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Abstract
Performance indicators such as makespan, flow time and tardiness are considered to be
optimisation objectives in the traditional flexible job shop scheduling problem (FJSSP).
However, the cost of energy consumption or environmental problems should not be ignored.
This paper addresses the FJSSP by minimising the sum of the cost of energy consump-
tion and the weighted tardiness. First, a mathematical model of the problem and a heuristic
algorithm for the problem are presented. Second, a parallel gene expression programming
(PGEP) method with a migration scheme is put forward to evolve rules for the proposed
heuristic algorithm to solve the problem. To speed up the system learning process, a parallel
and distributed computing framework is also designed. Finally, the performance of the pro-
posed PGEP approach is evaluated through extensive simulations. The time-of-use electricity
pricing, due date tightness and tardiness penalty weight are considered when evaluating the
effect of the heuristic rules. Experimental results show that the proposed PGEP approach can
significantly improve the quality of the heuristic rules, and the PGEP-evolved rules can fast
and effectively solve FJSSP.
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1 Introduction

Energy is one of indispensable basic resources for manufacturing. With the global develop-
ment of industry, the amount of world’s energy consumption has been doubled in the last
50 years. At present, industry consumes about half of the world’s energy (Mouzon et al.
2007). The rising costs of energy are one of the most vital factors for the development of
manufacturing enterprises. In the US, about 34% of all energy is consumed by the industrial
sector. Electricity in industrial consumption accounts for a tenth in total energy consumption
(Energy InformationAdministration 2005). Energy costs for themanufacturerswere annually
100 billion dollars in 2006, which is even larger today (Solar Energy International 2015). In
China, the manufacturing industry just completes about 21.5% of the global manufacturing
tasks annually, but it consumes an equivalent of 18 billion tons of standard coal. In the US, the
manufacturing sector consumes about one-third of the global energy, contributing to about
28% of greenhouse gas emissions (Mouzon 2008). In China, carbon emissions from energy
consumption in manufacturing accounts for approximately 60% of total industrial carbon
emissions (Ya 2013). Electricity is one of the most important forms of energy for manu-
facturing. Emissions of pollutants and greenhouse gases from electricity generation account
for a significant portion of world’s greenhouse gas emissions. For example, every year in
China, around 50% of the electricity is consumed by manufacturing (Tang et al. 2006), and
at least 26% of carbon dioxide emission is generated (Liu et al. 2014). With the increasing
energy price, energy shortage and environment deterioration, more and more manufacturing
companies are forced to reduce energy consumption as well as environmental pollution to
save energy costs and become more environmentally friendly.

At present, research on minimising the energy consumption of manufacturing system
is divided into three categories: the machine level, the product level and the manufacturing
system level. First, from themachine level perspective,many researchers have tried to develop
and design more energy-efficient machine equipment to reduce power and energy demands
ofmachine components (Duflou et al. 2012; Fang et al. 2011a; Li et al. 2011;Mori et al. 2011;
Neugebauer et al. 2011). In the field of discrete part manufacturing, reviews on the state-
of-the-art technologies that increase energy and resource efficiency are provided by Duflou
et al. (2012) and Fysikopoulos et al. (2013). However, in contrast with over 30% of input
energy demand for background of machining (i.e., spindle, jog, coolant pump, computers and
fans, etc.), the energy requirement for the active removal of material is quite small (Dahmus
and Gutowski 2004; Drake et al. 2006). Most energy is consumed by functions that have
no direct relevance to the production of components (Gutowski et al. 2005). Second, from
the product design perspective, some existing research has focused so far on the modelling
framework for embodied energy of a product (Rahimifard et al. 2010; Seow and Rahimifard
2011; Kara et al. 2010). However, to facilitate the analysis and evaluation of the embodied
energy of a product, powerful commercial simulation software needs to be developed, which
requires enormous capital investment. It cannot be easily applied tomost of themanufacturing
companies, especially to those small- and medium-sized enterprises (SMEs). Third, from the
manufacturing system level perspective, an operational decision method is used to optimise
shop floor planning and scheduling and decision strategies, which is relatively low cost and
applicable to existing systems compared to the first two categories. This suggests that energy
saving on system level may have a significant (perhaps a bigger) opportunity than solely on
updating individual machines or processes (Fang et al. 2011a). So it can be employed as a
promising energy saving approach.
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Facing the challenge from an intensely competitive market, more and more companies,
especially SMEs, have adopted flexible layouts of workshops to realise the transformation
from traditional large-scale continuous production to modern small-scale discrete production
with multispecies. However, to the best knowledge of the authors, most of the current energy-
conscious scheduling research focuses on single machine, parallel machine and flow shop. A
typical job shop type of manufacturing system has not been well investigated from the per-
spective of energy consumption reduction (Liu et al. 2014). For example, in the mould man-
ufacturing industry, operations such as milling, drilling, boring and cutting, consume a large
quantity of electricity while these operations can be usually processed on different machines
with different processing time. At the same time, the mould enterprise usually takes on man-
ufacturing tasks of dozens or even more than one hundred sets of moulds but with limited
equipment, delay delivery with a large amount of penalty may be impossible to be avoided.

The remainder of the paper is organized as follows. In Sect. 2, a literature review is
presented. In Sect. 3, the mathematical problem is formally defined. Then, in Sect. 4, the
presented heuristic algorithm for solving the FJSSP is described. In Sect. 5, the proposed
PGEP approach to evolve scheduling rules (SRs) for the heuristic algorithm is elaborated.
Section 6 is dedicated to a computational study for evaluating the feasibility of the model
and the effectiveness of the method. Finally, conclusions and further research subjects are
presented in Sect. 7.

2 Literature review

Asmentioned in Sect. 1, the operational decisionmethod is regarded as a feasible and effective
approach for manufacturing companies to reduce the total cost of energy consumption. The
research on floor shop scheduling with the objective of reducing the total cost of energy
consumption is relatively less but increasing.

The approach which breaks down the total energy use of machining processes has been
employed as the bases for modelling power input of machine tools at the workshop level.
According to this approach, electricity consumption for a machine tool in a feasible schedule
can be divided into two types: non-processing electricity consumption (NPE) and processing
electricity consumption (PE). NPE includes a machine’s starting up, shutting down and
idling. JPE is defined as job-related processing electricity consumption (JPE) which means
electricity is consumed when a job is processed on a specific machine. Thus, PE is the sum
of all the JPE on a specific machine (Liu et al. 2014).

From the workshop scheduling perspective, sequencing, turning off/turning on and pro-
cess route selection (PRS) are considered as typical operational decision methods which are
used for electricity saving. Mouzon adopts the sequencing method to reduce the total NPE
in both single machine environment and parallel machine environment (Mouzon 2008). Dai
et al. propose an energy-efficient model for flexible flow shop scheduling (Dai et al. 2013).
A sequencing method based on genetic-simulated annealing algorithm is adopted to make
a significant trade-off between the makespan and the total energy consumption (including
PE and NPE) to implement feasible scheduling. Fang et al. address a scheduling problem
in a multiple-machine system where the computing speed of the machines is allowed to be
adjusted during the course of execution (Fang and Lin 2013). A particle swarm optimisation
(PSO) algorithm is adopted to optimise the decision by allocating the jobs to the machines as
well as determining the job sequence and processing speed of eachmachinewith the objective
function involving the totalweighted job tardiness and the power consumption (PE) cost. Fang

123



185 Page 4 of 31 S. Zhang et al.

et al. present a new mathematical programming model of the flow shop scheduling problem
considering peak power load, energy consumption (including NPE and PE), and associated
carbon footprint in addition to the cycle time (Fang et al. 2011b). Apart from the processing
order of the jobs, the operation speed is also considered as an independent variable in the
proposed scheduling problem, which can be changed to affect the peak load and energy con-
sumption. Zhang et al. develop a time-indexed integer programming formulation to identify
manufacturing schedules that minimise electricity cost (PE) and the carbon footprint under
time-of-use tariffs without compromising the production throughput. And the approach is
demonstrated using a flow shop with eight process steps to operate on a typical summer day
(Zhang et al. 2014). To deal with the production and energy efficiency of the unrelated parallel
machine scheduling problem, Moon et al. focus on two optimisation objectives: minimising
the makespan of production and minimising the time-dependent electricity costs (PE) (Moon
et al. 2013). A hybrid genetic algorithm with a blank job insertion algorithm is proposed and
its performance is demonstrated in simulation experiments. Zeng et al. present a PSO-based
approach to solve the dynamic scheduling problem of multi-task for hybrid flow shop with
the objective of minimising the energy consumption (PE) (Zeng et al. 2009). According to the
characteristic of hybrid flow shop scheduling problem (HFSP) in practice, Liu et al. present a
mixed integer nonlinear programming model for HFSP to minimise the energy consumption
(including NPE and PE), and develop an improved genetic algorithm to solve the problem
(Liu et al. 2008). Liu et al. address a fuzzy flow shop scheduling problem in a production
system where the machine setup times depend on their prior states, and develop an enhanced
genetic algorithm tominimise the energy consumption and tardiness penalty (Liu et al. 2017).
Mokhtari et al. present an energy-efficient scheduling problem in a flexible job shop floor
industrial environment and design an improved simulated annealing genetic algorithm to
solve the multi-objective optimization problem (Mokhtaria and Hasani 2017). Yin et al. pro-
pose a new low-carbon mathematical scheduling model for the flexible job shop environment
to optimise productivity, energy efficiency and noise reduction, and develop amulti-objective
genetic algorithm based on a simplex lattice design to solve the model (Yin et al. 2017).

Each idle period of amachine and the total amount of the idle time are closely related to the
order of jobswhich are processed on thatmachine (Liu et al. 2014). Large quantities of energy
is consumed when non-bottleneck machines are lying idly and significant amounts of energy
are consumed when a machine is turned on or turned off (Drake et al. 2006). So for electricity
saving, a machine tool can be turned off when it becomes idle (Mouzon 2008). Based on
the previous work, more and more research about turning on/turning off methods has been
conducted. For example, by scheduling a machine’s starting up and shutting down, Chen
et al. investigate energy consumption reduction in serial production lines with finite buffers
and machines having Bernoulli reliability mode (Chen et al. 2013). Shrouf et al. propose a
mathematical model to minimise the total cost of energy consumption for a single machine
production scheduling during production processes. The genetic algorithm has been utilized
to optimise the sequencing of job processing and switching of machines (turning on/turning
off) (Shrouf et al. 2014). Zanoni et al. analyse the effects of energy cost in production on
the optimal production policy of a two-stage production system with controllable production
rates. They propose two different classes of policies, namely continuous and interrupted batch
production. In the former case, the first machine produces continuously until the end of the
production cycle, while in the latter case, the first machine will turn into an idle state after
a batch has been shipped to the second stage, and it is turned on again when it is necessary
to refill the buffer stock before the second stage. In addition, they suggest different policies
for each class by assuming that both machines may either stay idle or be switched off and on
between two production cycles (Zanoni et al. 2014).
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PRS is widely used in flexible workshop scheduling problems with traditional optimi-
sation objectives, such as makespan, tardiness, and cost. With regard to reducing the total
cost of energy consumption, the related research is relatively less. Mouzon adopts the PRS
to reduce total PE as well as total NPE for a parallel machine scheduling problem (Mouzon
2008). According to He et al., energy consumption dynamically depends on the flexibility
and variability of task flow in production processes, and the PRS can be adopted to decrease
both total PE and total NPE in a flexible job shop environment. The PRS is only effective in
systems which have alternative routes with different energy characteristics for the same job
(He et al. 2012).

Based on the above literature review, several observations can be obtained. First, from
the workshop scheduling perspective, most research on reducing the total cost of energy
consumption by employing operational decision method has focused on the single machine
environment, the parallel machine environment, or the flow shop environment. However, few
references concentrate upon the job shop environment. Especially, the literature on energy-
efficient flexible job shop scheduling is relatively rare. Second, from the perspective of
optimisation techniques, methods or tools of reducing the total cost of energy consumption
mainly include dispatching rules (Mouzon et al. 2007), a greedy randomised adaptive search
procedure (Mouzon 2008), constraint programming algorithm (Moon and Park 2014), mixed
integer programming solver (Moon and Park 2014; Bruzzonea et al. 2012), genetic algorithm
(Dai et al. 2013; Moon et al. 2013; Liu et al. 2017; Mokhtaria and Hasani 2017; Yin et al.
2017) and PSO (Fang and Lin 2013; Zeng et al. 2009). However, different environments
and characteristics of problems limit the applicability of these methods to a wider range of
production scheduling for reducing energy consumption. So it is of considerable significance
for both academia and industry to explore the flexible job shop model considering reducing
the energy consumption and its related scheduling optimisation methods.

In this paper, derived from a cooperative enterprise which produces a variety of metal
moulds, a FJSSP is proposed from the system level perspective to minimise the sum of the
total weighted tardiness penalty (TWTP) of all jobs and the total energy cost (TEC). The
modelling method for this problem is presented as below.

3 Problem definition and notations

The FJSSP is prevalent in manufacturing industry, especially in SMEs. In our research, the
FJSSP is the static one which means the number of jobs is deterministic and all of them are
available at time zero. The objective function for the FJSSP can be expressed as below:

minimiseF(s) � TWTP(s) + TEC(s)s ∈ S (1)

The formal mathematical definition of the problem has been described in detail in the
following sections.

3.1 Notations

The following notations will be used for problem statement throughout the paper.

Indices and sets

J The set of jobs
i, i ′ Jobs (i, i ′ ∈ J )
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O The set of operations
Oi A finite set of ordered operations of job i
j, j ′ Operations ( j, j ′ ∈ O)
M The set of machines
Mj The set of alternative machines on which operation j can be processed,Mj ⊆ M
Mj ∩ Mj ′ The set of machines on which operations j and j ′ can be processed
k Machines (k ∈ M)

Parameters

di Due date of job i
gi The number of operations of job i
wi Weighted importance of job i , which indicates the tardiness penalty degree.

Although different jobs have the same delay time, the tardiness penalty cost may
vary for these jobs

S A finite set of all feasible schedule plans
s A feasible schedule plan,s ∈ S
L A very large number
cpup Cost of per unit power
utp Unit of tardiness penalty
Oi j Operation j of job i
O

′
rk r -th operation processed on machine k within a feasible schedule s

S
′
rk Starting time of O

′
rk on machine k

Ci (s) Completion time of job i in schedule s
C

′
rk Completion time of O

′
rk on machine k

Ti (s) Tardiness of job i , defined as Ti (s) � max{0,Ci (s) − di }
ti jk The cutting time of operation Oi j on machine k
Pk Input power of machine k
pi jk The processing time of operation Oi j on machine k
Pidle
k Idle power of machine k

Pruntime
i jk The increase in power based on Pidle

k when executing the runtime operations for
processing Oi j on machine k

Pcutting
i jk The increase in power based on P runtime

i jk when actually executing cutting for Oi j

on machine k
Ei jk JPE of Oi j on machine k
E idle
i jk Electricity consumed by machine k with idle power level during pi jk

E runtime
i jk Electricity consumed by machine k when it executes the runtime operations for

processing Oi j

Ecutting
i jk Electricity consumed by machine k when it actually executes cutting for Oi j

Decision variables

Ci The completion time of job i
Ci jk The completion time of operation Oi j on machine k
Cmax Maximum completion time of all jobs (makespan)
Si jk The starting time of operation Oi j on machine k
Xi jk 1, if operation Oi j is processed on machine k; 0, otherwise
Yi ji ′ j ′ 1, if operation Oi j precedes operation Oi ′ j ′ on machine k; 0, otherwise
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3.2 The TWTP of flexible job shopmodel

Flexible job shop scheduling problem is formally defined as FJSSP according to the work of
Özgüven et al. (2010) and Driss et al. (2015). A finite set of n independent jobs is processed
on a finite set of m machines M . A number of gi ordered operations (Oi1,Oi2,…,Oi,gi ) is
performed to complete the job i . The operation j of job i can be processed by any machine in
a given set Mj ⊆ M for a given processing time pi jk . Each job has a due date di as well as a
weighted importance factorwi . The FJSSP is a routing and sequencing problemwhichmeans
that each operation Oi j is assigned to a selected machine from the set Mj and operations on
the machines are sequenced to optimise one or more objectives. All jobs are available at time
zero. A machine can process only one operation at a time, and no pre-emption is allowed.
In this paper, we will construct a feasible schedule s of all jobs so as to minimise the TWTP
(s) � utp × ∑n

i�1 wi × max{0,Ci (s) − di } with the following constraints:
∑

k∈Mj

Xi jk � 1,∀i ∈ j, j ∈ Oi (2)

Si jk + Ci jk ≤ Xi jk × L, ∀i ∈ J ,∀ j ∈ Oi ,∀k ∈ Mj , (3)

Ci jk ≥ Si jk + pi jk − (
1 − Xi jk

) × L, ∀i ∈ J ,∀ j ∈ Oi ,∀k ∈ Mj , (4)

Si jk ≥ Ci ′ j ′k − Yi ji ′ j ′ × L, ∀i < i ′,∀ j ∈ Oi ,∀ j ∈ Oi ,∀k ∈ Mj ∩ Mj ′ , (5)

Si ′ j ′k′ ≥ Ci jk − (
1 − Yi ji ′ j ′

) × L, ∀i < i ′,∀ j ∈ Oi ,∀ j ′ ∈ Oi ′ ,∀k ∈ Mj ∩ Mj ′ , (6)
∑

k∈Mj

Si jk ≥
∑

k∈Mj

Ci, j−1,k, ∀i ∈ J ,∀ j ∈ Oi − {
Oi,1

}
, (7)

Ci ≥
∑

k∈Mj

Ci,Oi,gi ,k
,∀i ∈ J , (8)

Cmax ≥ Ci ,∀i ∈ J , (9)

where

Xi jk ∈ {0, 1},∀i ∈ J ,∀ j ∈ Oi ,∀k ∈ Mj , (10)

Si jk ≥ 0,∀i ∈ J ,∀ j ∈ Oi ,∀k ∈ Mj , (11)

Ci jk ≥ 0,∀i ∈ J ,∀ j ∈ Oi ,∀k ∈ Mj , (12)

Yi ji ′ j ′k ∈ {0, 1}, ∀i ∈ i ′,∀ j ∈ Oi ,∀ j ′ ∈ Oi ′ ,∀k ∈ Mj ,

∀i ∈ i ′,∀ j ∈ Oi ,∀ j ′ ∈ Oi ′ ,∀k ∈ Mj , (13)

Ci ≥ 0,∀i ∈ J . (14)

Constraints (2) ensure that operation Oi j is assigned to only one machine. If the operation
Oi j is not allocated to machine k, the constraints (3) set the starting time and completion time
of it on machine k equal to zero. Otherwise, the constraints (4) make sure that the difference
between the starting time and completion time is equal in the least to the processing time on
machine k. If Oi j has not been processed on machine k, the symbol L is used to indicate
the unpredictable completion time of Oi j . Constraints (5) and (6) require that operation Oi j

and operation Oi ′ j ′ cannot be done at the same time on any machine in the set Mj ∩ Mj ′ .
Constraints (7) guarantee that the precedence orders among the operations of a job are not
violated, i.e., the operation Oi j cannot start until its previous operation Oi, j−1 is completed.
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turn-off shutdown turn-on setup process
t

wait setup process

idle setup process
t

wait setup process

(a) ON - OFF strategy

(b) idle strategy

Fig. 1 Machine state transition for two different strategy

Constraints (8) determine the completion time (of the final operation defined in terms of
number) of the jobs, and constraints (9) determine the makespan which limits the maximum
completion lead time (of all jobs) to be greater than or equal to the completion time of job i .
Finally, the other constraints (10), (11), (12), (13) and (14) denote the conditions on decision
variables.

3.3 The TEC of electricity consumptionmodel

At any time, each machine can only be in one of six states, namely, turn off, shutdown, turn
on, setup, process, idle. These states can be divided into three phases, that is, waiting, setup,
and process. Figure 1 depicts the two alternative state transition strategies for machine in the
waiting phase. Indicators for determining the optimal strategy during the waiting phase are
applied by some researchers (Mouzon et al. 2007; Dai et al. 2013), so we will not address this
topic here. In this paper, ‘idle strategy’ is employed. Both the setup time and setup energy
are negligible.

The electricity consumptionmodel is basedon the existing researchworkon environmental
analysis of machining (Liu et al. 2014; Diaz et al. 2010). In the waiting phase, the idle power
of machine k is defined by P idle

k , while in processing phase, each machine k has two constant
levels of power consumption: during the runtime mode and when carrying out the actual
operation, presented as cutting operation in this paper. The increase in power during runtime
is given by P runtime

i jk , and the further additional power requirement for cutting is expressed as

Pcutting
i jk . The whole processing time pi jk can be defined as the time interval between coolant

switching on andoff. The ti jk often has a slightly shorter time interval duringwhich the highest

power level Pmax
k is required, and the Pmax

k is defined as:Pmax
k � P idle

k +P runtime
i jk +Pcutting

i jk .
The job-related processing electricity consumption (JPE) required to accomplish operation

Oi j onmachine k is Ei jk , which is given as follows: Ei jk � E idle
i jk +E

runtime
i jk +Ecutting

i jk � P idle
k ×

pi jk + P runtime
i jk × pi jk + Pcutting

i jk × ti jk . Because of the flexibility of the research problem, Ei jk

is a variable which is affected by different scheduling plans. Thus, the processing electricity
consumption required for completing s is PE(s) � ∑m

k�1
∑n

i�1
∑gi

j�1(Ei jk × Xi jk), which
is the sum of all the JPE on a specific machine.
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Similarly, the NPE of machine k, defined by N PEk(s) (only including the idle power
consumption of machine k) is also a function of the scheduling plan, which can be calculated
as follows:

NPEk(s) � P idle
k ×

(

max
(
C

′
rk

)
− min

(
S

′
rk

)
−

∑

r

(C
′
rk − S

′
rk)

)

. (15)

By carrying out a feasible schedule s of all jobs, we obtain the amount of total NPE
by NPE(s) � ∑m

k�1 NPEk(s). Therefore, the total energy cost is given as, TEC(s) �
(PE(s) + NPE(s)) × cpup.

4 Heuristic algorithm for solving FJSSP

It is well known that it is difficult to find the optimal solution to the FJSSP due to its inherent
complexity. Thus, we propose a heuristic algorithm to solve the FJSSP.

Because of its flexibility, wewill decompose the FJSSP into two sub-problems: the routing
problem and the sequencing problem, where the routing problem means that each job is
assigned to an appropriatemachine forwaiting to beprocessed,while, the sequencingproblem
means that operations on the machines are prioritised and then executed.

Except the notations defined earlier, the ones to be used in the heuristic algorithm are
defined as follows:

CT Current time
∅ Empty set
Φ The set of machines that is idle at current time
Ω The set of operations unprocessed
Y The set of jobs that have not been scheduled
Z A temporary variable (a set of jobs)
Mi j The set of alternative machines on which operation Oi j can be processed, Mi j ⊆ M
OWk The set of operations waiting for processing by machine k.

4.1 Heuristic for FJSSP

In this subsection, we will construct a heuristic algorithm for the FJSSP to find a feasible
solution. The algorithm flow chart is illustrated in Fig. 2.

Step 1 Initialise variables:CT � 0, Y � J , Ω � O , ϕ � M ;
Step 2 If Y � ∅, the algorithm is finished; otherwise, go to Step 3;
Step 3 SetZ � Y ;
Step 4 If Z � ∅, go to Step 5; otherwise randomly select a job i from set Z , and then execute

the following procedure:

1. If there is no operation of job i being executed at current time, the operation of job
i that can be processed currently is selected and defined as Oi j ; otherwise,Z �
Z\i , go to Step 4;

2. IfOi j has been assigned to a machine,Z � Z\i , go to Step 4;
3. Calculate priority values for all the machines in set Mi j according to a MAR;
4. Choose the machine k whose priority value is max; add Oi j to the operation set

OWk , Z � Z\i , go to Step 4.
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Fig. 2 Workflow of heuristic algorithm for FJSSP

Step 5 If ϕ � ∅, CT � CT + 1, go to Step 2; otherwise, go to Step 6;
Step 6 Randomly choose a machine k′ from set ϕ and determine the processing operation

for machine k′ by performing the following steps:

1. If OWk′ � ∅, ϕ � ϕ\k′, go to Step 5; otherwise, executes the following proce-
dure (2)-(6);

2. Calculate priority values for all the operations in set OWk′ according to a JAR;
3. Choose the operation Oi ′ j ′ with max priority value to be processed on machine

k′, OWk′ � OWk′ \Oi ′ j ′ , Ω � Ω\Oi ′ j ′ ;
4. Set the status of machine k′ as occupied until Oi ′ j ′ is completed,ϕ � ϕ\k′;
5. If Oi ′ j ′ is the last operation of job i ′,Y � Y\i ′; otherwise, set the earliest possible

starting time of Oi ′, j ′+1 as soon as Oi ′ j ′ is completed;
6. Go to Step 5.

In above procedure of the heuristic algorithm, the machine allocation rule (MAR) and the
job allocation rule (JAR) are employed as SRs for the routing problem and the sequencing
problem, respectively.As for SRs,we can refer to Su et al. (2013),Doh et al. (2013),Gema and
Rafael (2014) and Melo and Ronconi (2015), etc. However, there are few papers to construct
universal SRs which can dominate all FJSSPs with different workshop features, constraint
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conditions and optimisation objectives. Most research on SRs for the FJSSP only focuses on
how to select a given rule from a number of candidates, rather than exploring and discovering
a new and potentially more effective rule (Nie et al. 2013a). However, a better solution to the
FJSSP should not be ignored. To explore efficient rules for a given scheduling environment
for the FJSSP may be a significant and interesting job. Some researchers have gradually paid
more attention to automatically construct SRs based on artificial intelligence approaches,
such as, Tay and Ho employed suitable parameters and operator spaces to evolve composite
dispatching rules which are generated by GP (genetic programming) framework (Tay and
Ho 2008). Nie et al. proposed a GEP-based (gene expression programming) approach which
automatically constructs reactive scheduling policies for the dynamic FJSSP with job release
dates, and its effectiveness is verified by simulation experiments (Nie et al. 2013b). However,
the GP or GEP-based artificial intelligence approach usually costs a lot of computation time
which limits its wide use.

Based on the above discussion, we propose a PGEP method to quickly and automatically
construct SRs in the given FJSSP environment in the following sections.

5 PGEP approach to evolve SRs

GEP, as an evolutionary algorithm which was first proposed by Ferreira (2001), uses pop-
ulations of individuals, selects them in terms of fitness and introduces genetic variation by
using one or more genetic operators with a fixed length and linear strings of chromosomes
(genome) representing expression trees (ETs) of different shapes and sizes (phenome).

Based on these previous researches, the flow of PGEP is proposed and then the imple-
mentation of PGEP to evolve SRs for FJSSP with optimising objective of minimising the
sum of TWTP and TEC is stated in details.

5.1 Flow of PGEP

As shown in Fig. 3, the flow of PGEP comprises two modules, parallel learning module
and distributed simulation module. In the parallel learning module, a set number of CPU
threads all start at the same time, each thread initialises and then autonomously performs
evolution of a population. Each population is comprised of a number of chromosomes (i.e.,
candidate SRs) and each chromosome has fixed length genes that are randomly generated.
All chromosomes in populations are sent to a master server of distributed simulation module
via network, and the master server distributes chromosomes to a set number of slaves. Each
slave simulates a production environment and evaluates the fitness value using a quantita-
tive performance measure for chromosomes. Then, the fitness value of each chromosome
passes back from slave to the master and finally back to the parallel learning module. The
optimal fitness for all chromosomes in each population (i.e., each population’s optimal fit-
ness) is picked out by the main thread of parallel learning module, respectively, and they
are compared with each other in pairs. Some individuals in the population whose currently
best fitness is preferable to the other one are migrated to the latter from which the same
number of worst individuals are removed. After that, for each population, its next population
of chromosomes is formed through reproducing and modifying its current excellent individ-
uals using evolutionary search operators such as selection with elitism strategy, replication,
mutation, transposition and recombination. One of the next populations of individuals is then
evaluated again by distributed simulationmodule, simultaneously with the other populations.
This cycle is repeated until the termination condition is satisfied.
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Fig. 3 PGEP workflow

5.2 Application of PGEP to evolve SRs for FJSSP

5.2.1 Designing of FS and TS

The most essential thing required for implementing PGEP is to design appropriate functions
set (FS) and terminal set (TS) relevant to a particular problem domain (i.e., FJSSP with opti-
mising objective of minimising the sum of TWTP and TEC in this paper). Each chromosome
in PGEP is constructed using the elements from FS and TS and modified during parallel
evolutionary progress. A priori is defined by the set of available elements which are used to
discover possible solutions to the problem (Nie et al. 2013a). Therefore, choosing the proper
elements for FS and TS is vital for the implementation of optimization process. The FS and
TS used to construct SRs in PGEP are defined in Table 1. TS can be divided into two subsets,
TS-R and TS-S. TS-R is adopted to be combined with FS to construct MARs for the routing
problem, while TS-S is combined with FS to construct JARs for the sequencing problem.

It should be noted that in the FJSSP an operation of a job can be processed on anymachine
in a determinate set of machines. Therefore, the average processing time of Oi j is defined as

pavgi j , which is given as follows: pavgi j �
(∑

k∈Mj
pi jk

)/

hi j . If Oi j has been completed at

current time, then the remaining processing time (pl, in Table 1) of job i is calculated as the
following formula: pl � ∑gi

h� j+1 p
avg
i j . The remaining cutting time of job i is calculated in

the same way.

5.2.2 Mappingmechanism between chromosomes in PGEP and SRs

Generally, a chromosome comprises one or more genes, each of which consists of a symbolic
stringwith fixed length selected formFS or TS. Since two types of problems (routing problem
and sequencing problem) have to be solved for FJSSP, the symbolic string with fixed length
in each chromosome can be divided into two parts, the routing part and the sequencing part.
They are, respectively, used to map into a MAR and a JAR. Every gene in each part of a
chromosome is composed of a head and a tail of symbolic string. It is stipulated that: (1) in
the routing part, the head of a gene may contain symbols from both FS and TS-R, whereas
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Table 1 Definitions of the functions and terminals that are used in this research

Meaning

FS

+ , −, × The corresponding arithmetic functions, respectively

/ The protected division which returns 1 when the denominator is equal to 0

TS-R

no Number of operations that have been processed on the same machine
p Processing time of an operation on a machine
P Input power of a machine
P idle

Idle power of a machine

Pruntime
The increase in power based on P idle when executing the runtime operations for processing
on a machine

Pcutting
The increase in power based on Pruntime when actually executing cutting for an operation on
a machine

t Cutting time of an operation on a machine
ti Sum of idle time on a machine
tp Sum of processing time of operations that have been processed on the same machine
wno Number of operations waiting to be processed on the same machine
wp Sum of processing time of operations waiting to be processed on the same machine

TS-S

d Due date of a job

nl Number of unprocessed operations of a job

p Processing time of an operation on a machine

pl Remaining processing time of a job

qt Interval between starting time of current operation of a job and completing time of its
immediate predecessor operation

sl Slack time of a job(max{0, d − CT − pl})
t Cutting time of an operation on a machine

tl Remaining cutting time of a job

w Weighted importance of a job

wt Interval between starting time of current operation on a machine and completing time of the
previous operation on the same machine

the tail of a gene consists only of symbols in TS-R; in the sequencing part, the head may
contain symbols from both FS and TS-S, whereas the tail consists only of symbols in TS-S
(Nie et al. 2013b); (2) assume the symbolic string has lh symbols in the head and lt symbols
in the tail, then lh and lt satisfy the equation lt � lh×(ma − 1)+1, wherema is the maximum
number of arguments for all the operators in FS (Ferreira 2001). The stipulation ensures the
validity of the computer program’s output (Hardy and Steeb 2002). For example, if we set
lh � 6 and ma � 2, then lt � 6 × (2 − 1) + 1 � 7, and the total gene length is 13. Assume
the routing part and the sequencing part both consist of two genes. Thus, a chromosome
comprises four genes and its length is 4× 13 � 52. Figure 4 describes the mapping between
a chromosome and a solution to FJSSP. As shown in Fig. 4a, in a typical chromosome, “||” is
used to separate routing part and sequencing part, “|” is used to separate different genes, and
“.” is used to separate different symbols. The tail of each gene is indicated with an underline.
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Fig. 4 Mapping between a chromosome and a solution to FJSSP

The routing part of the chromosome, consisting of gene 1 and gene 2, are mapped into an
expression tree for the routing problem (ET-R) in depth-first fashion. Gene 1 and gene 2 are
linked with the add function shown in Fig. 4b. Similarly, the sequencing part with gene 3 and
gene 4 are mapped into the expression tree for the sequencing problem (ET-S). A node of
the expression tree is attached when it indicates a function and stops being attached when it
indicates a terminal. The branch number of a node is as many as the number of arguments of
the function which the node corresponds to. The expression tree for the routing or sequencing
problem can be further interpreted into the mathematical form as shown in Fig. 4c, which are
MAR and JAR. In ET-R, the sub-ET-R 1 corresponding to gene 1 indicated by the dash line
interacts with the sub-ET-R 2 corresponding to gene 2 in a way of addition. Subtrees interact
with each other in the same way in ET-S.

5.2.3 Evolutionary search operators in PGEP

The evolutionary operators employed in PGEP are described as follows.
Selection and replication A set of individuals is selected according to the fitness through
the roulette wheel method and is invariably replicated to the next generation, which means
the better the fitness is, the greater the chance to be chosen will be.
Mutation Mutation can occur anywhere in the chromosome. Owing to the difference
between symbols in the routing part and the sequencings part of chromosomes, it is stip-
ulated that: (1) in the head of the routing part, any symbol can change into any other symbol
in the set FS ∪ TS − R, while symbols in the tail can only change into terminals in TS-R;
(2) in the head of the sequencing part, any symbol can change into any other symbol in set
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FS∪TS−S, while symbols in the tail can only change into terminals in TS-S. The following
equation is utilized to adaptively adjust the mutation probabilities.

mp �
{

ρ1 − (ρ1−ρ2)×(fit (min)+fit (i))
fit (min)+fit (avg) , fit(i) ≥ fit(avg)

ρ1, fit(i) < fit(avg)
(16)

where fit(min) and fit(avg) denote the minimum, average of fitness of individuals at a sub-
populations, respectively, and fit(i) represents the fitness of individual to be mutated. ρ1, ρ2
are both constants, and ρ1 > ρ2, where ρ1,ρ2 ∈ (0, 1).

Transposition Randomly choose a fragment of a chromosome that usually consists of sev-
eral successive symbols and transpose it to another site of the chromosome. In this paper,
two types of transposition operator are adopted for each part of the chromosome: (1) trans-
position of the insertion sequence (IS), i.e., a fragment of a chromosome is randomly chosen
and inserted in any site of the head of a gene except the beginning site of the head, while the
same number of symbols are removed from the end of the head to make room for the inserted
string in order not to break the parting line between the head and the tail; (2) transposition
of the root insertion sequence (RIS), i.e., randomly select a fragment which begins with a
function (called RIS elements) and insert it into the head of a gene in the same part. As same
as the IS transposition, the same number of symbols are removed from the end of the head.

Recombination Randomly choose two parent chromosomes, and exchange some of their
materials between them to form two newdaughter chromosomes. Two types of recombination
are used in this paper: (1) one-point recombination, i.e., splitting the chromosomes into
halves and swapping the corresponding sections; (2) two-point recombination, i.e., splitting
the chromosomes into three portions and swapping the middle one.

5.2.4 Fitness function

The focus of this paper is to learn effective SRs for FJSSP tominimise sumofTWTPandTEC.
Due to the large difference among the objective values obtained by SRs for each instance,
the quality of an obtained schedule will be measured by the relative deviation of its objective
value from its corresponding reference objective value as shown in the following formula
(Nguyen et al. 2013).

dev(A; B, In) � Obj(A; B, In) − Ref(In)

Ref(In)
. (17)

In this formula, Obj(A; B, In) is the objective value obtained using rule (A; B) to solve
instance In , while A and B are, respectively, one of MARs and JARs. Ref(In) is the reference
objective value for instance In . The fitness value of rule (A; B) on the data set is expressed
as follows:

devaverage(A; B) �
∑

In∈{I1,I2,...,Ini } dev(A; B, In)

ni
. (18)

The fitness value devaverage(A; B) is used to measure the average performance of rule (A;
B) on the data set with ni instances.

Since rule EDD is one of the effective SRs commonly used in solving FJSSP to minimise
job tardiness or makespan and rule LWP is the only MAR presented in our research that is
directly related to energy consumption, we will use the objective function values obtained
by rule (LWP; EDD) (seen in Table 3) as the reference objective values for all instances in
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the data set. Moreover, preliminary experimental results show that (LWP; EDD) performed
better thanmany other SRs. Choosing a relatively good rule of (LWP; EDD) for reference, we
can more intuitively analyse and depict the performance of PGEP-evolved SRs. Obviously,
if the value of formula (18) is negative, it means that the average performance of rule (A; B)
on the data set (I1, I2, . . . , Ini) is better than that of (LWP; EDD). The smaller the fitness
value is, the better the individual is.

5.2.5 Migration scheme

To increase the performance of the parallel evolutionary algorithm, a migration scheme
is proposed in PGEP. A population (defined by popSet) comprises Npop equal sized sub-
populations, each of which has Nind individuals. A threshold is adopted to control the
migration between any two sub-populations, and the penetration theory is used to set the
migration interval, migration rate and migration direction adaptively. Suppose popx and
popy are two randomly chosen sub-populations from popSet, fit(x) and fit(y) are the best
fitness of individuals in popx and popy , respectively, and �fit(x, y) � fit(x) − fit(y). Then,
the migration rate between popx and popy is defined by λ as follows:

λ �
{ ∣

∣
∣

�fit(x,y)
max{fit(x),fit(y)}

∣
∣
∣, |�fit(x, y)| > θ

0, |�fit(x, y)| ≤ θ
(19)

where θ(θ ≥ 0) is the threshold by which the migration is determined.
Themigration direction depends on the sign of�fit(x, y). If�fit(x, y) < 0, the migration

from popx to popy takes place and vice versa. Furthermore, if�fit(x, y) < 0 and λ > 0, then
int(λ × Nind) individuals with best fitness in popx migrates to popy and then int(λ × Nind)
individuals with worst fitness in popy are removed. If λ � 0, no migration occurs regardless
of �fit(x, y) < 0 or not. The symbol “int” indicates the rounding operation.

6 Experiments and results

6.1 Design of the experiments

This subsection discusses the configuration of the PGEP method and the data sets used for
training and testing. And also, the benchmark SRs are described in detail.

6.1.1 PGEP parameter settings

Based on the results from previous studies and data attained from extensive preliminary
experiments, the parameters’ setting in PGEP is shown in Table 2.

The population size and the length of the head of chromosome are, respectively, set to
50 and 20. Of course, the larger population size and length of the head are, the larger the
algorithm search space is, and also the longer calculation time of algorithm is. The reason for
this setting is mainly to reduce the computational times of PGEP and to facilitate the analysis
of the performance of PGEP-evolved SRs.

The influence of three important parameters of np, lc, and θ on the performance of PGEP
is one of the research focuses of this paper. We set these parameters to three different levels,
respectively, as shown in bold in Table 2. There are 3×3×3 � 27 combinations in total.
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Table 2 Parameters’ setting in PGEP

Parameters’ setting in PGEP

Number of populations (np) 2, 4, 8

Population size (Nind ) 50

Length of chromosome (lc) 4, 8,12

Length of head 20

Selection strategy Roulette wheel sampling

Mutation probability 0.05

IS transposition probability 0.1

RIS transposition probability 0.1

Gene transposition probability 0.1

One-point recombination probability 0.2

Two-point recombination probability 0.5

Gene recombination probability 0.1

Termination condition Iteration generations>150 or no improvement with consecutive
20 generations

Threshold for migration (θ ) 0.05, 0.1, 100*

*No migration between any two sub-populations

6.1.2 Benchmark heuristics

To verify the effectiveness of PGEP, some frequently used classical human-made SRs (Doh
et al. 2013; Nie et al. 2013b), are selected as benchmarks to be compared with the PGEP-
evolved SRs. These benchmark SRs are summarised in Table 3.

6.1.3 Data generation and selection

Our experimental data are based on a library of flexible job shop problem instances with
different features from http://people.idsia.ch/~monaldo/fjsp.html. Machine’s power, job’s
weight and deadline, operation’s cutting time on the machine, power cost and tardiness cost
for each instance are appended by referring to the data from cooperative enterprise, a metal
mouldsmaker in SouthChina. The idle power of themachine is uniformly distributed between
1500 and 1800. The running power of the machine is η times of its idle power, where η is
uniformly distributed between 1.3 and 2. This cutting power of the machine is ζ times of its
running power, where ζ is uniformly distributed between 1.2 and 1.8. The weight of the job
is uniformly distributed between 1 and 10.

The deadline of the job is calculated from:

di �
(
1 + R × n

m

)
×

gi∑

j�1

⎛

⎝
∑

k∈Mi j

pi jk

⎞

⎠/hi j (20)

where n is the number of jobs,m is the number ofmachines, and hi j is the number ofmachines
that can process the operation Oi j . R denotes the tightness factor of the due date, the larger
the value of R, the looser the job’s due date. R is set to be 0.1, 0.3 and 0.5.

It is assumed that the cutting time of the operation is 50–80% of the whole processing
time, and the ratio is uniformly distributed.
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Table 3 Benchmark scheduling rules

Meaning

Operation machine selection rules

LWP Least waiting power, select a machine with the least power (sum of running power and
cutting power required of waiting operations)

LWT Least waiting time, select a machine with the least waiting time (sum of processing times
of waiting operations)

SP Smallest processing, select a machine with the smallest processing time of the imminent
operation

SQ Shortest queue, select a machine with the smallest number of waiting jobs

Job sequencing rules

ATC Apparent tardiness cost, select a job with the maximum apparent tardiness cost

COVERT Cost over time, select a job with the maximum COVERT value

CR Critical ratio, select a job with the minimum CR value

EDD Earliest due date, select a job with the earliest due date

FIFO First in first out, select a job that arrived the earliest at the queue of the machine

HPP Highest processing power, select an operation with the highest processing power
required (include running power and cutting power)

LJPT Largest job processing time, select a job with the largest job processing time

LOPR Least operation remaining, select a job with the least number of remaining operations

LOPT Largest operation processing time, select a job with the largest operation processing time

LPP Least processing power, select a operation with the least processing power required
(include running power and cutting power)

LWKR Least work remaining, select a job with the least work remaining

MDD Modified due data, select a job with the minimum modified due date

Mon Montagne, select a job with the minimum ratio defined as

pi jk/
((∑

Oi j∈OWk
pi jk

)
− di

)

MST Minimum slack time, select a job with the minimum slack time

MST/LWKR Select a job with the minimum value of MST/LWKR

SJPT Shortest job processing time, select a job with the shortest job processing time

SOPT Shortest operation processing time, select a job with the shortest operation processing
time

SOPT/LWKR A rule combined SOPT and LWKR, select a job with the minimum value of
SOPT/LWKR

The cpup in the experiment is based on the time-of-use electricity pricing in a city in
South China, as shown in Table 4. Without loss of generality, the cpup of off-peak is set to
be 1 unit per KWh, the cpup of mid-peak and on-peak are 2.68 and 4.23 times of those of
off-peak, respectively, and the utp is set to be 10, 30 and 50 units per hour.

In the whole, there are three different due date tightness and three different tardiness
cost level settings, making a total number of nine simulation experiment settings. The 1026
problem instanceswith different features, including levels of flexibility (the degree of freedom
for operations of jobs to select machine) and energy cost ratio are generated and all the
problem instances are divided into two groups. One is used as the training set (including 522
problem instances, Online Resource 1) to evolve SRs through PGEP, and the other (named
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Table 4 Time-of-use electricity
pricing

From To Price

00:00 06:00 Off-peak, 1.00 unit/kWh

06:00 08:00 Mid-peak, 2.68 units/kWh

08:00 11:00 On-peak, 4.23 units/kWh

11:00 13:00 Mid-peak, 2.68 units/kWh

13:00 15:00 On-peak, 4.23 units/kWh

15:00 18:00 Mid-peak, 2.68 units/kWh

18:00 21:00 On-peak, 4.23 units/kWh

21:00 22:00 Mid-peak, 2.68 units/kWh

22:00 24:00 Off-peak, 1.00 unit/kWh

test set below, including 504 problem instances, Online Resource 2) is applied to valid the
best individual of evolved SRs.

6.1.4 Parallel simulating environment construction

The proposedPGEP learningmodule and job shop simulationmodule have been implemented
in C# with .Net Framework 4.5. Based on shared nothing architecture, parallel simulation on
multiple physical servers can be conveniently implemented with the tools of Task Parallel
Library (TPL) andParallel LinQ (PLINQ) (MicrosoftDocs 2017). ThePGEP learningmodule
runs on a PC server with Intel Xeon CPU 2.4 GHz processor, 8 CPU threads, 8 GB of RAM.
The job shop simulation module runs on 12 distributed PC servers. Each PC server has an
Intel Xeon CPU 2.0 GHz processor and 32 GB of RAM. 16 CPU threads are started on each
PC server. So, a total of 192 CPU threads are used for the simulation computing.

6.2 Analysis of the results

6.2.1 Effect of different parameter settings on PGEP

In this subsection, we will use PGEP with different parameter settings to evolve SRs. As
described in 6.1.1, we need to conduct a total of 3×3×3 � 27 experiments. The triple
〈np, lc, θ〉 indicates the settingof thePGEPparameters in a specific experiment. For example,
〈8, 12, 0.05〉 represents the experiment inwhichnp is 8, and lc, θ are 12 and0.05, respectively.
To reduce the computational times of PGEP, experiments were carried out on part of problem
instances in the training set and the test set with setting the parameters R and utp to 0.3
and 30, respectively, for all instances, which means that 58 instances in the training set
(called the training set 1) and 56 instances in the test set (called the test set 1) were used
to conduct experiments. For each experiment, ten independent runs of evolutionary learning
were performed using PGEP on each instance in the training set 1 with different random
seeds, and then ten optimal SRs were obtained. Then, the means of fitness values of the best
evolved SRs from each run obtained from all experiment on the training set 1 and the test set
1 were attained.

Using np, lc and θ as independent variables, and devaverage(A; B) as the dependent variable,
multiple linear regression analysis was performed on the training set 1 and the test set 1,
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Table 5 Analysis of the two
multiple linear regression models

Training set 1 Test set 1

Estimate of variable

np − 5.052E − 03 − 3.819E − 03

lc 2.944E − 03 2.421E − 03
θ 1.054E − 04 6.973E − 05

Intercept − 3.312E − 01 − 2.893E − 01

p value for variable

np < 2E − 16 < 2E − 16

lc < 2E − 16 < 2E − 16
θ < 2E − 16 7.52E − 07

Intercept < 2E − 16 < 2E − 16

Degree of freedom 266 266

Multiple R-squared 0.8832 0.5949

Adjusted R-squared 0.8819 0.5903

F-statistic 670.8 130.2

Prob (F-statistic) < 2.2E − 16 < 2.2E − 16

Fig. 5 Box plot for the effect of different parameter settings on PGEP

respectively. The analysis and test results of the two multiple linear regression models are
shown in Table 5 and additional data are given in Online Resource 3.

It can be seen fromTable 5, the setting of parameters np, lc and θ has a significant influence
on the performance of PGEP (all p values ≤ 7.52E − 07). Figure 5 represents the box plot
representations of the performance of PGEP-evolved SRs on the training set 1 and the test
set 1 with different settings.

The statistical tests discussed in the subsequent subsections are the equal variance t tests
and they are considered significant if the obtained p value is less than 0.05.

As shown in Fig. 5, the PGEP-evolved SRs with larger np are generally better than those
evolved with small np both on the training set 1 and the test set 1. It also can be seen from
Fig. 5, the PGEP-evolved SRs with small lc generally outperform those evolved with larger
lc both on the training set 1 and the test set 1. Moreover, the obvious difference is observed
between the experiment with migration and the experiment without migration, regardless of
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whether on the training set 1 or on the test set 1. Overall, the performance of PGEP with
migration is better than that of PGEP without migration.

To summarise, triple 〈8, 4, 0.05〉 gives the best performance both on the training set 1 and
the test set 1. Therefore, in the subsequent experiments, we set np, lc and θ to 8, 4, 0.05,
respectively.

6.2.2 Comparison with human-made SRs

In this subsection, we will compare the performance of PGEP-evolved SRs with those of
human-made SRs. First, a total of 72 (4×18) human-made SRs were applied to solve the
instances in the training set and the test set, respectively. Then, ten independent runs of
evolutionary learning were performed using PGEP on all instances in the training set with
different random seeds, and ten optimal SRs were obtained, denoted as PGEP1, PGEP2, …,
PGEP10, respectively.

Subsequently, these ten SRs were, respectively, used to solve instances in the training set
and the test set. Table 6 shows the statistics of relative deviations using formula (17). The
values of mean can be calculated using formula (18) to measure the average performance
of a rule on a given set of instances, while min value and max value show the best-case
performance and worst-case performance, respectively (additional data are given in Online
Resource 4).

As shown in Table 6, on the training set, (LWT; SJPT) performs best among all human-
made SRs, while (LWT; EDD) beats all other human-made SRs on the test set. Although
(LWT; MST) cannot perform as well as (LWT; SJPT) on the training set, in the best case, it
can provide a better schedule than that obtained by (LWT; SJPT). However, on the test set, in
the worst case, (LWT; EDD) cannot provide better schedules than those obtained by (LWP;
EDD), (LWP; MDD), (LWP, MST), (LWP; SJPT) and (LWT; SMT). It is not easy to find a
human-made rule that can totally dominate others in most cases.

Obviously, the ten PGEP-evolved SRs all show better average, best-case and worst-case
performance than all human-made SRs on the training set. On the test set, these ten SRs also
outperform all human-made SRs in terms of the average and best-case performance. The
ten PGEP-evolved SRs beat all human-made SRs in about 95.9% of instances in whole data
set. However, in the worst case, some of these ten SRs cannot provide better schedules than
those obtained by several excellent human-made SRs. For example, they are beaten by (LWP,
EDD) on some instances which are derived from the “Mk04” and “Mk06” problems with
different settings of parameters R and utp. Figure 6 represents the histogram representations
of the performance of these ten SRs on solving instances mentioned above. It can be seen
from Fig. 6, overall, the performance of these ten PGEP-evolved SRs on solving the Mk04
problem instances is better than that on solving the Mk06 problem instances. Only when R
is 0.5, can (LWP, EDD) beat some of these ten PGEP-evolved SRs on the Mk04 problem
instances. In the worst case, when R and utp are set to 0.5 and 50, respectively, 6 of 10
PGEP-evolved SRs are beaten by (LWP, EDD) on the Mk04 problem instances, while (LWP,
EDD) outperforms 8 of 10 PGEP-evolved SRs on the Mk06 problem instances.

6.2.3 Comparison with PGEP without migration and GEP

In this subsection, the performance of PGEP with migration (the proposed PGEP) will be
compared with those of GEP and PGEP without migration.
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Fig. 6 Performance of the ten PGEP-evolved SRs on solving the Mk04 and Mk06 problem instances

The experiment is divided into two parts. In part one, we set population size of GEP to
400 (50 × 8), which is equal to the total number of chromosome individuals in the 8 sub-
populations of the proposed PGEP. In a serial computing environment, ten independent runs
of evolutionary learning based on GEP were performed on the training set and ten optimal
SRs were obtained. Then, these ten SRs were, respectively, applied to solve instances in
the training set and the test set. In part two, we removed the migration scheme from the
proposed PGEP, that is, we set θ to a relatively large value (represented by 100 in this paper,
indicating that no migration occurs between any two sub-populations), and then conducted
the experiment similar to that in part one in a parallel computing environment.

Figure 7 represents the box plot representation of the achieved results of the PGEP with
migration, PGEP without migration and GEP on the training set and the test set (additional
data are given in Online Resource 5). The statistical tests show that PGEP with migration
is significantly better than PGEP without migration and GEP on the training set (p values
are, respectively, 5.917E−12 and 7.065E−19). On the test set, PGEP with migration is
also significantly superior to PGEP without migration and GEP (p values are, respectively,
1.788E−02 and 1.035E−14). From experimental results, it can be concluded that migration
amongmultiple sub-populations enhances the genetic diversity of populations,withwhich the
learningprecocity is avoided and the convergence speedof proposedPGEP is also accelerated.
The effectiveness of migration scheme proposed in this paper was verified again on the whole
data set.
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Fig. 7 Comparison among PGEP with migration, PGEP without migration and GEP
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Moreover, it should also be noted that PGEP without migration is significantly better
than GEP both on the training set and the test set (both p values ≤ 5.465E−14). It can be
inferred that although the chromosomal genotype has not changed, a relatively large change
in genetic frequency took place during the evolution of small populations, which resulted
in small populations evolving faster than large populations. So, multiple small populations
parallel search policy can expedite the convergence of PGEP.

As for time efficiency, PGEP is undoubtedly better than GEP. In the proposed PGEP,
the simulation module with distributed computing performed about 759 times simulations
per second. About 0.81 s was consumed in average to evaluate 400 individuals of a new
generation of all populations, including the communication time between simulation module
and learning module. Compared with the serial computing, calculation speed of PGEP is
improved by about 49.13 times through parallel computing. As 192 CPU threads are used for
the computing tasks and the inter-thread communication consumes lots of time, the efficiency
of PGEP is approximately 25.59%. The trends in relationships between calculation speed in
PGEP and number of CPU threads are summarised in Fig. 8.
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Fig. 9 Comparison among PGEP-evolved SRs, EGA and QPSO

6.2.4 Comparison with meta-heuristic methods

This subsectionwill compare the performanceof thePGEP-evolvedSRs to twometa-heuristic
methods. Although it seems unfair to the proposed PGEP method, since most meta-heuristic
methods were specially developed for the static environment and expected to obtain better
solutions through iteratively exploring the solution search space of each instance, at least
the comparison can provide an indicator about what level of performance the GPEP-evolved
SRs can achieve (Nguyen et al. 2013).

In this subsection, we compared the performance of the PGEP-evolved SRs with those
of a genetic algorithm coupling elitism strategy (EGA) (Xie and Chen 2018) and a quantum
behaved particle swarm optimization (QPSO) (Singh and Mahapatra 2016). According to
the authors’ conclusions (Xie and Chen 2018), population size, max iteration generations
in EGA are set to 100, 150, respectively. Since the authors had not described the setting of
population size and max iteration generations in QPSO in their paper, for the sake of fairness,
population size and max iteration generations in QPSO are set to be same as those in EGA,
respectively.

Using EGA and QPSO, respectively, ten independent runs of solving each instance in the
training set and the test set were completed. As shown in Fig. 9, on the training set, GPEP-
evolved SRs are significantly better than EGA and QPSO (both p values ≤ 9.66E−29), and
they can provide good average, best-case and worst-case performance. On the test set, GPEP-
evolved SRs also significantly outperforms EGA and QPSO (both p value≤ 4.44E−28), and
shows better average and worst-case performance than EGA and QPSO. However, in the best
case, EGA and QPSO can provide better schedules than those obtained by GPEP-evolved
SRs. The fact that the GPEP-evolved SRs can beat EGA and QPSO in most cases shows the
effectiveness of these SRs.

The experimental results show that it is not easy for EGA and QPSO to find a satisfactory
solution within relatively less time under the condition that the problems optimization search
space is large. Although EGA and QPSO have achieved good results in some instances, their
overall performances are not as good as those of some excellent human-made SRs, such as
(LWP; EDD).
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Fig. 10 Comparison among PGEP-evolved SRs, EGA and QPSO on the test set (max iteration generations in
EGA and QPSO is 600)

With the consideration that PGEP requires about 60000(8 × 50 × 150) evaluations to
evolve and construct an optimal rule when populations number, population size and max
iteration generations are set to 8, 50 and 150, respectively, we increase the parameter of max
iteration generations in EGA and QPSO to 600. So, 60000(100 × 600) evaluations will also
be needed for EGA and QPSO to solve an instance. Then, EGA and QPSO are, respectively,
used to solve the 504 instances in the test set. Similarly, for each instance, ten independent
runs of solving were performed with different random seeds.

Figure 10 represents the box plot representation of the achieved results of the PGEP-
evolved SRs, EGA and QPSO. As shown in Fig. 10, the PGEP-evolved SRs are still
significantly better than EGA and QPSO (both p values ≤ 1.64E − 27).

To analyse the performance of PGEP, EGA and QPSO on each problem instance, the
symbol devaverage(In) is used to denote the average of relative deviations of ten runs of
solving instance In using EGA or QPSO. For the PGEP approach, devaverage(In) is the
average of relative deviations obtained using the ten PGEP-evolved SRs to solve the instance
In respectively. Figure 11 represents the histogram representations of frequency distribution
of different solutions for each problem obtained by GPEP-evolved SRs, EGA and QPSO,
respectively.

Among 504 instances, PGEP-evolved SRs outperforms EGA and QPSO in 337 instances,
respectively. It should also be noted that EGA and QPSO, respectively, beat (LWP; EDD) in
289 and 300 instances through extensive searches. The performance rankings of the PGEP-
evolved SRs, EGA, QPSO and (LWP; EDD) are presented in a bar graph, as shown in Fig. 12
(additional data are given in Online Resource 6).

Moreover, while both EGA and QPSO need 60, 000 evaluations to solve an instance,
GPEP-evolved SRs can solve an instance in less than 0.52 s. The advantages of performance
and efficiencymake theGPEP-evolved SRs especially suitable for those application scenarios
with high real-time requirements.

Another superiority of the proposed PGEP method is that it can easily incorporate the
features and constraints of different flexible job shop manufacturing environments into the
SRs without revising or redesigning the algorithm. Therefore, it is very suitable for con-
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Fig. 11 Histogram of the performance of PGEP, EGA and QPSO on each instance in the test set

Fig. 12 Performance rankings of the PGEP-evolved SRs, EGA, QPSO and (LWP; EDD)

stantly exploring better SRs from new instances through incremental learning in a dynamic
environment. This is very meaningful for solving those NP-hard scheduling problems, such
as FJSSP.
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7 Conclusion and future work

In this paper, the authors proposed a PGEP method to automatically discover new SRs to
solve FJSSP considering total cost of energy consumption and weighted tardiness. In the
proposed PGEP method, a framework for parallel learning and distributed simulation was
designed to reduce the optimisation time and improve the solution quality. Multi-population
evolution strategies with a migration scheme were also put forward to enhance the genetic
diversity, which is vital for constructing better SRs. Extensive simulations have been carried
out over a series of problem instances that represent various operation conditions generated by
different levels of due date tightness and tardiness penalty weight. The experimental results
show that the PGEP method can construct more efficient SRs for the complex FJSSP than
the empirical SRs based on the experience of human schedulers, and that the proposed PGEP
is significantly superior to PGEP without migration and GEP. Moreover, the PGEP-evolved
SRs were also shown to outperform EGA and QPSO both on performance and efficiency.
Compared to EGA and QPSO, PGEP-evolved SRs are more suitable for those application
scenarios with high real-time requirements or dynamic systems. The PGEP method provides
a convenient way to incorporate features of a particular system in a real environment into
adaptive SRs. Therefore, it can be easily extended to other manufacturing systems as a tool
to automatically discover effective SRs.

However, only a preliminary research on PGEP method to evolve SRs for FJSSP con-
sidering energy consumption and job tardiness was carried out in this paper. There are still
many potential issues worth exploring further. Among them, it is very useful to delve into
the design of terminal sets and function sets to discover more potential system properties
and explore their impact on different types of manufacturing environments. For example, by
adding the probability distribution variable of uncertain factors such as job durations chang-
ing, machines breakdown and recovery to the terminal set, we could use the proposed PGEP
to evolve SRs to solve FJSSPs under uncertainty. These interesting studies are subject to
further collection of experimental data and validation in the real manufacturing environment.

Acknowledgements The authors would like to thank the support from the National Natural Science Foun-
dation of China (NSFC) (Nos. 51475096, 51675107, and 71571050), the NSFC-Guang Dong Collaborative
Fund (no. U1501248), and the New Pearl River Star Program of Guangzhou City (201610010035).

References

Bruzzonea AAG, Anghinolfib D, Paoluccib M, Tonellia F (2012) Energy-aware scheduling for improving
manufacturing process sustainability: a mathematical model for flexible flow shops. CIRP Ann Manuf
Technol 61(1):459–462. https://doi.org/10.1016/j.cirp.2012.03.084

Chen GR, Zhang L, Arinez J, Biller S (2013) Energy-efficient production systems through schedule-based
operations. IEEE Trans Autom Sci Eng 10(1):27–37. https://doi.org/10.1109/TASE.2012.2202226

Dahmus JB, Gutowski TC (2004) An environmental analysis of machining. In: ASME 2004 international
mechanical engineering congress and exposition. https://doi.org/10.1115/IMECE2004-62600

Dai M, Tang D, Giret A, Salido MA, Li WD (2013) Energy-efficient scheduling for a flexible flow shop
using an improved genetic-simulated annealing algorithm. Robot Comput Integr Manuf 29(5):418–429.
https://doi.org/10.1016/j.rcim.2013.04.001

Diaz N, Choi S, Helu M, Chen Y, Jayanathan S, Yasui Y, Kong D et al (2010) Machine tool design and
operation strategies for green manufacturing. Laboratory for Manufacturing & Sustainability, Berkeley

Doh YH, Yu JM, Kim JS, Lee DH, Nam SH (2013) A priority scheduling approach for flexible job shops
with multiple process plans. Int J Prod Res 51(12):3748–3764. https://doi.org/10.1080/00207543.2013.
76-5074

123

https://doi.org/10.1016/j.cirp.2012.03.084
https://doi.org/10.1109/TASE.2012.2202226
https://doi.org/10.1115/IMECE2004-62600
https://doi.org/10.1016/j.rcim.2013.04.001
https://doi.org/10.1080/00207543.2013.76-5074


185 Page 30 of 31 S. Zhang et al.

Drake R, Yildirim MB, Twomey J, Whitman L, Ahmad J, Lodhia P (2006) Data collection framework on
energy consumption in manufacturing. In: Institute of industrial engineering research conference. http://
hdl.handle.net/10057/3422. Accessed 10 May 2018

Driss I, Mouss KN, Laggoun A (2015) A new genetic algorithm for flexible job-shop scheduling problems. J
Mech Sci Technol 29(3):1273–1281. https://doi.org/10.1007/s12206-015-0242-7

Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M et al (2012) Towards
energy and resource efficient manufacturing: a processes and systems approach. CIRP AnnManuf Tech-
nol 61(2):587–609. https://doi.org/10.1016/j.cirp.2012.05.002

Energy Information Administration (2005) Annual energy review 2004. http://www.eia.gov/totalenergy/data/
annual/archive/038404.pdf. Released 19 Aug 2005

Fang KT, Lin BMT (2013) Parallel-machine scheduling to minimize tardiness penalty and power cost. Comput
Ind Eng 64(1):224–234. https://doi.org/10.1016/j.cie.2012.10.002

Fang K, Uhan N, Zhao F, Sutherland JW (2011a) A new shop scheduling approach in support of sustainable
manufacturing. Glocal Solut Sustain Manuf. https://doi.org/10.1007/978-3-642-19692-8_53

Fang K, Uhan N, Zhao F, Sutherland JW (2011b) A new approach to scheduling in manufacturing for power
consumption and carbon footprint reduction. J Manuf Syst 30(4):234–240. https://doi.org/10.1016/j.
jmsy.20-11.08.004

Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex
Syst 13(2):87–129. https://www.gene-expression-programming.com/webpapers/GEPfirst.pdf. Accessed
1 Jan 2018

Fysikopoulos A, Papacharalampopoulos A, Pastras G, Stavropoulos P, George C (2013) Energy efficiency
of manufacturing processes: a critical review. Proced CIRP 7:628–633. https://doi.org/10.1016/j.procir.
2013.06.044

Gema C, Rafael P (2014) A dispatching algorithm for flexible job-shop scheduling with transfer batches: an
industrial application. Prod Plan Control 25(2):93–109. https://doi.org/10.1080/09537287.2013.782846

Gutowski T, Murphy C, Allen D, Bauer D, Bras B, Piwonka T, Sheng P et al (2005) Environmentally benign
manufacturing: observations from Japan, Europe and the United States. J Clean Prod 13(1):1–17. https://
doi.org/10.1016/j.jclepro.2003.10.004

Hardy Y, SteebWH (2002) Gene expression programming and one dimensional chaotic maps. Int J Mod Phys
C 13(1):13–24. https://doi.org/10.1142/S0129183102002912

He Y, Liu B, Zhang X, Gao H, Liu X (2012) A modeling method of task-oriented energy consumption for
machining manufacturing system. J Clean Prod 23(1):167–174. https://doi.org/10.1016/j.jclepro.2011.
10.033

Kara S, Manmek S, Herrmann C (2010) Global manufacturing and the embodied energy of products. CIRP
Ann Manuf Technol 59(1):29–32. https://doi.org/10.1007/BF01719451

Li W, Zein S, Kara S, Herrmann C (2011) An investigation into fixed energy consumption of machine tools.
Glocal Solut Sustain Manuf. https://doi.org/10.1007/978-3-642-19692-8_47

LiuX,ZouFX,ZhangXP (2008)Mathematicalmodel andgenetic optimization for hybridflowshop scheduling
problem based on energy consumption. In: 2008 Chinese control and decision conference (CCDC 2008).
https://doi.org/10.1109/CCDC.2008.4597463

Liu Y, Dong HB, Lohse N, Petrovic S, Gindy N (2014) An investigation into minimising total energy con-
sumption and total weighted tardiness in job shops. J Clean Prod 65(4):87–96. https://doi.org/10.1016/
j.jclepro.2013.07.060

Liu GS, Zhou Y, Yang HD (2017) Minimizing energy consumption and tardiness penalty for fuzzy flow
shop scheduling with state-dependent setup time. J Clean Prod 147(5):470–484. https://doi.org/10.1016/
j.jclepro.2016.12.044

Melo ELD, Ronconi DP (2015) Efficient priority rules that explore flexible job shop characteristics for mini-
mizing total tardiness. Production 25(1):79–91. https://doi.org/10.1590/S010365132014005000016

Microsoft Docs (2017) Parallel programming in.Net. https://docs.microsoft.com/en-us/dotnet/standard/
parallel-programming. Released 30 Mar 2017

Mokhtaria H, Hasani A (2017) An energy-efficient multi-objective optimization for flexible job-shop schedul-
ing problem. Comput Chem Eng 104(9):339–352. https://doi.org/10.1016/j.compchemeng.2017.05.004

Moon JY, Park J (2014) Smart production scheduling with time-dependent and machine-dependent electricity
cost by considering distributed energy resources and energy storage. Int J Prod Res 52(13):3922–3939.
https://doi.org/10.1080/00207543.2013.860251

Moon JY, Shin K, Park J (2013) Optimization of production scheduling with time-dependent and machine-
dependent electricity cost for industrial energy efficiency. Int J Adv Manuf Technol 68(1):523–535.
https://doi.org/10.1007/s00170-013-4749-8

Mori M, FujishimaM, Inamasu Y, Oda Y (2011) A study on energy efficiency improvement for machine tools.
CIRP Ann Manuf Technol 60(1):145–148. https://doi.org/10.1016/j.cirp.2011.03.099

123

http://hdl.handle.net/10057/3422
https://doi.org/10.1007/s12206-015-0242-7
https://doi.org/10.1016/j.cirp.2012.05.002
http://www.eia.gov/totalenergy/data/annual/archive/038404.pdf
https://doi.org/10.1016/j.cie.2012.10.002
https://doi.org/10.1007/978-3-642-19692-8_53
https://doi.org/10.1016/j.jmsy.20-11.08.004
https://www.gene-expression-programming.com/webpapers/GEPfirst.pdf
https://doi.org/10.1016/j.procir.2013.06.044
https://doi.org/10.1080/09537287.2013.782846
https://doi.org/10.1016/j.jclepro.2003.10.004
https://doi.org/10.1142/S0129183102002912
https://doi.org/10.1016/j.jclepro.2011.10.033
https://doi.org/10.1007/BF01719451
https://doi.org/10.1007/978-3-642-19692-8_47
https://doi.org/10.1109/CCDC.2008.4597463
https://doi.org/10.1016/j.jclepro.2013.07.060
https://doi.org/10.1016/j.jclepro.2016.12.044
https://doi.org/10.1590/S010365132014005000016
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.1080/00207543.2013.860251
https://doi.org/10.1007/s00170-013-4749-8
https://doi.org/10.1016/j.cirp.2011.03.099


A study on PGEP to evolve heuristic rules for FJSSP… Page 31 of 31 185

MouzonG (2008)Operationalmethods andmodels forminimization of energy consumption in amanufacturing
environment. Dissertation, Wichita State University

Mouzon G, Yildirim MB, Twomey J (2007) Operational methods for minimization of energy consump-
tion of manufacturing equipment. Int J Prod Res 45(18–19):4247–4271. https://doi.org/10.1080/
00207540701450013

Neugebauer R, Wabner M, Rentzsch H (2011) Structure principles of energy efficient machine tools. CIRP J
Manuf Sci Technol 4(2):136–147. https://doi.org/10.1016/j.cirpj.2011.06.017

Nguyen S, Zhang MJ, Johnston M, Tan KC (2013) A computational study of representations in genetic
programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans Evol Comput
17(5):621–639. https://doi.org/10.1109/TEVC.2012.2227326

Nie L, Gao L, Li PG, Shao XY (2013a) Reactive scheduling in a job shop where jobs arrive over time. Comput
Ind Eng 66(2):389–405. https://doi.org/10.1016/j.cie.2013.05.023

Nie L, Gao L, Li PG, Li XY (2013b) A GEP-based reactive scheduling policies constructing approach for
dynamic flexible job shop scheduling problem with job release dates. J Intell Manuf 24(4):763–774.
https://doi.org/10.1007/s10845-012-0626-9

Özgüven C, Özbakır L, Yavuz Y (2010) Mathematical models for job-shop scheduling problems with routing
and process plan flexibility. Appl Math Model 34(6):1539–1548. https://doi.org/10.1016/j.apm.2009.09.
002

Rahimifard S, Seow Y, Childs T (2010) Minimising embodied product energy to support energy efficient
manufacturing. CIRP Ann Manuf Technol 59(1):25–28. https://doi.org/10.1016/j.cirp.2010.03.048

Seow Y, Rahimifard S (2011) A framework for modelling energy consumption within manufacturing systems.
CIRP J Manuf Sci Technol 4(3):258–264. https://doi.org/10.1016/j.cirpj.2011.03.007

Shrouf F,Meré JO, Sánchez AG,MierMO (2014) Optimizing the production scheduling of a single machine to
minimize total energy consumption costs. J Clean Prod 67(6):197–207. https://doi.org/10.1016/j.jclepro.
2013.12.024

Singh MR, Mahapatra SS (2016) A quantum behaved particle swarm optimization for flexible job shop
scheduling. Comput Ind Eng 93:36–44. https://doi.org/10.1016/j.cie.2015.12.004

Solar Energy International (2015) Energy fact. http://www.solarenergy.org/resources/energyfacts.html.
Accessed 2 March 2015

Su ZL, Yuan JL, Chen W (2012) Flexible job-shop scheduling analysis and its heuristic algorithm. Comput
Eng Appl 48(10):233–237. https://doi.org/10.3778/j.issn.1002-8331.2012.10.053

Tang DC, Li LS, Du K (2006) On the development path of chinese manufacturing industry based on resource
restraint. Jiangsu Soc Sci 4:51–58. https://doi.org/10.13858/j.cnki.cn32-1312/c.2006.04.013

Tay JC, Ho NB (2008) Evolving dispatching rules using genetic programming for solving multi-objective
flexible job-shop problems. Comput Ind Eng 54(3):453–473. https://doi.org/10.1016/j.cie.2007.08.008

Xie NM, Chen NL (2018) Flexible job shop scheduling problem with interval grey processing time. Appl Soft
Comput 70:513–524. https://doi.org/10.1016/j.asoc.2018.06.004

Ya K (2013) Empirical study of China’s manufacturing enterprise development and carbon emissions. Disser-
tation, Tianjin University of Technology

Yin LJ, Li XY, Gao L, Liu C, Zhang Z (2017) A novel mathematical model and multi-objective method for
the low-carbon flexible job shop scheduling problem. Sustain Comput Inform Syst 13(1):15–30. https://
doi.org/10.1016/j.suscom.2016.11.002

Zanoni S, Bettoni L, Glock CH (2014) Energy implications in a two-stage production systemwith controllable
production rates. Int J Prod Econ 149(149):164–171. https://doi.org/10.1016/j.ijpe.2013.06.025

Zeng LL, Zou FX, Xu XH, Gao Z (2009) Dynamic scheduling of multi-task for hybrid flow-shop based on
energy consumption. In: Proceedings of the 2009 IEEE international conference on information and
automation. https://doi.org/10.1109/ICINFA.2009.5204971

Zhang H, Zhao F, Fang K, Sutherland JW (2014) Energy-conscious flow shop scheduling under time-of-use
electricity tariffs. CIRP Ann Manuf Technol 63(1):37–40. https://doi.org/10.1016/j.cirp.2014.03.011

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1080/00207540701450013
https://doi.org/10.1016/j.cirpj.2011.06.017
https://doi.org/10.1109/TEVC.2012.2227326
https://doi.org/10.1016/j.cie.2013.05.023
https://doi.org/10.1007/s10845-012-0626-9
https://doi.org/10.1016/j.apm.2009.09.002
https://doi.org/10.1016/j.cirp.2010.03.048
https://doi.org/10.1016/j.cirpj.2011.03.007
https://doi.org/10.1016/j.jclepro.2013.12.024
https://doi.org/10.1016/j.cie.2015.12.004
http://www.solarenergy.org/resources/energyfacts.html
https://doi.org/10.3778/j.issn.1002-8331.2012.10.053
https://doi.org/10.13858/j.cnki.cn32-1312/c.2006.04.013
https://doi.org/10.1016/j.cie.2007.08.008
https://doi.org/10.1016/j.asoc.2018.06.004
https://doi.org/10.1016/j.suscom.2016.11.002
https://doi.org/10.1016/j.ijpe.2013.06.025
https://doi.org/10.1109/ICINFA.2009.5204971
https://doi.org/10.1016/j.cirp.2014.03.011

	A study on PGEP to evolve heuristic rules for FJSSP considering the total cost of energy consumption and weighted tardiness
	Abstract
	1 Introduction
	2 Literature review
	3 Problem definition and notations
	3.1 Notations
	3.2 The TWTP of flexible job shop model
	3.3 The TEC of electricity consumption model

	4 Heuristic algorithm for solving FJSSP
	4.1 Heuristic for FJSSP

	5 PGEP approach to evolve SRs
	5.1 Flow of PGEP
	5.2 Application of PGEP to evolve SRs for FJSSP
	5.2.1 Designing of FS and TS
	5.2.2 Mapping mechanism between chromosomes in PGEP and SRs
	5.2.3 Evolutionary search operators in PGEP
	5.2.4 Fitness function
	5.2.5 Migration scheme


	6 Experiments and results
	6.1 Design of the experiments
	6.1.1 PGEP parameter settings
	6.1.2 Benchmark heuristics
	6.1.3 Data generation and selection
	6.1.4 Parallel simulating environment construction

	6.2 Analysis of the results
	6.2.1 Effect of different parameter settings on PGEP
	6.2.2 Comparison with human-made SRs
	6.2.3 Comparison with PGEP without migration and GEP
	6.2.4 Comparison with meta-heuristic methods


	7 Conclusion and future work
	Acknowledgements
	References




