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Abstract
In this paper amultistep collocationmethod for solvingVolterra integral equations of the third
kind is explained and analyzed. The structure of the method, its solvability and convergence
analysis are investigated. Moreover to show the applicability of the presented method and to
confirm our theoretical results some numerical examples are given.
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Mathematics Subject Classification 45A05 · 45D05 · 45E99

1 Introduction

This work is concerned with numerical results for linear Volterra integral equations of the
third kind of the form

xβ y(x) = f (x) +
∫ x

0
(x − t)−αk(x, t)y(t)dt, x ∈ I := [0, T ], (1)

where 0 ≤ α < 1, 0 < β ≤ 1, f (x) = xβg(x) with g(x) ∈ C(I ), k is a real continuous
function defined on D = {(x, t) : 0 ≤ t ≤ x ≤ T } and y(x) is an unknown function.
Volterra integral equations of the third kind have appeared inmodeling numerous problems in
various branches of science and engineering, such as heat transfer, population growth models
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and shock wave problems (Brunner 2017). Thus designing appropriate methods for solving
these equations are of great importance.

The collocation methods are among the most suitable methods for solving integral equa-
tions. The idea of the collocation method is based on approximating the solution of an
integral equation with a linear combination of an appropriate set of functions, which are
usually piecewise polynomial functions belonging to a finite-dimensional space. Therefore,
we obtain a system of equations that provides a suitable approximating polynomial for the
solution. Single-step collocation methods for solving VIEs of the second kind are discussed
in many researches (see Brunner 2004 and the references therein).

The existence, uniqueness and regularity of solutions of Eq. (1) have been studied in
Allaei et al. (2015). Recently, single-step collocation methods for solving linear Volterra
integral Eq. (1) have been explained by Seyed Allaei et al. in Allaei et al. (2017), and an
analysis of the collocation methods for nonlinear Volterra integral equations of the third
kind has been presented by Song et al. Song et al. (2019). The general multistep collocation
methods for solving second-kind Volterra integral equations have been established in Conte
and Paternoster (2009), and moreover the multistep Hermite collocation methods have been
studied in Fazeli et al. (2012).

It follows from Seyed Allaei et al. Allaei et al. (2015) that under certain conditions on
α, β and k, the integral operator,

(Vk,β,α y)(x) =
x∫

0

x−β(x − t)−αk(x, t)y(t)dt, (2)

is compact and therefore the algebraic system arising from the collocationmethod is uniquely
solvable for all sufficiently smallmesh diameters. But in the noncompact cases, in general, the
solvability of this systemwith uniform or gradedmesh is not guaranteed and so in Allaei et al.
(2017) the authors have applied the modified graded mesh to solve Eq. (1) with noncompact
operator.

Our aim is to apply a multistep collocation method to approximate the solution of VIEs
of the third kind when Vk,β,α is compact.

In order to give an origin for VIEs of the third kind, we consider the first-kind VIEs
∫ x

0
H(x, t)y(t)dt = f (x), x ∈ [0, T ]. (3)

Differentiating with respect to x , we obtain

H(x, x)y(x) +
∫ x

0

∂H(x, t)

∂x
y(t)dt = f ′(x). (4)

If H(x, x) �= 0 for all x ∈ [0, T ], then dividing (4) by H(x, x) we obtain the VIE of the
second kind

y(x) = g(x) +
∫ x

0
k(x, t)y(t)dt, x ∈ [0, T ], (5)

where g(x) = f ′(x)
H(x,x) and k(x, t) = −Hx (x,t)

H(x,x) . On the other hand, if H(x, x) vanishes on a

non-empty proper subset of [0, T ], then (4) is said to be a VIE of the third kind.
The rest of this paper is organized as follows.
In Sect. 2, first we present some preliminary theorems, and then the multistep collocation

method is utilized for solving Volterra integral equations of the third kind (1). In Sect. 3,
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solvability of the method will be discussed. Section 4 is devoted to the convergence of the
method, and finally in Sect. 5, the method will be evaluated with some examples.

2 Implementation of themethod

In this section first, by noting some theorems we present some preliminary conditions, under
which we can apply themultistep collocationmethod for (1) and thenwe describe themethod
and employ it for such equations.

Theorem 2.1 (Allaei et al. 2015) Suppose that in (1), α = 0, 0 < β < 1 and k ∈ C(D). Then
the integral operator Vk,β,0 is compact. Furthermore if for an integer m ≥ 1, g ∈ Cm(I ) and
the kernel k is of the form k(x, t) = tβ+m−1h(x, t) which satisfies the following conditions:

(i) ∂ j k
∂x j ∈ C(D) for j = 0, 1, ...,m,

(ii) ∂ j h
∂x j ∈ C(D) for j = 0, 1, ...,m − 1,

(iii) Hj+1(x) = ∂ j h
∂x j (x, x) ∈ Cm− j−1(I ) for j = 0, 1, ...,m − 1,

then Eq. (1) has a unique solution in Cm(I ).

Theorem 2.2 (Allaei et al. 2015) In Eq. (1), let 0 ≤ α < 1 and α + β = 1. Then for
continuous kernel k ∈ C(D) with k(0, 0) = 0, Vk,β,α is a compact operator. Moreover if
g(x) ∈ Cm(I ) and k ∈ Cm(D), then (1) has a unique solution in Cm(I ).

In the rest of the paper, we assume that the conditions of Theorems 2.1 or 2.2 are valid.
Now, we utilize a multistep collocation method for (1) with one of the cases given in the

above theorems. To this end, first let h = T
N for some N ∈ N and consider the uniform mesh

Ih = {xi = ih; i = 0, 1, . . . , N } . (6)

Now, we approximate the solution of (1) in the space of all discontinuous piecewise polyno-
mials with degrees at most m − 1

S(−1)
m−1(Ih) = {u; u

∣∣
σn ∈ πm−1, 0 ≤ n ≤ N − 1} ,

where σn = (xn, xn+1).
Suppose that the set of collocation points is given by

Xh = {
xi + c j h : 0 < c1 < c2 < · · · < cm ≤ 1, 0 ≤ i ≤ N − 1

}
. (7)

Therefore, the approximate solution uh on (xn, xn+1] is defined by

uh(xn + vh) =
r−1∑
k=0

φk(v)yn−k +
m∑
j=1

ψ j (v)Un, j , v ∈ (0, 1], n = r , . . . , N − 1, (8)

where yn−k = uh(xn−k), Un, j = uh(xn, j ), φk(v) and ψ j (v) are polynomials of degree m +
r −1, which are determined by collocation conditions at the points xn−k , k = 0, 1, . . . , r −1
and xn, j , j = 1, 2, . . . ,m.

Using the equalities yn−k = uh(xn−k) and Un, j = uh(xn, j ) and substituting them in (8),
we obtain the linear system (Conte and Paternoster 2009):{

φl(−k) = δlk, φl(c j ) = 0

ψ j (−k) = 0, ψ j (ci ) = δi j
; l, k = 0, . . . , r − 1 and i, j = 1, . . . ,m.
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Now with the idea of the collocation method, the function (8) must exactly satisfy (1) at
the collocation points xn, j , and so we have the following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

xβ
n, jUn, j = Fn, j + 
n, j ,

yn+1 =
r−1∑
k=0

φk(1)yn−k +
m∑
j=1

ψ j (1)Un, j ,
(9)

in which

Fn, j = f (xn, j ) + h
n−1∑
d=0

1∫

0

(xn, j − xd − vh)−αk(xn, j , xd + vh)uh(xd + vh)dv,

j = 1, . . . ,m,

and


n, j = h1−α

c j∫

0

(c j − v)−αk(xn, j , xn + vh)uh(xn + vh)dv, j = 1, . . . ,m.

Inserting (8) into (9), we obtain

xβ
n, jUn, j = f (xn, j ) + h1−α

r−1∑
d=0

1∫

0

(n − d + c j − v)−αk(xn, j , xd + vh)uh(xd + vh)dv

+h1−α
n−1∑
d=r

r−1∑
k=0

⎛
⎝

1∫

0

(n − d + c j − v)−αk(xn, j , xd + vh)φk(v)dv

⎞
⎠ yd−k

+h1−α
n−1∑
d=r

m∑
l=1

⎛
⎝

1∫

0

(n − d + c j − v)−αk(xn, j , xd + vh)ψl(v)dv

⎞
⎠Ud,l

+h1−α
r−1∑
k=0

⎛
⎝

c j∫

0

(c j − v)−αk(xn, j , xn + vh)φk(v)dv

⎞
⎠ yn−k

+h1−α
m∑
l=1

⎛
⎝

c j∫

0

(c j − v)−αk(xn, j , xn + vh)ψl(v)dv

⎞
⎠Un,l . (10)

Now, let
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Y (d) = (yd , yd−1, . . . , yd−r+1)
T , d = r , . . . , n,

U (d) = (
Ud,1,Ud,2, . . . ,Ud,m

)T
, d = r , . . . , n,

D(d)
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∫

0

(n − d + c1 − v)−αk(xn,1, xd + vh)uh(xd + vh)dv

1∫

0

(n − d + c2 − v)−αk(xn,2, xd + vh)uh(xd + vh)dv

.

.

.

1∫

0

(n − d + cm − v)−αk(xn,m , xd + vh)uh(xd + vh)dv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, d = 0, 1, . . . , r − 1,

T β
n = diag

(
xβ
n,1, x

β
n,2, . . . , x

β
n,m

)
,

Fn = (
f (xn,1), f (xn,2), . . . , f (xn,m)

)T
,

(11)

and define the matrices B̄(d)
n ∈ R

m×r and B̃(d)
n ∈ R

m×m by

(
B̄(d)
n

)
i,k+1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1∫

0

(n − d + ci − v)−αk(xn,i , xd + vh)φk(v)dv; d = r , r + 1, . . . , n − 1,

ci∫

0

(ci − v)−αk(xn,i , xn + vh)φk(v)dv; d = n,

(12)

for any 1 ≤ i ≤ m, 0 ≤ k ≤ r − 1.

(
B̃(d)
n

)
i, j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1∫

0

(n − d + ci − v)−αk(xn,i , xd + vh)ψ j (v)dv; d = r , . . . , n − 1,

ci∫

0

(ci − v)−αk(xn,i , xn + vh)ψ j (v)dv; d = n,

(13)

for every 1 ≤ i, j ≤ m.
Then (10) can be written in the matrix form

(T β
n − h1−α B̃(n)

n )U (n) = Fn + h1−α
r−1∑
d=0

D(d)
n + h1−α

n−1∑
d=r

B̃(d)
n U (d)

+ h1−α
n−1∑
d=r

B̄(d)
n Y (d) + h1−α B̄(n)

n Y (n).

(14)

By solving the above system of equations, Un, j ’s and then uh are determined. Of course,
the starting values y1, y2, . . . , yr can be obtained via a classical single-step method.
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3 Solvability of themethod

Wewill nowprove the solvability of the linear system (14) caused by themultistep collocation
method. To this end, we note that the corresponding operators are compact.

Theorem 3.1 Suppose that k ∈ C(D) and g ∈ C(I ). Then for 0 ≤ α < 1 and 0 < β < 1,
or β = 1 with k(0, 0) = 0, there exists an h̄ > 0 such that for any 0 < h ≤ h̄ the matrix(
T β
n − h1−α B̃(n)

n

)
is invertible for any n.

Proof Since c1 > 0, the diagonal matrix T β
n is invertible. By the Neumann lemma (Atkinson

1989), it is enough to prove that there exists an h̄ > 0 such that for any 0 < h ≤ h̄,∥∥∥h1−αT−β
n B̃(n)

n

∥∥∥∞ < 1. But by the definitions of B̃(n)
n and T β

n , we have

(
T−β
n B̃(n)

n

)
i, j

= x−β
n,i

ci∫

0

(ci − v)−αk(xn,i , xn + vh)ψ j (v)dv, (15)

and therefore

∥∥∥T−β
n B̃(n)

n

∥∥∥∞ = Max
1≤i≤m

m∑
j=1

∣∣∣∣∣∣x
−β
n,i

ci∫

0

(ci − v)−αk(xn,i , xn + vh)ψ j (v)dv

∣∣∣∣∣∣

≤ Max
1≤i≤m

x−β
n,i

ci∫

0

(ci − v)−α
∣∣k(xn,i , xn + vh)

∣∣ m∑
j=1

∣∣ψ j (v)
∣∣dv

≤ x−β
n,1 sup

xn≤t≤x≤xn+1

|k(x, t)| γ c1−α
m

1 − α
,

(16)

where γ = Max0≤v≤ci
∑m

j=1

∣∣ψ j (v)
∣∣.

Now, we consider the following two cases:

(a) If α + β ∈ (0, 1) from (16), we have

h1−α
∥∥∥T−β

n B̃(n)
n

∥∥∥∞ ≤ h1−αx−β
n,1‖k‖∞

γ c1−α
m

1 − α

<
h1−α−βc1−α

m ‖k‖∞γ

(1 − α)cβ
1

.

(17)

So by choosing h̄ <

(
(1−α)cα−1

m cβ
1

2‖k‖∞γ

) 1
1−α−β

, we obtain

h1−α
∥∥∥T−β

n B̃(n)
n

∥∥∥∞ < 1
2 .

(b) If α + β = 1 and k(0, 0) = 0, then there exists a positive constant ε > 0 such that

sup
0≤t≤x≤ε

|k(x, t)| <
c1−α
1 cα−1

m (1−α)

2γ .

So for xn+1 ∈ (0, ε] from (16), we have

h1−α

xβ
n,1

γ c1−α
m

1 − α
sup

xn≤t≤x≤xn+1

|k(x, t)| =
(

h

xn,1

)1−α

γ c1−α
m

1 − α
sup

xn≤t≤x≤xn+1

|k(x, t)| <
1

2
, (18)

123



A numerical method for solving Volterra integral equations... Page 7 of 13 174

for xn ∈ [ ε
2 , T ],
(

h

xn,1

)1−α

γ c1−α
m

1 − α
sup

xn≤t≤x≤xn+1

|k(x, t)| <

(
2h

ε

)1−α
γ c1−α

m

1 − α
‖k‖∞, (19)

and by choosing h̄ = min

{
ε
2 ,

ε
2cm

(
1−α

2γ ‖k‖∞

) 1
1−α

}
the proof is completed. 	


4 Convergence analysis

In this section, we investigate the order of convergence of the multistep collocation solution
to the exact solution.

Theorem 4.1 Suppose that one of the hypotheses of Theorems 2.1 or 2.2 are valid, k ∈
Cm+r (D), g ∈ Cm+r [0, T ], and let e(x) = y(x) − uh(x). If the starting error satisfies

‖e‖∞,[0,xr ] = O(hm+r ), (20)

and the spectral radius of the matrix,

A =
[

φ0(1) . . . φr−2(1) φr−1(1)

Ir−1 Or−1,1

]
, (21)

is less than 1, then ‖ e‖∞ = O(hm+r ).

Proof By the hypotheses of the theorem and referring (Allaei et al. 2015) we can conclude
that Eq. (1) has a unique solution in Cm+r [0, T ] and from Peano’s theorem (Brunner 2004),
we conclude that for any v ∈ (0, 1] we have

y(xn + vh) =
r−1∑
k=0

φk(v)y(xn−k) +
m∑
j=1

ψ j (v)y(xn, j ) + hm+r Rm,r ,n(v), (22)

where Rm,r ,n(v) is given by

Rm,r ,n(v) =
1∫

−r+1

km,r (v, τ )y(m+r)(xn + τh)dτ ,

in which

km,r (v, τ ) = 1

(m + r − 1)! [(v − τ)m+r−1+ −
r−1∑
k=0

φk(v)(−k − τ)m+r−1+

−
m∑
j=1

ψ j (v)(c j − τ)m+r−1+ ]

is the Peano’s kernel, and

(v − τ)
p
+ =

{
0 ; v < τ,

(v − τ)p ;v ≥ τ.
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Then from (8) and (22), it follows that

e(xn + vh) =
r−1∑
k=0

φk(v)en−k +
m∑
j=1

ψ j (v)en, j + hm+r Rm,r ,n(v), n ≥ r , (23)

where en, j = e(xn, j ) and en−k = e(xn−k).
Now from (1), we have

xβ
n, j y(xn, j ) = f (xn, j ) + h

n−1∑
d=0

1∫

0

(xn, j − xd − vh)−αk(xn,i , xd + vh)y(xd + vh)dv

+ h

c j∫

0

(xn, j − xn − vh)−αk(xn,i , xn + vh)y(xn + vh)dv,

(24)

and by using the first equation of (9), we have

xβ
n, j uh(xn, j ) = f (xn, j ) + h

n−1∑
d=0

1∫

0

(xn, j − xd − vh)−αk(xn, j , xd + vh)uh(xd + vh)dv

+ h1−α

c j∫

0

(ci − v)−αk(xn, j , xn + vh)uh(xn + vh)dv.

(25)

By subtracting (25) from (24), we have

xβ
n, j en, j = h

n−1∑
d=0

∫ 1

0
(xn, j − xd − vh)−αk(xn, j , xd + vh)e(xd + vh)dv

+ h1−α

∫ c j

0
(c j − v)−αk(xn, j , xn + vh)e(xn + vh)dv.

(26)

But according to (20) for the starting error, we have

e(xd + vh) = hm+rηd(v), d = 0, 1, . . . , r − 1, (27)

in which ‖ηd‖∞ ≤ C , where C > 0 is a constant.
By replacing from (27) and (23) in (26), we have

xβ
n, j en, j = hm+r+1

r−1∑
d=0

1∫

0

(xn, j − xd − vh)−αk(xn, j , xd + vh)ηd (v)dv

+h
n−1∑
d=r

1∫

0

(xn, j − xd − vh)−αk(xn, j , xd + vh)

(
r−1∑
k=0

φk(v)ed−k

+
m∑
l=1

ψl(v)ed,l + hm+r Rm,r ,d (v)

)
dv
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+h1−α

ci∫

0

(c j − v)−αk(xn, j , xn + vh)

(
r−1∑
k=0

φk(v)en−k +
m∑
l=1

ψl(v)en,l + hm+r Rm,r ,n(v)

)
dv.

(28)

Now suppose that the vectors ρ̄
(d)
n ∈ R

m are defined by:

(
ρ̄(d)
n

)
i
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1∫

0

(n − d + ci − v)−αk(xn,i , xd + vh)ηd(v)dv ; d = 0, . . . , r − 1,

1∫

0

(n − d + ci − v)−αk(xn,i , xd + vh)Rm,r ,d(v)dv ; d = r , . . . , n − 1,

ci∫

0

(ci − v)−αk(xn,i , xn + vh)Rm,r ,n(v)dv ; d = n,

(29)

for i = 1, . . . ,m.
Then using (12), (13) and (29), we can rewrite (28) in the matrix form:

(T β
n − h1−α B̃(n)

n )E (2)
n = h1−α

n−1∑
d=r

B̃(d)
n E (2)

d + h1−α
n∑

d=r

B̄(d)
n E (1)

d

+ hm+r+1−α
n∑

d=0

ρ̄(d)
n , n ≥ r ,

(30)

where
E (1)
d = [

ed , ed−1, . . . , ed−r+1
]T

, E (2)
d = [

ed,1, ed,2, . . . , ed,m
]T .

Since c1 > 0, the diagonal matrix T β
n is invertible for all n = 0, 1, . . . , N − 1, with∥∥∥T−β

n

∥∥∥∞ ≤ (c1h)−β .

Now letting n = d − 1 and v = 1 in (23), we have

e(xd−1 + h) =
r−1∑
k=0

φk(1)ed−1−k +
m∑
j=1

ψ j (1)ed−1, j + hm+r Rm,r ,d−1(1),

and then the non-homogeneous linear difference system of equations

E (1)
d = AE (1)

d−1 + SE (2)
d−1 + hm+r �̃m,r ,d−1, d ≥ r , (31)

is concluded, in which

�̃m,r , j =
[
Rm,r , j (1)

Or−1,1

]
,

and

S =
[

ψ1(1) ψ2(1) . . . ψm(1)

Or−1,m

]
.
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By solving this system, we obtain

E (1)
d = Ad−r+1E (1)

r−1 +
d−1∑
j=r−1

Ad− j−1(SE (2)
j + hm+r �̃m,r , j ). (32)

In the next step by replacing (32) in (30), we obtain

(
I − h1−αC̃ (n)

n

)
E (2)
n = h1−α

n−1∑
d=r

C̃ (d)
n E (2)

d

+ h1−α

(
n∑

d=r

C̄ (d)
n Ad−r+1

)
E (1)
r−1

+ h1−α
n−1∑
j=r

⎛
⎝ n∑

d= j+1

C̄ (d)
n Ad− j−1S

⎞
⎠ E (2)

j

+ h1−α

(
n∑

d=r

C̄ (d)
n Ad−r S

)
E (2)
r−1

+ hm+r−α
n−1∑
j=r−1

⎛
⎝ n∑

d= j+1

C̄ (d)
n Ad− j−1

⎞
⎠ �̃m,r , j

+ hm+r+1−α
n∑

d=0

T−β
n ρ̄(d)

n , n ≥ r ,

(33)

where C̃ (d)
n = T−β

n B̃(d)
n , C̄ (d)

n = T−β
n B̄(d)

n , for d = r , . . . , n.
Moreover, by using the assumption ρ(A) < 1, and doing some manipulations (Conte and

Paternoster 2009), we have ∥∥∥E (2)
n

∥∥∥
1

= O(hm+r ), (34)

and ∥∥∥E (1)
n

∥∥∥
1

= O(hm+r ). (35)

Finally from (34), (35) and representation of the local error given in (23), there exists a
positive constant D0 such that

‖y − uh‖∞ ≤ �m,r (

∥∥∥E (1)
n

∥∥∥
1
+

∥∥∥E (2)
n

∥∥∥
1
) + hm+r km,r Mm,r ≤ D0h

m+r , (36)

where �m,r = max
{‖φk‖∞,

∥∥ψ j
∥∥∞; k = 0, ..., r − 1, j = 1, ...,m

}
, and Mm,r =

∥∥y(m+r)
∥∥∞, km,r = maxv∈[0,1]

1∫
−r+1

∣∣km,r (v, τ )
∣∣ dτ .

	


5 Numerical examples

In this section, we have carried out the multistep collocation method in the space S(−1)
m−1(Ih)

for solving some examples. We have considered two different cases of Eq. (1) with different
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Fig. 1 The exact solution and three-step collocation solution of Example 1 with N = 8

values for α and β explained in Theorems 2.1 and 2.2. Note that the errors are compared via
‖eh‖∞ = sup1≤i≤N |eh(xi )|, and the numerical order of convergence which is defined by

p = log2
( ‖eN ‖∞‖e2N ‖∞

)
.

Example 1 In this example, we consider the equation

x
1
2 y(x) = f (x) +

x∫

0

(x − t)
−1
2 t2y(t)dt, x ∈ [0, 1],

in which, α = 1
2 , β = 1

2 , k(x, t) = t2 and f (x) = x2 − B( 12 ,
9
2 )x

4, where B(a, b) is the
beta function. We apply a three-step collocation method to this equation with collocation
parameters c1 = 3

5 , c2 = 9
10 , and with Radau II 2-points c1 = 1

3 , c2 = 1 and Radau II 3-

points c1 = 4−√
6

10 ,c2 = 4+√
6

10 and c3 = 1. The exact solution is y(x) = x
3
2 . The comparison

between the exact solution and themultistep collocation solution with collocation parameters
c1 = 3

5 and c2 = 9
10 , for N = 8 are graphically shown in Fig. 1. The absolute errors and

orders of convergence for this example are represented in Table 1, which are in agreement
with the results in Theorem 4.1. An interesting result from Table 1 is that a superconvergence
behavior can be obtained when Radau II points have been applied.

Example 2 We consider the following Volterra integral equation of the third kind

xy(x) = x2(1 − x

3
) +

x∫

0

t y(t)dt, x ∈ [0, 1], (37)

in which α = 0, β = 1, k(x, t) = t and so k(0, 0) = 0; thus by Theorem 2.2 the equation
has a unique solution in Cm+r [0, 1], which is given by y(x) = x . We have applied a three-
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Table 1 ||e||∞ and order of convergence for Example 1 with different values of N with r = 3

N ||e||∞ p ||e||∞ p ||e||∞ p
c1 = 0.6, c2 = 0.9 Radau II points m = 2 Radau II points m = 3

8 7.28 × 10−4 − 5.70 × 10−5 − 6.32 × 10−7 −
16 2.58 × 10−4 1.4979 4.87 × 10−6 3.5494 5.58 × 10−8 3.5026

32 9.11 × 10−5 1.4994 4.27 × 10−7 3.5123 4.93 × 10−9 3.5007

64 3.22 × 10−5 1.4998 3.76 × 10−8 3.5030 4.36 × 10−10 3.5002

128 1.14 × 10−5 1.4999 3.33 × 10−9 3.5007 3.85 × 10−11 3.5000

Fig. 2 The exact solution and three-step collocation solution of Example 2 with N = 16

step collocation method on this equation with the Chebyshev nodes c1 = 1
2 − 1

2
√
2
and

c2 = 1
2 + 1

2
√
2
(Stoer and Bulirsch 2002). The result for N = 16 is shown in Fig. 2.

6 Conclusions

In this paper, we have applied the multistep collocation method on some special cases of
the Volterra integral equations of the third kind. It is observed that under some appropriate
conditions on f (x) and k(x, t), and by increasing the numbers of collocation parameters and
steps, an acceptable order of convergence, in comparison to the collocation method, can be
achieved.
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