansive semigroups

In this section, we prove a strong convergence theorem for finding a common solution of the
proximal split feasibility problem and the fixed point problem of nonexpansive semigroups
in Hilbert spaces.

Let C be anonempty, closed, and convex subset of a real Banach space X. A one-parameter
family § = S(¢) : t > 0 : C — C is said to be a nonexpansive semigroup on C if it satisfies
the following conditions:

(i) S(O)x =xforallx € C;

(i) S(s+1)x = S(s)S(@)x forallt,s > 0and x € C;
(iii) for each x € C the mapping t —> S(#)x is continuous;
i) [|S@)x — S@)y|l < |lx — y| forallx,y € C and ¢ > O.

We use F(S) to denote the common fixed point set of the semigroup S, i.e., F(S) =
M=o F(S®) = {x € C : x = S(t)x}. It is well known that F(S) is closed and con-
vex (see Browder 1956).

Definition 5.1 (Aleyner and Censor 2005) Let C be a nonempty, closed, and convex subset
of a real Hilbert space H, S = S(¢) : t+ > 0 be a continuous operator semigroup on C. Then,
S is said to be uniformly asymptotically regular (in short, u.a.r.) on C if for all # > 0 and
any bounded subset K of C, such that

lim sup |S(h)(S(t)x) — S(t)x|| = 0.
11— 00 xek
Lemma 5.2 (Shimizu and Takahashi 1997) Let C be a nonempty, closed, and convex subset of
a real Hilbert space H, and let K be a bounded, closed, and convex subset of C. If we denote
S = S() : t > 0is a nonexpansive semigroup on C, such that F(S) = (,.o F(S®)) # 0.
Forall h > 0, the set o,(x) = %fot S(s)xds, then
lim sup [loy(x) — S(h)oy (x)]| = 0.
—00 xeK
Let Hy and H» be two real Hilbert spaces. Let f : Hf — R U {4+oo} and g : H, —
R U {+00} be two proper and lower semicontinuous convex functions and A : Hy — Hj be

a bounded linear operator and let ¢ : H; — H; be a contraction mapping with § € [0, 1).
Let S := {S(#) : t > 0} be a u.a.r nonexpansive semigroup on Hj.
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Algorithm 5.3 Given an initial point x; € Hj. Assume that x,, has been constructed and
|A*(I — Prox; z)Ax, 12+ 1 - Prox; ;)Xn 112 # 0, and then compute x,,4 by the following
iterative scheme:

Yn = PFOXW,,f(Oan(Xn) + (I —ap)xy — un A — PTOXAg)Axn) (5.1)
Xnt+1 = Buyn + (1 — B)SU)yn, VneN,
1 2 1 2
311 — prox, o )Axp 1<) + (3111 — prox; ¢)xu||
where the stepsize u, = py (2 PTO%g) 0 ) (2 PO, ) with 0 <

IA*(I = prox, ) Ax, I + (7 — prox, ) xall?
pn <4, {an}, {Bn) C (0,1) and {1,,} is a positive real divergent sequence.

‘We now prove a strong convergence result for the problem (1.1) and the fixed point problem
of nonexpansive semigroups as follows:

Theorem 5.4 Suppose that [,y F(S(t)) N T # 0. If the control sequences {a,}, {Bn} and
{pn} satisfy the following conditions:

[o¢]
(C1) nlirgoan = OandZoz,, = 00;
n=1
(C2) 0 < liminf B, <limsupp, < 1;
n—oo

n—oo

4(1 — o) (I(I = prox, ) Ax, %)
(1 — prox, ) Axa 12) + (I — prox; ,)xa1?)

(C3) e<py < — ¢ for some ¢ > 0.

Then, the sequence {x,} generated by Algorithm 5.3 converges strongly to a point x* €
M=o F(S@®)NT.

Proof By continuing in the same direction as in Theorem 3.2, we have that lim,,— o ||y, —
S(ty)ynll = 0. Now, we only show that lim,— o [|[yn — S(h)y,|| = 0 for all h > 0. We
observe that

1y = SM)Yull < llyn — SE)Yull + 1SEDyn — S SED) yull + 1SR St) yn — SR yull
< 2|lyn — S yull + sup |Sty)x — S(h)S(tn)x|l.

XEY,
Since {S(¢) : t > 0} is a u.a.r. nonexpansive semigroup and #, — oo for all 4 > 0, we have:
lim [y, — S(h)yall =0,
n—oo

for all 4 > 0. This completes the proof. O

6 Numerical examples

We first give a numerical example in Euclidean spaces to demonstrate the convergence of
Algorithm (3.1).

Example 6.1 Let H; = R? and H, = R? with the usual norms. Define a mapping S : R> —
R? by:

V2

S(a, b) = T(a —b,a+0b).
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Table_1 The numerif:al an bn Ey

experiment of Algorithm (6.1) by

choosing § = 0.1 1 3.0000000 —2.0000000 -
2 0.1783143 —0.1100519 3.3961470
3 0.0082067 —0.0025830 0.2012117
4 0.0004998 0.0013948 0.0086729
5 0.0001562 0.0010892 0.0004598
6 0.0001076 0.0007884 0.0003047
7 0.0000801 0.0005827 0.0002075
8 0.0000608 0.0004388 0.0001452
9 0.0000467 0.0003353 0.0001045
10 0.0000363 0.0002591 0.0000769
28 0.0000008 0.0000055 0.0000012
29 0.0000007 0.0000046 0.00000098

One can show that S is nonexpansive. Define two functions f: R? — (—o00,00] and g :
R3 — (—o00, 00] by f := 0, where 0 is a zero operator and

2
@b, ) = | —3a+7b —2c| '
2
Then, the explicit forms of the proximity operators of f and g can be written by prox, , =/
10 =21 6
and prox;, = B~!, where B = | —21 50 —14 | (see Combettes and Pesquet 2011b). Let
6 —14 5
A : R? — R3 be defined by:
2 1
A=|7 =31,
-5 4

and let Q := F(S) Nargmin f N A_l(argmin g). Now, we rewrite Algorithm (3.1) in the
form:
Yn = ¥ () + (1 = e)xn — un AT (I = B~ Ax,

6.1)
Xn41 = Buyn + (1 — B)Syn, VYn eN,

where

_ P I =B~ HAx|?
T2 AT — BTYHAx, |2

Take o, = nlﬁ, B, = %, Pn = % Consider a contraction ¥ : R? — R? defined by

Y(x) = 8x for 0 < § < 1. We first start with the initial point x; = (3, —2) and the stopping
criterion for our testing process is set as: E, := ||x, — x,—1] < 107°, where x,, = (an, by).
In Table 1, we show the convergence behavior of Algorithm (6.1) by choosing § = 0.1.
In Table 2, we also show the number of iterations of Algorithm (6.1) by choosing different
constants §. —
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Table 2 The number of iterations of Algorithm (6.1) by choosing different constants §

¥ R2 > R2, y(x) = 6x

Choices of § n (no. of iterations) Xn E,
8 = 0 (Shehu and Iyiola 42 (—0.0000007, —0.0000048) 0.00000098
2015,
Algorithm 1)
8§ =0.05 39 (—0.0000007, —0.0000046) 0.00000095
§=0.1 29 (—0.0000007, —0.0000046) 0.00000098
§=02 46 (0.0000007, 0.0000050) 0.00000099
§=0.5 59 (0.0000007, 0.0000052) 0.00000097
§=09 71 (0.0000007, 0.0000049) 0.00000088

Remark 6.2 In Example 6.1, by testing the convergence behavior of Algorithm (6.1), we
observe that

(i) It converges to a solution, i.e., x, — (0, 0) € Q.

(ii) The selection of a contraction v in our algorithm influences the number of iterations of
the algorithm. We also note that if ¢ = 0 is zero, then our algorithm becomes Algorithm
(1.6) (Shehu and Iyiola 2015, Algorithm 1).

Next, we give an example in the infinite-dimensional space L? as follows.

Example 6.3 Let H; = L2([0,1]) = H,. Let x € L2([0, 1]). Define a bounded linear
operator A : L([0, 1]) — L?([0, 1]) by:

(Ax)(1) := 3tx(1).
Define a mapping S : L2([0, 1]) — L?([0, 1]) by:
(Sx)(1) = sin(x(1)).
Then, S is nonexpansive. Let
C = {x e L*([0,1]) : {w, x) <0},
where w € L2([0, 1]), such that w(z) = 2¢3, and let
0 ={x e L*(0,1]) : x > 0}.

Define two functions f, g : Lz([O, 1]) = (=00, 0] by f :=ic and g :=ip, where ic and
i are indicator functions of C and Q, respectively. We can write the explicit forms of the
proximity operators of f and g in the following forms:

x—%w, ifx ¢ C,
prox, p x = Pcx = lhwll )
: X, ifx e C,

and prox;, x = Pox = x4, where x (1) = max{x(t), 0} (see Cegielski 2012). Therefore,

Algorithm (3.1) can be rewritten in the form:

(6.2)
Xn+1 = PBnyn + (1 = Bn)Syn, Vn e N;
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1 2 1 2
51 — Pp)Ax + (511 — Pc)x,
n = Pn (2 i€ ) Al )2 (2 I c) n! ), for finding a common element in the
IA*(I — Po)Ax,|I* + (I — Pc)xnll
set Q := F(S)yNnCcnA~L(Q). By choosing the control sequences {«,}, {8,} and {p,}
satisfying the conditions (C1)—(C3) in Theorem 3.2, it can guarantee that the sequence {x;}

generated by (6.2) converges strongly to x* = 0 € Q.
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