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Abstract
A complex fuzzy set is characterized by amembership function, whose range is not limited to
[0, 1], but extended to the unit circle in the complex plane. In this paper, we introduce some
new operations and laws of a complex fuzzy set such as disjunctive sum, simple difference,
bounded difference, distributive law of union over intersection and intersection over union,
equivalence formula, symmetrical difference formula, involution law, absorption law, and
idempotent law. We introduce some basic results on complex fuzzy sets with respect to
standard complex fuzzy intersection, union, and complement functions corresponding to the
same functions for determining the phase term, and we give particular examples of these
operations. We use complex fuzzy sets in signals and systems, because its behavior is similar
to a Fourier transform in certain cases. Moreover, we develop a new algorithm using complex
fuzzy sets for applications in signals and systems by which we identify a reference signal
out of large number of signals detected by a digital receiver. We use the inverse discrete
Fourier transform of a complex fuzzy set for incoming signals and a reference signal. Thus,
a method for measuring the exact values of two signals is provided by which we can identity
the reference signal.

Keywords Discrete Fourier transform matrix · Signal processing · Complex fuzzy sets ·
Complex fuzzy operations · Complex fuzzy intersections · Complex fuzzy union · Complex
valued grades of memberships · Complex fuzzy complement

Mathematics Subject Classification 30E10 · 03E72 · 94A12

1 Introduction

Models representing real-life phenomenon with only choices of truth and falsehood are
insufficient to represent the actual reality of the problems. The reason for this is that there are
several complexitieswhich exist in themodels, that is, why a system is needed to be developed

Communicated by Marcos Eduardo Valle.

B Jianming Zhan
zhanjianming@hotmail.com

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-019-0925-2&domain=pdf
http://orcid.org/0000-0003-2510-9515


150 Page 2 of 34 X. Ma et al.

to handle such ill-defined situations of the models. Now, there are two ways to handle these
types of situations: one is to find the numerical solutions of the problems and second is to
develop amodelwhich is numerical. In both cases,weget numerical solutions of the problems.
The second one is dealt with fuzzy set theory which includes probability theory, fuzzy soft set
theory, intuitionistic fuzzy sets theory, and, most importantly, neutrosophic set theory. The
later one is more generalized theory for handling problems involving complexities. One of
the suitable examples of these theories is the theory of fuzzy differential equations which is
more general than the differential equations to solve daily life problems with more accuracy.

Zadeh (1965) gave the concept of a fuzzy set (FS) which is similar to a probability func-
tion. A fuzzy set plays a vital role in models of real-world problems in various branches
of sciences. Fuzzy set theory has a lot of applications in operation research, medicine, psy-
chology, engineering design, decision-making, quantum physics, mathematical chemistry,
non-equilibrium thermodynamics image processing, biological classification, and economics
(see Alcantud and Calle 2017; El Allaoui et al. 2017; Dubois and Prade 2000; Li and Yen
1995; Ngan et al. 2018; Nguyen and Walker 2006; Nisren et al. 2017; Pedrycz and Gomide
1998; Poodeh 2017). For basic and recent work, one can refer to Hu et al. (2017), Naz and
Akram (2019), Nguyen et al. (1998), Ramot et al. (2003), Peng et al. (2017, 2018), Peng and
Dai (2018a, b), Peng and Garg (2018), Peng and Selvachandran (2017), Singh (2017), Tamir
et al. (2011), and Yazdanbakhsh and Dick (2018).

The idea of a complex fuzzy set (CFS) was first given by Ramot et al. (2002). As the set
of complex numbers is a generalization of the set of real numbers initiated by Gauss in 1795.
Accordingly, a CFS is an extension of the fuzzy set, whose range is extended from closed
interval [0, 1] to a disk of radius one in a complex plane. The membership function of CFS
S is denoted as μS(x) and defined on the universal U as: for any x ∈ U a complex value
in the disk of radius one in a complex plane. Thus, all values of μS(x) lie inside a circle of
radius one in complex plane and μS(x) = rS(x)eiωS(x); where i = √−1. The term rS(x) is
said to be amplitude term; ωS(x) is said to be phase term. Both these terms are real valued
with rS(x) ∈ [0, 1]. The CFS S is represented as {(x, μS(x))|x ∈ U }.

Fuzzy sets and intuitionistic fuzzy sets cannot handle imprecise, inconsistent, and incom-
plete informationof periodic nature. These theories are applicable to different areas of science,
but there is one major deficiency in both sets, that is, a lack of capability to model two-
dimensional phenomena. To overcome this difficulty, Ramot introduce a complex fuzzy set.
The phase termofCFSplays a vital role in defining the feature of the complex fuzzy setmodel.
This term distinguish a CFSmodel from all other models available in literature. The potential
of a complex fuzzy set for representing two-dimensional phenomena makes it superior to
handle ambiguous and intuitive information that are prevalent in time-periodic phenomena.
CFSs and their classes have an important role in applications, such as prediction of periodic
events and advanced control systems. A CFS is quite similar to a Fourier transform; in fact,
it is the specific form of the Fourier transform by restricting the range of Fourier transform to
a complex unit disk; since Fourier transform has a lot of applications in various fields such
as in signals and systems, communication, astronomy, geology, optics, etc. Therefore, a CFS
can be used in certain models like Fourier transform. Several other real-life phenomena are
ambiguous and cannot be modeled using one-dimensional variables. For example, items can
be expressed by a set of measurements in pattern recognition and are seen as vectors in a
multidimensional space. These multidimensional variables can not be expressed via a simple
combination of variables, especially by consideration of fuzzy sets. These types of sets can
be expressed via complex classes. A CFS is very useful for periodic phenomena. Ramot et al.
recommended that the periodic problems or recurring problems phenomena can be modeled
more accurately using the phase component of a complex fuzzy set memberships, such as
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expressing the effect of financial indicators of two countries on each other with the passage
of time. He proposed that signal processing is another field of desirable application for a
CFS. Moreover, it is used for expressing solar activity (solar maximum and solar minimum)
through the average number of sunspot (Ramot et al. 2002). Dick proposed that one of the
desirable applications of the CFSs is to use it for representing phenomena with relatively
periodic behavior (Dick 2005). The traffic congestions in a big city is the periodic phenom-
ena that never repeat themselves. Thus, complex fuzzy logic can be used to solve certain
classes of problems more efficiently and accurately rather than a fuzzy logic.

The set theoretic operations on a CFS such as intersection, union, complement, rotation,
and reflection were first introduced by Ramot et al. (2002). Also De Morgan Laws for a CFS
and CF relation are presented in Ramot et al. (2002).

In this paper, we define some new operations and laws for a complex fuzzy set such
as distributive property, idempotent property, absorption law, equivalence formula, simple
difference, symmetric difference formula, etc. with respect to standard complex fuzzy union,
intersection, and complement function. We present some basic results of CFS regarding CF
union, CF intersection, and CF complement, and also discuss particular examples of these
operations. Moreover, we develop an algorithm using the discrete Fourier transform matrix
introduced in Selesnick and Schuller (2001). Then, we apply it to a problem in signals and
systems.

2 Preliminaries

We will discuss here the basic set theoretic operations and laws of CFS, and also discuss
particular examples of these operations and laws.

Definition 1 (Garrido 2007) A review of traditional fuzzy simple difference: For any two
fuzzy sets R and S, the simple difference is defined as R�S = R ∩ Sc, where “c” represents
the standard complement.

Definition 2 Consider two CFSs R and S, μR(x), μS(x) denote the membership functions
R and S. The simple difference R�S of these two CFS R and S is defined as:

R�S = R ∩ Sc = μR(x)�μSc (x),

where � represents the t-norm (Dubois and Prade 2000) and μSc (x) denotes the membership
function and x belongs to Sc.

Example 1 Let

R = 0.5eiπ

u
+ 0.8ei

π
2

v
+ 0.4ei

3π
2

w

and

S = 0.6ei2π

u
+ 1ei

5π
2

v
+ 0.3ei2π

w

be two CFSs. Using standard intersection and standard complement function with max func-
tion for determining the phase term, the simple difference is:

R�S = R ∩ Sc =
[
0.5eiπ

u
+ 0.8ei

π
2

v
+ 0.4ei

3π
2

w

]
�

[
0.4ei2π

u
+ 0ei

5π
2

v
+ 0.7ei2π

w

]
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= 0.4ei2π

u
+ 0ei

5π
2

v
+ 0.4ei2π

w
.

Definition 3 (Garrido 2007) For any two fuzzy sets R and S, the bounded difference is defined
as:

μR�S(x) = Max[0, μR(x)�μS(x)],
where μR(x) and μS(x) denotes the membership function to which x is a member of R
and S.

Definition 4 Let R and S be two CFSs, and let μR, μS denote the membership functions of
R and S. The bounded difference of these two CFSs R and S is defined as:

μR�S(x) = Max[0, μR(x)�μS(x)] = Max[0, (rR(x)�rS(x))e
iωR�S(x)].

Here, [μR(x)�μS(x)] is same as the bounded difference of traditional fuzzy set. However,
the main problem is to find the phase term. As the functions defined in “complex fuzzy
set”(Ramot et al. 2002) for determining the phase term of complex fuzzy union and complex
fuzzy intersection, here, these functions are also applicable for finding the phase term, so for
calculating the phase term, we use the following functions:

(i) Sum. ωR�S = ωR + ωS .
(ii) Max. ωR�S = max(ωR, ωS).
(iii) Min. ωR�S = min(ωR, ωS).

(iv) “Winner take all”. ωR�S =
{

ωR; rR > rS
ωS; rS > rR

The following are also acceptable possibilities for finding the phase term.

(i) Difference: ωR�S = ωR − ωS .
(ii) Average: ωR�S = ωR+ωS

2 .
(iii) Weighted Average: ωR�S = rRωR+rSωS

rR+rS
.

Example 2 Let

R = 0eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei

3π
2

w

and

S = 1ei2π

u
+ 0.6ei

3π
2

v
+ 0.2ei

5π
2

w

be two CFSs. The bounded difference of these two CFSs is:

μR�S(x) = 0ei2π

u
+ 0ei

3π
2

v
+ 0.6ei

5π
2

w
.

Definition 5 (Garrido 2007) Let R and S be any two fuzzy sets; the disjoint sum is defined
as:

μR⊗S(x) =| μR(x)�μS(x) |,
where μR(x) and μS(x) denote the membership functions to which x is a member of R
and S.
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Definition 6 Let R and S be two CFSs, and let μR, μS denote the membership functions of
R and S. The disjoint sum of these two CFSs R and S is defined as:

μR⊗S(x) =| μR(x)�μS(x) |=| [rR(x)�rS(x)]eiωR�S(x) | .

The term | rR(x)�rS(x) | is same as traditional FS. To find the phase term for disjoint sum,
the functions defined in bounded difference are also applicable here.

Example 3 Let

R = 1ei
5π
2

u
+ 0.5ei

π
2

v
+ 0eiπ

w

and

S = 0.5eiπ

u
+ 0.6ei

3π
2

v
+ 0.9ei

π
2

w

be two CFSs. Using the max function for calculating the phase term, the disjoint sum of these
two fuzzy sets is:

μR⊗S(x) = 0.5

u
+ 0.1

v
+ 0.9

w
.

Definition 7 (Garrido 2007) For any two fuzzy sets R and S, the disjunctive sum is defined
as:

R�S = (R ∩ Sc) ∪ (Rc ∩ S) = (R�Sc) ⊕ (Rc�S),

where �,⊕ and c represent the standard intersection, standard union, and standard comple-
ment function.

Definition 8 Let R and S, be any two CFSs and μR(x), μS(x) denote the membership func-
tions of R and S. Let R�S represents the disjunctive sum of CFSs R and S, defined as
R�S = (R ∩ Sc) ∪ (Rc ∩ S). The membership function of R�S is:

μR�S(x) = [μR∩Sc (x) ⊕ μRc∩S(x)]
μR�S(x) = [rR(x)�rSc (x)]eiωR∩Sc (x) ⊕ [rRc (x)�rS(x)]eiωRc∩S(x), (3)

where �, ⊕, and c represents the standard intersection, standard union, and standard com-
plement function, respectively, of a CFS.

Example 4 Suppose

R = 1ei0

z1
+ 0.4eiπ

z2
+ 0.8ei

π
2

z3

and

S = 0.2ei
3π
2

z1
+ 0.3ei2π

z2
+ 1ei

π
4

z3

be two CFSs. Then the disjunctive sum of these two CFSs is defined as:

μR�S(z) = [rR(z)�rSc (z)]eiωR∩Sc (z) ⊕ [rRc (z)�rS(z)]eiωRc∩S(z).
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Using standard intersection,standard union, and standard complement function with the same
function for determining the phase term, we have:

μR�S(z) =
[
0.8ei

3π
2

z1
+ 0.4ei2π

z2
+ 0ei

π
2

z3

]
⊕

[
0ei

3π
2

z1
+ 0.3ei2π

z2
+ 0.2ei

π
2

z3

]

μR�S(x) = 0.8ei
3π
2

z1
+ 0.4ei2π

z2
+ 0.2ei

π
2

z3
.

Definition 9 For any two CFSs R and S, the equivalence formula is:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Using the standard union and standard intersection function with the same function for
determining the phase term along with standard complex fuzzy complement, the equivalence
formula is hold. The L.H.S and R.H.S of equivalence formula for CFSs R and S are given
by:

μRc∪S(y) ∩ μR∪Sc (y) = [μRc (y) ⊕ μS(y)]�[μR(y) ⊕ μSc (y)]
= [rRc (y)eiωRc (y) ⊕ rS(y)e

iωS(y)]�[rR(y)eiωR(y) ⊕ rSc (y)e
iωSc (y)]

μRc∩Sc (y) ∪ μR∩S(y) = [μRc (y)�μSc (y)] ⊕ [μR(y)�μS(y)]
= [rRc (y)eiωRc (y)�rSc (y)e

iω
Sc (y) ] ⊕ [rR(y)eiωR(y)�rS(y)e

iωS(y)],
where �, ⊕, and c represent the standard intersection, standard union, and standard comple-
ment functions, respectively.

Example 5 Suppose

R = 0.8ei
π
4

u
+ 0.6ei

π
6

v
+ 0.9ei

π
2

w
+ 1ei2π

t

and

S = 0.5ei
3π
2

y1
+ 0.7eiπ

y2
+ 0.1ei0

y3
+ 0.3ei

3π
4

y4

be two complex fuzzy sets. The equivalence formula is hold using standard union, standard
intersection, and standard complement function with the same function for determining the
phase term. The equivalence formula is:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S)

(Rc ∪ S) ∩ (R ∪ Sc) =
[
0.5ei

3π
2

y1
+ 0.7eiπ

y2
+ 0.1ei

π
2

y3
+ 0.3ei2π

y4

]

�

[
0.8ei

3π
2

y1
+ 0.6eiπ

y2
+ 0.9ei

π
2

y3
+ 1ei2π

y4

]

(Rc ∪ S) ∩ (R ∪ Sc) = 0.5ei
3π
2

y1
+ 0.6eiπ

y2
+ 0.1ei

π
2

y3
+ 0.3ei2π

y4

(Rc ∩ Sc) ∪ (R ∩ S) =
[
0.2ei

3π
2

y1
+ 0.3eiπ

y2
+ 0.1ei

π
2

y3
+ 0ei2π

y4

]
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⊕
[
0.5ei

3π
2

y1
+ 0.6eiπ

y2
+ 0.1ei

π
2

y3
+ 0.3ei2π

y4

]
(1)

(Rc ∩ Sc) ∪ (R ∩ S) = 0.5ei
3π
2

y1
+ 0.6eiπ

y2
+ 0.1ei

π
2

y3
+ 0.3ei2π

y4
. (2)

From (1) and (2), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Definition 10 Symmetrical difference formula for two CFSs R and S is given by:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Using standard union and standard intersection function along with standard complement
function with the same function for determining the phase term, then the symmetrical differ-
ence formula is hold for complex fuzzy sets. The L.H.S and R.H.S of symmetrical difference
formula for CFSs R and S are given by:

[μRc∩S(x) ∪ μR∩Sc (x)] = [μRc (x)�μS(x)] ⊕ [μR(x)�μSc (x)]
= [rRc (x)eiωRc (x)�rS(x)e

iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e
iωSc (x)]

[μRc∪Sc (x) ∩ μR∪S(x)] = [μRc (x) ⊕ μSc (x)]�[μR(x) ⊕ μS(x)]
= [rRc (x)eiωRc (x) ⊕ rSc (x)e

iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)],

where �, ⊕, and c represent standard intersection, standard union, and standard complement
function.

Example 6 Let

R = 0.5eiπ

u
+ 0.8ei

π
6

v
+ 1ei

3π
2

w
,

and

S = 0.2ei2π

u
+ 0.6eiπ

v
+ 0.4ei

π
4

w

be two complex fuzzy sets. Using standard union and standard intersection and standard
complement function with the same function for determining the phase term, we have:

(Rc ∩ S) ∪ (R ∩ Sc) =
[
0.2ei2π

u
+ 0.2eiπ

v
+ 0ei

3π
2

w

]
⊕

[
0.5ei2π

u
+ 0.4eiπ

v
+ 0.6ei

3π
2

w

]

(Rc ∩ S) ∪ (R ∩ Sc) = 0.5ei2π

u
+ 0.4eiπ

v
+ 0.6ei

3π
2

w
(1)

(Rc ∪ Sc) ∩ (R ∪ S) =
[
0.8ei2π

u
+ 0.4eiπ

v
+ 0.6ei

3π
2

w

]
�

[
0.5ei2π

u
+ 0.8eiπ

v
+ 1ei

3π
2

w

]

(Rc ∪ Sc) ∩ (R ∪ S) = 0.5ei2π

u
+ 0.4eiπ

v
+ 0.6ei

3π
2

w
. (2)
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From (1) and (2), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Definition 11 Complex fuzzy sets satisfy distributive laws using standard union and standard
intersection function with the same function for determining the phase term.

Let R, S, and T be three CFSs. Then, the distributive laws are:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T )

and

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

These two laws are called distributive law of union over intersection and distributive law
of intersection over union.

If R = rR(x)eiωR(x), S = rS(x)eiωS(x) and T = rT (x)eiωT (x), then the L.H.S and R.H.S
distributive law of union over intersection become:

[μR(x) ⊕ (μS(x)�μT (x))] = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

[μR(x) ⊕ μS(x)]�[μR(x) ⊕ μT (x)] = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]

�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)].
Also, the L.H.S and R.H.S of distributive law of intersection over union are:

[μR(x)�(μS(x) ⊕ μR(x))] = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

[μR(x)�μS(x)] ⊕ [μR(x)�μT (x)] = [rR(x)eiωR(x)�rS(x)e
iωS(x)]

⊕[rR(x)eiωR(x)�rT (x)eiωT (x)],
where � and ⊕ represent the standard intersection and standard union function, respectively.

Example 7 Let

R = 1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w
,

S = 0.2ei
3π
4

u
+ 0.3ei2π

v
+ 1ei

π
6

w

and

T = 0.6ei
3π
2

u
+ 0.4ei

π
4

v
+ 0.5ei

π
5

w

be three CFSs. To satisfies the distributive law of union over intersection and intersection
over union, using standard union and standard intersection function with the same function
for determining the phase term.

Now, the distributive law of union over intersection is:
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R ∪ (S ∩ T ) =
[
1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
⊕

([
0.2ei

3π
4

u
+ 0.3ei2π

v
+ 1ei

π
6

w

]

�

[
0.6ei

3π
2

u
+ 0.4ei

π
4

v
+ 0.5ei

π
5

w

])

=
[
1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
⊕

[
0.2ei

3π
2

u
+ 0.3ei2π

v
+ 0.5ei

π
5

w

]

R ∪ (S ∩ T ) = 1ei
3π
2

u
+ 0.4ei2π

v
+ 0.8ei

π
2

w
(1)

(R ∪ S) ∩ (R ∪ T ) =
([

1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
⊕

[
0.2ei

3π
4

u
+ 0.3ei2π

v
+ 1ei

π
6

w

])

�

([
1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
⊕

[
0.6ei

3π
2

u
+ 0.4ei

π
4

v
+ 0.5ei

π
5

w

])

=
[
1ei

3π
4

u
+ 0.4ei2π

v
+ 1ei

π
2

w

]
�

[
1ei

3π
2

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]

(R ∪ S) ∩ (R ∪ T ) = 1ei
3π
2

u
+ 0.4ei2π

v
+ 0.8ei

π
2

w
. (2)

From (1) and (2), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Now, the distributive property of intersection over union is:

R ∩ (S ∪ T ) =
[
1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
�

([
0.2ei

3π
4

u
+ 0.3ei2π

v
+ 1ei

π
6

w

]

⊕
[
0.6ei

3π
2

u
+ 0.4ei

π
4

v
+ 0.5ei

π
5

w

])

=
[
1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
�

[
0.6ei

3π
2

u
+ 0.4ei2π

v
+ 1ei

π
5

w

]

R ∩ (S ∪ T ) = 0.6ei
3π
2

u
+ 0.4ei2π

v
+ 0.8ei

π
2

w
(3)

(R ∩ S) ∪ (R ∩ T ) =
([

1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
�

[
0.2ei

3π
4

u
+ 0.3ei2π

v
+ 1ei

π
6

w

])

⊕
([

1ei0

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w

]
�

[
0.6ei

3π
2

u
+ 0.4ei

π
4

v
+ 0.5ei

π
5

w

])
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=
[
0.2ei

3π
4

u
+ 0.3ei2π

v
+ 0.8ei

π
2

w

]
⊕

[
0.6ei

3π
2

u
+ 0.4eiπ

v
+ 0.5ei

π
2

w

]

(R ∩ S) ∪ (R ∩ T ) = 0.6ei
3π
2

u
+ 0.4eiπ

v
+ 0.8ei

π
2

w
. (4)

From (3) and (4), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Definition 12 For any CFS R, idempotent laws hold using standard union and standard
intersection function.

The idempotent law of union for a CFS R is R ∪ R = R and the idempotent law of
intersection is R ∩ R = R.

If a grade value of R is μR(x) = rR(x)eiωR(x),the idempotent law of union becomes:

μR(x) = μR∪R(x).

To prove this, we have:

μR∪R(x) = [μR(x) ⊕ μR(x)] = [rR(x)eiωR(x) ⊕ rR(x)eiωR(x)] = rR(x)eiωR(x) = μR(x).

Also, the idempotent law of intersection is:

μR(x) = μR∩R(x).

Now, to prove this, we have:

μR∩R(x) = [μR(x)�μR(x)] = [rR(x)eiωR(x)�rR(x)eiωR(x)] = rR(x)eiωR(x) = μR(x).

Here, � and ⊕ represent the standard intersection and standard union function.

Example 8 Let

R = 1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w

be a complex fuzzy set. Using standard union and standard intersection function, the idem-
potent law of union is:

R ∪ R =
[
1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w

]
⊕

[
1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w

]

= 1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w
= R.

The idempotent law of intersection is:

R ∩ R =
[
1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w

]
�

[
1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w

]

= 1eiπ

u
+ 0.5ei

π
2

v
+ 0.8ei0

w
= R.

The idempotent law of union and intersection holds for a CFS R.

Definition 13 CFS satisfied the involution law using standard complement function.
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The involution law for a CFS R is (Rc)c = R
If a grade value of a CFS R is μR(x) = rR(x)eiωR(x),the involution law is:

rR(x)eiωR(x) = rRcc (x)eiωRc
c (x)

,

where c represents standard complement function.

Example 9 Let

R = 0.1ei0

u
+ 0.5eiπ

v
+ 1ei

π
2

w
+ 0.8ei

3π
2

t

be a CFS. The involution law is satisfied using standard complement function. Now

Rc = μRc (x) = 0.9ei0

u
+ 0.5eiπ

v
+ 0ei

π
2

w
+ 0.2ei

3π
2

t

Rcc = μRcc (x) = 0.1ei0

u
+ 0.5eiπ

v
+ 1ei

π
2

w
+ 0.8ei

3π
2

t
= R.

3 Main results

Proposition 1 The bounded difference of two CFSs is always a fuzzy set.

Proof Let R and S be two CFSs. The bounded difference of these two CFSs is:

μR⊗S(x) =| μR(x)�μS(x) |=| [rR(x)�rS(x)]eiωR�S(x) |=| rR(x)�rS(x) || eiωR�S(x) | .

As | eiωR�S(x) |= 1. Thus

μR⊗S(x) =| rR(x)�rS(x) || eiωR�S(x) |=| rR(x)�rS(x) | .

	

Proposition 2 ForCFSs R and S over a crisp setU, the standard union, standard intersection,
and standard complement function with the same function for determining the phase term
satisfy the symmetrical difference formula.

Proof Suppose R and S be twoCFSs. To prove the symmetrical difference formula (Rc∩S)∪
(R ∩ Sc) = (Rc ∪ Sc)∩ (R ∪ S), eight cases arise here. Using Max function for determining
the phase term. 	

Case 1

rR(x) ≤ rS(x), ωR(x) ≤ ωS(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rSc (x) ≤ rRc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rRc (x)eiωS(x) ⊕ rSc (x)e

iωSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = rRc (x)eiωSc (x) (1)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rRc (x)eiωSc (x)�rS(x)e

iωS(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rRc (x)eiωSc (x). (2)
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From (1) and (2), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Case 2

rR(x) ≤ rS(x), ωR(x) ≤ ωS(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rSc (x) ≤ rRc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rS(x)e

iωS(x) ⊕ rR(x)eiωSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = rS(x)e
iωS(x) (3)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rRc (x)eiωSc (x)�rS(x)e

iωS(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rS(x)e
iωS(x). (4)

From (3) and (4) we have

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Case 3

rR(x) ≤ rS(x), ωS(x) ≤ ωR(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rSc (x) ≤ rRc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rRc (x)eiωRc (x) ⊕ rSc (x)e

iωR(x)

(Rc ∩ S) ∪ (R ∩ Sc) = rRc (x)eiωRc (x) (5)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rRc (x)eiωRc (x)�rS(x)e

iωS(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rRc (x)eiωRc (x). (6)

From (5) and (6), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Case 4

rR(x) ≤ rS(x), ωS(x) ≤ ωR(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rSc (x) ≤ rRc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rS(x)e

iωRc (x) ⊕ rR(x)eiωR(x)(Rc ∩ S) ∪ (R ∩ Sc) = rS(x)e
iωR(x)

(7)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rRc (x)eiωRc (x)�rS(x)e

iωR(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rS(x)e
iωR(x). (8)

From (7) and (8), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

123



Complex fuzzy sets with applications in signals Page 13 of 34 150

Case 5

rS(x) ≤ rR(x), ωS(x) ≤ ωR(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rRc (x) ≤ rSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rRc (x)eiωRc (x) ⊕ rSc (x)e

iωR(x)

(Rc ∩ S) ∪ (R ∩ Sc) = rSc (x)e
iωR(x) (9)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rSc (x)e

iωRc (x)�rR(x)eiωR(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rSc (x)e
iωR(x). (10)

From (9) and (10), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Case 6

rS(x) ≤ rR(x), ωS(x) ≤ ωR(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rRc (x) ≤ rSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rS(x)e

iωRc (x) ⊕ rR(x)eiωR(x)

(Rc ∩ S) ∪ (R ∩ Sc) = rR(x)eiωR(x) (11)

(
c
R ∪ c

S) ∩ (R ∪ S) = [r c
R
(x)e

iω c
R
(x) ⊕ r c

S
(x)e

iωc
S
(x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= r c

S
(x)e

iω c
R
(x)

�rR(x)eiωR(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rR(x)eiωR(x). (12)

From (11) and (12), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Case 7

rS(x) ≤ rR(x), ωR(x) ≤ ωS(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rRc (x) ≤ rSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rRc (x)eiωS(x) ⊕ rSc (x)e

iωSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = rSc (x)e
iωSc (x) (13)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rSc (x)e

iωSc (x)�rR(x)eiωS(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rSc (x)e
iωSc (x). (14)

From (13) and (14), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Case 8

rS(x) ≤ rR(x), ωR(x) ≤ ωS(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rRc (x) ≤ rSc (x)
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(Rc ∩ S) ∪ (R ∩ Sc) = [rRc (x)eiωRc (x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rSc (x)e

iωSc (x)]
= rS(x)e

iωS(x) ⊕ rR(x)eiωSc (x)

(Rc ∩ S) ∪ (R ∩ Sc) = rR(x)eiωS(x) (15)

(Rc ∪ Sc) ∩ (R ∪ S) = [rRc (x)eiωRc (x) ⊕ rSc (x)e
iωSc (x)]�[rR(x)eiωR(x) ⊕ rS(x)e

iωS(x)]
= rSc (x)e

iωSc (x)�rR(x)eiωS(x)

(Rc ∪ Sc) ∩ (R ∪ S) = rR(x)eiωS(x). (16)

From (15) and (16), we have:

(Rc ∩ S) ∪ (R ∩ Sc) = (Rc ∪ Sc) ∩ (R ∪ S).

Thus, in all cases, the symmetrical difference formula holds.

Proposition 3 ForCFSs R and S over a crisp setU, the standard union, standard intersection,
and standard complement function with the same function for determining the phase term
satisfy the equivalence formula.

Proof Suppose R and S be twoCFSs. To prove the equivalence formula (Rc∪S)∩(R∪Sc) =
(Rc ∩ Sc) ∪ (R ∩ S), eight cases arise here. Using Max function for determining the phase
term. 	

Case 1

rR(x) ≤ rS(x), ωR(x) ≤ ωS(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rSc (x) ≤ rRc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rS(x)e

iωS(x)�rR(x)eiωSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = rR(x)eiωS(x) (1)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rSc (x)e

iωSc (x) ⊕ rR(x)eiωS(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rR(x)eiωS(x). (2)

From (1) and (2), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Case 2

rR(x) ≤ rS(x), ωR(x) ≤ ωS(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rSc (x) ≤ rRc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rRc (x)eiωS(x)�rSc (x)e

iωSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = rSc (x)e
iωSc (x) (3)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rSc (x)e

iωSc (x) ⊕ rR(x)eiωS(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rSc (x)e
iωSc (x). (4)
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From (3) and (4), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Case 3

rR(x) ≤ rS(x), ωS(x) ≤ ωR(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rSc (x) ≤ rRc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rS(x)e

iωRc (x)�rR(x)eiωR(x)

(Rc ∪ S) ∩ (R ∪ Sc) = rR(x)eiωR(x) (5)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rSc (x)e

iωRc (x) ⊕ rR(x)eiωR(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rR(x)eiωR(x). (6)

From (5) and (6), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Case 4

rR(x) ≤ rS(x), ωS(x) ≤ ωR(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rSc (x) ≤ rRc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rRc (x)eiωRc (x)�rSc (x)e

iωR(x)

(Rc ∪ S) ∩ (R ∪ Sc) = rSc (x)e
iωR(x) (7)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rSc (x)e

iωRc (x) ⊕ rR(x)eiωR(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rSc (x)e
iωR(x). (8)

From (7) and (8), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Case 5

rS(x) ≤ rR(x), ωS(x) ≤ ωR(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rRc (x) ≤ rSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rS(x)e

iωSc (x)�rR(x)eiωR(x)

(Rc ∪ S) ∩ (R ∪ Sc) = rS(x)e
iωRc (x) (9)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rRc (x)eiωRc (x) ⊕ rS(x)e

iωR(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rS(x)e
iωRc (x). (10)

From (9) and (10), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).
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Case 6

rS(x) ≤ rR(x), ωS(x) ≤ ωR(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rRc (x) ≤ rSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rRc (x)eiωRc (x)�rSc (x)e

iωR(x)

(Rc ∪ S) ∩ (R ∪ Sc) = rRc (x)eiωR(x) (11)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rRc (x)eiωRc (x) ⊕ rS(x)e

iωS(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rRc (x)eiωR(x). (12)

From (11) and (12), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Case 7

rS(x) ≤ rR(x), ωR(x) ≤ ωS(x), rRc (x) ≤ rS(x), rSc (x) ≤ rR(x), rRc (x) ≤ rSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rS(x)e

iωS(x)�rR(x)eiωSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = rS(x)e
iωS(x) (13)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rRc (x)eiωSc (x) ⊕ rS(x)e

iωS(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rS(x)e
iωS(x). (14)

From (13) and (14), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Case 8

rS(x) ≤ rR(x), ωR(x) ≤ ωS(x), rS(x) ≤ rRc (x), rR(x) ≤ rSc (x), rRc (x) ≤ rSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = [rRc (x)eiωRc (x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rSc (x)e

iωSc (x)]
= rRc (x)eiωS(x)�rSc (x)e

iωSc (x)

(Rc ∪ S) ∩ (R ∪ Sc) = rRc (x)eiωS(x) (15)

(Rc ∩ Sc) ∪ (R ∩ S) = [rRc (x)eiωRc (x)�rSc (x)e
iωSc (x)] ⊕ [rR(x)eiωR(x)�rS(x)e

iωS(x)]
= rRc (x)eiωSc (x) ⊕ rS(x)e

iωS(x)

(Rc ∩ Sc) ∪ (R ∩ S) = rRc (x)eiωS(x). (16)

From (15) and (16), we have:

(Rc ∪ S) ∩ (R ∪ Sc) = (Rc ∩ Sc) ∪ (R ∩ S).

Thus, in all cases, the equivalence formula is hold.
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Proposition 4 The standard union and standard intersection of any finite number of CFSs is
always a CFS.

Proof (i) Let R1, R2, . . . , RM be any M CFSs and rR1(x)e
iωR1 (x), rR2(x)e

iωR2 (x), . . . ,

rRM (x)eiωRM (x) denote the membership functions of these complex fuzzy sets, respectively.
Suppose r ′

R(x) = max[rR1(x), rR2(x), . . . , rRM (x)] and ω′
R(x) = max[ωR1(x),

ωR2(x), . . . , ωRM (x)].
Now

R1 ∪ R2 ∪ · · · ∪ RM = rR1(x)e
iωR1 (x) ⊕ rR2(x)e

iωR2 (x) ⊕ · · · ⊕ rRM (x)eiωRM (x)

= [rR1(x) ⊕ rR2(x) ⊕ · · · ⊕ rRM (x)]ei[ωR1 (x)⊕ωR2 (x)⊕···⊕ωRM (x)]

= r ′
R(x)eiω

′
R(x) = R′,

which is also a CFS.
(ii) Now, we show that the finite intersection of any CFSs is always a complex fuzzy set.

Let R1, R2, . . . , RM be anyM CFSs and rR1(x)e
iωR1 (x), rR2(x)e

iωR2 (x), . . . , rRM (x)eiωRM (x)

denote the membership functions of these complex fuzzy sets, respectively.
Suppose r ′

R(x) = min[rR1(x), rR2(x), . . . , rRM (x)] and ω′
R(x) = max[ωR1(x), ωR2(x),

. . . , ωRM (x)].
Now

R1 ∩ R2 ∩ · · · ∩ RM = rR1(x)e
iωR1 (x)�rR2(x)e

iωR2 (x)� · · · �rRM (x)eiωRM (x)

= [rR1(x)�rR2(x)� · · · �rRM (x)]ei[ωR1 (x)�ωR2 (x)�···�ωRM (x)]

= r ′
R(x)eiω

′
R(x) = R′,

which is also a CFS. 	


Proposition 5 For any two CFSs R and S, the standard union and standard intersection
function with the same function for determining the phase term satisfy:

M∑
i=1,xi∈U

| μR∩S(xi ) |≤
M∑

i=1,xi∈U
| μR∪S(xi ) | .

Proof The standard union and intersection functions are defined by the respective expres-
sions:

μR∪S(x) = max[μR(x), μS(x)]
and

μR∩S(x) = min[μR(x), μS(x)].
As

| μR∩S(u) |≤| μR∪S(u) |
| μR∩S(v) |≤| μR∪S(v) | .

Continuing this process up to M , we have:

| μR∩S(xM ) |≤| μR∪S(xM ) | .
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Adding all these inequalities, we get:

M∑
i=1,x∈U

| μR∩S(xi ) |≤
M∑

i=1,x∈U
| μR∪S(xi ) | .

	

Proposition 6 For any CFSs R, S and T , the standard intersection and standard union func-
tions with the same function for determining the phase term satisfy the distributive law.

Proof To prove the distributive laws for any CFSs R, S and T , six cases arise here. 	

First, we prove the distributive law of union over intersection.

Case 1

rR(x) ≤ rS(x) ≤ rT (x), ωR(x) ≤ ωS(x) ≤ ωT (x)

R ∪ (S ∩ T ) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rS(x)e
iωT (x)

R ∪ (S ∩ T ) = rS(x)e
iωT (x) (1)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]

= rS(x)e
iωS(x)�rT (x)eiωT (x)

(R ∪ S) ∩ (R ∪ T ) = rS(x)e
iωT (x). (2)

From (1) and (2), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Case 2

rS(x) ≤ rT (x) ≤ rR(x), ωS(x) ≤ ωT (x) ≤ ωR(x)

R ∪ (S ∩ T ) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rS(x)e
iωT (x)

R ∪ (S ∩ T ) = rR(x)eiωR(x) (3)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]

= rR(x)eiωR(x)�rR(x)eiωR(x)

(R ∪ S) ∩ (R ∪ T ) = rR(x)eiωR(x). (4)

From (3) and (4), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Case 3

rR(x) ≤ rT (x) ≤ rS(x), ωR(x) ≤ ωT (x) ≤ ωS(x)

R ∪ (S ∩ T ) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rT (x)eiωS(x)
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R ∪ (S ∩ T ) = rT (x)eiωS(x) (5)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]

= rS(x)e
iωS(x)�rT (x)eiωT (x)

(R ∪ S) ∩ (R ∪ T ) = rT (x)eiωS(x). (6)

From (5) and (6), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Case 4

rT (x) ≤ rS(x) ≤ rR(x), ωT (x) ≤ ωS(x) ≤ ωR(x)

R ∪ (S ∩ T ) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rT (x)eiωT (x)

R ∪ (S ∩ T ) = rR(x)eiωR(x) (7)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]

�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]
= rR(x)eiωR(x)�rR(x)eiωR(x)

(R ∪ S) ∩ (R ∪ r) = rR(x)eiωR(x). (8)

From (7) and (8), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Case 5

rS(x) ≤ rR(x) ≤ rT (x), ωS(x) ≤ ωR(x) ≤ ωT (x)

R ∪ (S ∩ r) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rS(x)e
iωT (x)

R ∪ (S ∩ T ) = rR(x)eiωT (x) (9)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]

�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]
= rR(x)eiωR(x)�rT (x)eiωT (x)

(R ∪ S) ∩ (R ∪ T ) = rR(x)eiωT (x). (10)

From (9) and (10), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Case 6

rT (x) ≤ rR(x) ≤ rS(x), ωT (x) ≤ ωR(x) ≤ ωS(x)

R ∪ (S ∩ T ) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rT (x)eiωS(x)
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R ∪ (S ∩ T ) = rR(x)eiωS(x) (11)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]

= rS(x)e
iωS(x)�rR(x)eiωR(x)

(R ∪ S) ∩ (R ∪ T ) = rR(x)eiωS(x). (12)

From (11) and (12), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Hence, in all cases, this law is hold.
To prove the distributive law of intersection over union, there are also six cases.

Case 1

rR(x) ≤ rS(x) ≤ rT (x), ωR(x) ≤ ωS(x) ≤ ωT (x)

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

= rR(x)eiωR(x)�rT (x)eiωT (x)

R ∩ (S ∪ T ) = rR(x)eiωT (x) (1)

(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]

= rR(x)eiωS(x) ⊕ rR(x)eiωT (x)

(R ∩ S) ∪ (R ∩ T ) = rR(x)eiωT (x). (2)

From (1) and (2), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Case 2

rS(x) ≤ rT (x) ≤ rR(x), ωS(x) ≤ ωT (x) ≤ ωR(x)

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

= rR(x)eiωR(x)�rT (x)eiωT (x)

R ∩ (S ∪ T ) = rT (x)eiωR(x) (3)

(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]

= rS(x)e
iωR(x) ⊕ rT (x)eiωR(x)

(R ∩ S) ∪ (R ∩ T ) = rT (x)eiωR(x). (4)

From (3) and (4), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Case 3

rR(x) ≤ rT (x) ≤ rS(x), ωR(x) ≤ ωT (x) ≤ ωS(x)

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

= rR(x)eiωR(x)�rS(x)e
iωS(x)
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R ∩ (S ∪ T ) = rR(x)eiωS(x) (5)

(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)]

⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]
= rR(x)eiωS(x) ⊕ rR(x)eiωT (x)

(R ∩ S) ∪ (R ∩ T ) = rR(x)eiωS(x). (6)

From (5) and (6), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Case 4

rT (x) ≤ rS(x) ≤ rR(x), ωT (x) ≤ ωS(x) ≤ ωR(x)

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

= rR(x)eiωR(x)�rS(x)e
iωS(x)

R ∩ (S ∪ r) = rS(x)e
iωR(x) (7)

(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]

= rS(x)e
iωR(x) ⊕ rT (x)eiωR(x)

(R ∩ S) ∪ (R ∩ T ) = rS(x)e
iωR(x). (8)

From (7) and (8), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Case 5

rS(x) ≤ rR(x) ≤ rT (x), ωS(x) ≤ ωR(x) ≤ ωT (x)

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωr (x))]

= rR(x)eiωR(x)�rT (x)eiωT (x)

R ∩ (S ∪ T ) = rR(x)eiωT (x) (9)

(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)] ⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]

= rS(x)e
iωR(x) ⊕ rR(x)eiωT (x)

(R ∩ S) ∪ (R ∩ T ) = rR(x)eiωT (x). (10)

From (9) and (10), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Case 6

rT (x) ≤ rR(x) ≤ rS(x), ωT (x) ≤ ωR(x) ≤ ωS(x)

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

= rR(x)eiωR(x)�rS(x)e
iωS(x)

R ∩ (S ∪ T ) = rR(x)eiωS(x) (11)
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(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)]

⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]
= rR(x)eiωS(x) ⊕ rT (x)eiωR(x)

(R ∩ S) ∪ (R ∩ T ) = rR(x)eiωS(x). (12)

From (11) and (12), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

Hence, in all cases, the distributive law of intersection over union is hold.

Proposition 7 For any complex fuzzy set R, the standard union, standard intersection, and
standard complement function with the same function for determining the phase term satisfy
the following:

(i) R ∪ Rc = R or R ∪ Rc = Rc.
(ii) R ∩ Rc = R or R ∩ Rc = Rc.

Proof To prove (1) and (2), two cases arise here.
(i) 	

Case 1

rRc (x) ≤ rR(x)

R ∪ Rc = rR(x)eiωR(x) ⊕ rRc (x)eiωRc (x) = rR(x)eiωR(x) = R.

Case 2

rR(x) ≤ rRc (x)

R ∪ Rc = rR(x)eiωR(x) ⊕ rRc (x)eiωRc (x) = rRc (x)eiωRc (x) = Rc.

(ii)
Case 1

rRc (x) ≤ rR(x)

R ∩ Rc = rR(x)eiωR(x)�rRc (x)eiωRc (x) = rRc (x)eiωRc (x) = Rc.

Case 2

rR(x) ≤ rRc (x)

R ∩ Rc = rR(x)eiωR(x)�rRc (x)eiωRc (x) = rR(x)eiωR(x) = R.

Proposition 8 For any complex fuzzy sets R and S over a crisp set U , the standard union and
standard intersection function with the max function for determining the phase term does
not satisfy the absorption law.

Proof The absorption laws for crisp set are R ∩ (R ∪ S) = R and R ∪ (R ∩ S) = R. 	

Here, we show that for any CFS R and S, the absorption laws do not hold. If

rR(x) ≤ rS(x), ωR(x) ≤ ωS(x)

R ∩ (R ∪ S) = [rR(x)eiωR(x)�(rR(x)eiωR(x) ⊕ rS(x)e
iωS(x))]

= rR(x)eiωR(x)�rS(x)e
iωS(x)
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= r
R(x)eiωS(x) = R

R ∪ (R ∩ S) = [rR(x)eiωR(x) ⊕ (rR(x)eiωR(x)�rS(x)e
iωS(x))]

= rR(x)eiωR(x) ⊕ rR(x)eiωS(x)

= rR(x)eiωS(x) = R.

Also if

rS(x) ≤ rR(x), ωR(x) ≤ ωS(x)

R ∩ (R ∪ S) = [rR(x)eiωR(x)�(rR(x)eiωR(x) ⊕ rS(x)e
iωS(x))]

= rR(x)eiωR(x)�rR(x)eiωS(x)

= rR(x)eiωS(x) = R

R ∪ (R ∩ S) = [rR(x)eiωR(x) ⊕ {rR(x)eiωR(x)�rS(x)e
iωS(x)}]

= rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)

= rR(x)eiωS(x) = R.

Hence, the absorption law does not hold for any complex fuzzy sets.

Proposition 9 For any CFSs R, S, and T , the standard complement, standard intersection,
and standard union function with different function for determining the phase term does not
satisfy the distributive laws.

Proof We use here“taqe wiMMer all”and “min” function for determining the phase term.
The distributive law of union over intersection is R∪(S∩T ) = (R∪S)∩(R∪T ).For r .H .S,

we use “take winner all” function; for L.H.S, we use “min” function for determining the
phase term. 	


If

rR(x) ≤ rS(x) ≤ rT (x), ωR(x) ≤ ωS(x) ≤ ωT (x)

R ∪ (S ∩ T ) = [rR(x)eiωR(x) ⊕ (rS(x)e
iωS(x)�rT (x)eiωT (x))]

= rR(x)eiωR(x) ⊕ rS(x)e
iωT (x)

R ∪ (S ∩ T ) = rS(x)e
iωT (x) (1)

(R ∪ S) ∩ (R ∪ T ) = [rR(x)eiωR(x) ⊕ rS(x)e
iωS(x)]

�[rR(x)eiωR(x) ⊕ rT (x)eiωT (x)]
= rS(x)e

iωR(x)�rT (x)eiωR(x)

(R ∪ S) ∩ (R ∪ T ) = rS(x)e
iωR(x). (2)

From (1) and (2), we have:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Now, distributive law of intersection over union:

R ∩ (S ∪ T ) = [rR(x)eiωR(x)�(rS(x)e
iωS(x) ⊕ rT (x)eiωT (x))]

= rR(x)eiωR(x)�rT (x)eiωT (x)

R ∩ (S ∪ T ) = rR(x)eiωT (x) (3)

123



150 Page 24 of 34 X. Ma et al.

(R ∩ S) ∪ (R ∩ T ) = [rR(x)eiωR(x)�rS(x)e
iωS(x)]

⊕ [rR(x)eiωR(x)�rT (x)eiωT (x)]
= rR(x)eiωR(x) ⊕ rR(x)eiωR(x)

(R ∩ S) ∪ (R ∩ T ) = rR(x)eiωR(x). (4)

From (3) and (4), we have:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

4 Applications

In this section, we will discuss the applications of CFS in signals and systems.

Definition 14 The M th inverse discrete Fourier transform (IDFT) coefficient of a length M
sequence {x(M)} is defined as:

x(q) = 1

M

M−1∑
q=0

x ′(M)ei
2π
M Mq , q ∈ {0, 1, 2, . . . , M − 1},

where x(M) has different values (Selesnick and Schuller 2001).

We take a particular case that is U [M] = x ′(M) is restricted to a closed interval [0, 1],
because in CFS, the amplitude term has all the values in the closed interval [0, 1].

Definition 15 (Selesnick and Schuller 2001) The DFT for {x ′(M) : 1 ≤ M ≤ M} is given
by a matrix in product form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x ′(0)
x ′(1)
x ′(2)

.

.

.

x ′(M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ei(− 2π
M ) ei(− 2π

M 2) . . . ei(− 2π
M (M−1))

1 ei(− 2π
M 2) ei(− 2π

M 4) . . . ei(− 2π
M 2(M−1))

. . . . . . .

. . . . . . .

. . . . . . .

1 ei(− 2π
M (M−1)) ei(− 2π

M 2(M−1)) . . . ei(− 2π
M (M−1)2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)
x(1)
x(2)

.

.

.

x(M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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but the IDFT is given by:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)
x(1)
x(2)

.

.

.

x(M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ei
2π
M ei

2π
M 2 . . . ei

2π
M (M−1)

1 ei
2π
M 2 ei

2π
M 4 . . . ei

2π
M 2(M−1)

. . . . . . .

. . . . . . .

. . . . . . .

1 ei
2π
M (M−1) ei

2π
M 2(M−1) . . . ei

2π
M (M−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x ′(0)
x ′(1)
x ′(2)

.

.

.

x ′(M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the following, we develop an algorithm to use CFS in signals and systems for identifi-
cation of a particular signal received by a particular receiver.

Let m be different electromagnetic signals, and u1(M), u2(M), u3(M), . . . , um(M) have
been received by a particular receiver. Each of these signals is noted at M different times.
Let xm(M) be them− th (1 ≤ m ≤ M) signal. The discrete Fourier transform of thism− th
signal is:

um(M) = 1

M

M−1∑
q=0

U [M]ei 2πM Mq ; M, q = 0, 1, 2, . . . , M − 1. (1)

We restrict the range ofU [M] as 0 ≤ U [M] ≤ 1 (0 ≤ q ≤ M−1). Here,U [M] = �′
s(q)

is known as amplitude term and 2π
M Mq = ωs(q) is known as phase term and the first one

having range as real numbers and U [M] ∈ [0, 1] :

um(M) = 1

M

M−1∑
q=0

U [M]ei 2πM Mq ; M, q = 0, 1, 2, . . . , M − 1. (1 (a))

Thus a general signal representing by Eq. (1) is model for signal representation using a
CFS.

We use the CFS in signals and systems using a new kind of matrix to identify a particular
signal out of large signals detected by a digital receiver. For this, we have a reference signal
r .This reference signal r is noted M times. The DFT of this reference signal r is:

r(M) = 1

M

M−1∑
q=0

�′[q]ei 2πM Mq ; M, q = 0, 1, 2, . . . , M − 1, (2)

where �′[q] ∈ [0, 1] ; (0 ≤ q ≤ M − 1).
To compare the similarity between two signals, we apply the following method.

Algorithm
Step 1

Expand um(M) = 1
M

M−1∑
q=0

U [M]ei 2πM Mq for q = 0, 1, 2, . . . , M − 1, we get:

um(M) = 1

M
[U [0]ei 2πM M(0) +U [1]ei 2πM M(1) +U [2]ei 2πM M(2)

+ · · · +U [M − 1]ei 2πM M(M−1)]
um(M) = 1

M
[U [0].1 +U [1]ei 2πM M(1) +U [2]ei 2πM M(2) + · · · +U [M − 1]ei 2πM M(M−1)].

(3)

123



150 Page 26 of 34 X. Ma et al.

From Eq. (3), we get M − samRles by putting M = 0, 1, 2, 3, . . . , M − 1.
For M = 0, we have:

um(0) = 1

M
[U [0].1 +U [1]ei 2πM (0)(1) +U [2]ei 2πM (0)(2) + · · · +U [M − 1]ei 2πM (0)(M−1)]

um(0) = 1

M
[U [0].1 +U [1].1 +U [2].1 + · · · +U [M − 1].1]. (3.1)

For M = 1, we have:

um(1) = 1

M
[U [0].1 +U [1]ei 2πM (1)(1) +U [2]ei 2πM (1)(2) + · · · +U [M − 1]ei 2πM (1)(M−1)]

um(1) = 1

M
[U [0].1 +U [1]ei 2πM (1) +U [2]ei 2πM (2) + · · · +U [M − 1]ei 2πM (M−1)]. (3.2)

For M = 2, we have:

um(2) = 1

M
[U [0].1 +U [1]ei 2πM (2)(1) +U [2]ei 2πM (2)(2) + · · · +U [M − 1]ei 2πM (2)(M−1)]

um(2) = 1

M
[U [0].1 +U [1]ei 2πM (2) +U [2]ei 2πM (4) + · · · +U [M − 1]ei 2πM 2(M−1)]. (3.3)

Continuing this process, for M = M − 1, we have:

um(M − 1) = 1

M
[U [0].1 +U [1]ei 2πM (M−1)(1) +U [2]ei 2πM (M−1)(2)

+ · · · +U [M − 1]ei 2πM (M−1)(M−1)]
um(M − 1) = 1

M
[U [0].1 +U [1]ei 2πM (M−1) +U [2]ei 2πM 2(M−1)

+ · · · +U [M − 1]ei 2πM (M−1)2 ]. (3.4)

A similar argument repeats for the reference signal �(M); we get the M − samRles of
the reference signal � by putting M = 0, 1, 2, 3, . . . , M − 1.
Step 2

Now, we develop the matrix form for these M − samples of the signal um(M) and the
reference signal �′(M) using definition 15; that is, we have:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

um(0)
um(1)
um(2)

.

.

.

um(M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ei
2π
M ei

2π
M 2 . . . ei

2π
M (M−1)

1 ei
2π
M 2 ei

2π
M 4 . . . ei

2π
M 2(M−1)

. . . . . . .

. . . . . . .

. . . . . . .

1 ei
2π
M (M−1) ei

2π
M 2(M−1) . . . ei

2π
M (M−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U [0]
U [1]
U [2]

.

.

.

U [M − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(0)
�(1)
�(2)

.

.

.

�(M − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 ei
2π
M ei

2π
M 2 . . . ei

2π
M (M−1)

1 ei
2π
M 2 ei

2π
M 4 . . . ei

2π
M 2(M−1)

. . . . . . .

. . . . . . .

. . . . . . .

1 ei
2π
M (M−1) ei

2π
M 2(M−1) . . . ei

2π
M (M−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�′[0]
�′[1]
�′[2]

.

.

.

�′[M − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A)

In Eq. (A), the first matrix on the right hand side is formed from the values of phase term
called Rhasemat�ix , while the second matrix is formed from the values of amplitude term
is called amplitude matrix and M denote the number of samples of signal.
Step 3

Multiply these two matrices and dividing by the number of samples M of signal. We get
all the values in the disk of radius one in a complex plane. As the order does not hold for
complex numbers, so we take absolute of these M − samRles of the signal xm(M) and the
reference signal �(M); that is:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

| um(0) |
| um(1) |
| um(2) |

.

.

.

| um(M − 1) |

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

| �(0) |
| �(1) |
| �(2) |

.

.

.

| �(M − 1) |

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These two matrices are called absolute value matrix.
Step 4

Now, we take the maximum value from the absolute value matrix of the signal um(M)

and reference signal �(M). If these two values are nearly the same, then the signal um(M)

identifies a reference signal.

Example 10 Assume that four different electromagnetic signals, u1(M), u2(M), u3(M), and
u4(M), have been received by a receiver. Each of these signals is sampled four times. Let
�(M) be the reference signal. The discrete Fourier transform of the signal um(M);m =
0, 1, 2, 3 and reference signal �(M) for M = 4 is:

um(M) = 1

4

3∑
q=0

Um[M]ei 2π4 Mq ; M, q = 0, 1, 2, 3, (1)

where

Um[M] ∈ [0, 1].
Also

�(M) = 1

4

3∑
q=0

�′[M]ei 2π4 Mq ; M, q = 0, 1, 2, 3, (2)
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where

�′[M] ∈ [0, 1].
For M = 0, 1, 2, 3, Eq. (1) becomes:

um(M) = 1

4
[Um[0].ei 2π4 M(0) +Um[1].ei 2π4 M(1) +Um[2].ei 2π4 M(2) +Um[3].ei 2π4 M(3)]

um(M) = 1

4
[Um[0].1 +Um[1].ei 2π4 M +Um[2].ei 2π4 2M +Um[3].ei 2π4 3M ]. (3)

Now, put M = 0 in (3), we have:

um(0) = 1

4
[Um[0].1 +Um[1].ei 2π4 (0) +Um[2].ei 2π4 2(0) +Um[3].ei 2π4 3(0)]

um(0) = 1

4
[Um[0].1 +Um[1].1 +Um[2].1 +Um[3].1]. (3.1)

Put M = 1 in (3), we have:

um(1) = 1

4
[Um[0].1 +Um[1].ei 2π4 (1) +Um[2].ei 2π4 2(1) +Um[3].ei 2π4 3(1)]

um(1) = 1

4
[Um[0].1 +Um[1].ei 2π4 +Um[2].ei 2π4 (2) +Um[3].ei 2π4 (3)]. (3.2)

Put M = 2 in (3), we have:

um(2) = 1

4
[Um[0].1 +Um[1].ei 2π4 (2) +Um[2].ei 2π4 2(2) +Um[3].ei 2π4 3(2)]

um(2) = 1

4
[Um[0].1 +Um[1].ei 2π4 (2) +Um[2].ei 2π4 (4) +Um[3].ei 2π4 (6)]. (3.3)

Put M = 3 in (3), we get:

um(3) = 1

4
[Um[0].1 +Um[1].ei 2π4 (3) +Um[2].ei 2π4 2(3) +Um[3].ei 2π4 3(3)]

um(3) = 1

4
[Um[0].1 +Um[1].ei 2π4 (3) +Um[2].ei 2π4 (6) +Um[3].ei 2π4 (9)]. (3.4)

We can write (3.1), (3.2), (3.3), and (3.4) in matrices form as:

⎡
⎢⎢⎣
um(0)
um(1)
um(2)
um(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣
1 1 1 1

1 ei
2π
4 (1) ei

2π
4 (2) ei

2π
4 (3)

1 ei
2π
4 (2) ei

2π
4 (4) ei

2π
4 (6)

1 ei
2π
4 (3) ei

2π
4 (6) ei

2π
4 (9)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
U1[0]
U1[1]
U1[2]
U1[3]

⎤
⎥⎥⎦ .

A similar argument repeats for the reference signal �(M); we get:
⎡
⎢⎢⎣

�(0)
�(1)
�(2)
�(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣
1 1 1 1

1 ei
2π
4 (1) ei

2π
4 (2) ei

2π
4 (3)

1 ei
2π
4 (2) ei

2π
4 (4) ei

2π
4 (6)

1 ei
2π
4 (3) ei

2π
4 (6) ei

2π
4 (9)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

�[0]
�[1]
�[2]
�[3]

⎤
⎥⎥⎦ .
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First of all, we find the values of the sample of reference signal �(M). For this, we have:

�′[q] =

⎧⎪⎪⎨
⎪⎪⎩
0; q = 0
0; q = 1
0.2; q = 2
1; q = 3⎡

⎢⎢⎣
�(0)
�(1)
�(2)
�(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0.2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.3
−0.2 − i

−0.8
−0.2 + i

⎤
⎥⎥⎦ .

Now, the absolute value matrix of the reference signal is:

⎡
⎢⎢⎣

| �(0) |
| �(1) |
| �(2) |
| �(3) |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.3
0.3
0.2
0.3

⎤
⎥⎥⎦ .

The maximum value is 0.3.
Now, for the signal u1(M) ; M = 0, 1, 2, 3:

U1[q] =

⎧⎪⎪⎨
⎪⎪⎩

.5; q = 0

.7; q = 1

.8; q = 2
1; q = 3⎡

⎢⎢⎣
u1(0)
u1(1)
u1(2)
u1(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

.5

.7

.8
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1(0)
u1(1)
u1(2)
u1(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣

3
−0.3 − 0.3i

−0.4
−0.3 + 0.3i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.75
−0.075 − 0.075i

−0.1
−0.075 + 0.075i

⎤
⎥⎥⎦ .

Now, the absolute value matrix of the signal u1(M) is:

⎡
⎢⎢⎣

| u1(0) |
| u1(1) |
| u1(2) |
| u1(3) |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.8
0.1
0.1
0.1

⎤
⎥⎥⎦ .

Here, the maximum value is 0.8.
For u2(M), we have:

U2[q] =

⎧⎪⎪⎨
⎪⎪⎩
0.4; q = 0
0.6; q = 1
0.8; q = 2
1; q = 3.
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Now ⎡
⎢⎢⎣
u2(0)
u2(1)
u2(2)
u2(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣
U2[0]
U2[1]
U2[2]
U2[3]

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2(0)
u2(1)
u2(2)
u2(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.4
0.6
0.8
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2(0)
u2(1)
u2(2)
u2(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣

2.8
−0.4 − 0.4i

−0.4
−0.4 + 0.4i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.7
−0.1 − 0.1i

−0.1
−0.1 + 0.1i

⎤
⎥⎥⎦ .

Now, the absolute value matrix of the signal u2(M) is:⎡
⎢⎢⎣

| u2(0) |
| u2(1) |
| u2(2) |
| u2(3) |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.7
0.1
0.1
0.1

⎤
⎥⎥⎦ .

Here, the maximum value is 0.7.
Now, for signal u3(M), we have:

U3[q] =

⎧⎪⎪⎨
⎪⎪⎩
0.6; q = 0
1; q = 1
0.9; q = 2
0.8; q = 3⎡

⎢⎢⎣
u3(0)
u3(1)
u3(2)
u3(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣
1 1 1 1

1 ei
2π
4 (1) ei

2π
4 (2) ei

2π
4 (3)

1 ei
2π
4 (2) ei

2π
4 (4) ei

2π
4 (6)

1 ei
2π
4 (3) ei

2π
4 (6) ei

2π
4 (9)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
U3[0]
U3[1]
U3[2]
U3[3]

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u3(0)
u3(1)
u3(2)
u3(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.6
1
0.9
0.8

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u3(0)
u3(1)
u3(2)
u3(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣

3.3
−0.3 + 0.2i

−0.3
−0.3 − 0.2i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.825
−0.075 + 0.05i

−0.075
−0.075 − 0.05i

⎤
⎥⎥⎦ .

Now, the absolute value matrix of the signal u3(M) is:⎡
⎢⎢⎣

| u3(0) |
| u3(1) |
| u3(2) |
| u3(3) |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.8
0.1
0.1
0.1

⎤
⎥⎥⎦ .

Here, the maximum value is 0.8.
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Now, for u4(M), we have:

U4[q] =

⎧⎪⎪⎨
⎪⎪⎩
0.8; q = 0
0.5; q = 1
0; q = 2
0; q = 3⎡

⎢⎢⎣
u4(0)
u4(1)
u4(2)
u4(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣
U4[0]
U4[1]
U4[2]
U4[3]

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u4(0)
u4(1)
u4(2)
u4(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.8
0.5
0
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u4(0)
u4(1)
u4(2)
u4(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣

1.3
0.8 + 0.5i

0.3
0.8 − 0.5i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.3
0.2 + 0.125i

0.1
0.2 − 0.125i

⎤
⎥⎥⎦ .

Now, the absolute value matrix of the signal u4(M) is:⎡
⎢⎢⎣

| u4(0) |
| u4(1) |
| u4(2) |
| u4(3) |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.3
0.2
0.1
0.2

⎤
⎥⎥⎦ .

Here, the maximum value is 0.3.
Now, from the following table of maximum values:

�(M) 0.3
u1(M) 0.8
u2(M) 0.7
u3(M) 0.8
u4(M) 0.3
.

The signal u4(M) identifies as a reference signal.

5 Comparison

The complex fuzzy set has many applications, particularly in signal processing and image
restoration as it represents the particular form of a Fourier series. Here, we have presented
the application of CFS in signals and systems. In this practical application, one of the main
issues is that how to choose a suitable model. We examined this idea in depth and used the
CFS in signals and systems by introducing an algorithm using the matrix already introduced
in Selesnick and Schuller (2001) and the CFS. In this application, we identified a reference
signal out of large interest signals detected by a digital receiver. Ramot et al. (2002) introduced
an algorithm to identify the unknown signal received by the digital receiver with reference
signal R, and in Zhang et al. (2009), the authors modified the method introduced in Ramot
et al. (2002). Furthermore, Ali and Smarandache (2017) work on the same algorithm for
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complex neutrosophic sets. In all these algorithms, the authors actually tried to find the
highest resemblance with the known signal R, while the method which we developed gives
the exact value of unknown signal among the all unknown signals received by the digital
receiver. We compared it with the known signal R, and observed that both the values are
exactly equal. Thus, we identified one unknown signal as a reference signal R among the
several signals detected by the receiver. The model that presented in this paper for identifying
a reference signal is more effective than the methods previously developed. Here, we used a
discrete Fourier transform matrix (DFTM) to develop an algorithm for further use in signal
processing. Moreover, through this model, we determined the value of each signal separately,
that detected by a digital receiver. In fact, we compared the values of different signals with the
reference signal and we easily identified the reference signal. Moreover, it is seen clearly that
how the detected signals matched with the reference signal. However, our designed model
is not a perfect one; it stucks with a deficiency of theoretical support. The concept of matrix
for CFSs may be useful for applications. Therefore, it will be significant for future work.

6 Conclusion

In this paper, we have discussed some new set theoretic operations on a CFS, and properties
of a CFS with respect to standard CF union, standard CF intersection, and standard CF
complement. We have presented some basic results and examples of these operations and
laws under the operations of complex fuzzy union, complex fuzzy intersection, and complex
fuzzy complement. Moreover, we have used a complex fuzzy set in signals and systems.
We have introduced a new method to develop a new kind of matrix using a complex fuzzy
set, through which we identified a reference signal among several signals detected by the
digital receiver. In future, the same method can be used for continuous data of signals using
continuous Fourier transform. This method can also be applied for identification of signals
in geology. Moreover, this work and further study of complex fuzzy sets will give a new
direction of applications in different fields of science and engineering.
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