Computational and Applied Mathematics (2019) 38:169
https://doi.org/10.1007/540314-019-0937-y

®

Check for
updates

MacDonald codes over the ring F, + vIFp + v2F)

Yongkang Wang' - Jian Gao'2

Received: 15 October 2018 / Revised: 11 February 2019 / Accepted: 24 September 2019 /
Published online: 5 October 2019
© SBMAC - Sociedade Brasileira de Matematica Aplicada e Computacional 2019

Abstract

In this paper, we consider MacDonald codes over the finite non-chain ring ', + vF, + v2F »
and their applications in constructing secret sharing schemes and association schemes, where
p is an odd prime and v3 = v. We give some structural properties of MacDonald codes
first. Then, we study the weight enumerators of torsion codes of these MacDonald codes.
As some applications, constructing secret sharing schemes and association schemes is also
investigated.

Keywords MacDonald codes - Torsion codes - Secret sharing schemes - Association
schemes

Mathematics Subject Classification 94B05 - 11T71

1 Introduction

MacDonald codes are a class of linear codes with two nonzero weights. Two weights linear
codes have many wide applications in authentication codes, association schemes and secret
sharing schemes. Two weights codes are also closely related to objects in different areas of
mathematics such as strongly regular graphs, partial geometries, and projective point sets.
Therefore, the construction of two weights linear codes has become a hot topic of coding
theory, such as Shi et al. constructed some two weights projective Zs-codes in Shi et al.
(2017b) gave two new families of two weights codes by codes over finite non-chain rings in
Shi et al. (2017a).
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MacDonald codes have such good properties, so they have attracted the attention of coding
scholars. The binary MacDonald codes were introduced in MacDonald (1960). And Mac-
Donald codes over finite field IF, were studied in Patel (1975). In 2003, Colbourn and Gupta
obtained two families of MacDonald codes over the ring Z4 from Z4-simplex codes of types
a and B (see Colbourn and Gupta 2003). Dertli and Cengellenmis (2011) studied the Mac-
Donald codes over the finite non-chain ring F 4+ vF, with v = v. In 2016, Wang et al.
studied MacDonald codes over ), + vIF,, with v2 = v. They also determined the access
structure of secret sharing schemes based on these codes (see Wang et al. 2016).

In Delsarte (1973), the association schemes approach was firstly used to deal with a
collection of topics involving the weight distribution of a code. Association schemes are
closely related to coding theory, graph theory and finite fields theory. Especially, they provide
a framework to study codes and designs. Luo et al. (2018) constructed a class of linear codes
with two weights over F,, by linear codes over the finite chain ring F, + uF, with u? = 0.
They also employed these linear codes to construct association schemes.

The finite non-chain ring ), + vF,, + v2F p is the generalization of the ring F, + vF .
Shi et al. (2013) firstly studied the cyclic codes and the weight enumerator of linear codes
over Fp + vF, 4+ v2F, with v3 = v. Asan open problem in Shi et al. (2013), Gao studied the
structural properties of linear codes and cyclic codes over I, + vIF), + v2F p with v=v
and p an odd prime. Some optimal linear codes over finite fields were also constructed
(see Gao 2015). To the best of our knowledge, MacDonald codes over the finite non-chain
ring F,, + vF, + UZIF‘], with v3 = v and p an odd prime have not been considered by
any other coding scholars. In this paper, we will study this issue. The rest of this paper is
organized as follows. In Sect. 2, we give the structural properties of MacDonald codes over
F,+vF, + vZIF,,, where p is an odd prime and v = v. The torsion codes and their weight
enumerators are also studied in this section. In Sect. 3, as an application of torsion codes,
secret sharing schemes are constructed. In Sect. 4, as another application of torsion codes,
we employ them to construct some association schemes.

2 MacDonald codes over Fp + vFp, + v2F)

Let R = F) + vF, + szp, where p is an odd prime and v = v. It is clear that R is
a finite commutative ring with characteristic p. The ring R is also a semi-local ring with
three maximal ideals (v), (v — 1) and (v + 1). Any element of R can be uniquely expressed
asr = a + bv + cv?, where a, b, c € F,. Clearly, vy = v(v — D)(v + 1) over F),.
Letf0=v,]/‘6 =¥ -1, fi =v—1,71 =v2+vand f =v+1,j‘\2 =2 — .
Then f; and ﬁ are coprime, where i = 0, 1, 2. In other words, there exist a;, b; € R such
that a; f; + bif; = 1 fori = 0,1,2. Let e; = b; f; + (v — v). Then, ey = 1 — v,
e] = ”22+”, e = ”22_”, and ei2 = ¢, Z?:O e; = 1. Further, we obtain ¢;e; = 0 for any
i # j, which implies that eq, e; and e, are primitive idempotent elements of R. Therefore,
R =¢e)R®eiR®erR = e, e F, @erlF). It means that any » € R can also be uniquely
expressed as r = egro +ery +exra, wherer; € F,, i =0, 1, 2. By the Chinese remainder
theorem, we also have that R = R/(v) x R/(v—1) x R/(v+ 1) =F, xF, x F).

A code C of length n over R is a nonempty subset of R”. If the subset is also an R-
submodule of R", then C is called a linear code. For any x = (xqp, X1,...,Xp—1),y =
(Yo, Y1, ---» Yn—1) € R", we define the Euclidean inner product as x - y = Z;:ol x;yi. The
dual code of C is definedas Ct = {x e R" |x-y =0,V y € C}.If C C C*, then C is
called self-orthogonal. If C = C L. then C is called self-dual.
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Let C be a linear code of length n over R. Define

2 2
H1:{ae]F’;,Hb,ce]F",(l—vz)a—}-v ;vb+v : vceC},
2 2
H2:{be]F’Z,lEla,ce]F”,(l—vz)a—l—v+vb+v UCGC}
and
) v2+v v —v
H3:{ceF'I',EIa,beIF",(l—v)a—i- b+ CEC}.

Then, we have C = (1 — v} H, & L;”Hz ® ”22_” H3, and H;, H», H; are all linear codes of
length n over IF,. The linear codes H|, H, and Hj are defined to be the torsion codes of C.

2.1 MacDonald codes of type a

A type o simplex code S} is a linear code over R. Its generator matrix G} is constructed
inductively as follows.

Let G‘f beal x p3 matrix consisting of all the elements of R. In other words, G‘f =
012~ p—1v2v - I4+(p—Dv - (p—=D214+(p—Dv224+(p—Dv? -+ (p—
D+G(p—=Dv2v+(p—Dv22v+(p—Dv?--- 1+ (p— Dv+ (p — 1v?]. Note that the
elements of G{ can be sorted arbitrarily.

Let Gz be ak x p3k matrix over R, where

GY — 0---01---1---1+(p—Do+(p—Dv>--14+(p—Dv+(p— 1
CLG Gl e G '

Let G(Sk), columns consisting of all nonzero p-ary k-tuples, be a generator matrix for
an [n, k], simplex code Sy over F,. Then, the extended simplex code S is generated by
G (S) = [01G(Sk)], where

G@k):[()...() 1..-1 ... (p—l).A..(p—l)i|

GSi-1) GSp-1) - G(Sk-1)
adGS)=[012 - p—1].

Lemma 1 The torsion codes H; (i =1,2,3) of S are permutation equivalent to p*k copies
of Sk.

Proof We prove the H; case by induction on k. The generator matrix of H; is obtained by
replacing (1 — v?) by 1 in the matrix rows (1 — vz)Gg. For k = 1, we can easily verify
it. Suppose that the matrix (1 — 112)G%_1 is permutation equivalent to p>*~1 copies of

.2 < . a2\ aa s o2 ha
(1 = v})G(Sk—1), then the matrix (1 — v*)G{ is (1 —vH)GY =[G G G ], where
pz
G=[Go Gi -+ Gp-1];, 2 and
A=vhj (1—v?)j .
j= PN Y . j=01,...,p—1
(1 =v)G(S-1) -+ A =v)G(S-1)

The size of G is k x p3k=3. Regrouping the columns, we have the desired result. The proof
of Hp and Hj is similar to the above. O
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In the following, we define the MacDonald codes of type « over R. It can be constructed
from the generator matrix G}/ of the simplex code S¢'. For 1 < u < k — 1, let G} , be the
matrix obtained from G/ by deleting columns corresponding to the columns of G, i.e.

o o 0
Gk,u = [Gk\Ga] ’
u

where [A\ B] denotes the matrix obtained from the matrix A by deleting the matrix B, and
the size of the matrix 0 is (k — u) X p3”.

Definition 1 The code C,‘(’“u generated by Gﬁ,u is called a type « MacDonald code.

Clearly, the code Cf' , is a linear code over R of length pk— p3 Let My, be the torsion

code of C,‘j’ .- That is the generator matrix of M/?, ., obtained by replacing (1 — v2) by 1 in the
matrix (1 — vz)Gz’u. Meanwhile, we can get other torsion codes of Cf', by replacing ”2; L

by 1 in ”2; tG¢ , and by replacing ”22—7” by 1 in ”2; LGy, respectively. From Lemma 1, we

can see that these three torsion codes are equivalent to each other. Therefore, we only need
to study the first case, i.e. we only consider the torsion code M} . In the following, we give
the Hamming weight enumerator of My first.

Theorem 1 The torsion code M,‘Zu is a p-ary two weights linear code with parameter [p3k —
Pk, (p — D(p*1 — p3=1Y]. The number of codewords with Hamming weight (p —
1) pk=1is pk= — 1, and the number of codewords with Hamming weight (p — 1)(p3*~1 —
p3u—1) is pk _ pk—u.

Proof Clearly, the result holds for the case k = 2 and u = 1. Suppose that the result holds
forthe case k — 1 and 1 < u < k — 2. Then for the case k and 1 < u < k — 1, the matrix
(11— v2)G2‘ ., takes the form

0
_ 2\ no — _ 2\ no
(1 =v9)Gy, [(1 ”)Gk\(l—uz)cg]’
where
a=|:0---01---1-~-l+(p—1)v+(p—1)v2---l+(p—1)v+(p—1)v2:|
CTLGRL Gl G

Therefore, we have that each nonzero codeword of (1 — vz)Gg’u has Hamming weight
(p—Dp*=Lor (p—1(p*~1 — p3—1y and the dimension of M,ﬁu is k. By the computation,
there are p*~* — 1 codewords of Hamming weight (p — 1) p*~! and p* — p*~* codewords
of Hamming weight (p — 1)(1)3"‘*l — pu—ly, O

2.2 MacDonald codes of type 8

The code length of simplex codes of type « is large and increases fast. We can omit some

columns from S7. A type B simplex code Sf is a linear code over R constructed by omitting

some columns from GY{. Specifically, after deleting some columns of G{/, no two columns
are multiplied in the generating matrix Gf of sP.

W 2k
Let &, be a matrix of size k x Z——=F— over R. Let
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sqr=M12:---p—114+v24+2v--- (p—D+(p-—DHv2+vd+2v---2(p—1)+(p—
Dv3+v6+2v ---3(p—D+(p—Dv--- (p—D+0v2(p—D4+2v--- 1+(p—Dv 1+
(p—2v+(p—Dv224+2(p—2v4+2(p—Dv*--- (p—1) +2v+v> (p—1) +v*]and

5[0 ABCDE...F
2T 81 GYs 81816181
dy is constructed inductively as follows:

s _[0 A B C D E - F
T8t Gy ket Skt Skt Skmr - Skt |

where

A=[12 - p=114v2+42v-- (p=D+2v+0>(p—1)+7],
B=[v2v3v--- (p— D], C=[>20>30> --- (p— 2],
D=[v+v*204+2023v+30 - (p=Dv+(p — DHv?],
E=[2v+v*4v+20260v+30> .- 2(p — Do+ (p — D],
F=[(p—Do+v>2(p—Dv+20*3(p— Dv+30% - v+ (p— DH?].
Notice that the points between E and F' indicate that the first element is from (2 4 v)v to
((p—1)+v).
3k_ 2k
Let A4 be a matrix of size k x Z——F— over R. Let
M=[12---p—1v20---(p—Dv2+vd4+2v---2(p—D+(p—-—1Dv34+v6+
20---3p=D+(p=—Dv - (p=D+v2(p=D+2v--- 1+(p—Dv(p—D+(p—
v +22(p—D4+2(p —2Dv+20% - 1420+ (p — Dv? (p — Dv +v?] and

N — 0 ABCDE:- - F
2= A.lGlf)\.l)\.l)\.l)\.l"')\.l ’

A 1s constructed inductively as follows:
- 0 A B C D E --- F
T et Gy Akmt hdemt ket Akt o Mt |
where

A=[12---p—1v2v --- 1—i—2v—i—(p—1)v2 (p—l)v+v2],
B=[14+v24+2v3+3v--- (p—1D+(p— D],
C=+1220+20*30+30v> - (p— Do+ (p— ],
D=[1+2v+022+4v4+20*3+6v4+30> --- (p—D+2(p—Dv+ (p— 1],
E=02+3v4+0244+60+2026+9%+30> .- 2(p— 1) +3(p — Dv+ (p — Hv?],
F=[p—D+v2(p=D+20*3(p =1 +30> -+ 1+ (p — D2

Notice that the points between E and F indicate that the first element is from (2+v)(1+v)
o ((p—1)+v)d+v).

Let oy be a matrix of size k x Sop over R. Let
or=M12---p—1v20--- (p—DHvi1+v24+2v--- (p—D+(p—-—DHv2+v4d+

2v---2(p—D+(p—Dv34+v6+20v---3(p—D+(p—Dv --- (p—=2)+v2p—
D420 24(p—Dvl+v224+202 - (p—1D+(p—Dv?v+v? and

_[0ABCDE-F
2= o1 G{oyo1o101---01 ]

p3k7p2k
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oy is constructed inductively as follows:

[0 a B ¢ D E
7 okm1 G| okt okt okt - op1 |

where

A=[12--p—1v2v--- (p—D+(p—Dv>v+v2],
B=[(p—D+v2(p—1D+2v3(p—1D+3v--- 1+ (p— 1],
C=[(p=—Dv+v>2(p— Dv+20*3(p — Dv+3v% -+ v+ (p — D2,
D=[(p—D+22(p=D+203(p =1 +30> - 1+ (p— 1],
E=Rp-D4+v+024p—-1D4+20+20> --- 24+ (p— Do+ (p — ],
F=[142p—-Dv+v2244(p—Dv+20> --- (p—1)+2v+ (p — Dv?].

Notice that the points between E and F indicate that the first element is from (2+v)((p —
D4+vto((p—D+v)(p—1D+v).

Kook 12
Let uy be a matrix of size k x 2-2—1

oo over R. Let

[0 ABCD
H2= w1 G§ Ao pr |’

and

1k is constructed inductively as follows:

[ o A B C D
FE= 1 ey G| daet okt et |
where
A=[12--- p—1uv],
B=[14v242v3+3v - (p—1D+(p—Dvv+2],
C=[(p—D+v2(p—1D+2v--- 1+ (p—Dv(p—Dv+v%,
D=[(p—D+0*2(p =D +20*3(p—1)+30* -+ 1+ (p— D2

Kook )2
Let vx be a matrix of size k x % over R. Let

vi=[12-p=1(p-1+v]
and
0 ABCD
V) = o ,
Vi Gl 81)\1 V1

Vg 1s constructed inductively as follows:

[0 4 B C D
T et GY St hemt v |
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where

A=[12---p—1(p—-1+v],

B=1[v2v3v - (p— Dv (p— Do+ 2],
C=[14v2+2v34+3v - (p=D+(p—=Dv(p—1)+v7,
D=[v+v>20+2023v+30% -+ (p—Dv+(p— .

ke ok_1y2
Let wy be a matrix of size k x 1’(;”771)12) over R. Let

or=[12- p—11+v]

|0 ABCD
@2 = w1G‘f6101a)1 ’

and

wy is constructed inductively as follows:
| 0 A B C D
KT ket Gy Skmr okm x|
where
A=[12--p—114v], B=[v2v3v - (p— DHvv+7],
C=[(p—D+v2(p—D+2v - 14+(p—Dv(p—1+v7,
D=[(p—Dv+v*2(p—Dv+20*3(p — Dv+3v* - v+ (p — D’

k_1\3
Let G,’f be the generator matrix of Sﬁ, where k > 2. The size of Gf is k x ((’;__11))3 . Gg is

given as

Gb — LOvi+v(p—D+v(p—1D+v2v+02(p—Dv+v?
2 GY 146 M ol "1 V] ] ’

Gf is constructed inductively as follows:
Gﬁ:[ 1 0 v l4v(p—D+v(p—1D+v2v+? (p—l)v+v2]
k Gy, Gf,l Sk—1 Ak—1 Ok—1 k-1 Vk—1 g1

Then, we have the following result. The proof is similar to that of Lemma 1, so we omit it.

Lemma 2 The torsion codes H; (i =1, 2, 3) ofo are permutation equivalent to each other.

We can construct type f MacDonald codes similarly to the construction of type o« Mac-
Donald codes. For 2 < u < k — 1, let nyu be the matrix obtained from Gf by deleting

columns corresponding to the columns of (;5 ,Le.

0
B B
Gk,u = |:Gk \ Gf ] ’

where [A\ B] denotes the matrix obtained from the matrix A by deleting the matrix B, and
(pu _ 1)3

the size of the matrix 0is (k — u) x TR

Definition 2 The code C f . generated by Gf . 1s called a type 8 MacDonald code.
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Let M f , be the torsion code of C,’iu. That is the generator matrix of M,é . obtained by

replacing (1 — v?) by 1 in the matrix (1 — vz)Gf,u. Meanwhile, we can get other torsion

codes of Cfﬁu by replacing L;“ by 1 in ”2;” G,’?’u and by replacing ”22_" by 1 in ”22_” Gf,u,

respectively. From Lemma 1, we can see that these three torsion codes are equivalent to each
other. Therefore, we only need to study the first case, i.e. we only consider the torsion code

M f .- In the following, we give the Hamming weight enumerator of M, f , frst.

Theorem 2 The torsion code M,’fu is a p-ary two weights linear code with parameters

[(pk -3 —1)? . Pl (pk — % = prl(pt — 1)2}

(p—13 o (p—1?
k=1 pk_1)2
The number of codewords with Hamming weight % is p*=* — 1, and the number
k—1¢k 2 u—1¢ u 2
of codewords with Hamming weight 2—2 71(;:1”)2 P g ph — phu,

Proof Clearly, the result holds for the case k = 3 and u = 2. Suppose that the result holds
for the case k — 1 and 2 < u < k — 2. Then for the case k and 2 < u < k — 1, the matrix
(1- vz)Gf’u takes the form

0
(1-v)Gy, = [(1 — )G\ 0o v2)05] :

where Gf is defined above. Therefore, we have that each nonzero codeword of (1 — vz)Gf. "

—1 ¢k 2 k=1, k 2 u—1¢ u 2
(Vadl) Pt =D =pt (=D ; ; B
oo Or 1) , and the dlmenskloln (Zf Mzk’u is
k. By the computation, there are p*~* — 1 codewords of Hamming weight [7(;%1)—21)
7](pk71)27pu71(pu71)2
(p—1? :

has Hamming weight 2 ‘

u and

k
p* — p*=* codewords of Hamming weight 2 O

At the end of this section, we give an example of the torsion code M3ﬂ_ , to illustrate the
main work.

Example 1 Consider the type 8 MacDonald codes over the ring F3 +vF3 +v2F3 with v3 = v.
In this case, we have GY = [0 12v2v 1+ v2+ 2024+ v 1 +2v v 1 40?2+ 02 v+
V20402 T+ v+02 24204+ 02 24+ v+ 02 1420+ 02 20% 14202 24202 v 4202 20 +
202 14+ v+ 207 2420 + 202 2 4+ v + 202 1 + 2v + 20?],

GF — 1 0v I+v2+v2+0v2v+0v? 20402
2 G‘flﬁl )\1 a1 M1 V1 w1 ’
where
Si=[1214+v2+202+v1+2v1+v+20>2+42v+ 022+ 7],
M=[12v202+v14+202+v+v>1+2v+ 20> 2v + v,
o1 =[12v201+v2+2v1+v22+20%v+ v,
nr=[12v], vi=[1224v], oy =[121+v]
and

Gﬂ— 1 0 v 14v 24v 2402 v+v? 2042
3T G%‘ Gzﬂ S A2 lop) 7% 5 wy ’
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where

0 A v 2vv22v% v+ v?2v+ 202 2v + v? v+ 202

81 G1 81 81 61 61 81 81 81 81 ’
=[1214v2+2v24v1+2v1+v+2022+2v+ 0> 242
. 0 B l4+v2+2vv+v220+20% C
- MoA hi Moo
=[12v2v2+v1+2v2+v+021+2v+2v22v+v2],
=[1—|—2v+v22+v+2v22+v21—|—2v2].

0 D2+v1+2v2v+vzv+2v2E:|
0y = o ,

_U]Gl o] o] o] o] o]
D=[12v2v14+v2+2v1+0v>2+207 v+,
E=[124v1+20*14+v+0>2+42v+20%.

_[o F l+v2+2vv4+v224+v1+2020+0> H
Mz—_’u] GY M Al Al ol ol or  mr]’
F=[12v], H=[24v>1+2%].
; [0 I v202v4+ 0214024202+ v v+ v? 2v+ 202
2= | V1 G(f §1 61 81 A Al Al Vi Vi ’
I=[122+v]
and

0 — 0 J v2vv4vE24v14202+v2 20+ v v+4202
2= a)lG 81 61 61 w1 w]
J=[121+4v].

J

Let Gz/ be the matrix replacing (1 — v?) by 1in (I — v?)G¢, Gf’ be the matrix replacing

o1 01 01

(1= by lin (1 — vz)Gf. In addition, &;, A}, 0y, i}, v, and w; be the matrices replacing
(1=vH) by Lin (1 = vH)8, (1 —v?)a, (1 —v)og, (1 = vH)ux, (1 —v?) v and (1 — v?)ax,
respectively. Then, we have

G‘i‘:[012001221012001221012001221],
Ga,_'012001221221
2 — _G(il/ Glil/ G(it/ G(f/ G‘f/ G‘lx/ G(lx/ G(f/ Gllx/ G(it/ G‘lx/ G(lx/ N
Gﬁ/_'10012200

2 TGy 18 A of wh v ]
8,_'0A00000000

N RN R 1
A=1[121221122].

A’—_OB 12001221

2T GY A A A A A A )
B=1[120021210].
,_"0C21002112

727 o{ G¥ o o] o{ o] 0] o o] o] |

C=[120012120].
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,_012012021021
“r[MWfWﬂMMMdd%MM]
o1 2 2 00012200
[%wb?WﬁxxMMMww]

v

and
/[012100021200i|

wH = ’ ’ ’
2 ’ s o VA VAV A A A N AN
oy Gf GY GY 8, 8,6, 0y 0y 0] 0] &

’
Therefore, the generator matrix Gg 5 of Mf 5 18

o 1 0012200
26 Gh S og s vy ah |

By the Magma computational algebra system (see Bosma et al. 1997), the torsion code

Mﬁ , is a 3-ary [2133, 3, 1473] linear code with Hamming weight distributions Ay (0) = 1,
Ag(1473) =24 and Ay (1521) = 2.

3 Secret sharing schemes from MacDonald codes over R

A secret sharing scheme is a method that a dealer distributes shares of a secret to participants
such that only qualified subsets of participants can recover the secret from their shares. Let
P ={P1, P>, ..., P,_1} be aset of participants. We use s to denote a secret. [faset A C P
canrecover the secret s, then A is called a qualified set. Otherwise, it is called a unqualified set.
A secret sharing scheme is called perfect if all the unqualified sets cannot get any information
about the secret s in the information theoretic sense. Throughout this paper, we consider only
perfect secret sharing schemes. If the shares are of the same size as that of the secret s, the
secret sharing scheme is called ideal. A minimal qualified set B is thatif B C P is a qualified
set and for all C C B with C is an unqualified set. The access structure of a secret sharing
scheme is defined to be the set of all qualified sets.

In Massey (1993), the author gave a method of constructing secret sharing schemes by
linear codes over finite field IF;. We employ the same method in this section. Let C ba an
[n, k], linear code over Iy, and G = [go, g1, - - -, gu—11] be the generator matrix of C. Let
C+ be the dual code of C, and H = [hg, hy, ..., hy,—1] be the generator matrix of ct.

In the secret sharing scheme based on C, the secret s is an element of I, and n — 1 parties
Py, Py, ..., P,_1 and a dealer are involved. To compute shares with respect to a secret s, the
dealer chooses randomly a vector u = (uq, U1, ..., U,—k—1) such that s = uhg. The dealer
then treats u# as an information vector and computes the corresponding codeword

t=(to,t1,...,.th—1) =uH.

He then gives t; to party P; as share for eachi > 1.

Note that 9 = uho = s. Clearly, a set of shares {#;,,t,,....4,}, 1 <i1 < - <ip <
n—1land 1 <m <n — 1, determines the secret if and only if /¢ is a linear combination of
hi, hiy ..., h;,.Generally, we have the following result.

Lemma3 (Massey 1993) Let G be a generator matrix of an [n, k], linear code C. In the
secret sharing scheme based on C, a set of shares {t;, ti,, ..., t;,}, 1 <i1 < -+ < iy <
n—1and 1 < m < n — 1, determines the secret if and only if there is a codeword
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(1,0,...,0,¢;,0,...,0,¢;,,0,...,0) in the dual code CL, where ci; # 0 for at least
one j.

To describe the secret sharing scheme of a linear code, we also need to introduce the
covering problem of linear codes.

The support of avectorc = (cg, c1, - - ., cy—1)isdefinedastheset {0 <i <n—1]c¢; # 0}.
We say that a vector ¢ covers a vector c; if the support of ¢; contains that of ¢; as a proper
subsets. If a nonzero codeword ¢ covers only its scalar multiples, but no other nonzero
codewords, then it is called a minimal codeword. The covering problem of a linear code C
is to determine its all minimal codewords. This is a very hard problem in general, but can be
solved for certain types of linear codes. From Lemma 3, we can see that there is a one-to-one
correspondence between the set of minimal qualified sets and the set of minimal codewords
with 1 as its first component in the dual code C.

The access structure of the secret sharing scheme based on a linear code is very complex
in general, but can be determined in certain special cases.

Lemma 4 (Ding and Yuan 2003) Let C be an [n, k], linear code and G = [go, g1, - - - » gn—1]
be its generator matrix. If each nonzero codeword of C is a minimal codeword, then in the
secret sharing scheme based on CL, there are altogether ¢*~' minimal qualified sets. In
addition, we have the following:

1. If gi is a multiple of go, 1 < i < n — 1, then participant P; must be in every minimal
qualified set.

2. If gi is not a multiple of go, 1 < i < n — 1, then participant P; must be in (g — 1)g*=2
out of g*~' minimal qualified set.

When the conditions of Lemma 3 are satisfied, the secret sharing scheme based on the
dual code C* is interesting. In the following, we give a lemma to construct a linear code
whose nonzero codewords are all minimal.

Lemma5 (Ashikhmin and Barg 1998) In an [n, k], linear code C, let wyin and wmax be the
minimum and maximum nonzero weights, respectively. If ﬁ'T“‘; > qq;l, then all the codewords
of C are minimal.

Let G , and G .. be the generator matrices of the torsion codes M} o and M? k> TESpEc-
tively. In the followmg, we will prove that all the codewords of the torsion codes M}’ and

M kﬂ , are minimal.

Proposition 1 In the secret sharing scheme based on M]‘:MJ‘, there are p* — p3 — 1 par-
ticipants and p*=' minimal qualified sets. If the ith column of G, is a multiple of the
Oth column of Gf ,, then participant P; is in every minimal qualified set. Otherwise, each

k—1

participant P; is involved in exactly (p — 1) p*=2 out of p*~! minimal qualified sets.

Proof Let wmin and wmax be the minimum and maximum nonzero weights in the torsion
code My . From Theorem 1, we know that wyin = (p — 1)(1)3/‘_l - p3”_1) and wyax =

(p—1) 1;3k_1. Therefore, we have

Wain _ (p= D@ —p™H 1 p—l

Wmax (p— l)pSk_l P3(k_”) p '
where 1 < u <k — 1. By Lemma 5, we have that all the codewords of M}’ are minimal.
Then, the conclusion comes from Lemma 4. O
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ere . B 1 (pk71)37(p”7l)3
Proposition 2 In the secret sharing scheme based on M., , there are ooy 1
k—1

participants and p*~' minimal qualified sets. If the ith column of Gl’iu is a multiple of the

Oth column of Gf’u, then participant P; is in every minimal qualified set. Otherwise each

participant P; is involved in exactly (p — 1) p*=2 out of p*~! minimal qualified sets.

Proof Let wpyin and wmax be the minimum and maximum nonzero weights in the torsion
code M ,’? .- From Theorem 2, we know that

N PP =12 = prt(pt — 1)? and e — Pk —1)?
min — (p . 1)2 max — (p _ 1)2
Therefore, we have
Woin _ PP D= p -2 =D p-d
Wmax Pkil(Pk - 1)2 P(k_")(]?k - 1)2 P !

where 2 < u < k — 1. By Lemma 5, we have that all the codewords of M ,’f ,, are minimal.
Then, the conclusion comes from Lemma 4. ]

Example 2 By Example 1, we have that the Hamming weight distributions of torsion code
Mfz are Ag(0) =1, Ag(1473) = 24 and Ay (1521) = 2. In the following, we construct

secret sharing schemes based on Mf 5. We have 2132 participants and 9 minimal qualified
sets. We can consider participants P;, where i € Q ={3,5,9, 12, 13, 18, 21, 22, 81, 84, 85,
90, 93, 94, 99, 102, 103, 108, 111, 112, 117, 120, 121, 126, 129, 130, 243, 246, 247, 252,
255, 256, 261, 264, 265, 324, 327, 328, 333, 336, 337, 342, 345, 346, 351, 354, 355, 360,
363, 364, 369, 372, 373, 486, 489, 490, 495, 498, 499, 504, 507, 508, 567, 570, 571, 576,
579, 580, 585, 588, 589, 594, 597, 598, 603, 606, 607, 612, 615, 616, 1055, 1056, 1061,
1116, 1119, 1120, 1125, 1128, 1129, 1134, 1137, 1138, 1143, 1146, 1147, 1152, 1155, 1156,
1161, 1164, 1165, 1278, 1281, 1282, 1287, 1290, 1291, 1296, 1299, 1300, 1325, 1326, 1331,
1334, 1335, 1340, 1379, 1380, 1385, 1440, 1443, 1444, 1449, 1452, 1453, 1458, 1461 1462,
1467, 1470, 1471, 1476, 1479, 1480, 1485, 1487, 1489, 1602, 1605, 1606, 1611, 1614, 1615,
1620, 1623, 1624, 1649, 1650, 1655, 1658, 1659, 1664, 1703, 1758, 1761, 1762, 1767, 1770,
1771, 1776, 1779, 1780, 1805, 1806, 1811, 1832, 1833, 1838}.

Since these columns of G§,2 are multiples of the Oth column of Gg_z, then these participants
P;,i € Q must be in every minimal qualified set. Other participants P; must be in exactly 6
out of 9 minimal qualified sets, where 0 < j ¢ Q.

4 Association schemes from MacDonald codes over R

In Luo et al. (2018), the authors obtained a class of linear codes with two weights over IF,.
They also employed these linear codes to construct association schemes. Similarly, we can
use MacDonald codes of type « over R to construct association schemes. Let X be a finite
set with the cardinality of X greater than 2. Denote by X x X the Cartesian product of X.
For a positive integer d, consider aset L = {Lg, L1, ..., Lg}, where L;,i =0,1,...,d,is
a subset of X x X.

Definition 3 (Luo et al. 2018) Let X be a finite set with the cardinality of X greater than 2,
Ly ={(a,a)la € X}, L; ={(a,b)|a,b e X},i =1,2,...,d. Let X x X is a disjoint
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union of Lo, Ly, ..., Ly. For each integer i, j, k € {0, 1,...,d}, there exists an integer

€ {0,1,...,d} such that L; = L!, where L! = {(a,b)| (b,a) € L;}. And each pair
(a,b) € Ly, the cardinality of set {c € X| (a,c) € L;, (c,b) € L;} is equal to a constant
integer plkj Then, the pair (X, L) is called a d-class association scheme.

Let X = F',. For any x,y € X, denote the Hamming distance of x and y by d(x,y),
where d(x,y) =#{i | 1 <i <n,x; # y;}. Let L; = {(x,y) € F’; X FZ' dix,y) =i}, L =
{Lo, Ly, ...,Lg}. Then, (F", L) is an n-class association scheme known as the Hamming
association scheme.

In Luo et al. (2018), the authors give a necessary and sufficient condition for constructing
a 2-class association scheme from a linear code with parameters [n, 2].

Lemma6 (Luo et al. 2018) Assume that C is an [n, 2] linear code over Fy with nonzero
weights w1 and wj. Let c1, ca be two codewords of C such that c1, ¢ are linear independent
and w(c;) = w(c2) = wy. For any a, b € F* pr if w(acy + bcy) = wo, then the restriction
to C of the Hamming association scheme ls a 2-class association scheme if and only if
wy # wy + L.

In the following, we give an proposition to show that 2-class association schemes can be
constructed by MacDonald codes over F, + v, + szq.

Proposition 3 Let Mg 1 be a torsion code of MacDonald codes of type o over the ring

F, +vF, + sz with v3 = v. Let ¢, ¢a be two codewords of M2 | Such that cy, c; are
lmear mdependentand w(c1) =w(cp) = wi. Foranya, b € F%, ifw(aci +bcy) = woy, then
the restriction to M5 | of the Hamming association scheme is a 2-class association scheme.

Proof By Theorem 1, we have that Mg,] isan [p®— p3,2, (p— 1)(p° — p)]linear code over
IF, with nonzero weights wi = (p—1)(p° — p*) and wp = (p— 1) p°. Clearly, w; + 1 # w,
for p is an odd prime. Then, the conclusion comes from Lemma 6. O

Example 3 Consider the torsion code M5 of MacDonald codes of type « over the ring
F3 + vIF3 + v2F3 with v® = v. The generator matrix G%‘:l of M5 is given by

o

[12001221AA]
2,1 = ,

GY GY GY GY G¥ GY GY GY GY GY
where A=[01200 122 1]. By the Magma computational algebra system (Bosma et al.

1997), the torsion code My | is a 3-ary [702, 2, 468] code with Hamming weight distributions
Ap(0) =1, Ay (468) = 6 and A (486) = 2.

Letcp =(0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1, 2, 0,0,
1,2,2,101,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0, 1, 2,0, 0, 1,
2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0, 1, 2,
2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0, 1, 2, 2,
1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0, 1, 2, 2, 1,
0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2, 1, 0,
1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2, 1,0, 1,
2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2, 1,0, 1, 2,
0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0, 1,2,2, 1,0, 1, 2, 0,
0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0, 1, 2,0, 0,
1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0,1,2,2,1,0,1,2,0,0, 1
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cl) = 468, Zw(co) + w(cy) = 486. Consequently, the restriction to M""l of the

Hamming scheme is a 2-class association scheme.

5 Conclusion

In this paper, we studied MacDonald codes over the finite non-chain ring F, + v, + v2F P

where p is an odd prime and v’

v. Some applications of MacDonald codes were also

investigated in this paper. For p = 2, the ring F, + vFp + v2F5 has different structural

properties from the ring F), + vIF), + v’ p with p an odd prime (see Shi et al. 2013). It is

on the complexity of the generator matrix of MacDonald codes, considering MacDonald

codes and their applications over the general finite non-chain ring IF,[v]/(v" — v) may be

ring F, + vF), + UZIF,, is the special case of the ring F,[v]/(v™ — v) with m = 3. Based
an interesting and challenging work.

interesting to consider MacDonald codes and their applications over this ring. Further, the
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